MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 07. Prof. Dr. Marco Antonio Leonel Caetano

Tamanho: px
Começar a partir da página:

Download "MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 07. Prof. Dr. Marco Antonio Leonel Caetano"

Transcrição

1 MESTRADO EM MACROECONOMIA FINANÇAS Disiplina d Compuação Aula 7 Prof. Dr. Maro Anonio Lonl Caano

2 Guia d Esudo para Aula 7 Vors Linarmn Indpndns - Vrifiação d vors LI - Cálulo do Wronsiano Equaçõs Difrniais - Inrodução a EDO d ª. Ordm. - Inrodução a EDO d ª. Ordm. - Uilização do Wronsiano para drminação d soluçõs. - Uso do ODE45 do Malab. - Uso d funions rnas no Malab. Eríios -EDO - Funions Objivos da Aula - Enndr vors LI. - Drminar solução d EDO om o programa ODE45. - Aprndr a usar funions rnas.

3 Vors Linarmn Dpndns (LD) V(,) V(4,) O vor v é LD d v pois pod sr obido d v por uma simpls mulipliação d onsan r v r v No aso 4 3

4 Dfinição (LD) Dois vors são dios LD s is uma ombinação d valors difrns dos valors nulos para os ofiins al qu Emplo r r v v No mplo anrior são soluçõs pois: 4 Mas - ambém são soluçõs pois: 4 Logo v v são Linarmn Dpndns ( LD) 4

5 Vors Linarmn Indpndns (LI).8 Não is omo obr v do vor v somn om mulipliação d salar V(,) Para a quação, r r v v.8.6 V(,) A únia solução é.4. (vrifiação)

6 6 Vrifiação d vor LI Isolando da primira quação, Subsiuindo na sgunda quação, E não

7 7 Uilização d Drminan DEFINIÇÃO: Dois vors são dios Linarmn Indpndns s somn s O drminan dos ofiins do sisma linar for DIFERENTE d zro. Dados srão dios LI s somn s onsidrando o sisma O drminan sguin NÃO for nulo. v v r r v v r r

8 Emplo Sndo r r v v Difrn d zro. Logo v v são LI 8

9 9 Eríio Us o malab para vrifiar s os rês vors são LI ou LD v v v r r r O drminan riado a parir dos vors é: Logo, os vors são LD

10 Apliaçõs d LI LD m Equaçõs Difrniais Ordinárias

11 Equaçõs Difrniais Ordinárias ( EDO ) Emplo d() d Solução d () d d d supondo ( ) () d d ()

12 Rsulado ()

13 Ouro Emplo d() d () Solução d d d d supondo ( ) () d ln d ln( ) ln() () usando propridad log Condição iniial 3

14 Rsulado () () 4

15 Rsolução Numéria - Méodo d Eulr f (, h ) Passo d Ingração Funion 5

16 6 Rsolução Numéria Rung-Kua d Sgunda Ordm ( ) ), ( ), ( h h f f h

17 7 Rsolução Numéria - Rung-Kua d Quara Ordm ( ) ) h h, f ( ) h, h f ( ) h, h f ( ), f ( 6 h

18 No Malab... Função od45 Erro rlaivo Erro absoluo Rung-Kua 4a./5a. Ordm, passo h variávl Funion ond sá o modlo 8

19 Programa Prinipal - Emplo d() d () Tmpo iniial Tmpo final Condição iniial () 9

20 Criando a funion do modlo Msmo nom da funion do programa prinipal

21 Rsulado

22 d() d Emplo () ()

23 Rsulado 3

24 Modlo Daimno Eponnial d() () d () 4

25 Rsulado 5

26 Modlo d Crsimno Limiado d() d r( ()) () Emplo: r. ; {vloidad d rsimno}.5; {faor limian} final 5; {mpo final d ingração} 6

27 O Programa 7

28 Rsulado 8

29 A vloidad d rsimno do modlo r..5 r.5 r. r. 9

30 Modlo d Crsimno Logísiio d() d r()( () ) K ().5 Emplo: r. ; {vloidad d rsimno} K 3; {faor limian} final 6; {mpo final d ingração} 3

