Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire

Tamanho: px
Começar a partir da página:

Download "Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire"

Transcrição

1 Uivridad Salvador UNIFACS Curo d Egharia Méodo Mmáico Aplicado / Cálculo Avaçado / Cálculo IV Profa: Ilka Rouça Frir A Traformada d Laplac Txo : Irodução. Dfiição. Codiçõ d Exiêcia. Propridad. Irodução A Traformada d Laplac é um méodo d rolução d quaçõ difrciai do corrpod prolma d valor iicial qu rduz a quão da rolução d uma quação difrcial a um prolma algérico. Tm a vagm d rolvr diram o prolma, io é, o prolma d valor iicial podm r rolvido m qu drmi iicialm uma olução gral. Além dio, a quaçõ ão-homogêa ão rolvida m r qu primiro corar a olução da homogêa corrpod. E méodo é uilizado m prolma d Egharia, pricipalm m prolma m qu uma força d propulão ( mcâica ou lérica ) m dcoiuidad: por xmplo, ua m curo irvalo d mpo ou é priódica ma ão é o ou coo. O méodo foi dvolvido por Pirr Simo d Laplac ( ), grad mmáico fracê qu dvolvu o fudamo da oria do pocial du grad coriuiçõ à Mcâica Cl à Toria da Proailidad. Dfiição: Sja f() uma fução ral o irvalo [, + [ coidrmo a igral imprópria f ()d od é uma variávl ral. S a igral covrg para cro valor d, ão dfi uma fução d chamada d Traformada d Laplac d f doada por L[f] () F() f ()d. A opração ralizada or f() é chamada d raformação d Laplac. Orvaçõ: O uo da lra m lugar d x como variávl idpd é uma covção pricam uivral quado dfi a Traformada d Laplac m como

2 origm o fo d qu a grad maioria do prolma práico com valor iicial a variávl idpd r o mpo. Uma vz qu valor givo do mpo ão uualm xcluído rrigimo o udo ao ixo ão givo, io é, [, + [. Exmplo: Drmi a raformada d Laplac da gui fuçõ:. f() ; F() f ()d d lim d lim [ ] + lim [ ] ; Aim, L[] () para >. Orvmo qu a igral covrg para valor d >.. f() ; > F () f ()d d lim d lim [ ] lim [ + ] ; Orvmo qu lim lim ( ) lim L Hopial a variávl ) Aim, L[] F() > ( codição para a covrgêcia da igral ) ( > ) ( Uado 3. f() ; iiro poiivo F() f ()d d

3 3 Vamo iicialm uar par para calcular a igral idfiida corrpod: u du d d : dv d v Tmo aim qu: d + d d lim [ ] + d lim [ ] + d L[ ]. Orvação: lim [ ]. d Io pod r vrificado uado- L`Hopial para aixar o grau d : ( ) lim [ ] lim [ ] lim [ ] lim [ ]... 3 Aim, ( ) ( )( ) L[ ] L[ ] L[ ] L[ 3 ]... 3 ( )( )( 3)...!! L[ ] L[] Logo! L[ ] ; para > +! + 3.)! L [ ] ; 3.) 3 5 5! L [ ] 6 4. f() ; > a co F() d (a ) d (a ) (a ) lim (a ) d lim [ ] lim [ ] a (a ) <. a a a Logo, L[ ], > a. a

4 4 4.) L[ ] ; 4.) L[ ] + 5. f () k; ; < < c c k c F() f ()d c k k c k k( c ) k d [ ] c + Alguma Coidraçõ or a Exiêcia da Traformada Como iluramo o xmplo acima, para um grad úmro d fuçõ f(), rá poívl calcular L[f] diram da dfiição. Prciamo, o o, alcr um cojuo d codiçõ qu garam a xiêcia da raformada d Laplac d uma fução f(). Para io, vamo iroduzir doi cocio impor: fução coíua por par fução d ordm xpocial: Dfiição: Uma fução f é dia coíua por par um irvalo [a,] : i) f é coíua m odo o poo d [a,], xco um úmro fiio ii) o limi lrai xim o poo d dcoiuidad Exmplo: x; < x <. A fução f (x) é coíua por par m [,] x; < x <. A fução zro. f (x) ão é coíua por par m hum irvalo codo o x O gui rulado valm:

5 5 S f é coíua por par m [a,] ão f (x)dx xi idpd do valor qu f a aum ( ivr dfiida) o u poo d dcoiuidad. S f g ão coíua por par m [a,], ão f.g é coíua por par m [a,] poro ( fg)(x)dx xi a Toda fução coíua m [a,] é coíua por par Examiado a dfiição da Traformada orvamo qu f() dv r al qu f () d xia para odo >. Io pod r oido xigido qu f ja coíua por par m odo irvalo da forma [,] ( > ), uma vz qu da forma o igrado rá coíuo por par poro a igral xiirá. Ma a codição ão é ufici poi qurmo qu a igral f () d ja covrg para algum valor d. Io pod r garido xigido- qu f() aproxim d zro quado d a ifiio o qu pod r oido f() for domiada por uma xpocial. E fo á xpro a gui dfiição: Dfiição: Diz- qu uma fução f é d ordm xpocial m [, + [ xim co M > α ai qu f () M α para odo > o, para drmiado o. Exmplo:. f() é d ordm xpocial Ba omarmo α M : f ().. f() é d ordm xpocial Ba morarmo qu lim ( para um α > ) poi a dfiição d limi o gar qu α qualqur qu ja M >, xi o al qu para > o, M α <, logo M α

6 6 O gui orma o gar a xiêcia da Traformada d Laplac para fuçõ coíua por par d ordm xpocial: Torma: S f é uma fução coíua por par d ordm xpocial xi um úmro o al qu f ()d covrg para odo o valor d > o o é chamada d acia d covrgêcia Orvação: A rcíproca do Torma ão é vrdadira, io é, uma fução pod r Traformada d Laplac m r d ordm xpocial. Um xmplo é f () Propridad da Traformada d Laplac. Torma (Liaridad da Traformada d Laplac) : A Traformada d Laplac é uma opração liar, io é, para quaiqur fuçõ f() g() cuja raformada d Laplac xiam quaiqur co a mo qu L[ af() + g() ] al[f() ] + L[g()]. D] Uado a liaridad da igral upodo qu L[f] L[g] xiam mo qu L[af + g] ( af + g)() d a f () d + g() d al[f] + L[g] Orvaçõ A raformada é um oprador qu aplica o cojuo da fuçõ coíua por par d ordm xpocial o cojuo da fuçõ dfiida m irvalo da forma ] o, + [ L[f + g] L[f] + L[g] igifica qu a ididad ocorr para valor d m qu ama a fuçõ ão dfiida Com a propridad da liaridad podmo ampliar a oa lia d raformada, como vrmo o xmplo gui: Exmplo: ) Uado a liaridad o rulado já vio, drmi a Traformada d Laplac da gui fuçõ.) f() k

