Dinâmica Estocástica Aula 7 Ifusp, setembro de Tânia - Din Estoc

Tamanho: px
Começar a partir da página:

Download "Dinâmica Estocástica Aula 7 Ifusp, setembro de Tânia - Din Estoc"

Transcrição

1 Diâmica Estocástica Aula 7 Iusp, stmbro d 016 Tâia - Di Estoc

2 . Discrtização da quação d Lagvi. Obtção da quação d Fokkr-Plack Tâia - Di Estoc - 016

3 Discrtização da quação d Lagvi A orma discrtizada da quação d Lagvi propicia a: simulação a quação d Lagvi a obtção a quação d Fokkr-Plack Tâia - Di Estoc

4 m t F m v dt dv ), ( 1 0 ) ( t F ) ( ) ( ) ( t t m B t F t F Equação d Lagvi 4 Tâia - Di Estoc - 016

5 Equação d Lagvi dv dt v (t) (1) ( t) 0 () ( t) ( t) ( t t) (3) Tâia - Di Estoc

6 Equação d Lagvi discrtizada dv dt v (t) (1) A quação d Lagvi acima pod sr aproximada por: Equação d Lagvi discrtizada v 1 v v (4) variávl stocástica discrta tal qu: 0 (5) ', ' dlta d Krockr (6) Tâia - Di Estoc

7 Equação d Lagvi - Discrtização Dlta d Krockr, ' ', ' 1 s ', ' 1 0 s ', ' ' 0 ' Tâia - Di Estoc

8 Equação d Lagvi - Discrtização Justiicativa / xprssão (4) Discrtizamos o tmpo m itrvalos iguais tais qu: t dv dt v v 1 v v(t) v 1 v( t ) Tâia - Di Estoc

9 Equação d Lagvi & discrtização v 1 v v (4) ou sja, v 1 v v Tâia - Di Estoc

10 Equação d Lagvi & discrtização v 1 v v discrto dv dt v (t) discrto t t discrto Tâia - Di Estoc

11 Equação d Lagvi - Discrtização Discrtizar o tmpo m itrvalos iguais tais qu: t t Fazdo a corrspodêcia tr os trmos das duas últimas xprssõs lmbrado qu stamos tomado t discrto (como acima diido) tmos qu (t) s rlacioa com por mio d: ( t) discrta ( t') ' ( t) ( t') ' discrta Tâia - Di Estoc

12 Equação d Lagvi - Discrtização Discrtizar o tmpo m itrvalos iguais tais qu: t t ( t) ( t') ' discrta ', ' Sja a ução ( t, t') ( t) ( t') ',' discrta Tâia - Di Estoc

13 Equação d Lagvi & discrtização Sja a ução ( t, t') ( t) ( t'), ' ( t t') discrta t' ' 0 t' t t ( t, t') dt ( t, t'),' discrta Tâia - Di Estoc

14 Equação d Lagvi ( t, t') dt ( t, t'),' Por outro lado, o limit m qu 0 tmos (ou sja, quado cosidramos variávis cotíuas) ( t, t') ( t t') ( t, t') dt ( t t' ) dt = 1 im da justiicativa Tâia - Di Estoc

15 Equação d Lagvi discrtizada v 1 v v (4) variávl stocástica discrta tal qu: 0 ', ' (5) (6) A partir da xprssão (4) complmtada plas xprssõs (5) (6) pod-s cotrar a distribuição d probabilidads da variávl v como stá o livro Diâmica Estocástica Irrvrsibilidad como é pdido o xrcício 1 da lista A. Tâia - Di Estoc

16 Equação d Lagvi variávl x Tâia - Di Estoc

17 Equação d Lagvi variávl x Equação d Lagvi para a variávl x : dt ( x) ( t) (7) ( t) 0 (8) ( t) ( t) ( t t) (9) Tâia - Di Estoc

18 Equação d Lagvi Partíula sujita à orça xtra movimto supramortcido Exmplo d x m F ( x) xt dt dt F( t) Fxt x orça xtra atuado sobr a partícula posição da partícula caso spcial: Equação d Lagvi para o movimto browiao supramortcido m = massa dsprzívl o trmo m m é dsprzado dt F xt ( x) F( t) dt ( x) ( t) ( x) Fxt / (t) é tal qu ( t) 0 ( t) ( t') ( t t') Tâia Tomé - Di Estoc

19 Equação d Lagvi discrtizada dt ( x) ( t) (7) pod sr aproximada por: Equação d Lagvi discrtizada x 1 x ( x ), (10) variávl stocástica discrta 0 (11) ', ' (1) dlta d Krockr Tâia - Di Estoc

20 Equação d Lagvi & Discrtização dt ( x) ( t) (7) Discrtizar o tmpo m itrvalos iguais tal qu: t dt x 1 x x x() t x 1 x( t ) Tâia - Di Estoc

21 Equação d Lagvi - Discrtização Equação d Lagvi discrtizada x 1 x ( x ) (10) 0 (11) ', ' (1) Justiicativa Discrtizar o tmpo m itrvalos iguais tal qu Tâia - Di Estoc t E sguir o msmo procdimto dsvolvido os slids atriors (quado justiicamos a discrtização da quação d Lagvi (1), isto é, a xprssão (4)) 1

22 Equação d Lagvi & Simulação d um movimto alatório dt ( x) ( t) ( t) 0 ( t) ( t) ( t t) x x ( ) 1 x,,, squêcia d úmros alatórias 0 1 x 0 dado x x 1 3, x,... Squêcia d potos Trajtória da partícula 0 1 caso m qu x é a posição x L 1 ( i) x L i1 stimativa da posição média da partícula o istat t L úmro d trajtórias gradas (13) x posição da partícula o istat t a i-ésima trajtória (i) Tâia - Di Estoc - 016

23 Equação d Fokkr-Plack Obtção da quação d Fokkr-Plack a partir da quação d Lagvi discrtizada Tâia - Di Estoc

24 Bibliograia básica Diâmica Estocástica Irrvrsibilidad, TT MJO, Cap. 3 ( Cap. 4) Th Fokkr-Plack Equatio, H. Risk, Sprigr, 1996 Tâia Tomé - Di Estoc

25 Equação d Fokkr-Plack Equação para a volução tmporal d P(x,t) Vamos obtr t P( x, t) x x ( x) P( x, t) P( x, t) (14) A ssa quação stá associada a quação d Lagvi dt ( x) ( t) (7) Tâia Tomé - Di Estoc

26 Equação d Lagvi dt ( x) ( t) (7) m qu, ( t) 0 (8) ( t) ( t) ( t t) (9) Tâia Tomé - Di Estoc

27 Equação d Fokkr-Plack - Caso spcial Movimto browiao d uma partícula livr m uma dimsão ( x) 0 Movimto browiao supramortcido (caso spcial) dt (t) Equação d Lagvi (15) (t) ruído x posição da partícula Equação d Fokkr-Plack t P( x, t) x P( x, t) Vamos obtr (16) Tâia Tomé - Di Estoc

