10. EXERCÍCIOS (ITA-1969 a ITA-2001)

Tamanho: px
Começar a partir da página:

Download "10. EXERCÍCIOS (ITA-1969 a ITA-2001)"

Transcrição

1 . EXERCÍCIOS (ITA-969 a ITA-) - (ITA - 969) Sjam f() = + g() = duas funçõs rais d variávl ral. Então (gof)(y ) é igual a: a) y y + b) (y ) + c) y + y d) y y + ) y - (ITA -97) Sjam A um conjunto finito com m lmntos I n = {...n }. O númro d todas as funçõs dfinidas m I n com valors m A é: a) n C m b) m.n c) n m d) m n ) nda - (ITA 97; qustão convidada ) A li d dcomposição do radium no tmpo t é dada pla fórmula N(t) = C. -kt ond N(t) é a quantidad d radium no tmpo t C k são constants positivas. S a mtad da quantidad primitiva M() dsaparc m6 anos qual a quantidad prdida m anos? a) ( - ) da quantidad inicial. b) ( -6 ) da quantidad inicial. c) ( -6 ) da quantidad inicial. d) ( -/6 ) da quantidad inicial. ) Nnhuma das antriors 4- (ITA-974) Sjam A B D subconjuntos não vazios do conjunto R dos númros rais. Sjam ainda as funçõs f: A B ( y = f() ) g: D A ( = g(t)) a função composta (fog) : E K ( portanto Z = (fog)(t) ). Então os conjuntos E K são tais qu : a) E A K D. b) E B K A. c) E D D E K B. d) E D K B ) n.d.a

2 5- (ITA-975) Sja f() = dfinida m R. S g é função invrsa d f ntão quanto val g 7 5? a) 4/ b) 7/5 c) log (5/7) d) (7/5) 6- (ITA 976) Considr g : { a b c } { a b c } uma função tal qu g(b) = a g(a) = b. Podmos concluir qu: a) a quação g() = tm solução só g é injtora. b) g é injtora mas não é sobrjtora. c) g é sobrjtora mas não é injtora. d) g não é sobrjtora ntão g(g()) = para todo m { a b c }. 7- (ITA-976) Sjam A B conjuntos infinitos d númros naturais. S f : A B g : B A são funçõs tais qu f(g()) = para todo m B g(f()) = para todo m A ntão podmos concluir qu: a) B / f(y) = y A. b) ist a função invrsa d f. c) A tais qu f( ) = f( ). d) a B / g(f(g(a))) g(a). 8- (ITA-976) Sja A uma função ral d variávl ral tal qu..a() + = R. Nstas condiçõs tmos: a) A() = A() = A(-) para todo númro ral não ist um númro ral satisfazndo a rlação A() =. b) A() = A() = para algum númro ral. c) A() < A() = A(-) para todo númro ral. d) não ist um númro ral não nulo satisfazndo a rlação A()= não ist um númro ral satisfazndo A() = A(-). 4

3 9- (ITA-976) Considr a função ral d variávl ral M dfinida por M() = tgh() (obs.: vja a qustão 5!!!). Então: a) > ocorr M() >. b) R ocorrm simultanamnt M(-) = -M() M() <. c) a > b < / M(a) < M(b) d) M() = somnt quando = M() > somnt quando <. - (ITA-977) Supondo a < b ond a b são constants rais considr a função H() = a + ( b a ) dfinida no intrvalo fchado [ ]. Então: a) H não é uma função injtora. b) dado qualqur y mpr ist um m [ ] satisfazndo H( ) = y. c) para cada y com a < y < b! R com < < / H( ) = y. d) não ist uma função ral G dfinida no intrvalo fchado [ a b ] satisfazndo a rlação G(H()) = para cada [ ]. - (ITA-978) Sjam R o conjunto dos númros rais f uma função d R m R. S B R o conjunto f - (B) = { R; f() B } ntão: a) f(f - (B)) B. b) f(f - (B)) = B f é injtora. c) f(f - (B)) = B d) f - (f(b)) = B f é sobrjtora. - (ITA-978) Com rspito à função g() = log [n + n ] podmos afirmar qu: a) stá dfinida apnas para b) é uma função qu não é par nm ímpar. c) é uma função par. d) é uma função ímpar. - (ITA-978) Considr a função ral d variávl ral dfinida por: f ( )

4 S a = log 4 = a 6 ntão o valor da função f() no ponto é dada por: a) f( ) = b) f( ) = c) f( ) = d) f( ) = /8 4- (ITA-978) Qual das funçõs dfinidas abaio é bijtora? a) f : R R + tal qu f() =. b) f : R + R + tal qu f() = + c) f : [ ] [ 4] tal qu f() = +. d) f : [ ] R tal qu f() = n 5- (ITA-979) Sja f uma função ral dfinida para todo ral tal qu: f é ímpar; f( + y) = f() f() f() + f(y); f(). Dfinindo g: R * R com g() = ndo n um númro natural podmos afirmar qu: a) f é não-dcrscnt g é uma função ímpar. b) f é não-dcrscnt g é uma função par. c) g é uma função par g(n) f(). d) g é uma função ímpar g(n) f(). ) f é não dcrscnt g(n) f(). 6- (ITA-98) Sobr a função f() = n podmos afirmar qu: a) é uma função priódica d príodo 4. b) é uma função priódica d príodo. c) é uma função priódica d príodo. d) é uma função priódica ond o príodo prtnc ao intrvalo ( ). ) não é uma função priódica. 7- (ITA-98) Sjam A B subconjuntos não vazios d R f : A B g : B A duas funçõs tais qu fog = I ond I é a função idntidad m B. Então podmos afirmar qu: a) f é sobrjtora. b) f é injtora. c) f é bijtora. d) g é injtora par. 6

5 ) g é bijtora ímpar. 8- (ITA-98) Sja f(t) = 4 + cos( t) n( t) uma função dfinida m R. Sobr sta função qual das altrnativas abaio é corrta? a) f(t) é função par. b) f(t) é função ímpar. c) o maior valor qu f(t) assum é 9. d) o mnor valor qu f(t) assum é -. ) o mnor valor qu f(t) assum é -/. 9- (ITA-98) Dnotmos por R o conjunto dos númros rais. Sja g uma função ral d variávl ral não nula qu satisfaz para todo y rais a rlação g( + y) = g() + g(y). S f : R R for dfinida por f() = n a) f é priódica com príodo a..g() a b) Para a = n (n natural) tmos: f(n) = n[g()]. c) S g() ntão g() = f(). d) S g(t) = a ntão T é o príodo d f. ) S g(t) = ntão T é o príodo d f. ; a ntão podmos garantir qu: - (ITA-98) Sjam três funçõs f u v: R R tais qu f( + /) = f() + /f() para todo não nulo [u()] + [v()] = para todo ral. Sabndo qu é um númro ral tal qu u( ). v( ) ainda f u(. ) v( ) = ntão o valor d f u ( v( ) ) é igual a: a) b) c) d)/ )- - (ITA-984) Sja f() = 4 ond R. Um subconjunto D d R tal qu f : D R é uma função injtora é: a) { R: - } b) { R : ou - } c) R d) { R : - < < } 7