7 7 L[k] L [k.] k L[] k ; >.) f () 3 + 3! L [f ()] L[ 3 + ] L[] 3L[] + L[ ] + 3.3) f () + + L[f ()] L[ + + ] L[ ] + L[ ] + L[] Uado a liaridad a formula d Eulr iw co(w) + i(w), dduza a raformada da fuçõ: f() co w f() (w) Tmo qu L[ ]. Fazdo a iw, a iw + iw L[ ]. iw Por ouro lado, pla fórmula d Eulr, iw co(w) + i(w) Aim, L[ iw ] L[co(w) + i(w)] L[co(w)] + il[(w)] w + i Logo, L[co(w)] w L[(w)] Uado a dfiição podmo morar qu o rulado acima valm para >..) f () 3 co L[f ()] L[3 co ] 3L[] L[co ] Uado a liaridad dduza a raformada f () coh ( coo hiprólico ) + L[coh ] L[ ] (L[ ] + L[ ])

8 8 ( + ) ; > a a + a a 3.) f () h (o hiprólico) L[h] L[ ] (L[ ] L[ ]) a ( ) ; > a a + a a Rfrêcia Biliográfica:. Kryzig, Erwi Mmáica Suprior - vol. Zill/Cull Equaçõ Difrciai - vol 3. Kridr/Kullr/Org Equaçõ Difrciai

TRANSFORMADA DE LAPLACE- PARTE I

TRANSFORMADA DE LAPLACE- PARTE I TRNSFORMD DE LLE- RTE I Eor. d Barro. INTRODUÇÃO odmo dfiir a Traformada d Laplac como uma opração mamáica qu covr uma fução d variávl ral m uma fução d variávl complxa: Od, F f d i f é uma fução ral da

Leia mais

Análise de Sistemas Lineares

Análise de Sistemas Lineares Aáli d Sima iar Dvolvido plo Prof Dr Emilo Rocha d Olivira, EEEC-UFG, 6 Traformada d aplac A ididad d Eulr dfi uma rlação r o ial xpocial o iai oidai a forma ± j = co ( ) ± j ( ) N cao, é dfiido como a

Leia mais

4. Análise de Sistemas de Controle por Espaço de Estados

4. Análise de Sistemas de Controle por Espaço de Estados Sisma para vrificação Lógica do Corolo Dzmro 3 4. ális d Sismas d Corol por Espaço d Esados No capiulo arior, vimos qu a formulação d um Prolma Básico d Corolo Ópimo Liar, ra cosidrado um sisma diâmico

Leia mais

1. A TRANSFORMADA DE LAPLACE

1. A TRANSFORMADA DE LAPLACE Equaçõ Difrciai - Traformada d Laplac A TRANSFORMADA DE LAPLACE Dfiição: Sja f() uma fução ral dfiida para > Eão a raformada d Laplac d f(), doada por L [ ( ) ] f é dfiida por: L [ f ( ) ] F( ) f( )d,

Leia mais

TRANSFORMADA DE LAPLACE: ALGUMAS APLICAÇÕES

TRANSFORMADA DE LAPLACE: ALGUMAS APLICAÇÕES UNIVERSIDADE FEDERAL DE SANTA CATARINA Programa d Pó-Graduação m Mamáica Aoio Luiz Schalaa Pachco TRANSFORMADA DE LAPLACE: ALGUMAS APLICAÇÕES Moografia ubmida à Uivridad Fdral d Saa Caaria para obção do

Leia mais

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ PR UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Prof Mc ARMANDO PAULO DA SILVA Prof Mc JOSÉ DONIZETTI DE LIMA INTEGRAIS IMPRÓPRIAS A TRANSFORMADA DE LAPLACE g ()d = lim R R g()d o limit it Qudo o limit it

Leia mais

3. TRANSFORMADA DE LAPLACE. Prof. JOSÉ RODRIGO DE OLIVEIRA

3. TRANSFORMADA DE LAPLACE. Prof. JOSÉ RODRIGO DE OLIVEIRA 3 TRNSFORMD DE LPLCE Prof JOSÉ RODRIGO DE OLIVEIR CONCEITOS BÁSICOS Númro complxo: ond α β prncm ao nº rai Módulo fa d um númro complxo Torma d Eulr: b a an a co co n n Prof Joé Rodrigo CONCEITOS BÁSICOS

Leia mais

Tópicos Especiais em Identificação Estrutural. Representação de sistemas mecânicos dinâmicos

Tópicos Especiais em Identificação Estrutural. Representação de sistemas mecânicos dinâmicos Tópicos Espciais m Idiicação Esruural Rprsação d sismas mcâicos diâmicos O problma diro... rada Sisma rsposa rsposa y() rada x() Problma diro: rada x() Cohcimo + rsposa do sisma y() O problma ivrso...

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire Univridad Salvador UNIFACS Curo d Engnharia Método Matmático Alicado / Cálculo Avançado / Cálculo IV Profa: Ilka Rbouça Frir A Tranformada d Lalac Txto 3: Dlocamnto obr o ixo t. A Função Dgrau Unitário.