28 Equação d Fokkr-Plack - Obtção Equação d Lagvi discrtizada x 1 x ( x) (10) 0 (11) ', ' (1) Fução caractrística g 1( k) xp( 1) 1 P x) ução caractrística associada a x 1 ( 1 (17) Tâia Tomé - Di Estoc

29 Equação d Fokkr-Plack - Obtção g 1( k) xp( 1) (18) Mas, x 1 x ( x) (10) Portato, g ik ( x ( x ) ( k 1 ) ) (19) x Como são variávis stocásticas idpdts, tmos: g 1 ( k) ik ( x ( x )) ik (0) Tâia Tomé - Di Estoc

30 Equação d Fokkr-Plack - Obtção g 1 ( k) ik ( x ( x )) ik (0) ik ( x ( x ))... média sobr a distribuição d x (1) ik... média sobr a distribuição d () Tâia Tomé - Di Estoc

31 Equação d Fokkr-Plack - Obtção Expasão m da quação g 1 ( k) ik ( x ( x )) ik (0) Passamos agora a aalisar cada uma das médias o lado dirito da quação (0). Primiramt a média: (1) ik ( x ( x )) (1) E m sguida a média: () ik () Tâia Tomé - Di Estoc

32 Equação d Fokkr-Plack - Obtção Expasão m da xprssão: ik ( x ( x )) (1) A xprssão (1) pod sr scrita como: ik ( x ( x )) ik ( x ) (3) Expasão m da xprssão (3) ( ) ik x 1 ik ( x ) o( ) ik ( x ( x )) (1 ik ( x ) o( )) (4) ik ( x ( x )) (1 ik ( x )) (5) Tâia Tomé - Di Estoc

33 Equação d Fokkr-Plack - Obtção Expasão m do trmo ik () Expasão m da xprssão () k ik 1 ik o( ) (6) Cosidrado a xpasão até trmos liars m tmos: ik 1 ik k (7) Tâia Tomé - Di Estoc

34 Equação d Fokkr-Plack - Obtção Expasão m da xprssão () Ou, ik 1 ik k (7) ik k 1 ik (8) Mas, a partir das quaçõs (11) (1) tmos: quação (8) pod sr rscrita como: Portato, a ik 1 k (9) Tâia Tomé - Di Estoc

35 Equação d Fokkr-Plack - Obtção ik ( x ( x )) ik Expasão m da quação g ( k 1 ) (0) ik ( x ( x )) (1 ik ( x )) (5) ik 1 k (9) A partir das Eqs. (5) (9) obtmos a sguit xprssão para g ( k 1 ) diida a Eq. (0): g 1 ( k) (1 ik ( x ) k (1 ) (30) Tâia Tomé - Di Estoc

36 Equação d Fokkr-Plack - Obtção g 1 ( k) (1 ik ( x ) (1 k ) (30) g 1 ( k) ik ( x ) (1 k ) k g 1( k) ik ( x) (31) Tâia Tomé - Di Estoc

37 Equação d Fokkr-Plack - Obtção k g 1( k) ik ( x) (31) Ou k g 1( k) ik ( x) Expasão até 1ª ordm m d g ( x 1 ) g k 1( k) g ( k) ik (3) ( x ) Tâia Tomé - Di Estoc

38 Ou Equação d Fokkr-Plack - Obtção k g 1( k) g( k) ik ( x) g 1 ( k) g ( k) ik ( x ) k (3) Limit 0 g 1( k) g( k) d g( k) dt d dt g( k) ik ( x) k (33) Tâia Tomé - Di Estoc

39 Equação d Fokkr-Plack - Obtção d dt g( k) ik ( x) k (33) Aális do 1º trmo do lado dirito da quação (33): ik ( x) ( x) d d d ( x) ( x) P( x) (34) Tâia Tomé - Di Estoc

40 Equação d Fokkr-Plack - Obtção ( x) Mas, Pois, d ( x) P( x) ( x) P( x) ( x) P( x) d D ato a probabilidad suprior d itgração). k d d d ( x) P( x) (34) calculada os limits d itgração suprior irior é ula. P Aális do º trmo do lado dirito da quação (33): O sgudo trmo volv a média: d P( x) (35) é tal qu s aula as bordas (s aula o limits irior (36) Novamt oi utilizado qu a probabilidad dp / s aula as bordas. P s aula as bordas. Também oi usado qu Tâia Tomé - Di Estoc

41 Equação d Fokkr-Plack - Obtção d dt g( k) ik ( x) k (33) ( x) P( x) d d ( x) P( x) (35) k d d P( x) (36) d dt d d g( k) ( ( x) P( x)) P( x) (37) Tâia Tomé - Di Estoc

42 Equação d Fokkr-Plack - Obtção d dt d d g( k) ( ( x) P( x)) P( x) (37) ou, d dt d d P( x) ( ( x) P( x)) P( x) (38) A probabilidad dpd d x d t P( x, t), portato, scrvmos: t P( x, t) ( ( x) P( x, t)) x x P( x, t) (39) Tâia Tomé - Di Estoc

43 43 Tâia Tomé - Di Estoc Equação d Fokkr-Plack t x P x t x P x x t x P t ), ( ), ( ) ( ), ( ), ( ), ( ) ( ), ( t x P x t x P x x t x P t (40) Equação d Fokkr-Plack Equação d volução tmporal d P(x,t) Portato, (39)

44 FIM Tâia - Di Estoc

XXXI Olimpíada Brasileira de Matemática GABARITO Primeira Fase

XXXI Olimpíada Brasileira de Matemática GABARITO Primeira Fase XXXI Olimpíada Brasilira d Matmática GABARITO Primira Fas Soluçõs Nívl Uivrsitário Primira Fas PROBLEMA ( x) a) A drivada da fução f é f ( x) =, qu s aula apas para x =, sdo gativa para x < positiva para

Leia mais

Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I. Ano Lectivo º Semestre

Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I. Ano Lectivo º Semestre Faculdad d Ecoomia Uivrsidad Nova d Lisboa EXAME DE CÁLCULO I Ao Lctivo 8-9 - º Smstr Eam Fial d ª Época m d Jairo 9 Tópicos d Corrcção Duração: horas miutos É proibido usar máquias d calcular ou tlmóvis

Leia mais

Exercícios de Cálculo Numérico - Erros

Exercícios de Cálculo Numérico - Erros Ercícios d Cálculo Numérico - Erros. Cosidr um computador d bits com pot máimo ( a rprstação m aritmética lutuat a bas. (a Dtrmi o mor úmro positivo rprstávl sta máquia a bas. (b Dtrmi o maior úmro positivo

Leia mais

Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I. Ano Lectivo º Semestre

Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I. Ano Lectivo º Semestre Faculdad d Ecoomia Uivrsidad Nova d Lisboa EXAME DE CÁLCULO I Ao Lctivo 8-9 - º Smstr Eam Fial d ª Época m d Jairo 9 Tópicos d Corrcção Duração: horas miutos É proibido usar máquias d calcular ou tlmóvis

Leia mais

Estatística Clássica

Estatística Clássica Estatística Clássica As rgias das difrts partículas do sistma (um istat particular s distribum d acordo com uma fução distribuição d probabilidad distribuição d Boltzma qu dpd da tmpratura T. Um xmplo

Leia mais

Equações Diferenciais Lineares

Equações Diferenciais Lineares Equaçõs Diriais Liars Rordmos a orma gral d uma quação dirial liar d ordm a d d d d a a a, I d d m qu as uçõs a i são idpdts da variávl. S, a quação diz-s liar homogéa. Caso otrário, diz-s liar omplta.