6 ) { R: } - (ITA-985) Considr as guints funçõs: f() = 7/ g() = ¼ dfinidas para todo ral. Então a rspito da solução da inquação l(gof)()l > (gof)() podmos garantir qu: a) Nnhum valor d ral é solução. b) S < ntão é solução. c) S > 7/ ntão é solução. d) S > 4 ntão é solução. ) S < < 4 ntão é solução. - (ITA-986) Considr as afirmaçõs sobr uma função f qualqur:. S ist R tal qu f() f(-) ntão f não é par.. S ist R tal qu f() = -f(-) ntão f é ímpar.. S f é par ímpar ntão ist R tal qu f() =. 4. S f é ímpar ntão fof é ímpar. Podmos afirmar qu stão corrtas as afirmaçõs d númros: a) 4 b) 4 c) d) 4 ) 4- (ITA-986) Sja f: R R uma função qu satisfaz a guint propridad: f( + y) = f() + f(y) y R. S g() = f(log ( +) ) ntão podmos afirmar qu: a) O domínio d g é R g() = f(). b) g não stá dfinida m R - \ { } g() =.f(log ( +) ) para. c) g() = g() = f(log ( +) ) R. d) g() = f() g é injtora. ) g() = - g() = [f(log ( +) - ]. 5- (ITA-988) Sja f : R R uma função stritamnt dcrscnt. Dadas as afirmaçõs: (i) f é injtora (ii) f pod r uma função par. (iii) S f possui invrsa ntão sua invrsa é stritamnt dcrscnt. Podmos asgurar qu: a) Apnas as afirmaçõs (i) (iii) são vrdadiras. 8

7 b) Apnas as afirmaçõs (ii) (iii) são vrdadiras. c) Apnas a afirmação (i) é falsa. d) Todas as afirmaçõs são vrdadiras. ) Apnas a afirmação (ii) é vrdadira. 6- (ITA-988) Sjam f g funçõs rais d variávl ral dfinidas por : f() = ln( -) g() =. Então o domínio d fog é: a) ( ) b) ( ) c) ( +) d) (- ) ) ( + ) 7- (ITA-989) Os valors d < < / para os quais a função f: R R f() = tg tm valor mínimo igual a 4 são: a) /4 /4 b) /5 /5 c) / / d) /7 /7 ) /5 /5 8- (ITA-989) Sjam A B subconjuntos d R não vazios possuindo B mais d um lmnto. Dada uma função f: A B dfinimos uma nova função L : A A X B por L(a) = (af(a)) para todo a A. Então: a) A função L mpr rá injtora. b) A função L mpr rá sobrjtora. c) S f for sobrjtora ntão L também o rá. d) S f for injtora ntão L também o rá. ) S f for bijtora ntão L rá sobrjtora. 9- (ITA-99) Sja a função f : R \ { } R \ { } dfinida por f() = +. Sobr sua invrsa podmos garantir qu: a) não stá dfinida pois f não é injtora. b) stá dfinida por f - (y) = y y y. 9

8 c) stá dfinida por f - (y) = d) stá dfinida por f - (y) = y y y y 5 y. 5 y. ) não stá dfinida pois f não é sobrjtora. - (ITA-99) Dadas as funçõs f() = g() =.n R podmos afirmar qu: a) ambas são pars. b) f é par g é ímpar. c) f é ímpar g é par. d) f não é par nm ímpar g é par. ) ambas são ímpars. - (ITA-99) Sja f : R R a função dfinida por: f() Considr as afirmaçõs: (i) f não é injtora f - ( [ 5] ) = { 4 } (ii) f não é sobrjtora f - ( [ 5] ) = f - ( [ 6] ) (iii) f é injtora f - ( [ 4] ) = [ - + ) Então podmos garantir qu: a) Apnas as afirmaçõs (ii) (iii) são falsas. b) As afirmaçõs (i) (iii) são vrdadiras. c) Apnas a afirmação (ii) é vrdadira. d) Apnas a afirmação (iii) é vrdadira. ) Todas as afirmaçõs são falsas. - (ITA-99) Considr as afirmaçõs: (i) S f : R R é uma função par g : R R uma função qualqur ntão a composição gof é uma função par.

9 (ii) S f : R R é uma função par g : R R uma função ímpar ntão a composição fog é uma função par. (iii) S f : R R é uma função ímpar invrsívl ntão f - : R R é uma função ímpar. Então: a) Apnas a afirmação (i) é falsa. b) Apnas as afirmaçõs (i) (ii) são falsas. c) Apnas a afirmação (ii) é vrdadira. d) Todas as afirmaçõs são falsas. a - (ITA-99) Sjam a R a > f : R R dfinida por f() = f é dada por: a) log a ( - ) para >. b) log a ( - + ) para R. c) log a ( + ) para R. d) log a ( - + ) para < -. a. A função invrsa d 4- (ITA-99) Sja f: R R dfinida por: f ( ) - ln S D é o maior subconjunto não vazio d R tal qu f : D qu: a) D = R f(d) = [- + ) R é injtora ntão podmos garantir b) D = (- ] ( + ) f(d) = ]- + ) c) D = [ + ) f(d) = [- + ) d) D = ( ) f(d) = [- ] Obs.: Esta qustão pod (ou ja dv) r rsolvida graficamnt.

10 5- (ITA-99) Considr as funçõs f : R * R g : R R h: R * R dfinidas por f() = (+/) g() = h() = 8/. O conjunto dos valors d m R * tais qu (fog)() = (hof)() é um subconjunto d: a) [ ] b) [ 7 ] c) [ -6 ] d)[ - ] 6- (ITA-99) Dadas as funçõs f : R R g : R R ambas stritamnt dcrscnts sobrjtoras considr h = fog. Então podmos afirmar qu: a) h é stritamnt crscnt invrsívl sua invrsa é stritamnt crscnt. b) h é stritamnt dcrscnt invrsívl sua invrsa é stritamnt crscnt. c) h é stritamnt crscnt mas não é ncssariamnt invrsívl. d) h é stritamnt crscnt invrsívl sua invrsa é stritamnt dcrscnt. 7- (ITA-994) Dadas as funçõs rais d variávl ral f() = m + g() = + m ond m é uma constant ral com < m < considr as afirmaçõs:. (fog)() = (gof)() para algum ral.. f(m) = g(m).. a R / (fog)(a) = f(a) 4. b R / (gof)(b) = mb 5. < (gog)(m) < Podmos concluir qu: a) Todas são vrdadiras. b) Apnas quatro são vrdadiras. c) Apnas três são vrdadiras. d) Apnas duas são vrdadiras. ) Apnas uma é vrdadira. 8- (ITA-995) Sja a função f : R R dfinida por: f () a a - n

11 ond a > é uma constant. Considr K = { y R; f(y) = }. Qual o valor d a sabndo- qu f( /) K? a) /4 b) / c) d) / ) 9- (ITA-996) Sja f: R R dfinida por: f ( ) 4 Então: a) f é bijtora (fof) (-/) = f - (). b) f é bijtora (fof) (-/) = f - (99). c) f é sobrjtora mas não é injtora. d) f é injtora mas não é sobrjtora. ) f é bijtora (fof) (-/) = f - (). 4- (ITA-996) Considr as funçõs rais f g dfinidas por : f ( ) R - { - } - g() R - { - } Qual é o maior subconjunto d R ond pod r dfinida a composta fog tal qu (fog)() <? a) ( - -/) (-/ -/4) b) (- -) (-/ -/4) c) (- -) (-/ ) d) ( + ) ) (-/ -/) 4- (ITA-996) Sja f: R + \ { } R uma função injtora tal qu f() = f(. y) = f() + f(y) para todo > y >. S 4 5 formam nssa ordm uma progrssão gométrica ond i > sabndo qu 5 i f ( i ) =.f() +.f( ) 4 f i i i = -.f( ) ntão o valor d é: a) b) c) d) 4 )