Leia mais

sen( x h) sen( x) sen xcos h sen hcos x sen x

sen( x h) sen( x) sen xcos h sen hcos x sen x MAT00 Cálculo Difrcial Itgral I RESUMO DA AULA TEÓRICA Livro do Stwart: Sçõs 3., 3.4 3.8. DEMONSTRAÇÕES Nssa aula srão aprstadas dmostraçõs, ou sboços d dmostraçõs, d algus rsultados importats do cálculo

Leia mais

Capítulo 2 Sinais e Espectros

Capítulo 2 Sinais e Espectros Capíulo Siais Espcros Siais léricos d comuicação são quaidads variávis o mpo, ais como são corr. Sial v() o domíio do mpo; Variávl idpd. Embora o sial xisa fisicam o domíio do mpo, ambém pod sr rprsado

Leia mais

Sinais e Sistemas. Env. CS1 Ground Revolute. Sine Wave Joint Actuator. Double Pendulum Two coupled planar pendulums with

Sinais e Sistemas. Env. CS1 Ground Revolute. Sine Wave Joint Actuator. Double Pendulum Two coupled planar pendulums with -4-6 -8-2 -22-24 -26-28 -3-32 Frqucy (khz) Hammig kaisr Chbyshv Siais Sismas Powr Spcral Dsiy Ev B F CS CS2 B F CS Groud Rvolu Body Rvolu Body Powr/frqucy (db/hz) Si Wav Joi Acuaor Joi Ssor Rvolu.5..5.2.25.3.35.4.45.5-34

Leia mais

TRANSFORMADAS DE FOURIER

TRANSFORMADAS DE FOURIER TRASORMADAS DE OURIER Dfção: É a raformação qu lva uma magm a r rprada o domío da frqüêca Io é poívl porqu uma magm pod r dcompoa m fuçõ o coo com dfr frqüêca amplud A vaagm prcpal d rabalhar o domío da

Leia mais

Transformada de Laplace. Prof. Eng. Antonio Carlos Lemos Júnior

Transformada de Laplace. Prof. Eng. Antonio Carlos Lemos Júnior Trormd d plc Pro. Eg. oio Crlo mo Júior GEND Diição d Trormd d plc Trormd d plc d lgu ii Propridd d Trormd d plc Exrcício Corol d Sm Mcâico Trormd d plc Obivo: O obivo d ção é zr um irodução à Trormd d

Leia mais

Sistemas e Sinais (LEIC) Resposta em Frequência

Sistemas e Sinais (LEIC) Resposta em Frequência Sismas Siais (LEIC Rsposa m Frquêcia Carlos Cardira Diaposiivos para acompahamo da bibliografia d bas (Srucur ad Irpraio of Sigals ad Sysms, Edward A. L ad Pravi Varaiya Sumário Dfiiçõs Sismas sm mmória

Leia mais

Capítulo 5 Transformadas de Fourier

Capítulo 5 Transformadas de Fourier Capíulo 5 Trasformadas d Fourir 5. Aális da composição d sismas aravés da rsposa m frquêcia 5. Trasformadas d Fourir propridads Capíulo 5 Trasformadas d Fourir 5. Aális da composição d sismas aravés da

Leia mais

Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I. Ano Lectivo º Semestre

Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I. Ano Lectivo º Semestre aculdad d Ecoomia Uivrsidad Nova d Lisboa EXAME DE CÁLCULO I Ao Lctivo 009-0 - º Smstr Eam ial d ª Época m d Jairo d 00 Duração: horas 0 miutos É proibido usar máquias d calcular ou tlmóvis Não tha o su

Leia mais

CÁLCULO I 2º Semestre 2011/2012. Duração: 2 horas e 15 minutos

CÁLCULO I 2º Semestre 2011/2012. Duração: 2 horas e 15 minutos NOVA SHOOL OF BSINESS AND EONOMIS ÁLLO I º Ssr / EXAME ª ÉOA TÓIOS DE RESOLÇÃO Juho Duração: horas iuos Não é priido o uso d calculadoras Não pod dsagrafar as folhas do uciado Rspoda d fora jusificada

Leia mais

Equações Diferenciais Lineares

Equações Diferenciais Lineares Equaçõs Diriais Liars Rordmos a orma gral d uma quação dirial liar d ordm a d d d d a a a, I d d m qu as uçõs a i são idpdts da variávl. S, a quação diz-s liar homogéa. Caso otrário, diz-s liar omplta.

Leia mais

que representa uma sinusoide com a amplitude modulada por uma exponencial. Com s real, tem-se,

que representa uma sinusoide com a amplitude modulada por uma exponencial. Com s real, tem-se, Curo d Engnharia Elcrónica d Compuador - Elcrónica III Frquência Complxa rvião n Conidr- a xprão, σ v V co qu rprna uma inuoid com a ampliud modulada por uma xponncial. Com ral, m-, n σ>0 a ampliud d v

Leia mais

CÁLCULO I 2º Semestre 2011/2012. Duração: 1 hora e 30 minutos

CÁLCULO I 2º Semestre 2011/2012. Duração: 1 hora e 30 minutos NOVA SCHOOL OF BSINESS AND ECONOMICS CÁLCLO I º Smsr / TESTE INTERMÉDIO Tópi d rsolução Abril Duração: ora miuos Não é prmiido o uso d calculadoras. Não pod dsagraar as olas do uciado. Rspoda d orma jusiicada

Leia mais

Questão (a) 3.(b) 3.(c) 3.(d) 4.(a) 4.(b) 5.(a) 5.(b) 6 Cotação

Questão (a) 3.(b) 3.(c) 3.(d) 4.(a) 4.(b) 5.(a) 5.(b) 6 Cotação Faculdad d Ciêcias Exatas da Egharia PROVA DE AVALIAÇÃO DE CONHECIMENTOS E COMPETÊNCIAS PARA ADMISSÃO AO ENSINO SUPERIOR PARA MAIORES DE ANOS - 07 Matmática - 4/06/07 Atção: Justifiqu os raciocíios utilizados

Leia mais

XXXI Olimpíada Brasileira de Matemática GABARITO Primeira Fase

XXXI Olimpíada Brasileira de Matemática GABARITO Primeira Fase XXXI Olimpíada Brasilira d Matmática GABARITO Primira Fas Soluçõs Nívl Uivrsitário Primira Fas PROBLEMA ( x) a) A drivada da fução f é f ( x) =, qu s aula apas para x =, sdo gativa para x < positiva para

Leia mais

u seja, pode ser escrito como uma combinação linear de.

u seja, pode ser escrito como uma combinação linear de. Toma d Cayly-Hamilo ja x sja d I α... α poliômio caacísico d. Eão: α α... α α I Toda maiz é um zo d su poliômio caacísico., mos qu qu:... I { I,,..., } u sja, pod s scio como uma combiação lia d. Também,

Leia mais

Função Exponencial: Conforme já vimos, o candidato natural à função exponencial complexa é dado pela função. f z x iy f z e cos y ie sen y.