Leia mais

1 Eliminação gaussiana com pivotamento parcial

1 Eliminação gaussiana com pivotamento parcial 1 Elimiação gaussiaa com pivotamto parcial Exmplo sm pivotamto parcial Costruimos a matriz complta: 0 2 2 1 1 1 6 0 2 2 1 2 1 1 1 1 0 2 2 1 1 1 6 1 2 0 0 2 0 6 x y z = 9 6 0 2 2 0 1 0 3 1 0 0 2 0 2 0 6

Leia mais

Ánálise de Fourier tempo discreto

Ánálise de Fourier tempo discreto Faculdad d Egharia Áális d Fourir tmpo discrto 4 3.5 3.5.5.5.5.5 -.5 -.5 - - -8-6 -4-4 6 8 - - -5 5 5 5 3 SS MIEIC 8/9 Aális d Fourir m tmpo discrto aula d hoj Faculdad d Egharia Rsposta d SLITs discrtos

Leia mais

TÓPICOS. Sinais contínuos e sinais discretos. Função impulso unitário discreto.

TÓPICOS. Sinais contínuos e sinais discretos. Função impulso unitário discreto. Not bm: a litura dsts apotamtos ão dispsa d modo algum a litura atta da bibliografia pricipal da cadira hama-s a atção para a importâcia do trabalho pssoal a ralizar plo aluo rsolvdo os problmas aprstados

Leia mais

O He Líquido. e α N V. Caso de 1 mol de He em CNTP:

O He Líquido. e α N V. Caso de 1 mol de He em CNTP: Caso d mol d H m CNTP: α O H Líquido h c N (,4 kv.m) ( ) / mc V ( 4 GV,5 V) 5 (,4 V.m) 6,5 6 / ( 4 V 5 V) /,4 m ( 68) FNC76 - Física Modra / 6,4,5 4,5 cm 6

Leia mais

Questão (a) 3.(b) 3.(c) 3.(d) 4.(a) 4.(b) 5.(a) 5.(b) 6 Cotação

Questão (a) 3.(b) 3.(c) 3.(d) 4.(a) 4.(b) 5.(a) 5.(b) 6 Cotação Faculdad d Ciêcias Exatas da Egharia PROVA DE AVALIAÇÃO DE CONHECIMENTOS E COMPETÊNCIAS PARA ADMISSÃO AO ENSINO SUPERIOR PARA MAIORES DE ANOS - 07 Matmática - 4/06/07 Atção: Justifiqu os raciocíios utilizados

Leia mais

Análise de Processos ENG 514

Análise de Processos ENG 514 áli d Proco NG 54 apítulo 5 Modlo do Tipo trada-saída Pro. Édlr Li d lbuqurqu Julho d 4 Forma d Rprtação d Modlo Matmático Fomológico Modlo dcrito por quaçõ Dirciai Modlo a orma d paço d tado Modlo do

Leia mais

Variáveis aleatórias Conceito de variável aleatória

Variáveis aleatórias Conceito de variável aleatória Variávis alatórias Muitos primtos alatórios produzm rsultados ão-uméricos. Ats d aalisá-los, é covit trasformar sus rsultados m úmros, o qu é fito através da variávl alatória, qu é uma rgra d associação

Leia mais

λ, para x 0. Outras Distribuições de Probabilidade Contínuas

λ, para x 0. Outras Distribuições de Probabilidade Contínuas abilidad Estatística I Antonio Roqu Aula 3 Outras Distribuiçõs d abilidad Contínuas Vamos agora studar mais algumas distribuiçõs d probabilidads para variávis contínuas. Distribuição Eponncial Uma variávl

Leia mais

Capítulo 5 Transformadas de Fourier

Capítulo 5 Transformadas de Fourier Capítulo 5 Trasformadas d Fourir 5. Aális da composição d sistmas através da rsposta m frquêcia 5.2 Trasformadas d Fourir propridads Capítulo 5 Trasformadas d Fourir 5. Aális da composição d sistmas através

Leia mais

Boltzmann como boa aproximação das distribuições quânticas = 1. ε 2 ε

Boltzmann como boa aproximação das distribuições quânticas = 1. ε 2 ε oltzma como boa aproximação das distribuiçõs quâticas Fator d oltzma: ( ε ) ( ε ) g g ( ε ) ( ε ) ε ε Podmos usá-lo para dtrmiar a razão d ocupação d stados m um sistma quâtico, quado ε >>. Exmplo: colisõs

Leia mais

Departamento de Matemática e Ciências Experimentais Curso de Educação e Formação Tipo 6 Nível 3

Departamento de Matemática e Ciências Experimentais Curso de Educação e Formação Tipo 6 Nível 3 Dpartamto d Matmática Ciêcias Exprimtais Curso d Educação Formação Tipo 6 Nívl 3 Txto d apoio.º 4 Assuto: Forças d Atrito As forças d atrito são muito importats a vida quotidiaa. S por um lado, provocam

Leia mais

Em termos da fração da renda total da população recebida por cada pessoa, na distribuição dual temos. pessoas

Em termos da fração da renda total da população recebida por cada pessoa, na distribuição dual temos. pessoas 6. Dual do Ídic d hil Dfiição Gral do Dual: Sja x uma variávl alatória com média µ distribuição tal qu o valor d crta mdida d dsigualdad é M. Chama-s dual a distribuição com as sguits caractrísticas: a.