12 4- (ITA-997) S Q rprntam rspctivamnt o conjunto dos númros racionais o conjunto dos númros irracionais considr as funçõs f g : R f () Q g() Q R dfinidas por Sja J a imagm da função composta fog : R a) J = R b) J = Q c) J = { } d) J = { } ) J = { } R. Então: 4- (ITA-997) O domínio D da função - ( ) f ( ) ln é o conjunto: - a) D = { R : < < / } b) D = { R : < / ou > } c) D = { R : < / ou } d) D = { R : > } ) D = { R : < < / ou < < / } 44- (ITA-997) Sjam f g : R R funçõs tais qu g() = f() + f( ) = ( ) para todo R. Então f[g()] é igual a: a) ( ) b) ( ) c) d) ) 45- (ITA-998) Sja f : R R a função dfinida por: f() = n cos Então: a) f é ímpar priódica d príodo. b) f é par priódica d príodo /. c) f não é par nm ímpar é priódica d príodo. 4

13 d) f não é par é priódica d príodo /4. ) f não é ímpar não é priódica. 46- (ITA-998) Sja f : R R a função dfinida por f() = -a ond a é um númro ral com < a <. Sobr as afirmaçõs abaio conclui- qu: ( ) f( + y) = f().f(y) para todo y R. ( ) f é bijtora. ( ) f é crscnt f( ] + [ ) = ]- [. a) Todas as afirmaçõs são falsas. b) Todas as afirmaçõs são vrdadiras. c) Apnas as afirmaçõs ( ) ( ) são vrdadiras. d) Apnas a afirmação ( ) é vrdadira. ) Apnas a afirmação ( ) é vrdadira. 47- (ITA-998) Sjam as funçõs f : R R g : A R R tais qu f() = 9 (fog)() = 6 m us rspctivos domínios. Então o domínio A da função g é: a) [- + [ b) R c) [-5 + [ d) ]- -[ [ + [ ) ]- 6 [ 48- (ITA-999) Sjam f g : R R funçõs dfinidas por: f( ) Considr as afirmaçõs: g() ( ) Os gráficos d f g não intrcptam. ( ) As funçõs f g são crscnts. ( ) f(-).g(-) = f(-).g(-). Então: a) Apnas a afirmação ( ) é falsa b) Apnas a afirmação ( ) é falsa.. 5

14 c) Apnas as afirmaçõs ( ) ( ) são falsas. d) Apnas as afirmaçõs ( ) ( ) são falsas. ) Todas as afirmaçõs são falsas. 49- (ITA-999) Sjam f g h: R R funçõs tais qu a função composta hogof : R R é a função idntidad. Considr as afirmaçõs: ( ) A função h é sobrjtora. ( ) S R é tal qu f( ) = ntão f() R com. ( ) A quação h() = tm solução m R. Então: a) Apnas a afirmação ( ) é vrdadira. b) Apnas a afirmação ( ) é vrdadira. c) Apnas a afirmação ( ) é vrdadira. d) Todas as afirmaçõs são vrdadiras. ) Todas as afirmaçõs são falsas. 5- (ITA-) Sjam f g : R R dfinidas por f() = g() = cos5. Podmos afirmar qu: a) f é injtora par g é ímpar. b) g é sobrjtora gof é par. c) f é bijtora gof é ímpar. d) g é par gof é ímpar. ) f é ímpar gof é par. 5- (ITA-) Considr f: R R dfinida por f() =.n - cos. Sobr f podmos afirmar qu: a) é uma função par. b) é uma função ímpar priódica d príodo fundamntal 4. c) é uma função ímpar priódica d príodo fundamntal 4 /. d) é uma função priódica d príodo fundamntal. ) não é par não é ímpar não é priódica. 6

15 5- (ITA- qustão convidada ) S f: () R é tal qu () f() < ½ f() =. f f 4 ntão a dsigualdad válida para qualqur n =... < < é: a) f() + < ½ n b) f ( ) n c) f ( ) < n d) f( ) > n ) f( ) < n GABARITO - A 6- C - C 46- E - D 7- A - E 47- A - D 8- C - C 48- E 4- D 9- D 4- B 49- D 5- A - B 5- C 5- E 6- A - E 6- A 5- B 7- B - E 7- E 5- E 8- A - A 8- D 9- E 4- C 9- B - C 5- A 4- A - A 6- B 4- B - D 7- C 4- C - C 8- A 4- E 4- C 9- D 44- C 5- E - C 45- C 7

Matemática A Extensivo V. 6

Matemática A Extensivo V. 6 Matmática A Etnsivo V. 6 Rsolva.) a) Aula. ( )

Leia mais

Derivada Escola Naval

Derivada Escola Naval Drivada Escola Naval EN A drivada f () da função f () = l og é: l n (B) 0 l n (E) / l n EN S tm-s qu: f () = s s 0 s < < 0 s < I - f () só não é drivávl para =, = 0 = II - f () só não é contínua para =

Leia mais

Álgebra. Matrizes. . Dê o. 14) Dada a matriz: A =.

Álgebra. Matrizes.  . Dê o. 14) Dada a matriz: A =. Matrizs ) Dada a matriz A = Dê o su tipo os lmntos a, a a ) Escrva a matriz A, do tipo x, ond a ij = i + j ) Escrva a matriz A x, ond a ij = i +j ) Escrva a matriz A = (a ij ) x, ond a ij = i + j ) Escrva

Leia mais

INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO:

INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO: INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO: LISTA Ciclo trigonométrico, rdução d arcos, quaçõs trigonométricas - (UFJF MG) Escrvndo os númros rais x, y, w, z y, x,

Leia mais

a) (0.2 v) Justifique que a sucessão é uma progressão aritmética e indique o valor da razão.

a) (0.2 v) Justifique que a sucessão é uma progressão aritmética e indique o valor da razão. MatPrp / Matmática Prparatória () unidad tra curricular / E-Fólio B 8 dzmbro a janiro Critérios d corrção orintaçõs d rsposta Qustão ( val) Considr a sucssão d númros rais dfinida por a) ( v) Justifiqu

Leia mais

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M=

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M= Dtrminant. (Upg 4) Considrando as matrizs abaixo, sndo dt A = 5, dtb= dtc=, assinal o qu for orrto. x z x y x A =,B= 4 5 x+ z y C= ) x+ y+ z= 4 ) A C= 4) B C= 4 8) y = x 6) 6 4 A+ B= 6 5 T. (Uds 4) S A

Leia mais

UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 03/12/2011 FILA A Aluno (a): Matrícula: Turma: x é: 4

UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 03/12/2011 FILA A Aluno (a): Matrícula: Turma: x é: 4 UFJF ICE Dpartamnto d Matmática Cálculo I Trcira Avaliação 0/1/011 FILA A Aluno (a): Matrícula: Turma: Instruçõs Grais: 1- A prova pod sr fita a lápis, cto o quadro d rspostas das qustõs d múltipla scolha,

Leia mais

Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA RESOLUÇÃO: f(x) = f(x) = x f(x) = x ) a 2. 2) a função g: * 1.

Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA RESOLUÇÃO: f(x) = f(x) = x f(x) = x ) a 2. 2) a função g: * 1. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 4 Funções II. (OPM) Seja f uma função de domínio dada por + f() =. Determine o conjunto-imagem + + da função. O conjunto-imagem da

Leia mais

Resolução do exame de Análise Matemática I (24/1/2003) Cursos: CA, GE, GEI, IG. 1ª Chamada

Resolução do exame de Análise Matemática I (24/1/2003) Cursos: CA, GE, GEI, IG. 1ª Chamada Rsolução do am d nális Matmática I (//) Cursos: C, GE, GEI, IG ª Chamada Ercício > > como uma função ponncial d bas mnor do qu ntão o gráfico dsta função é o rprsntado na figura ao lado. Esta função é

Leia mais

Exame de Matemática Página 1 de 6. obtém-se: 2 C.

Exame de Matemática Página 1 de 6. obtém-se: 2 C. Eam d Matmática -7 Página d 6. Simplificando a prssão 9 ( ) 6 obtém-s: 6.. O raio r = m d uma circunfrência foi aumntado m 5%. Qual foi o aumnto prcntual da ára da sgunda circunfrência m comparação com

Leia mais

CONCURSO PÚBLICO CONCURSO PÚBLICO GRUPO MAGISTÉRIO GRUPO MAGISTÉRIO MATEMÁTICA 14/MAIO/2006 MATEMÁTICA. Nome CPF. Assinatura _. _.

CONCURSO PÚBLICO CONCURSO PÚBLICO GRUPO MAGISTÉRIO GRUPO MAGISTÉRIO MATEMÁTICA 14/MAIO/2006 MATEMÁTICA. Nome CPF. Assinatura _. _. CONCURSO PÚBLICO MATEMÁTICA GRUPO MAGISTÉRIO Rsrvado ao CEFET-RN 4/MAIO/6 Us apnas canta sfrográfica azul ou prta. Escrva o su nom o númro do su CPF no spaço indicado nsta folha. Confira, com máima atnção,

Leia mais

- Função Exponencial - MATEMÁTICA

- Função Exponencial - MATEMÁTICA Postado m 9 / 07 / - Função Eponncial - Aluno(a): TURMA: FUNÇÃO EXPONENCIAL. Como surgiu a função ponncial? a n a n, a R n N Hoj, a idia d s scrvr. ² ou.. ³ nos parc óbvia, mas a utilização d númros indo

Leia mais

λ, para x 0. Outras Distribuições de Probabilidade Contínuas

λ, para x 0. Outras Distribuições de Probabilidade Contínuas abilidad Estatística I Antonio Roqu Aula 3 Outras Distribuiçõs d abilidad Contínuas Vamos agora studar mais algumas distribuiçõs d probabilidads para variávis contínuas. Distribuição Eponncial Uma variávl

Leia mais

UFPB CCEN DEPARTAMENTO DE MATEMÁTICA CÁLCULO DIFERENCIAL I 5 a LISTA DE EXERCÍCIOS PERÍODO

UFPB CCEN DEPARTAMENTO DE MATEMÁTICA CÁLCULO DIFERENCIAL I 5 a LISTA DE EXERCÍCIOS PERÍODO UFPB CCEN DEPARTAMENTO DE MATEMÁTICA CÁLCULO DIFERENCIAL I 5 a LISTA DE EXERCÍCIOS PERÍODO 0 Nos rcícios a) ), ncontr a drivada da função dada, usando a dfinição a) f ( ) + b) f ( ) c) f ( ) 5 d) f ( )

Leia mais

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de p-p8 : Continuidad d funçõs rais d variávl ral. Lr atntamnt. Dominar os concitos. Fazr rcícios. Função contínua, prolongávl por continuidad, dscontínua. Classificação d dscontinuidads. Continuidad num

Leia mais

FUNÇÕES DE UMA VARIÁVEL COMPLEXA

FUNÇÕES DE UMA VARIÁVEL COMPLEXA FUNÇÕES DE UMA VARIÁVEL COMPLEXA Ettor A. d Barros 1. INTRODUÇÃO Sja s um númro complxo qualqur prtncnt a um conjunto S d númros complxos. Dizmos qu s é uma variávl complxa. S, para cada valor d s, o valor

Leia mais

tg 2 x , x > 0 Para determinar a continuidade de f em x = 0, devemos calcular os limites laterais

tg 2 x , x > 0 Para determinar a continuidade de f em x = 0, devemos calcular os limites laterais UFRGS Instituto d Matmática DMPA - Dpto. d Matmática Pura Aplicada MAT 0 353 Cálculo Gomtria Analítica I A Gabarito da a PROVA fila A 5 d novmbro d 005 Qustão (,5 pontos Vrifiqu s a função f dada abaixo

Leia mais

1. A soma de quaisquer dois números naturais é sempre maior do que zero. Qual é a quantificação correcta?

1. A soma de quaisquer dois números naturais é sempre maior do que zero. Qual é a quantificação correcta? Abuso Sual nas Escolas Não dá para acitar Por uma scola livr do SID A Rpública d Moçambiqu Matmática Ministério da Educação ª Época ª Class/0 Conslho Nacional d Eams, Crtificação Equivalências 0 Minutos

Leia mais

Sala: Rúbrica do Docente: Registo:

Sala: Rúbrica do Docente: Registo: Instituto Suprior Técnico Dpartamnto d Matmática Scção d Àlgbra Anális o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I (MEFT, LMAC, MEBiom) o Sm. 0/ 4/Jan/0 Duração: h30mn Instruçõs Prncha os sus dados na

Leia mais

5.10 EXERCÍCIO pg. 215

5.10 EXERCÍCIO pg. 215 EXERCÍCIO pg Em cada um dos sguints casos, vriicar s o Torma do Valor Médio s aplica Em caso airmativo, achar um númro c m (a, b, tal qu (c ( a - ( a b - a a ( ; a,b A unção ( é contínua m [,] A unção

Leia mais

Justifique todas as passagens

Justifique todas as passagens ā Prova d Cálculo II - MAT2 - IOUSP /2/204 Nom : GABARITO N ō USP : Profssor : Oswaldo Rio Branco d Olivira Justifiqu todas as passagns Q 2 4 5 Total N. Considr a função f : R 2 R dfinida por f(x,y) =

Leia mais

MÓDULO 41. Funções II. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA

MÓDULO 41. Funções II. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 41 Funções II 1. (OPM) Seja f uma função de domínio dada por x x + 1 f(x) =. Determine o conjunto-imagem x + x + 1 da função.. Considere

Leia mais

UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 10/07/2010 FILA A Aluno (a): Matrícula: Turma:

UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 10/07/2010 FILA A Aluno (a): Matrícula: Turma: UFJF ICE Dpartamnto d Matmática Cálculo I Trcira Avaliação 0/07/00 FILA A Aluno (a): Matrícula: Turma: Instruçõs Grais: - A prova pod sr fita a lápis, cto o quadro d rspostas das qustõs d múltipla scolha.