Função Exponencial: Conforme já vimos, o candidato natural à função exponencial complexa é dado pela função. f z x iy f z e cos y ie sen y. Funçõs Elmntars Função Exponncial: Conform já vimos, o candidato natural à função xponncial complxa é dado pla função Uma v qu : : ( ) x x f x i f cos i sn x f, x. E uma gnraliação para sr útil dv prsrvar

Leia mais

1 Eliminação gaussiana com pivotamento parcial

1 Eliminação gaussiana com pivotamento parcial 1 Elimiação gaussiaa com pivotamto parcial Exmplo sm pivotamto parcial Costruimos a matriz complta: 0 2 2 1 1 1 6 0 2 2 1 2 1 1 1 1 0 2 2 1 1 1 6 1 2 0 0 2 0 6 x y z = 9 6 0 2 2 0 1 0 3 1 0 0 2 0 2 0 6

Leia mais

Identifique todas as folhas Folhas não identificadas NÃO SERÃO COTADAS. Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I

Identifique todas as folhas Folhas não identificadas NÃO SERÃO COTADAS. Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I Idtifiqu todas as folhas Folhas ão idtificadas NÃO SERÃO COTADAS Faculdad d Ecoomia Uivrsidad Nova d Lisboa EXAME DE CÁLCULO I Ao Lctivo 8-9 - º Smstr Exam Fial d ª Época m 5 d Maio 9 Duração: horas miutos

Leia mais

Teoria de Controle (sinopse) 4 Função de matriz. J. A. M. Felippe de Souza

Teoria de Controle (sinopse) 4 Função de matriz. J. A. M. Felippe de Souza Toria d Conrol (sinops) 4 Função d mariz J. A. M. Flipp d Souza Função d mariz Primiramn vamos dfinir polinómio d mariz. Dfinição: Polinómio d mariz (quadrada) Sja p(λ)um polinómio m λd grau n (finio),

Leia mais

Nota 1: Esta questão poderia ser resolvida de outra maneira, usando a seguinte propriedade: RESOLUÇÃO DA PROVA MODELO N.º 14

Nota 1: Esta questão poderia ser resolvida de outra maneira, usando a seguinte propriedade: RESOLUÇÃO DA PROVA MODELO N.º 14 RESLUÇÃ DA PRVA MDEL N.º GRUP I ITENS DE ESCLHA MÚLTIPLA. Cosidrmos o sguit squma: S as duas ltras A ficassm as duas primiras posiçõs a ltra D a trcira posição tmos: As duas ltras A podm ocupar as oito

Leia mais

TÓPICOS. Sinais contínuos e sinais discretos. Função impulso unitário discreto.

TÓPICOS. Sinais contínuos e sinais discretos. Função impulso unitário discreto. Not bm: a litura dsts apotamtos ão dispsa d modo algum a litura atta da bibliografia pricipal da cadira hama-s a atção para a importâcia do trabalho pssoal a ralizar plo aluo rsolvdo os problmas aprstados

Leia mais

5. Implementação da solução da equação de estados

5. Implementação da solução da equação de estados Sisma para vrifiação Lógia do Corolo Dzmbro 3 5. Implmação da solução da uação d sados No apiulo arior abordamos a aális dsvolvimo mamáio d Sismas d Corol por Espaço d Esados u os prmiiu hgar à Solução

Leia mais

TÓPICOS. Integração complexa. Integral de linha. Teorema de Cauchy. Fórmulas integrais de Cauchy.

TÓPICOS. Integração complexa. Integral de linha. Teorema de Cauchy. Fórmulas integrais de Cauchy. No m, liur dss pomos ão disps d modo lgum liur d iliogri pricipl d cdir hm-s à ção pr imporâci do rlho pssol rlir plo luo rsolvdo os prolms prsdos iliogri, sm ul prévi ds soluçõs proposs, ális compriv

Leia mais

Sinais de Potência. ( t) Período: Frequência fundamental: f = T T

Sinais de Potência. ( t) Período: Frequência fundamental: f = T T Siais d Poêcia P lim ( ) d < Siais Priódicos ( ) ( + ) com Ζ ( ) Príodo: P Frquêcia udamal: ( ) d Exmplos Sial cosa ( ) Sial siusoidal Fas ula Im si θ c Fórmulas d Eulr xp ± jθ cosθ ± j si ( ) θ jθ θ cosθ

Leia mais

Estatística Clássica

Estatística Clássica Estatística Clássica As rgias das difrts partículas do sistma (um istat particular s distribum d acordo com uma fução distribuição d probabilidad distribuição d Boltzma qu dpd da tmpratura T. Um xmplo

Leia mais

Resposta em frequência

Resposta em frequência Rsposta frquêcia Nocatura a rsposta frquêcia é úti a caractrização d u sista LSI. Dfi d quato a apitud copa d ua pocia copa é atrada ao sr fitrada po sista. Epociais copas são autofuçõs d sistas LSI. Cosidrado

Leia mais

Ánálise de Fourier tempo discreto

Ánálise de Fourier tempo discreto Faculdad d Egharia Áális d Fourir tmpo discrto 4 3.5 3.5.5.5.5.5 -.5 -.5 - - -8-6 -4-4 6 8 - - -5 5 5 5 3 SS MIEIC 8/9 Aális d Fourir m tmpo discrto aula d hoj Faculdad d Egharia Rsposta d SLITs discrtos

Leia mais

LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA

LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA Fadiga dos Matriais Mtálicos Prof. Carlos Baptista Cap. 4 PROPAGAÇÃO DE TRINCAS POR FADIGA LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA Qualqur solução do campo d tnsõs para um dado problma m lasticidad

Leia mais

TRANSFORMADA DE LAPLACE 9.1 INTRODUÇÃO

TRANSFORMADA DE LAPLACE 9.1 INTRODUÇÃO 9 TANSFOMADA DE APAE 9. INTODUÇÃO A rformd d Fourir prmi rprr qulqur il fíico pl om, fii ou ifii, d u compo, gudo um rfrcil m qu vriávl ω d b é rl. Tl rprção d ii dmph um ppl impor o udo d im lir ivri,