31 O Programa 3

32 Rsulado 3

33 Equação Difrnial d Sgunda Ordm Sja a quação difrnial ( ) ( ) Como s nonra a solução? Admi-s qu a solução srá da forma: ( ) p Essa solução dv rspiar a quação difrnial aima, ou sja, ( ( p ( p p p ) ) p ) p p p p Como ponnial nuna é zro, não: p ± 33

34 Quais as soluçõs? Quando p êm-s ( ) Quando p- êm-s ( ) Pod-s r uma solução gral? 34

35 Torma: S as soluçõs d EDO são linarmn Indpndns (LI), não a solução gral srá: ( ) ( ) ( ) Como sabr s as soluçõs obidas são LI? Enonra-s o drminan WRONSKIANO ( ) ( ( ) ( ) ) S l for DIFERENTE d zro as soluçõs são LI êm-s uma solução gral. 35

36 Emplo: Supor para a EDO ( ) ( ) As sguins ondiçõs iniiais: () () final Eis uma solução gral? 36

37 Sndo as soluçõs O Wronsiano srá: ( ) ( ) () () () () Como o drminan é difrn d zro, as soluçõs são LI. Eis porano uma Solução gral. 37

38 38 Sndo a forma da solução gral: A drivada é: Para o mplo m qusão: Para as ondiçõs iniiais: Subsiuindo o valor d () () ou ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( () ()

39 Rsolvndo o sisma linar: C ½ C ½ Solução gral ( ) 39

40 4 No Malab Passo-: Dv-s fazr a sguin mudança d variávl : Passo-: Dv-s apliar a drivada para ambas quaçõs: Passo-3: Insrir o novo sisma d quaçõs na funion:

41 Tmpo final Duas ondiçõs iniiais 4

42 4 Problma EDO a. ordm SOLUÇÃO GERAL ().5 ().5 () SOLUÇÃO DA DERIVADA ()

43 Eríio: Supor para a EDO ( ) ( ) As sguins ondiçõs iniiais: () () final Eis uma solução gral? Qual a solução via malab? 43

44 44 Solução Solução pariular ) ( p p p p p Enão ) ( ) ( Wronsiano Eis solução gral pois as pariulars são LI. 3

45 45 Enonrando a solução gral 3 3 () () 3 3 ) ( SOLUÇÃO GERAL

46 46 No Malab Passo-: Dv-s fazr a sguin mudança d variávl : Passo-: Dv-s apliar a drivada para ambas quaçõs: Passo-3: Insrir o novo sisma d quaçõs na funion:

47 No Malab 5 Problma EDO a. ordm Y() X ().5.5 Y () X ()

log 2, qual o valor aproximado de 0, 70

log 2, qual o valor aproximado de 0, 70 UNIERSIDADE FEDERAL DE ITAJUBÁ GABARITO DE FUNDAMENTOS DA MATEMÁTICA PROA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR // CANDIDATO: CURSO PRETENDIDO: OBSERAÇÕES: Prova

Leia mais

enquanto que um exemplo de e.d.p. é uma equação do tipo potencial

enquanto que um exemplo de e.d.p. é uma equação do tipo potencial 6- EDO s: TEORIA E TRATAMENTO NUMÉRICO Inrodução Muios problmas imporans significaivos da ngnharia, das ciências físicas das ciências sociais, formulados m rmos mamáicos, igm a drminação d uma função qu

Leia mais

Efeito da pressão decrescente da atmosfera com o aumento da altitude

Efeito da pressão decrescente da atmosfera com o aumento da altitude Efio da prssão dcrscn da amosfra com o aumno da aliud S lançarmos um projéil com uma vlocidad inicial suficinmn ala l aingirá aliuds ond o ar é mais rarfio do qu próximo à suprfíci da Trra Logo a rsisência

Leia mais

7 Solução de um sistema linear

7 Solução de um sistema linear Toria d Conrol (sinops 7 Solução d um sisma linar J. A. M. Flipp d Souza Solução d um sisma linar Dfinição 1 G(,τ mariz cujos lmnos g ij (,τ são as rsposas na i ésima saída ao impulso aplicado na j ésima