Leia mais

ModelosProbabilísticos paravariáveis Discretas. Modelo de Poisson

ModelosProbabilísticos paravariáveis Discretas. Modelo de Poisson ModlosProbabilísticos paravariávis Discrtas Modlo d Poisson Na aula passada 1 Dfinimos o concito d modlo probabilístico. 2 Aprndmos a utilizar o Modlo Binomial. 3 Vimos como o Modlo Binomial pod facilitar

Leia mais

Solução da equação de Poisson 1D com coordenada generalizada

Solução da equação de Poisson 1D com coordenada generalizada Solução da quação d Poisson 1D com coordnada gnralizada Guilhrm Brtoldo 8 d Agosto d 2012 1 Introdução Ao s rsolvr a quação d Poisson unidimnsional d 2 T = fx), 0 x 1, 1) dx2 sujita às condiçõs d contorno

Leia mais

Gabarito Zero de Função

Gabarito Zero de Função Gabaito Zo d Fução Ecício : Um mlo é -, R A aiz ão od s dtmiada lo Método da Bissção oqu R. Tmos também qu muda d sial quado s aoima d. Ecício : Sja a aiz d. O método d Nwto-Raso od ão covgi s gad. [ U

Leia mais

Quarta aula. Ifusp, agosto de 2016

Quarta aula. Ifusp, agosto de 2016 Diâmica Estocástica Quarta aula Ifusp, agosto de 06 Bibliografia básica. va Kape, Stochastic processes i physics ad chemistry, North-Hollad, 990, Capítulo 4. Tomé e de Oliveira, Diâmica estocástica e irreversibilidade,

Leia mais

sen( x h) sen( x) sen xcos h sen hcos x sen x

sen( x h) sen( x) sen xcos h sen hcos x sen x MAT00 Cálculo Difrcial Itgral I RESUMO DA AULA TEÓRICA Livro do Stwart: Sçõs 3., 3.4 3.8. DEMONSTRAÇÕES Nssa aula srão aprstadas dmostraçõs, ou sboços d dmostraçõs, d algus rsultados importats do cálculo

Leia mais

INTRODUÇÃO À ESTATÍSTICA

INTRODUÇÃO À ESTATÍSTICA INTRODUÇÃO À ESTATÍSTICA ERRATA (capítulos 1 a 6 CAP 1 INTRODUÇÃO. DADOS ESTATÍSTICOS Bnto Murtira Carlos Silva Ribiro João Andrad Silva Carlos Pimnta Pág. 10 O xmplo 1.10 trmina a sguir ao quadro 1.7,

Leia mais

, onde F n é uma força de tracção e d o alongamento correspondente. F n [N] -1000 -2000

, onde F n é uma força de tracção e d o alongamento correspondente. F n [N] -1000 -2000 º Tst d CONTROLO DE SISTEMS (TP E PRO) Licciatura m Eg.ª Mcâica Prof. Rsposávl: Pdro Maul Goçalvs Lourti d bril d 00 º Smstr Duração: hora miutos. Tst com cosulta. Rsolução. Cosidr o sistma rprstado a

Leia mais

estados. Os estados são influenciados por seus próprios valores passados x

estados. Os estados são influenciados por seus próprios valores passados x 3 Filtro d Kalman Criado por Rudolph E. Kalman [BROWN97] m 1960, o filtro d Kalman (FK) foi dsnvolvido inicialmnt como uma solução rcursiva para filtragm linar d dados discrtos. Para isto, utiliza quaçõs

Leia mais

Nota 1: Esta questão poderia ser resolvida de outra maneira, usando a seguinte propriedade: RESOLUÇÃO DA PROVA MODELO N.º 14

Nota 1: Esta questão poderia ser resolvida de outra maneira, usando a seguinte propriedade: RESOLUÇÃO DA PROVA MODELO N.º 14 RESLUÇÃ DA PRVA MDEL N.º GRUP I ITENS DE ESCLHA MÚLTIPLA. Cosidrmos o sguit squma: S as duas ltras A ficassm as duas primiras posiçõs a ltra D a trcira posição tmos: As duas ltras A podm ocupar as oito

Leia mais

A trajetória sob a ação de uma força central inversamente proporcional ao quadrado da distância

A trajetória sob a ação de uma força central inversamente proporcional ao quadrado da distância A trajtória sob a ação d uma força cntral invrsamnt proporcional ao quadrado da distância A força gravitacional a força ltrostática são cntrais proporcionais ao invrso do quadrado da distância ao cntro

Leia mais

MATEMÁTICA. QUESTÃO 1 De quantas maneiras n bolas idênticas podem ser distribuídas em três cestos de cores verde, amarelo e azul?

MATEMÁTICA. QUESTÃO 1 De quantas maneiras n bolas idênticas podem ser distribuídas em três cestos de cores verde, amarelo e azul? (9) - www.litcampias.com.br O ELITE RESOLVE IME 8 TESTES MATEMÁTICA MATEMÁTICA QUESTÃO D quatas mairas bolas idêticas podm sr distribuídas m três cstos d cors vrd, amarlo azul? a) b) d) ( )! ) Rsolução

Leia mais

Oscilações amortecidas

Oscilações amortecidas Oscilaçõs amortcidas Uso d variávl complxa para obtr a solução harmônica ral A grand vantagm d podr utilizar númros complxos para rsolvr a quação do oscilador harmônico stá associada com o fato d qu ssa

Leia mais

ORBITAIS EM ÁTOMOS E. André Bathista Instituto de Física de São Carlos Universidade de São Paulo

ORBITAIS EM ÁTOMOS E. André Bathista Instituto de Física de São Carlos Universidade de São Paulo ORBITAIS EM ÁTOMOS E MOLÉCULAS Adré Bathista Istituto d Física d São Carlos Uivrsidad d São Paulo Torias º Toria da Coordação d Wrr. É a mais simpls das torias d orbitais atômicos molculars º Toria dos

Leia mais

Algoritmo de integração numérica - Euler: Considerando a seguinte equação diferencial:

Algoritmo de integração numérica - Euler: Considerando a seguinte equação diferencial: Lista B Aulas Práticas d Scilab Equaçõs difrnciais Introdução: Considr um corpo d massa m fito d um matrial cujo calor spcífico à prssão constant sja c p. Est corpo stá inicialmnt a uma tmpratura T 0,

Leia mais

Laboratório de Dinâmica SEM 545 SISTEMAS MICROELETROMECÂNICOS

Laboratório de Dinâmica SEM 545 SISTEMAS MICROELETROMECÂNICOS UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA MECÂNICA Laboratório d Diâmica SEM 545 SISTEMAS MICROELETROMECÂNICOS Modlagm d Sistmas Diâmicos - Rvisão Rsp.: Profs.

Leia mais

Identifique todas as folhas Folhas não identificadas NÃO SERÃO COTADAS. Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I

Identifique todas as folhas Folhas não identificadas NÃO SERÃO COTADAS. Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I Idtifiqu todas as folhas Folhas ão idtificadas NÃO SERÃO COTADAS Faculdad d Ecoomia Uivrsidad Nova d Lisboa EXAME DE CÁLCULO I Ao Lctivo 8-9 - º Smstr Exam Fial d ª Época m 5 d Maio 9 Duração: horas miutos

Leia mais

Simulação de um escoamento em uma cavidade através do método MAC

Simulação de um escoamento em uma cavidade através do método MAC Simulação d um scoamnto m uma cavidad através do método MAC Vanssa Avansini Botta, Dpto d Matmática, Estatística Computação, FCT, UNESP, 9060-900, Prsidnt Prudnt, SP E-mail: botta@fct.unsp.br, Vanssa Brtoni

Leia mais

A seção de choque diferencial de Rutherford

A seção de choque diferencial de Rutherford A sção d choqu difrncial d Ruthrford Qual é o ângulo d dflxão quando a partícula passa por um cntro d força rpulsiva? Nss caso, quando tratamos as trajtórias sob a ação d forças cntrais proporcionais ao

Leia mais

TÓPICOS. ordem; grau; curvas integrais; condições iniciais e fronteira. 1. Equações Diferenciais. Conceitos Gerais.