Leia mais

A TRANSFORMADA DE LAPLACE

A TRANSFORMADA DE LAPLACE A TRANSFORMADA DE APACE Prof M Ayron Barboni SUMÁRIO INTRODUÇÃO TRANSFORMADA DE APACE Dfinição Cálculo da ranformada d aplac Exrcício rolvido 4 4 Exrcício propoo 8 TRANSFORMADA INVERSA DE APACE 9 Exrcício

Leia mais

A Transformada de Laplace

A Transformada de Laplace UFPEL IFM/DME - Equaçõ Difrnciai Tranformada ingrai: A Tranformada d Laplac Uma da difrn manira d rolvr quaçõ difrnciai linar é conidrar a chamada ranformada ingrai. Uma ranformada ingral é uma rlação

Leia mais

Análise de Sinais no Domínio do Tempo e da Freqüência

Análise de Sinais no Domínio do Tempo e da Freqüência UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARAMENO DE ENGENHARIA MECÂNICA Aális d Siais Dmíi d mp da Frqüêcia SEM4 Mdidas Mcâicas Lpld P.R. d Olivira Irduçã Ja Bapis Jsph Furir sudava

Leia mais

( C) lim g( x) 2x 4 0 ( D) lim g( x) 2x

( C) lim g( x) 2x 4 0 ( D) lim g( x) 2x AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha d Trabalho º6 - Fuçõs - º ao Eams 0 a 04. Na figura stá rprstada um rfrcial o.. Oy, part do gráfico d uma fução g, d domíio 3,. A rta d quação y 4 é assítota do

Leia mais

TÓPICOS. Vectores livres. Vectores em R 2 e R 3. Vectores em R n. Vectores iguais. Soma de vectores. Notação matricial.

TÓPICOS. Vectores livres. Vectores em R 2 e R 3. Vectores em R n. Vectores iguais. Soma de vectores. Notação matricial. Not bm: a litra dsts apotamtos ão dispsa d modo algm a litra atta da bibliografia pricipal da cadira TÓPICOS Vctors lirs. AULA 09 Chama-s a atção para a importâcia do trabalho pssoal a ralizar plo alo

Leia mais

Análise de Processos ENG 514

Análise de Processos ENG 514 áli d Proco NG 54 apítulo 5 Modlo do Tipo trada-saída Pro. Édlr Li d lbuqurqu Julho d 4 Forma d Rprtação d Modlo Matmático Fomológico Modlo dcrito por quaçõ Dirciai Modlo a orma d paço d tado Modlo do

Leia mais

Dinâmica Estocástica Aula 7 Ifusp, setembro de Tânia - Din Estoc

Dinâmica Estocástica Aula 7 Ifusp, setembro de Tânia - Din Estoc Diâmica Estocástica Aula 7 Iusp, stmbro d 016 Tâia - Di Estoc - 016 1 . Discrtização da quação d Lagvi. Obtção da quação d Fokkr-Plack Tâia - Di Estoc - 016 Discrtização da quação d Lagvi A orma discrtizada

Leia mais

A importância do detalhe na Mecânica de Fluidos Computacional

A importância do detalhe na Mecânica de Fluidos Computacional II Cofrêcia Nacioal d Méodo Numérico m Mcâica d Fluido Trmodiâmica Uivridad d Aviro, 8-9 d Maio d 8 A imporâcia do dalh a Mcâica d Fluido Compuacioal.J.Olivira Uivridad da Bira Irior, Dparamo d Egharia

Leia mais

Análise e Processamento de BioSinais. Mestrado Integrado Engenharia Biomédica. Faculdade de Ciências e Tecnologia. Universidade de Coimbra

Análise e Processamento de BioSinais. Mestrado Integrado Engenharia Biomédica. Faculdade de Ciências e Tecnologia. Universidade de Coimbra Aális Procssamto d BioSiais Mstrado Itgrado Egharia Biomédica Faculdad d Ciêcias cologia Slid Aális Procssamto d BioSiais MIEB Adaptado dos slids S&S d Jorg Dias ópicos: o Aális d Fourir para Siais Sistmas

Leia mais

TÓPICOS. EDO de variáveis separadas. EDO de variáveis separáveis. EDO homogénea. 2. Equações Diferenciais de 1ª Ordem.

TÓPICOS. EDO de variáveis separadas. EDO de variáveis separáveis. EDO homogénea. 2. Equações Diferenciais de 1ª Ordem. ot bm a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliograia principal da cadira Cama-s à atnção para a importância do trabalo pssoal a ralizar plo aluno rsolvndo os problmas

Leia mais

Memorize as integrais imediatas e veja como usar a técnica de substituição.

Memorize as integrais imediatas e veja como usar a técnica de substituição. Blém, d maio d 0 aro aluno, om início das intgrais spro qu vocês não troqum as rgras com as da drivada principalmnt d sno d sno. Isso tnho dito assim qu comçamos a studar drivada, lmbra? Mmoriz as intgrais

Leia mais

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 07. Prof. Dr. Marco Antonio Leonel Caetano

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 07. Prof. Dr. Marco Antonio Leonel Caetano MESTRADO EM MACROECONOMIA FINANÇAS Disiplina d Compuação Aula 7 Prof. Dr. Maro Anonio Lonl Caano Guia d Esudo para Aula 7 Vors Linarmn Indpndns - Vrifiação d vors LI - Cálulo do Wronsiano Equaçõs Difrniais

Leia mais

MATEMÁTICA. QUESTÃO 1 De quantas maneiras n bolas idênticas podem ser distribuídas em três cestos de cores verde, amarelo e azul?

MATEMÁTICA. QUESTÃO 1 De quantas maneiras n bolas idênticas podem ser distribuídas em três cestos de cores verde, amarelo e azul? (9) - www.litcampias.com.br O ELITE RESOLVE IME 8 TESTES MATEMÁTICA MATEMÁTICA QUESTÃO D quatas mairas bolas idêticas podm sr distribuídas m três cstos d cors vrd, amarlo azul? a) b) d) ( )! ) Rsolução

Leia mais

Limites Questões de Vestibulares ( )( ) Solução: Primeiro Modo (Fatorando a fração usando BriotxRuffini): lim. Segundo Modo: lim

Limites Questões de Vestibulares ( )( ) Solução: Primeiro Modo (Fatorando a fração usando BriotxRuffini): lim. Segundo Modo: lim Limis Qusõs d Vsibulars 7. (AMAN-RJ) Calculado o i, coramos: 9 7 a) b) c) d) ) 9 7 Solução: Primiro Modo (Faorado a ração usado BrioRuii): 9 7., qu é uma idrmiação. Faorado a ução, umrador 9. 7 domiador