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO Grupo I. Questões

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO Grupo I. Questões PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 63) ª FASE 1 DE JULHO 014 Grupo I Qustõs 1 3 4 6 7 8 Vrsão 1 C B B D C A B C Vrsão B C C A B A D D 1 Grupo II 11 O complo

Leia mais

RESUMO de LIMITES X CONTINUIDADE. , tivermos que f(x) arbitr

RESUMO de LIMITES X CONTINUIDADE. , tivermos que f(x) arbitr RESUMO d LIMITES X CONTINUIDADE I. Limits finitos no ponto 1. Noção d Limit Finito num ponto Sjam f uma função x o IR. Dizmos qu f tm it (finito) no ponto x o (m símbolo: f(x) = l IR) quando x convn x

Leia mais

Apêndice Matemático. Se este resultado for inserido na expansão inicial (A1.2), resulta

Apêndice Matemático. Se este resultado for inserido na expansão inicial (A1.2), resulta A Séris Intgrais d Fourir Uma função priódica, d príodo 2, = + 2 pod sr xpandida m séri d Fourir no intrvalo <

Leia mais

O teorema da função inversa para funções de várias variáveis reais a valores vetoriais

O teorema da função inversa para funções de várias variáveis reais a valores vetoriais Matmática O torma da função invrsa para funçõs d várias variávis rais a valors vtoriais Vivian Rodrigus Lal Psquisadora Prof Dr David Pirs Dias Orintador Rsumo Est artigo tm como objtivo aprsntar o Torma

Leia mais

Ficha de Trabalho Matemática 12ºano Temas: Trigonometria ( Triângulo rectângulo e círculo trigonométrico) Proposta de correcção

Ficha de Trabalho Matemática 12ºano Temas: Trigonometria ( Triângulo rectângulo e círculo trigonométrico) Proposta de correcção COLÉGIO PAULO VI Ficha d Trabalho Matmática ºano Tmas: Trigonomtria ( Triângulo rctângulo círculo trigonométrico) Proposta d corrcção Rlmbrar qu um radiano é, m qualqur circunfrência, a amplitud do arco

Leia mais

FUNÇÃO REAL DE UMA VARIÁVEL REAL

FUNÇÃO REAL DE UMA VARIÁVEL REAL Hwltt-Packard FUNÇÃO REAL DE UMA VARIÁVEL REAL Aulas 01 a 05 Elson Rodrigus, Gabril Carvalho Paulo Luiz Ano: 2016 Sumário INTRODUÇÃO AO PLANO CARTESIANO 2 PRODUTO CARTESIANO 2 Númro d lmntos d 2 Rprsntaçõs

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO 2014 Grupo I.

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO 2014 Grupo I. Associação d Profssors d Matmática Contactos: Rua Dr João Couto, nº 7-A 100-6 Lisboa Tl: +1 1 716 6 90 / 1 711 0 77 Fa: +1 1 716 64 4 http://wwwapmpt mail: gral@apmpt PROPOSTA DE RESOLUÇÃO DA PROVA DE

Leia mais

Matemática C Extensivo V. 7

Matemática C Extensivo V. 7 Matmática C Extnsivo V 7 Exrcícios 0) 0 0) D 0 Falsa B A 4 0 6 0 4 6 4 6 0 Vrdadira A + B 0 0 + 4 6 7 04 Vrdadira A B 0 0 4 6 6 4 08 Vrdadira dt ( A) dt (A) 9 ( ) 9 dt (B) 9 0 6 Vrdadira A A 0 0 0 0 0

Leia mais

Resolução. Admitindo x = x. I) Ax = b

Resolução. Admitindo x = x. I) Ax = b Considr uma população d igual númro d homns mulhrs, m qu sjam daltônicos % dos homns 0,% das mulhrs. Indiqu a probabilidad d qu sja mulhr uma pssoa daltônica slcionada ao acaso nssa população. a) b) c)

Leia mais

1.1 O Círculo Trigonométrico

1.1 O Círculo Trigonométrico Elmntos d Cálculo I - 06/ - Drivada das Funçõs Trigonométricas Logarítmicas Prof Carlos Albrto S Soars Funçõs Trigonométricas. O Círculo Trigonométrico Considrmos no plano a cirncunfrência d quação + =,

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MTRIZES ulas 0 a 05 Elson Rodrigus, Gabril Carvalho Paulo Luiz Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE ENTRE

Leia mais

{ : 0. Questões de resposta de escolha múltipla. Grupo I 1. ( ) D = x f x x D. Resposta: D. lim = 3, pode-se concluir que o

{ : 0. Questões de resposta de escolha múltipla. Grupo I 1. ( ) D = x f x x D. Resposta: D. lim = 3, pode-se concluir que o Grupo I Qustõs d rsposta d scolha múltipla { : 0 f }. ( ) D = f D g f ( ) 0 [, + [. Como f tm domínio \{ 5}, é contínua f ( ) gráfico d f não admit assimptotas vrticais. 5 Rsposta: D lim =, pod-s concluir

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MTRIZES ulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz no 06 Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A Ficha d rvisão nº 5 ª Part. Para um crto valor d a para um crto valor d b a prssão ( ) gráfico stá parcialmnt rprsntado na

Leia mais

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2 Eam Nacional d 0 (. a fas) Prova Escrita d Matmática. o no d Escolaridad Prova 3/Vrsõs GRUPO I Itns Vrsão Vrsão. (C) (). () (C) 3. () (C). (D) (). (C) (). () () 7. () (D) 8. (C) (D) Justificaçõs:. P( )

Leia mais

Matemática: Lista de exercícios 2º Ano do Ensino Médio Período: 1º Bimestre

Matemática: Lista de exercícios 2º Ano do Ensino Médio Período: 1º Bimestre Matmática: Lista d xrcícios 2º Ano do Ensino Médio Príodo: 1º Bimstr Qustão 1. Três amigos saíram juntos para comr no sábado no domingo. As tablas a sguir rsumm quantas garrafas d rfrigrant cada um consumiu

Leia mais

66 (5,99%) 103 (9,35%) Análise Combinatória 35 (3,18%)

66 (5,99%) 103 (9,35%) Análise Combinatória 35 (3,18%) Distribuição das 0 Qustõs do I T A 9 (8,6%) 66 (,99%) Equaçõs Irracionais 09 (0,8%) Equaçõs Exponnciais (,09%) Conjuntos 9 (,6%) Binômio d Nwton (,9%) 0 (9,%) Anális Combinatória (,8%) Go. Analítica Funçõs

Leia mais

LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA

LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA Fadiga dos Matriais Mtálicos Prof. Carlos Baptista Cap. 4 PROPAGAÇÃO DE TRINCAS POR FADIGA LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA Qualqur solução do campo d tnsõs para um dado problma m lasticidad

Leia mais

R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range).

R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range). f : A B, significa qu f é dfinida no conjunto A (domínio - domain) assum valors m B (contradomínio rang). R é o conjunto dos rais; R n é o conjunto dos vtors n-dimnsionais rais; Os vtors m R n são colunas

Leia mais

TEMA 3 NÚMEROS COMPLEXOS FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 3 NÚMEROS COMPLEXOS. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess

TEMA 3 NÚMEROS COMPLEXOS FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 3 NÚMEROS COMPLEXOS. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess FICHAS DE TRABALHO º ANO COMPILAÇÃO TEMA NÚMEROS COMPLEXOS Sit: http://wwwmathsuccsspt Facbook: https://wwwfacbookcom/mathsuccss TEMA NÚMEROS COMPLEXOS Matmática A º Ano Fichas d Trabalho Compilação Tma

Leia mais

1. (2,0) Um cilindro circular reto é inscrito em uma esfera de raio r. Encontre a maior área de superfície possível para esse cilindro.