TÓPICOS. ordem; grau; curvas integrais; condições iniciais e fronteira. 1. Equações Diferenciais. Conceitos Gerais. Not bm, a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliografia principal da cadira hama-s à atnção para a importância do trabalho pssoal a ralizar plo aluno rsolvndo os problmas

Leia mais

VIBRAÇÕES LIVRES SEM AMORTECIMENTO DE SISTEMAS com 1 GL

VIBRAÇÕES LIVRES SEM AMORTECIMENTO DE SISTEMAS com 1 GL UNIVERSIDADE FEDERA DA PARAÍBA CENTRO DE TECNOOGIA DEPARTAENTO DE ENGENHARIA ECÂNICA VIBRAÇÕES DOS SISTEAS ECÂNICOS VIBRAÇÕES IVRES SE AORTECIENTO DE SISTEAS com G NOTAS DE AUAS Virgílio doça da Costa

Leia mais

Física Computacional 5

Física Computacional 5 Física Computacioal 5. Drivaas com irças iitas a. O cocito rivaa mos simpls qu o itgral b. Cálculo umérico a rivaa com irças iitas c. Um outro cocito Equação Dircial Oriária. Solução aalítica as EDO liars.

Leia mais

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0.

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0. 0 d º) Equação do tipo: f ) d Solução: d d d d f ) f ) d f ) d. Intgrando ambos os mmbros d d d d vm: d d f ) d C d [ f ) d C ]d [ f ) d C] d C d E: Rsolva a quação 6 7 0 d d d º) Equação do tipo f ) :

Leia mais

Definição clássica de probabilidade. Seja S finito e S, o número de elementos de S, por exemplo, quaisquer!,! 0 2 S. Então

Definição clássica de probabilidade. Seja S finito e S, o número de elementos de S, por exemplo, quaisquer!,! 0 2 S. Então Dfiição clássica probabili Dfiição Sja S fiito S o úmro lmtos S por xmplo S {a b c S 3 Supoha P({) P({ 0 )para quaisr 0 2 S Etão P({) /S Dmostração Como S é do tipo S { 2 o S sgu S { [ { 2 [ [ { portato

Leia mais

Proposta de Exame Final de Matemática A

Proposta de Exame Final de Matemática A Proposta d Eam Fial d Matmática. N DE ESCLRIDDE Duração da prova: 50 miutos. Tolrâcia: 30 miutos Data: Grupo I Na rsposta aos its dst grupo, slcio a opção corrta. Escrva, a olha d rspostas, o úmro do itm

Leia mais

CÁLCULO I 2º Semestre 2011/2012. Duração: 2 horas e 15 minutos

CÁLCULO I 2º Semestre 2011/2012. Duração: 2 horas e 15 minutos NOVA SCHOOL OF BSINESS AND ECONOMICS CÁLCLO I º Smstr / CORRECÇÃO DO EXAME ª ÉPOCA Maio Duração: horas miutos Não é prmitido o uso d aluladoras. Não pod dsagraar as olhas do uiado. Rspoda d orma justiiada

Leia mais

MOQ-12: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS. Distribuições Notáveis

MOQ-12: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS. Distribuições Notáveis MOQ-: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS Distribuiçõs Discrtas: Distribuição Uiform Discrta: Distribuiçõs Notávis Uma va discrta dfiida os potos,,..., tm distribuição uiform discrta s assum cada um

Leia mais

Modelos de regressão linear simples: Capítulo 9 - Introdução à regressão linear simples. + β Modelos de regressão. Y = β 0.

Modelos de regressão linear simples: Capítulo 9 - Introdução à regressão linear simples. + β Modelos de regressão. Y = β 0. Aa Pirs, IST, Dzmbro d 000 Aa Pirs, IST, Dzmbro d 000 Capítulo 9 - Itrodução à rgrssão liar simpls 9. Modlos d rgrssão Modlos d rgrssão liar simpls: ou E( Y ) β 0 Y β 0 + ε São modlos utilizados para comprdr

Leia mais

PRINCIPAIS DISTRIBUIÇÕES DISCRETAS.

PRINCIPAIS DISTRIBUIÇÕES DISCRETAS. PRINCIPAIS DISTRIBUIÇÕES DISCRETAS 1 Uifor Discrta: ocorr quado cada u dos valors possävis d ua va discrta t sa probabilidad 1 P ),,, ), i = 1,, i 1, i i i E ) 1 i Var ) 1 E ) fda: F ) P ) P i ), i od

Leia mais

Regra dos Trapézios Composta i :

Regra dos Trapézios Composta i : FP_Ex1: Calcul um valor aproximado do itgral I = / 0 x si( x) dx com um rro d trucatura, ão suprior, m valor absoluto a 0.01 usado: a) a rgra dos Trapézios a rgra d Simpso (composta) Rgra dos Trapézios

Leia mais

Geometria Analítica - Aula

Geometria Analítica - Aula Gomtria Analítica - Aula 0 60 K. Frnsl - J. Dlgado Aula 1 1. Rotação dos ixos coordnados Sja OXY um sistma d ixos ortogonais no plano sja O X Y o sistma d ixos obtido girando os ixos OX OY d um ângulo

Leia mais

Tópicos Especiais em Identificação Estrutural. Representação de sistemas mecânicos dinâmicos

Tópicos Especiais em Identificação Estrutural. Representação de sistemas mecânicos dinâmicos Tópicos Espciais m Idiicação Esruural Rprsação d sismas mcâicos diâmicos O problma diro... rada Sisma rsposa rsposa y() rada x() Problma diro: rada x() Cohcimo + rsposa do sisma y() O problma ivrso...

Leia mais

AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha de Trabalho nº 7 - Funções - 12º ano Exames 2015 a 2017 k 3 log 3? 9

AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha de Trabalho nº 7 - Funções - 12º ano Exames 2015 a 2017 k 3 log 3? 9 AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha d Trabalho º 7 - Fuçõs - º ao Eams 05 a 07 k 3 log 3? 9. Qual das sguits prssõs é, para qualqur úmro ral k, igual a k k ( A) ( B) k ( C) ( D) k 9 (05-ª) 9. Cosidr

Leia mais

Recursos Naturais Renováveis

Recursos Naturais Renováveis Uivrsidad Fdral do ABC UFABC Prof. João M. L. Morira Rcursos Naturais Rovávis Os rcursos aturais rovávis são aquls qu são rostos ao logo do tmo la aturza ou la ação do homm. Esss rcursos odm sr divididos

Leia mais

A reflexão e a transmissão por uma camada fina

A reflexão e a transmissão por uma camada fina A rflxão a missão por uma camada fina Nsta postagm vamos invstigar o qu acontc com as ondas planas qu incidm sobr uma camada dilétrica fina Há portanto três mios dilétricos sparados por duas intrfacs planas

Leia mais

Análise Matemática IV

Análise Matemática IV Anális Matmática IV Problmas para as Aulas Práticas Smana 7 1. Dtrmin a solução da quação difrncial d y d t = t2 + 3y 2 2ty, t > 0 qu vrifica a condição inicial y(1) = 1 indiqu o intrvalo máximo d dfinição

Leia mais

Modelos de regressão linear simples: Capítulo 9 - Introdução à regressão linear simples. + β Modelos de regressão. Y = β 0.