Leia mais

Módulo 09. Espaço de Sinais. [Poole 431 a 518, 650 a 660]

Módulo 09. Espaço de Sinais. [Poole 431 a 518, 650 a 660] Módulo 9 Not bm, a litura dsts apotamtos ão dispsa d modo algum a litura atta da bibliografia pricipal da cadira Chama-s à atção para a importâcia do trabalho pssoal a raliar plo aluo rsolvdo os problmas

Leia mais

NÚMEROS COMPLEXOS. Podemos definir o conjunto dos números complexos como sendo o conjunto dos números escritos na forma:

NÚMEROS COMPLEXOS. Podemos definir o conjunto dos números complexos como sendo o conjunto dos números escritos na forma: NÚMEROS COMPLEXOS DEFINIÇÃO No cojuto dos úmros ras R, tmos qu a a a é smpr um úmro ão gatvo para todo a Ou sja, ão é possívl xtrar a ra quadrada d um úmro gatvo m R Portato, podmos dfr um cojuto d úmros

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR A =

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR A = Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 4 EQUAÇÕES DIFERENCIAIS LINEARES Formas canónicas d Jordan () Para cada uma das matrizs A

Leia mais

TÓPICOS DE RESOLUÇÃO DO EXAME DE CÁLCULO I

TÓPICOS DE RESOLUÇÃO DO EXAME DE CÁLCULO I Faculdad d Ecoomia Uivrsidad Nova d Lisboa TÓPICOS DE RESOLUÇÃO DO EXAME DE CÁLCULO I Ao Lctivo 7-8 - º Smstr Eam Fial d 1ª Época m d Juho d 8 Duração: horas 3 miutos É proibido usar máquias d calcular

Leia mais

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0.

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0. 0 d º) Equação do tipo: f ) d Solução: d d d d f ) f ) d f ) d. Intgrando ambos os mmbros d d d d vm: d d f ) d C d [ f ) d C ]d [ f ) d C] d C d E: Rsolva a quação 6 7 0 d d d º) Equação do tipo f ) :

Leia mais

RESUMO de LIMITES X CONTINUIDADE. , tivermos que f(x) arbitr

RESUMO de LIMITES X CONTINUIDADE. , tivermos que f(x) arbitr RESUMO d LIMITES X CONTINUIDADE I. Limits finitos no ponto 1. Noção d Limit Finito num ponto Sjam f uma função x o IR. Dizmos qu f tm it (finito) no ponto x o (m símbolo: f(x) = l IR) quando x convn x

Leia mais

Transporte Vestiário Higiene Pessoal Poupança

Transporte Vestiário Higiene Pessoal Poupança Álgbr Mricil PRTE LGUMS CONSDERÇÕES TEORCS MTRZES Noção d mriz Mrizs formm um impor cocio m mmáic, d spcil uso o sudo d rsformçõs lirs mriiz é um bl d lmos disposos m lih colus Mriz m é um bl d m úmros

Leia mais

10. EXERCÍCIOS (ITA-1969 a ITA-2001)

10. EXERCÍCIOS (ITA-1969 a ITA-2001) . EXERCÍCIOS (ITA-969 a ITA-) - (ITA - 969) Sjam f() = + g() = duas funçõs rais d variávl ral. Então (gof)(y ) é igual a: a) y y + b) (y ) + c) y + y d) y y + ) y - (ITA -97) Sjam A um conjunto finito

Leia mais

7 Solução de um sistema linear

7 Solução de um sistema linear Toria d Conrol (sinops 7 Solução d um sisma linar J. A. M. Flipp d Souza Solução d um sisma linar Dfinição 1 G(,τ mariz cujos lmnos g ij (,τ são as rsposas na i ésima saída ao impulso aplicado na j ésima

Leia mais

CÁLCULO I 1º Semestre 2011/2012. Duração: 2 horas e 30 minutos

CÁLCULO I 1º Semestre 2011/2012. Duração: 2 horas e 30 minutos NOVA SCHOOL OF USINESS AND ECONOMICS CÁLCULO I º Smsr / EXAME ª ÉOCA Jiro Durção: hors miuos Não é prmiido o uso d luldors. Não pod dsgrfr s folhs do uido. O uido ds m é omposo por págis. Rspod d form

Leia mais

TRANSFORMADA DE FOURIER

TRANSFORMADA DE FOURIER 8 RASFORMADA DE FORIER 8. IRODÇÃO o sdo da rprsação d siais m difrs bass comço-s por aalisar siais priódicos, dcompodo-os, iicialm, m somaório mrávl d cissóids, o q gro a séri xpocial d Forir, posriorm,

Leia mais

Capítulo 5 Transformadas de Fourier

Capítulo 5 Transformadas de Fourier Capítulo 5 Trasformadas d Fourir 5. Aális da composição d sistmas através da rsposta m frquêcia 5.2 Trasformadas d Fourir propridads Capítulo 5 Trasformadas d Fourir 5. Aális da composição d sistmas através

Leia mais

Questão. Sinais periódicos e não periódicos. Situação limite. Transformada de Fourier de Sinais Contínuos

Questão. Sinais periódicos e não periódicos. Situação limite. Transformada de Fourier de Sinais Contínuos Qusão Srá possívl rprsnar sinais não priódicos como soma d xponnciais? ransformada d Fourir d Sinais Conínuos jorg s. marqus, jorg s. marqus, Sinais priódicos não priódicos Siuação limi Um sinal não priódico

Leia mais

Definição clássica de probabilidade. Seja S finito e S, o número de elementos de S, por exemplo, quaisquer!,! 0 2 S. Então

Definição clássica de probabilidade. Seja S finito e S, o número de elementos de S, por exemplo, quaisquer!,! 0 2 S. Então Dfiição clássica probabili Dfiição Sja S fiito S o úmro lmtos S por xmplo S {a b c S 3 Supoha P({) P({ 0 )para quaisr 0 2 S Etão P({) /S Dmostração Como S é do tipo S { 2 o S sgu S { [ { 2 [ [ { portato

Leia mais

Laboratório de Dinâmica SEM 545 SISTEMAS MICROELETROMECÂNICOS

Laboratório de Dinâmica SEM 545 SISTEMAS MICROELETROMECÂNICOS UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA MECÂNICA Laboratório d Diâmica SEM 545 SISTEMAS MICROELETROMECÂNICOS Modlagm d Sistmas Diâmicos - Rvisão Rsp.: Profs.