1. (2,0) Um cilindro circular reto é inscrito em uma esfera de raio r. Encontre a maior área de superfície possível para esse cilindro. Gabarito da a Prova Unificada d Cálculo I- 15/, //16 1. (,) Um cilindro circular rto é inscrito m uma sfra d raio r. Encontr a maior ára d suprfíci possívl para ss cilindro. Solução: Como o cilindro rto

Leia mais

Curso de Pré Cálculo Dif. Int. I Aula 11 Ministrante Profª. Drª. Danielle Durski Figueiredo Material elaborado pelo Programa de Pré-Cálculo da

Curso de Pré Cálculo Dif. Int. I Aula 11 Ministrante Profª. Drª. Danielle Durski Figueiredo Material elaborado pelo Programa de Pré-Cálculo da Curso d Pré Cálculo Dif. Int. I Aula Ministrant Profª. Drª. Danill Durski Figuirdo Matrial laborado plo Programa d Pré-Cálculo da Macknzi http://www.macknzi.br/filadmin/graduacao/ee/arquivos/calculo_zro/trigonomtria.pdf

Leia mais

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5 P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5 GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Agrupando num bloco a Ana, a Bruna, o Carlos, a Diana o Eduardo, o bloco os rstants st amigos prmutam

Leia mais

Fun»c~oesexponenciaiselogar ³tmicas. Uma revis~ao e o n umero e

Fun»c~oesexponenciaiselogar ³tmicas. Uma revis~ao e o n umero e Aula 9 Fun»c~osponnciaislogar ³tmicas. Uma rvis~ao o n umro Nsta aula farmos uma pquna rvis~ao das fun»c~os f() =a g() =log a, sndo a uma constant ral, a>0 a 6=. Farmos ainda uma aprsnta»c~ao do n umro,

Leia mais

Questões para o concurso de professores Colégio Pedro II

Questões para o concurso de professores Colégio Pedro II Qustõs para o concurso d profssors Colégio Pdro II Profs Marilis, Andrzinho Fábio Prova Discursiva 1ª QUESTÃO Jhosy viaja com sua sposa, Paty, sua filha filho para a Rgião dos Lagos para curtir um friadão

Leia mais

RESOLUÇÃO. Revisão 03 ( ) ( ) ( ) ( ) 0,8 J= t ,3 milhões de toneladas é aproximadamente. mmc 12,20,18 = 180

RESOLUÇÃO. Revisão 03 ( ) ( ) ( ) ( ) 0,8 J= t ,3 milhões de toneladas é aproximadamente. mmc 12,20,18 = 180 Rvisão 03 RESOLUÇÃO Rsposta da qustão : Sndo XA = AB = K = HI = u, sgu qu 3 Y = X+ 0u = + 0u 6 u =. 5 Rsposta da qustão 6: Considr o diagrama, m qu U é o conjunto univrso do grupo d tradutors, I é o conjunto

Leia mais

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia UNIVERSIDADE DE SÃO PAULO Faculdad d Economia, Administração Contabilidad d Ribirão Prto Dpartamnto d Economia Nom: Númro: REC200 MICROECONOMIA II PRIMEIRA PROVA (20) () Para cada uma das funçõs d produção

Leia mais

Hewlett-Packard CONJUNTOS NUMÉRICOS. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos

Hewlett-Packard CONJUNTOS NUMÉRICOS. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Hwltt-Packard CONJUNTOS NUMÉRICOS Aulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz Ramos Ano: 206 Sumário CONJUNTOS NUMÉRICOS 2 Conjunto dos númros Naturais 2 Conjunto dos númros Intiros 2 Conjunto

Leia mais

TÓPICOS DE MATEMÁTICA PROF.: PATRÍCIA ALVES

TÓPICOS DE MATEMÁTICA PROF.: PATRÍCIA ALVES TÓPICOS DE MATEMÁTICA PROF.: PATRÍCIA ALVES 33 MATRIZES 1. Dê o tipo d cada uma das sguints prtncm às diagonais principais matrizs: scundárias d A. 1 3 a) A 7 2 7. Qual é o lmnto a 46 da matriz i j 2 j

Leia mais

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia UNIVERSIDADE DE SÃO PAULO Faculdad d Economia, Administração Contabilidad d Ribirão Prto Dpartamnto d Economia Nom: Númro: REC00 MICROECONOMIA II PRIMEIRA PROVA (0) () Para cada uma das funçõs d produção

Leia mais

Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Matemática

Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Matemática Univrsidad Fdral do Rio d Janiro INSTITUTO DE MATEMÁTICA Dpartamnto d Matmática Gabarito da 1 a prova d Gomtria difrncial - 20/09/2018 - Mônica 1. Sja α(s) uma curva rgular plana paramtrizada plo comprimnto

Leia mais

Função Exponencial: Conforme já vimos, o candidato natural à função exponencial complexa é dado pela função. f z x iy f z e cos y ie sen y.

Função Exponencial: Conforme já vimos, o candidato natural à função exponencial complexa é dado pela função. f z x iy f z e cos y ie sen y. Funçõs Elmntars Função Exponncial: Conform já vimos, o candidato natural à função xponncial complxa é dado pla função Uma v qu : : ( ) x x f x i f cos i sn x f, x. E uma gnraliação para sr útil dv prsrvar

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}.

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}. Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR LOGARITMOS E INTEGRAÇÃO DE FUNÇÕES COMPLEXAS Logaritmos () Para cada um dos sguints conjuntos

Leia mais

Lista de Exercícios de Funções

Lista de Exercícios de Funções Lista de Eercícios de Funções ) Seja a R, 0< a < e f a função real de variável real definida por : f() = ( a a ) cos( π) + 4cos( π) + 3 Sobre o domínio A desta função podemos afirmar que : a) (], [ Z)

Leia mais

Identifique todas as folhas Folhas não identificadas NÃO SERÃO COTADAS. Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I

Identifique todas as folhas Folhas não identificadas NÃO SERÃO COTADAS. Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I Idntifiqu todas as folhas Folhas não idntificadas NÃO SERÃO COTADAS Faculdad d Economia Univrsidad Nova d Lisboa EXAME DE CÁLCULO I Ano Lctivo 8-9 - º Smstr Eam Final d ª Época m d Janiro 9 Duração: horas

Leia mais

Cálculo de Autovalores, Autovetores e Autoespaços Seja o operador linear tal que. Por definição,, com e. Considere o operador identidade tal que.

Cálculo de Autovalores, Autovetores e Autoespaços Seja o operador linear tal que. Por definição,, com e. Considere o operador identidade tal que. AUTOVALORES E AUTOVETORES Dfiniçõs Sja um oprador linar Um vtor, é dito autovtor, vtor próprio ou vtor caractrístico do oprador T, s xistir tal qu O scalar é dnominado autovalor, valor próprio ou valor

Leia mais

Análise Matemática IV Problemas para as Aulas Práticas

Análise Matemática IV Problemas para as Aulas Práticas Anális Matmática IV Problmas para as Aulas Práticas 7 d Abril d 003 Smana 1. Us as quaçõs d cauchy-rimann para dtrminar o conjunto dos pontos do plano complo ond as sguints funçõs admitm drivada calcul

Leia mais

Quadro de Respostas das Questões de Múltipla Escolha Valor: 65 pontos Alternativa/Questão Rascunho A B C D E. 1 e.