Modelos de regressão linear simples: Capítulo 9 - Introdução à regressão linear simples. + β Modelos de regressão. Y = β 0. Aa Pirs, IST, Dzmbro d Capítulo 9 - Itrodução à rgrssão liar simpls 9. Modlos d rgrssão Aa Pirs, IST, Dzmbro d Modlos d rgrssão liar simpls: ou E( Y ) β Y β + ε São modlos utilizados para comprdr a rlação

Leia mais

( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) = 2 + cos e x 2. Questões-tipo exame. Pág O gráfico de g não tem assíntota em +.

( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) = 2 + cos e x 2. Questões-tipo exame. Pág O gráfico de g não tem assíntota em +. A fução f é cotíua o itrvalo ], [ or sr Pág 9 dfiida la comosta d duas fuçõs cotíuas (fução oliomial fução ocial o itrvalo ], [ or sr dfiida la soma d duas fuçõs cotíuas (fução logarítmica fuçõs oliomiais

Leia mais

Análise e Processamento de BioSinais. Mestrado Integrado Engenharia Biomédica. Faculdade de Ciências e Tecnologia. Universidade de Coimbra

Análise e Processamento de BioSinais. Mestrado Integrado Engenharia Biomédica. Faculdade de Ciências e Tecnologia. Universidade de Coimbra Aális Procssamto d BioSiais Mstrado Itgrado Egharia Biomédica Faculdad d Ciêcias cologia Slid Aális Procssamto d BioSiais MIEB Adaptado dos slids S&S d Jorg Dias ópicos: o Aális d Fourir para Siais Sistmas

Leia mais

Dinâmica Estocástica

Dinâmica Estocástica Diâmica Estocástica Aula matriz Estocástica Balaceameto Detalhado Ifusp setembro de 6 Bibliografia: Capítulo 6 Diâmica estocástica e Irreversibilidade Tâia Tomé e Mário J. de Oliveira Edusp 4. Markov Adrei

Leia mais

Anexo III Temperatura equivalente de ruído, Figura de ruído e Fator de mérito para estações de recepção (G/T)

Anexo III Temperatura equivalente de ruído, Figura de ruído e Fator de mérito para estações de recepção (G/T) Axo III mpratura quivalt d ruído, igura d ruído ator d mérito para staçõs d rcpção (/) III.. mpratura Equivalt d Ruído A tmpratura quivalt d ruído d um compot pod sr dfiida como sdo o valor d tmpratura

Leia mais

Copyright LTG 2013 LTG/PTR/EPUSP

Copyright LTG 2013 LTG/PTR/EPUSP 1 Na Godésia a Topografia s ralizam mdiçõs d âgulos, distâcias, tc. Mdir uma gradza sigifica obtr um úmro associado a uma uidad qu rprst o valor dssa gradza. Tudo o qu s pod mdir (obsrvar) é domiado obsrvávl.

Leia mais

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS M MIOS CONDUTORS A quação d onda dduida no capítulo antrior é para mios sm prdas ( = ). Vamos agora ncontrar a quação da onda m um mio qu aprsnta condutividad não

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II MÁXIMOS E MÍNIMOS DE FUNÇÕES DE DUAS VARIÁVEIS. Figura 1: Pontos de máximo e mínimo

CÁLCULO DIFERENCIAL E INTEGRAL II MÁXIMOS E MÍNIMOS DE FUNÇÕES DE DUAS VARIÁVEIS. Figura 1: Pontos de máximo e mínimo Introdução S CÁLCULO DIFERENCIAL E INTEGRAL II MÁXIMOS E MÍNIMOS DE FUNÇÕES DE DUAS VARIÁVEIS é uma unção d duas variávis ntão dizmos qu 1 a b é no máimo igual a a Gomtricamnt o gráico d tm um máimo quando:

Leia mais

CADERNO 1. (É permitido o uso de calculadora gráfica) N.º de possibilidades de representar os 4 algarismos ímpares e a sequência de pares: 5!

CADERNO 1. (É permitido o uso de calculadora gráfica) N.º de possibilidades de representar os 4 algarismos ímpares e a sequência de pares: 5! Novo Espaço Matmática A º ao Proposta d Rsolução [jairo - 08] Algarismos ímpars:,,, 7, 9 Algarismos pars:, 4, 6, 8 CADERNO (É prmitido o uso d calculadora gráfica) Nº d possibilidads para o algarismo das

Leia mais

EXAME NACIONAL DE SELEÇÃO 2016

EXAME NACIONAL DE SELEÇÃO 2016 EXAME NACIONAL DE SELEÇÃO 016 PROA DE MATEMÁTICA o Dia: 4/09/015 QUINTA-EIRA HORÁRIO: 8h00m às 10h15m (horário d Brasília) EXAME NACIONAL DE SELEÇÃO 016 PROA DE MATEMÁTICA º Dia: 4/09 - QUINTA-EIRA (Mahã)

Leia mais

ANÁLISE MATEMÁTICA IV A =

ANÁLISE MATEMÁTICA IV A = Instituto uprior Técnico Dpartamnto d Matmática cção d Álgbra Anális ANÁLIE MATEMÁTICA IV FICHA 5 ITEMA DE EQUAÇÕE LINEARE E EQUAÇÕE DE ORDEM UPERIOR À PRIMEIRA () Considr a matriz A 3 3 (a) Quais são

Leia mais

( C) lim g( x) 2x 4 0 ( D) lim g( x) 2x

( C) lim g( x) 2x 4 0 ( D) lim g( x) 2x AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha d Trabalho º6 - Fuçõs - º ao Eams 0 a 04. Na figura stá rprstada um rfrcial o.. Oy, part do gráfico d uma fução g, d domíio 3,. A rta d quação y 4 é assítota do

Leia mais

Variáveis Aleatórias

Variáveis Aleatórias Variávis Alatórias Dfiição: Uma variávl alatória v.a. é uma fução qu associa lmtos do spaço amostral a valors uméricos, ou sja, X : I, m qu I R. Esqumaticamt: As variávis alatórias são classificadas m

Leia mais

PTC-2433 TEORIA DAS COMUNICAÇÕES II ADENDO SOBRE CÓDIGOS CORRETORES / DETECTORES DE ERRO

PTC-2433 TEORIA DAS COMUNICAÇÕES II ADENDO SOBRE CÓDIGOS CORRETORES / DETECTORES DE ERRO TC-433 TEORIA DAS COMUNICAÇÕES II ADENDO SOBRE CÓDIGOS CORRETORES / DETECTORES DE ERRO Rcordado a visualização gométrica pod-s aida scrvr qu: ara dtctar até l rros por palavra d mi l Corrigir até t rros

Leia mais

Aula Expressão do produto misto em coordenadas

Aula Expressão do produto misto em coordenadas Aula 15 Nsta aula vamos xprssar o produto misto m trmos d coordnadas, analisar as propridads dcorrnts dssa xprssão fazr algumas aplicaçõs intrssants dos produtos vtorial misto. 1. Exprssão do produto misto

Leia mais

Enunciados equivalentes

Enunciados equivalentes Lógica para Ciência da Computação I Lógica Matmática Txto 6 Enunciados quivalnts Sumário 1 Equivalência d nunciados 2 1.1 Obsrvaçõs................................ 5 1.2 Exrcícios rsolvidos...........................