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

Novo Espaço Matemática A 12.º ano Proposta de Teste [janeiro ]

Novo Espaço Matemática A 12.º ano Proposta de Teste [janeiro ] Novo Espaço Matmática A.º ao Proposta d Tst [jairo - 08] Nom: Ao / Turma: N.º: Data: / / Não é prmitido o uso d corrtor. Dvs riscar aquilo qu prtds qu ão sja classificado. A prova iclui um formulário.

Leia mais

Exercícios de Cálculo Numérico - Erros

Exercícios de Cálculo Numérico - Erros Ercícios d Cálculo Numérico - Erros. Cosidr um computador d bits com pot máimo ( a rprstação m aritmética lutuat a bas. (a Dtrmi o mor úmro positivo rprstávl sta máquia a bas. (b Dtrmi o maior úmro positivo

Leia mais

PARTE 8 DERIVADAS PARCIAIS DE ORDENS SUPERIORES

PARTE 8 DERIVADAS PARCIAIS DE ORDENS SUPERIORES PARTE 8 DERIVADAS PARCIAIS DE ORDENS SUPERIORES 8.1 Drivadas Parciais d Ordns Supriors Dada a função ral d duas variávis f : Dom(f) R 2 R X = ) f(x) = f ) aprndmos antriormnt como construir suas drivadas

Leia mais

FUNÇÕES DE UMA VARIÁVEL COMPLEXA

FUNÇÕES DE UMA VARIÁVEL COMPLEXA FUNÇÕES DE UMA VARIÁVEL COMPLEXA Ettor A. d Barros 1. INTRODUÇÃO Sja s um númro complxo qualqur prtncnt a um conjunto S d númros complxos. Dizmos qu s é uma variávl complxa. S, para cada valor d s, o valor

Leia mais

5.10 EXERCÍCIO pg. 215

5.10 EXERCÍCIO pg. 215 EXERCÍCIO pg Em cada um dos sguints casos, vriicar s o Torma do Valor Médio s aplica Em caso airmativo, achar um númro c m (a, b, tal qu (c ( a - ( a b - a a ( ; a,b A unção ( é contínua m [,] A unção

Leia mais

PRINCIPAIS DISTRIBUIÇÕES DISCRETAS.

PRINCIPAIS DISTRIBUIÇÕES DISCRETAS. PRINCIPAIS DISTRIBUIÇÕES DISCRETAS 1 Uifor Discrta: ocorr quado cada u dos valors possävis d ua va discrta t sa probabilidad 1 P ),,, ), i = 1,, i 1, i i i E ) 1 i Var ) 1 E ) fda: F ) P ) P i ), i od

Leia mais

TÓPICOS. Vectores livres. Vectores em Rn. Produto interno. Norma. Resulta da definição de produto interno entre vectores que:

TÓPICOS. Vectores livres. Vectores em Rn. Produto interno. Norma. Resulta da definição de produto interno entre vectores que: Not bm: a litra dsts apotamtos ão dispsa d modo algm a litra atta da bibliografia pricipal da cadira TÓPICOS Vctors lirs AULA 8 Chama-s a atção para a importâcia do trabalho pssoal a ralizar plo alo rsoldo

Leia mais

Aula Teórica nº 8 LEM-2006/2007. Trabalho realizado pelo campo electrostático e energia electrostática

Aula Teórica nº 8 LEM-2006/2007. Trabalho realizado pelo campo electrostático e energia electrostática Aula Tórica nº 8 LEM-2006/2007 Trabalho ralizado plo campo lctrostático nrgia lctrostática Considr-s uma carga q 1 no ponto P1 suponha-s qu s trás uma carga q 2 do até ao ponto P 2. Fig. S as cargas form

Leia mais

UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO" FACULDADE DE ENGENHARIA DE ILHA SOLTEIRA DEPARTAMENTO DE ENGENHARIA ELÉTRICA

UNIVERSIDADE ESTADUAL PAULISTA JÚLIO DE MESQUITA FILHO FACULDADE DE ENGENHARIA DE ILHA SOLTEIRA DEPARTAMENTO DE ENGENHARIA ELÉTRICA UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO" FACULDADE DE ENGENHARIA DE ILHA SOLTEIRA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELE 33 PRINCÍPIOS DE COMUNICAÇÕES SINAIS E SISTEMAS Ricardo Tokio Higui

Leia mais

Grupo I. 1) Calcule os integrais: (4.5) 2) Mostre que toda a equação do tipo yf( xydx ) xg( xydy ) 0

Grupo I. 1) Calcule os integrais: (4.5) 2) Mostre que toda a equação do tipo yf( xydx ) xg( xydy ) 0 Mamáica III / ºSmsr Grupo I ) Calcul os ingrais: a) b) D () ( ) dd sndo D d d d d (.) ) Mosr qu oda a quação do ipo f( d ) g( d ) s ransforma numa quação d variávis sparadas fazndo a subsiuição (.) ) A

Leia mais

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5 P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5 GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Agrupando num bloco a Ana, a Bruna, o Carlos, a Diana o Eduardo, o bloco os rstants st amigos prmutam

Leia mais

Método Probabilístico em Combinatória

Método Probabilístico em Combinatória Método Probabilístico m ombiatória Fraco Svro O qu você cotrará aqui é moralmt uma tradução rsumida do matrial Expctd Uss of Probability, do Eva h. Dfiiçõs Propridads Ats d qualqur coisa, um aviso: a formalização

Leia mais

U.C Investigação Operacional. 27 de junho de INSTRUÇÕES

U.C Investigação Operacional. 27 de junho de INSTRUÇÕES Miisério da Ciêcia, Tcologia Esio uprior U.C. 276 Ivsigação Opracioal 27 d juho d 26 -- INTRUÇÕE O mpo d duração da prova d xam é d 2 horas, acrscida d 3 miuos d olrâcia. Dvrá rspodr a odas as qusõs a

Leia mais

Derivada Escola Naval

Derivada Escola Naval Drivada Escola Naval EN A drivada f () da função f () = l og é: l n (B) 0 l n (E) / l n EN S tm-s qu: f () = s s 0 s < < 0 s < I - f () só não é drivávl para =, = 0 = II - f () só não é contínua para =

Leia mais

Em termos da fração da renda total da população recebida por cada pessoa, na distribuição dual temos. pessoas

Em termos da fração da renda total da população recebida por cada pessoa, na distribuição dual temos. pessoas 6. Dual do Ídic d hil Dfiição Gral do Dual: Sja x uma variávl alatória com média µ distribuição tal qu o valor d crta mdida d dsigualdad é M. Chama-s dual a distribuição com as sguits caractrísticas: a.