Quadro de Respostas das Questões de Múltipla Escolha Valor: 65 pontos Alternativa/Questão Rascunho A B C D E. 1 e. UFJF ICE Dpartamnto d Matmática Cálculo I Trcira Avaliação /08/0 FILA A Aluno (a): Matrícula: Turma: Instruçõs Grais: - A prova pod sr fita a lápis, cto o quadro d rspostas das qustõs d múltipla scolha,

Leia mais

ANÁLISE MATEMÁTICA IV A =

ANÁLISE MATEMÁTICA IV A = Instituto uprior Técnico Dpartamnto d Matmática cção d Álgbra Anális ANÁLIE MATEMÁTICA IV FICHA 5 ITEMA DE EQUAÇÕE LINEARE E EQUAÇÕE DE ORDEM UPERIOR À PRIMEIRA () Considr a matriz A 3 3 (a) Quais são

Leia mais

A trajetória sob a ação de uma força central inversamente proporcional ao quadrado da distância

A trajetória sob a ação de uma força central inversamente proporcional ao quadrado da distância A trajtória sob a ação d uma força cntral invrsamnt proporcional ao quadrado da distância A força gravitacional a força ltrostática são cntrais proporcionais ao invrso do quadrado da distância ao cntro

Leia mais

MÓDULO 33. Funções I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA

MÓDULO 33. Funções I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA C9_ITA_Mod_33_36_prof /0/0 09:5 Page I Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 33 Funções I. (OPM Seja f uma função dada por: f( = 7 e n f(n =, para n natural, maior que.

Leia mais

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O Prparar o Eam 05 Matmática A E X A M E 0.ª FASE, V E R S Ã O P R O P O S T A D E R E S O L U Ç Ã O. Tm-s qu P A P A P A GRUPO I ITENS DE ESCOLHA MÚLTIPLA 0, 0, 0,. Assim: P B A PB A 0,8 0,8 PB A 0,8 0,

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MATRIZES Aulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz Sumário MATRIZES NOÇÃO DE MATRIZ REPRESENTAÇÃO DE UMA MATRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDAMENTAL MATRIZES ESPECIAIS IGUALDADE

Leia mais

Análise Matemática IV

Análise Matemática IV Anális Matmática IV Problmas para as Aulas Práticas Smana 7 1. Dtrmin a solução da quação difrncial d y d t = t2 + 3y 2 2ty, t > 0 qu vrifica a condição inicial y(1) = 1 indiqu o intrvalo máximo d dfinição

Leia mais

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O Prparar o Eam 05 Matmática A E X A M E 0.ª FASE, V E R S Ã O P R O P O S T A D E R E S O L U Ç Ã O. Tm-s qu P A P A P A GRUPO I ITENS DE ESCOLHA MÚLTIPLA 0, 0, 0,. Assim: P B A PB A 0,8 0,8 PB A 0,8 0,

Leia mais

log 2, qual o valor aproximado de 0, 70

log 2, qual o valor aproximado de 0, 70 UNIERSIDADE FEDERAL DE ITAJUBÁ GABARITO DE FUNDAMENTOS DA MATEMÁTICA PROA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR // CANDIDATO: CURSO PRETENDIDO: OBSERAÇÕES: Prova

Leia mais

( ) π π. Corolário (derivada da função inversa): Seja f uma função diferenciável e injectiva definida num intervalo I IR.

( ) π π. Corolário (derivada da função inversa): Seja f uma função diferenciável e injectiva definida num intervalo I IR. Capítlo V: Drivação 9 Corolário (drivada da nção invrsa): Sja ma nção dirnciávl injctiva dinida nm intrvalo I IR Sja I tal q '( ), ntão ( é drivávl m y ) ' ( ) ( y ) '( ) Ercício: Dtrmin a drivada d ()

Leia mais

INTRODUÇÃO À ESTATÍSTICA

INTRODUÇÃO À ESTATÍSTICA INTRODUÇÃO À ESTATÍSTICA ERRATA (capítulos 1 a 6 CAP 1 INTRODUÇÃO. DADOS ESTATÍSTICOS Bnto Murtira Carlos Silva Ribiro João Andrad Silva Carlos Pimnta Pág. 10 O xmplo 1.10 trmina a sguir ao quadro 1.7,

Leia mais

Introdução ao Processamento Digital de Sinais Soluções dos Exercícios Propostos Capítulo 6

Introdução ao Processamento Digital de Sinais Soluções dos Exercícios Propostos Capítulo 6 Introdução ao Soluçõs dos Exrcícios Propostos Capítulo 6 1. Dadas as squências x[n] abaixo com sus rspctivos comprimntos, ncontr as transformadas discrtas d Fourir: a x[n] = n, para n < 4 X[] = 6 X[1]

Leia mais

Aula Teórica nº 8 LEM-2006/2007. Trabalho realizado pelo campo electrostático e energia electrostática

Aula Teórica nº 8 LEM-2006/2007. Trabalho realizado pelo campo electrostático e energia electrostática Aula Tórica nº 8 LEM-2006/2007 Trabalho ralizado plo campo lctrostático nrgia lctrostática Considr-s uma carga q 1 no ponto P1 suponha-s qu s trás uma carga q 2 do até ao ponto P 2. Fig. S as cargas form

Leia mais

Matemática IME-2007/ a QUESTÃO. 2 a QUESTÃO COMENTA

Matemática IME-2007/ a QUESTÃO. 2 a QUESTÃO COMENTA Matmática a QUESTÃO IME-007/008 Considrando qu podmos tr csto sm bola, o númro d maniras d distribuir as bolas nos três cstos é igual ao númro d soluçõs intiras não-ngativas da quação: x + y + z = n, na

Leia mais

, ou seja, 8, e 0 são os valores de x tais que x e, Página 120

, ou seja, 8, e 0 são os valores de x tais que x e, Página 120 Prparar o Eam 0 07 Matmática A Página 0. Como g é uma função contínua stritamnt crscnt no su domínio. Logo, o su contradomínio é g, g, ou sja, 8,, porqu: 8 g 8 g 8 8. D : 0, f Rsposta: C Cálculo Auiliar:

Leia mais

Oscilações amortecidas

Oscilações amortecidas Oscilaçõs amortcidas Uso d variávl complxa para obtr a solução harmônica ral A grand vantagm d podr utilizar númros complxos para rsolvr a quação do oscilador harmônico stá associada com o fato d qu ssa

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

Ficha 2. 1 Polinómios de Taylor de um campo escalar. 1.1 O primeiro polinómio de Taylor.

Ficha 2. 1 Polinómios de Taylor de um campo escalar. 1.1 O primeiro polinómio de Taylor. Aulas Práticas d Matmática II Mstrado m Arquitctura o Smstr Fica 1 Polinómios d Talor d um campo scalar. Rcord qu os polinómios d Talor são uma important frramnta para studar o comportamnto d uma função

Leia mais

CAPÍTULO 12 REGRA DA CADEIA

CAPÍTULO 12 REGRA DA CADEIA CAPÍTULO 12 REGRA DA CADEIA 121 Introdução Em aulas passadas, aprndmos a rgra da cadia para o caso particular m qu s faz a composição ntr uma função scalar d várias variávis f uma função vtorial d uma

Leia mais

PROFESSOR (A): ANDRÉ (MAL) DISCIPLINA: MATEMÁTICA DATA: 13 / 06 / matricial AX M em que: ) Sejam A =

PROFESSOR (A): ANDRÉ (MAL) DISCIPLINA: MATEMÁTICA DATA: 13 / 06 / matricial AX M em que: ) Sejam A = ALUNO (A) : PROFESSOR (A): ANDRÉ (MAL) DISCIPLINA: MATEMÁTICA DATA: / 06 / 06 ÁLGEBRA LINEAR: MATRIZES, DETERMINANTES E SISTEMAS. MATRIZES 0-0) Dada a matriz, B, calcul a + -7 0 a a + a. 0) Escrva a matriz