Leia mais

TÓPICOS. EDO de variáveis separadas. EDO de variáveis separáveis. EDO homogénea. 2. Equações Diferenciais de 1ª Ordem.

TÓPICOS. EDO de variáveis separadas. EDO de variáveis separáveis. EDO homogénea. 2. Equações Diferenciais de 1ª Ordem. ot bm a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliograia principal da cadira Cama-s à atnção para a importância do trabalo pssoal a ralizar plo aluno rsolvndo os problmas

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

TÓPICOS DE RESOLUÇÃO DO EXAME DE CÁLCULO I

TÓPICOS DE RESOLUÇÃO DO EXAME DE CÁLCULO I Faculdad d Ecoomia Uivrsidad Nova d Lisboa TÓPICOS DE RESOLUÇÃO DO EXAME DE CÁLCULO I Ao Lctivo 7-8 - º Smstr Eam Fial d 1ª Época m d Juho d 8 Duração: horas 3 miutos É proibido usar máquias d calcular

Leia mais

Cálculo Diferencial e Integral II

Cálculo Diferencial e Integral II Cálculo Difrncial Intgral II Lista 7 - Rsumo a Toria A Rgra a Caia No stuo funçõs uma variávl usamos a Rgra a Caia para calcular a rivaa uma função composta Nst caso sno w f uma função ifrnciávl sno g

Leia mais

r = (x 2 + y 2 ) 1 2 θ = arctan y x

r = (x 2 + y 2 ) 1 2 θ = arctan y x Sção 0: Equação d Laplac m coordnadas polars Laplaciano m coordnadas polars. Sja u = ux, y uma função d duas variávis. Dpndndo da rgião m qu a função stja dfinida, pod sr mais fácil trabalhar com coordnadas

Leia mais

Campo Gravítico da Terra

Campo Gravítico da Terra 3.9 Camada d G Toma d Stoks Toma d Stoks: sdo S uma supf íci quipotcial d um campo Nwtoiao, cotdo o su itio todas as massas atats, s s modifica a distibuição das massas, sm alta a sua totalidad, po foma

Leia mais

COMPARAÇÃO DIDÁTICA ENTRE AS FORMULAÇÕS NO TEMPO E NA FREQUÊNCIA DA ANÁLISE DINÂMICA DE ESTRUTURAS

COMPARAÇÃO DIDÁTICA ENTRE AS FORMULAÇÕS NO TEMPO E NA FREQUÊNCIA DA ANÁLISE DINÂMICA DE ESTRUTURAS COMPARAÇÃO DIDÁICA ENRE AS FORMULAÇÕS NO EMPO E NA FREQUÊNCIA DA ANÁLISE DINÂMICA DE ESRUURAS Rodrigo Silvira Camargo - rodrigo_camargo@yahoo.com Uivrsidad Fdral do Rio d Jairo, COPPE Ctro d cologia, Bloco

Leia mais

Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I. Ano Lectivo º Semestre

Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I. Ano Lectivo º Semestre aculdad d Ecoomia Uivrsidad Nova d Lisboa EXAME DE CÁLCULO I Ao Lctivo 009-0 - º Smstr Eam ial d ª Época m d Jairo d 00 Duração: horas 0 miutos É proibido usar máquias d calcular ou tlmóvis Não tha o su

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR A =

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR A = Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 4 EQUAÇÕES DIFERENCIAIS LINEARES Formas canónicas d Jordan () Para cada uma das matrizs A

Leia mais

CIRCUITOS EM REGIME SINUSOIDAL

CIRCUITOS EM REGIME SINUSOIDAL Tmática Circuitos léctricos Capítulo gim Sinusoidal CCUTOS G SNUSODAL NTODUÇÃO Nst capítulo, analisa-s o rgim prmannt m circuitos alimntados m corrnt altrnada. Dduzm-s as quaçõs caractrísticas dos lmntos

Leia mais

Soluções de Equações em uma Variável

Soluções de Equações em uma Variável EQE-358 MÉTODOS NUMÉRICOS EM ENGENHARIA QUÍMICA PROFS. EVARISTO E ARGIMIRO Capítulo 4 Soluçõs d Equaçõs m uma Variávl Cosidrado o problma d um rator cotíuo d taqu agitado (CSTR) ãoisotérmico, com propridads

Leia mais

Funções Hiperbólicas Inversas. Funções Hiperbólicas Inversas

Funções Hiperbólicas Inversas. Funções Hiperbólicas Inversas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. Introdução snh D

Leia mais

Revisão de Estatística. Adaptada das aulas da Profa. Jussara M. Almeida - UFMG

Revisão de Estatística. Adaptada das aulas da Profa. Jussara M. Almeida - UFMG Rvisão d Estatística Adaptada das aulas da Profa. Jussara M. Almida - UFMG Por quê? Modlagm probabilística Avaliação dos rsultados Qual a probabilidad do tmpo d rsidêcia o disco sr ifrior a.5 sgudo? Dpd

Leia mais

VII- PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADE.

VII- PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADE. VII- PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADE. 7.. DISTRIBUIÇÕES DISCRETAS;. UNIFORME DISCRETA: Uma v.a. X tm distribuição uiform discrta quado sua fução d probabilidad for dada por:,,..., N p() N I N

Leia mais

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9 AULA 9 EXPRESSÕES LÓGICAS 9.1 Lógica proposicional Lógica é o studo do raciocínio 1. Em particular, utilizamos lógica quando dsjamos dtrminar s um dado raciocínio stá corrto. Nsta disciplina, introduzimos

Leia mais

Trabalho 3. Gustavo Mello Reis Página 1

Trabalho 3. Gustavo Mello Reis Página 1 Trabalho 3 Gustavo Mllo Ris Págia 1 1. Histograma a) Uma mprsa qu fabrica doc d lit dsja studar a distribuição da quatidad d doc lit por lata (), com o objtivo d visualizar a variação dsta. Para isto foi