Leia mais

Variáveis aleatórias Conceito de variável aleatória

Variáveis aleatórias Conceito de variável aleatória Variávis alatórias Muitos primtos alatórios produzm rsultados ão-uméricos. Ats d aalisá-los, é covit trasformar sus rsultados m úmros, o qu é fito através da variávl alatória, qu é uma rgra d associação

Leia mais

Copyright LTG 2013 LTG/PTR/EPUSP

Copyright LTG 2013 LTG/PTR/EPUSP 1 Na Godésia a Topografia s ralizam mdiçõs d âgulos, distâcias, tc. Mdir uma gradza sigifica obtr um úmro associado a uma uidad qu rprst o valor dssa gradza. Tudo o qu s pod mdir (obsrvar) é domiado obsrvávl.

Leia mais

Leonardo da Vinci ( ), artista, engenheiro e cientista italiano

Leonardo da Vinci ( ), artista, engenheiro e cientista italiano ormas dos rabalhos Vrtuas Itrodução Loardo da Vc (45-59), artsta, ghro ctsta talao Aplcou oçõs do prcípo dos dslocamtos vrtuas para aalsar o qulíbro d sstmas d polas alavacas PEF-40 Prof. João Cyro Adré

Leia mais

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2 Eam Nacional d 0 (. a fas) Prova Escrita d Matmática. o no d Escolaridad Prova 3/Vrsõs GRUPO I Itns Vrsão Vrsão. (C) (). () (C) 3. () (C). (D) (). (C) (). () () 7. () (D) 8. (C) (D) Justificaçõs:. P( )

Leia mais

Momento do dipolo magnetico. Antonio Saraiva = q. e e. e e. e-- Frequencia de Compton; Re-- Raio do electrão.

Momento do dipolo magnetico. Antonio Saraiva = q. e e. e e. e-- Frequencia de Compton; Re-- Raio do electrão. Moto do dipolo agtico toio araiva ajps@otail.co Para o lctrão: p c + µ p-- Moto caóico; -- Massa do lctrão; c Vlocidad da luz; c-- Moto ciético; µ -- Moto potcial (falso oto do dipolo agético). µ q ; c

Leia mais

Oscilações amortecidas

Oscilações amortecidas Oscilaçõs amortcidas Uso d variávl complxa para obtr a solução harmônica ral A grand vantagm d podr utilizar númros complxos para rsolvr a quação do oscilador harmônico stá associada com o fato d qu ssa

Leia mais

Matemática C Extensivo V. 7

Matemática C Extensivo V. 7 Matmática C Extnsivo V 7 Exrcícios 0) 0 0) D 0 Falsa B A 4 0 6 0 4 6 4 6 0 Vrdadira A + B 0 0 + 4 6 7 04 Vrdadira A B 0 0 4 6 6 4 08 Vrdadira dt ( A) dt (A) 9 ( ) 9 dt (B) 9 0 6 Vrdadira A A 0 0 0 0 0

Leia mais

MATEMÁTICA ATUARIAL DE VIDA Modelos de Sobrevivência

MATEMÁTICA ATUARIAL DE VIDA Modelos de Sobrevivência EAC 44 Maáica Auaria II Ciêcia Auariai Nouro FEA USP Prof. Dr. Ricaro Pachco MAEMÁICA AUARIAL DE VIDA Moo Sobrvivêcia Uivria São Pauo º Sr 5 A ábua oraia u oo icro obrvivêcia. Daa a ábua Moraia hipoéica:

Leia mais

MOQ-12: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS. Distribuições Notáveis

MOQ-12: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS. Distribuições Notáveis MOQ-: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS Distribuiçõs Discrtas: Distribuição Uiform Discrta: Distribuiçõs Notávis Uma va discrta dfiida os potos,,..., tm distribuição uiform discrta s assum cada um

Leia mais

a) (0.2 v) Justifique que a sucessão é uma progressão aritmética e indique o valor da razão.

a) (0.2 v) Justifique que a sucessão é uma progressão aritmética e indique o valor da razão. MatPrp / Matmática Prparatória () unidad tra curricular / E-Fólio B 8 dzmbro a janiro Critérios d corrção orintaçõs d rsposta Qustão ( val) Considr a sucssão d númros rais dfinida por a) ( v) Justifiqu

Leia mais

Transformada de Laplace

Transformada de Laplace No ul: MM6 rorm plc Crcríic pricipl: Algrizor EDO lir ou j rorm um EDO lir um qução lgéric Méoo: PVI ] : I ] p q Vg: Exim u rzõ pricipi pr uilizção rorm plc ; i O méoo riciol rolução um PVI volvo um EDO

Leia mais

VIBRAÇÕES LIVRES SEM AMORTECIMENTO DE SISTEMAS com 1 GL

VIBRAÇÕES LIVRES SEM AMORTECIMENTO DE SISTEMAS com 1 GL UNIVERSIDADE FEDERA DA PARAÍBA CENTRO DE TECNOOGIA DEPARTAENTO DE ENGENHARIA ECÂNICA VIBRAÇÕES DOS SISTEAS ECÂNICOS VIBRAÇÕES IVRES SE AORTECIENTO DE SISTEAS com G NOTAS DE AUAS Virgílio doça da Costa

Leia mais

3. Geometria Analítica Plana

3. Geometria Analítica Plana MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,

Leia mais

Avaliação dos algoritmos de Picard-Krylov na solução da equação de Richards

Avaliação dos algoritmos de Picard-Krylov na solução da equação de Richards Trabalho aprado o XXXV CNMAC, Naal-RN, 2014. Avaliação do algorimo d icard-rylov a olução da quação d Richard Marclo Xavir Gurr Egharia d rodução, Laboraório d modlagm Simulação, LMSC, UNIAMA, 96413-170,

Leia mais