Leia mais

v 4 v 6 v 5 b) Como são os corte de arestas de uma árvore?

v 4 v 6 v 5 b) Como são os corte de arestas de uma árvore? 12 - Conjuntos d Cort o studarmos árors gradoras, nós stáamos intrssados m um tipo spcial d subgrafo d um grafo conxo: um subgrafo qu mantiss todos os értics do grafo intrligados. Nst tópico, nós stamos

Leia mais

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9 AULA 9 EXPRESSÕES LÓGICAS 9.1 Lógica proposicional Lógica é o studo do raciocínio 1. Em particular, utilizamos lógica quando dsjamos dtrminar s um dado raciocínio stá corrto. Nsta disciplina, introduzimos

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR A =

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR A = Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 4 EQUAÇÕES DIFERENCIAIS LINEARES Formas canónicas d Jordan () Para cada uma das matrizs A

Leia mais

Resoluções de Exercícios

Resoluções de Exercícios Rsoluçõs d Exrcícios MATEMÁTICA II Conhc Capítulo 07 Funçõs Equaçõs Exponnciais; Funçõs Equaçõs Logarítmicas 01 A) log 2 16 = log 2 2 4 = 4 log 2 2 = 4 B) 64 = 2 6 = 2 6 = 6 log 2 2 = 4 C) 0,125 = = 2

Leia mais

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B Prof a Graça Luzia

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B Prof a Graça Luzia INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B - 008. Prof a Graça Luzia A LISTA DE EXERCÍCIOS ) Usando a dfinição, vrifiqu s as funçõs a sguir são drivávis m 0 m

Leia mais

Atrito Fixação - Básica

Atrito Fixação - Básica 1. (Pucpr 2017) Um bloco d massa stá apoiado sobr uma msa plana horizontal prso a uma corda idal. A corda passa por uma polia idal na sua xtrmidad final xist um gancho d massa dsprzívl, conform mostra

Leia mais

Programa de Pós-Graduação Processo de Seleção 2 0 Semestre 2008 Exame de Conhecimento em Física

Programa de Pós-Graduação Processo de Seleção 2 0 Semestre 2008 Exame de Conhecimento em Física UNIVERSIDADE FEDERAL DE GOIAS INSTITUTO DE FÍSICA C.P. 131, CEP 74001-970, Goiânia - Goiás - Brazil. Fon/Fax: +55 62 521-1029 Programa d Pós-Graduação Procsso d Slção 2 0 Smstr 2008 Exam d Conhcimnto m

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2/4

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2/4 FICHA d AVALIAÇÃO d MATEMÁTICA A.º Ano Vrsão / Nom: N.º Trma: Aprsnt o s raciocínio d orma clara, indicando todos os cálclos q tivr d tar todas as jstiicaçõs ncssárias. Qando, para m rsltado, não é pdida

Leia mais

Módulo de Círculo Trigonométrico. Secante, Cossecante e Cotangente. 1 a série E.M.

Módulo de Círculo Trigonométrico. Secante, Cossecante e Cotangente. 1 a série E.M. Módulo d Círculo Trigonométrico Scant, Cosscant Cotangnt a séri EM Círculo Trigonométrico Scant, Cosscant Cotangnt Exrcícios Introdutórios ] π Exrcício Sja α ; π tal qu sn α, dtrmin, s xistir, o rsultado

Leia mais

AULA Subespaço, Base e Dimensão Subespaço.

AULA Subespaço, Base e Dimensão Subespaço. Not bm: a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliografia principal da cadira TÓPICOS Subspaço. ALA Chama-s a atnção para a importância do trabalho pssoal a ralizar plo

Leia mais

1 a Prova de F-128 Turmas do Noturno Segundo semestre de /10/2004

1 a Prova de F-128 Turmas do Noturno Segundo semestre de /10/2004 1 a Prova d F-18 Turmas do Noturno Sgundo smstr d 004 18/10/004 1) Um carro s dsloca m uma avnida sgundo a quação x(t) = 0t - 5t, ond x é dado m m t m s. a) Calcul a vlocidad instantâna do carro para os

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II MÁXIMOS E MÍNIMOS DE FUNÇÕES DE DUAS VARIÁVEIS. Figura 1: Pontos de máximo e mínimo

CÁLCULO DIFERENCIAL E INTEGRAL II MÁXIMOS E MÍNIMOS DE FUNÇÕES DE DUAS VARIÁVEIS. Figura 1: Pontos de máximo e mínimo Introdução S CÁLCULO DIFERENCIAL E INTEGRAL II MÁXIMOS E MÍNIMOS DE FUNÇÕES DE DUAS VARIÁVEIS é uma unção d duas variávis ntão dizmos qu 1 a b é no máimo igual a a Gomtricamnt o gráico d tm um máimo quando:

Leia mais

Curso de Engenharia Elétrica Disciplina: Nota: Rubrica. Coordenador Professor: Rudson Alves Aluno:

Curso de Engenharia Elétrica Disciplina: Nota: Rubrica. Coordenador Professor: Rudson Alves Aluno: Curso d Engnharia Elétrica Disciplina: Nota: Rubrica Coordnador Profssor: Rudson Alvs Aluno: Turma: EE4N Smstr: 2 sm/2015 Data: 22/04/2015 Avaliação: 1 a Prova Bimstral Valor: 10,0 p tos INSTRUÇÕES DA

Leia mais

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA MAT 195 CÁLCULO DIFERENCIAL E INTEGRAL I Atualizada em A LISTA DE EXERCÍCIOS

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA MAT 195 CÁLCULO DIFERENCIAL E INTEGRAL I Atualizada em A LISTA DE EXERCÍCIOS INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA MAT 9 CÁLCULO DIFERENCIAL E INTEGRAL I Atualizada m 00. A LISTA DE EXERCÍCIOS Drivadas d Funçõs Compostas 0. Para cada uma das funçõs sguints,

Leia mais

Capítulo 4 Resposta em frequência

Capítulo 4 Resposta em frequência Capítulo 4 Rsposta m frquência 4. Noção do domínio da frquência 4.2 Séris d Fourir propridads 4.3 Rsposta m frquência dos SLITs 4.4 Anális da composição d sistmas através da rsposta m frquência 4.5 Transformadas

Leia mais

Memorize as integrais imediatas e veja como usar a técnica de substituição.

Memorize as integrais imediatas e veja como usar a técnica de substituição. Blém, d maio d 0 aro aluno, om início das intgrais spro qu vocês não troqum as rgras com as da drivada principalmnt d sno d sno. Isso tnho dito assim qu comçamos a studar drivada, lmbra? Mmoriz as intgrais

Leia mais

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo Intgração Múltipla Prof. M.Sc. Armando Paulo da Silva UTFP Campus Cornélio Procópio )INTEGAIS DUPLAS: ESUMO Emplo Emplo Calcul 6 Calcul 6 dd dd O fato das intgrais rsolvidas nos mplos srm iguais Não é

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II ESCOLA SECUNDÁRIA COM º CICLO D DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tma II Introdução ao Cálculo Difrncial II Aula nº 4 do plano d trabalho nº 9 Rsolvr os rcícios 87, 88, 89, 90 9 os rcícios 9

Leia mais