Leia mais

FORMULAÇÕES DO MÉTODO DOS ELEMENTOS DE CONTORNO PARA ANÁLISE DE PLACAS VISCOELÁSTICAS

FORMULAÇÕES DO MÉTODO DOS ELEMENTOS DE CONTORNO PARA ANÁLISE DE PLACAS VISCOELÁSTICAS ISS 1809-5860 FORMULAÇÕES O MÉTOO OS ELEMETOS E COTORO PARA AÁLISE E PLACAS VISCOELÁSTICAS Rodrigo Couto da Costa 1 & Wilso Srgio Vturii 2 Rsumo st trabalho são propostas formulaçõs do Método dos Elmtos

Leia mais

Física Tópicos Modernos Difícil [10 Questões]

Física Tópicos Modernos Difícil [10 Questões] Física Tópicos Modros Difícil [1 Qustõs] 1 - (ITA SP) Um átomo d idrogêio tm ívis d rgia discrtos dados pla quação E = 1,6 m qu { Z / 1}. Sabdo qu um fóto d rgia 1,19 V xcitou o átomo do stado fudamtal

Leia mais

Problemas Numéricos: 1) Desde que a taxa natural de desemprego é 0.06, π = π e 2 (u 0.06), então u 0.06 = 0.5(π e π), ou u =

Problemas Numéricos: 1) Desde que a taxa natural de desemprego é 0.06, π = π e 2 (u 0.06), então u 0.06 = 0.5(π e π), ou u = Capitulo 12 (ABD) Prguntas para rvisão: 5) Os formuladors d políticas dsjam mantr a inflação baixa porqu a inflação impõ psados custos sobr a conomia. Os custos da inflação antcipado inclum custos d mnu,

Leia mais

Principais Modelos Contínuos

Principais Modelos Contínuos rincipais Modlos Contínuos . Modlo uniform Uma v.a. contínua tm distribuição uniform com parâmtros < s sua função dnsidad d probabilidad é dada por c c f. 0. Var E F 0 0 A função d distribuição acumulada

Leia mais

1. O domínio de uma sucessão é o conjunto dos números naturais. A única representação gráfica que obedece a esta condição é a da opção D.

1. O domínio de uma sucessão é o conjunto dos números naturais. A única representação gráfica que obedece a esta condição é a da opção D. Prarar o Exam 05/06 Matmática A Págia 69. O domíio d uma sucssão é o cojuto dos úmros aturais. A úica rrstação gráfica qu obdc a sta codição é a da oção D. Nota qu DA, D B 0 DC. Rsosta: D. Numa rogrssão

Leia mais

CAPÍTULO 12 REGRA DA CADEIA

CAPÍTULO 12 REGRA DA CADEIA CAPÍTULO 12 REGRA DA CADEIA 121 Introdução Em aulas passadas, aprndmos a rgra da cadia para o caso particular m qu s faz a composição ntr uma função scalar d várias variávis f uma função vtorial d uma

Leia mais

Módulo 09. Espaço de Sinais. [Poole 431 a 518, 650 a 660]

Módulo 09. Espaço de Sinais. [Poole 431 a 518, 650 a 660] Módulo 9 Not bm, a litura dsts apotamtos ão dispsa d modo algum a litura atta da bibliografia pricipal da cadira Chama-s à atção para a importâcia do trabalho pssoal a raliar plo aluo rsolvdo os problmas

Leia mais

Capítulo 8. (d) 1) 0,5 2) 1,0 3) 0,5 4) 0 5) 2/3 6) 1/2. Problema 02. (a) (b)

Capítulo 8. (d) 1) 0,5 2) 1,0 3) 0,5 4) 0 5) 2/3 6) 1/2. Problema 02. (a) (b) Capítulo Problma. Ω{C C C C C5 C R R R R R5 R} Od: Ccara Rcoroa 5 P 5 5 P 7 7 7 7 7 7 c Sm pos P j P P j j d 5 5 5 / / Problma. P 5 P 5 9 5 7 9 c Não pos P P P 9 d P / P / 5 P 5 P 5 Problma. Prchdo os

Leia mais

1. Problema Os dados apresentados abaixo relacionam x, o nível umidade de uma mistura de um determinado produto, a Y, a densidade do produto acabado.

1. Problema Os dados apresentados abaixo relacionam x, o nível umidade de uma mistura de um determinado produto, a Y, a densidade do produto acabado. 1. Problma Os dados aprsntados abaixo rlacionam x, o nívl umidad d uma mistura d um dtrminado produto, a Y, a dnsidad do produto acabado. x 7 9 10 13 14 15 16 19 Y 9.07 9.94 10.75 12.45 12.97 13.34 14.25

Leia mais

Resoluções de Exercícios

Resoluções de Exercícios Rsoluçõs d Ercícios MATEMÁTICA II Capítulo 0 Fução Poliomial do o Grau Rsolução d Problmas; Composição d Fuçõs; Fução Ivrsa Iquaçõs BLOCO 0 BLOCO 0 Cohcimtos Algébricos 0 A Nos miutos iiciais, trmos a

Leia mais

Não serão feitos esclarecimentos individuais sobre questões durante a prova. Não se esqueça que tudo é para justificar.

Não serão feitos esclarecimentos individuais sobre questões durante a prova. Não se esqueça que tudo é para justificar. Eam m 7 d Jairo d 007 Cálculo ATENÇÃO: FOLHAS DE EXAE NÃO IDENTIFICADAS NÃO SERÃO COTADAS Cálculo / Eam fial ª Época 7 Jairo d 007 Duração: horas 0 miutos Rsolva os grupos do am m folhas sparadas O uso

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adriano Pdrira Cattai apcattai@ahoocombr Univrsidad Fdral da Bahia UFBA, MAT A01, 006 3 Suprfíci Cilíndrica 31 Introdução Dfinição d Suprfíci Podmos obtr suprfícis não somnt por mio d uma quação do tipo

Leia mais

Novo Espaço Matemática A 12.º ano Proposta de Teste [janeiro ]

Novo Espaço Matemática A 12.º ano Proposta de Teste [janeiro ] Novo Espaço Matmática A.º ao Proposta d Tst [jairo - 08] Nom: Ao / Turma: N.º: Data: / / Não é prmitido o uso d corrtor. Dvs riscar aquilo qu prtds qu ão sja classificado. A prova iclui um formulário.

Leia mais

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo Intgração Múltipla Prof. M.Sc. Armando Paulo da Silva UTFP Campus Cornélio Procópio )INTEGAIS DUPLAS: ESUMO Emplo Emplo Calcul 6 Calcul 6 dd dd O fato das intgrais rsolvidas nos mplos srm iguais Não é

Leia mais

Métodos Computacionais em Engenharia DCA0304 Capítulo 4

Métodos Computacionais em Engenharia DCA0304 Capítulo 4 Métodos Computciois m Eghri DCA34 Cpítulo 4 4 Solução d Equçõs Não-lirs 4 Técic d isolmto d rízs ris m poliômios Cosidrdo um poliômio d orm: P L Dsj-s cotrr os limits ds rízs ris dst poliômio Chmrmos d

Leia mais