Leia mais

Grupo I. 1) Calcule os integrais: (4.5) 2) Mostre que toda a equação do tipo yf( xydx ) xg( xydy ) 0

Grupo I. 1) Calcule os integrais: (4.5) 2) Mostre que toda a equação do tipo yf( xydx ) xg( xydy ) 0 Mamáica III / ºSmsr Grupo I ) Calcul os ingrais: a) b) D () ( ) dd sndo D d d d d (.) ) Mosr qu oda a quação do ipo f( d ) g( d ) s ransforma numa quação d variávis sparadas fazndo a subsiuição (.) ) A

Leia mais

7. Aplicação do Principio do Máximo

7. Aplicação do Principio do Máximo 7. Aplicação do Principio do Máximo Ns capiulo vamos implmnar um algorimo qu uiliz a oria do Principio do Máximo para drminar o conjuno dos sados aingívis. Com o rsulados obidos vamos nar fazr um parallo

Leia mais

TÓPICOS. ordem; grau; curvas integrais; condições iniciais e fronteira. 1. Equações Diferenciais. Conceitos Gerais.

TÓPICOS. ordem; grau; curvas integrais; condições iniciais e fronteira. 1. Equações Diferenciais. Conceitos Gerais. Not bm, a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliografia principal da cadira hama-s à atnção para a importância do trabalho pssoal a ralizar plo aluno rsolvndo os problmas

Leia mais

Funções reais de n variáveis reais

Funções reais de n variáveis reais Apoio às aulas MAT II 8--6 INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO DE LISBOA LICENCIATURA EM GESTÃO MATEMÁTICA II APOIO ÀS AULAS DE FUNÇÕES REAIS DE MAIS DE UMA VARIÁVEL REAL 5/6 Manul Marins

Leia mais

TÓPICOS. EDO de variáveis separadas. EDO de variáveis separáveis. EDO homogénea. 2. Equações Diferenciais de 1ª Ordem.

TÓPICOS. EDO de variáveis separadas. EDO de variáveis separáveis. EDO homogénea. 2. Equações Diferenciais de 1ª Ordem. ot bm a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliograia principal da cadira Cama-s à atnção para a importância do trabalo pssoal a ralizar plo aluno rsolvndo os problmas

Leia mais

EQUAÇÕES DIFERENCIAIS NOTAS DE AULA

EQUAÇÕES DIFERENCIAIS NOTAS DE AULA Minisério da Eduação Univrsidad Tnológia Fdral do Paraná Campus Curiiba Grênia d Ensino Psquisa Dparamno Aadêmio d Mamáia EQUAÇÕES DIFERENCIAIS NOTAS DE AULA Prof. a Paula Franis Bnvids Equaçõs Difrnias

Leia mais

Capítulo 2.1: Equações Lineares 1 a ordem; Método dos Fatores Integrantes

Capítulo 2.1: Equações Lineares 1 a ordem; Método dos Fatores Integrantes Capíulo.1: Equaçõs Linars 1 a ordm; Méodo dos Faors Ingrans Uma EDO d primira ordm m a forma gral d f, ond f é linar m. Exmplo: a Equaçõs com coficins consans; a b b Equaçõs com coficins variavis: d p

Leia mais

ANALISE DE CIRCUITOS DE 1 a E 2 a. J.R. Kaschny ORDENS

ANALISE DE CIRCUITOS DE 1 a E 2 a. J.R. Kaschny ORDENS ANAISE DE IRUITOS DE a E a J.R. Kaschny ORDENS Inrodução As caracrísicas nsão-corrn do capacior do induor inroduzm as quaçõs difrnciais na anális dos circuios léricos. As is d Kirchhoff as caracrísicas

Leia mais

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0.

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0. 0 d º) Equação do tipo: f ) d Solução: d d d d f ) f ) d f ) d. Intgrando ambos os mmbros d d d d vm: d d f ) d C d [ f ) d C ]d [ f ) d C] d C d E: Rsolva a quação 6 7 0 d d d º) Equação do tipo f ) :

Leia mais

EQUAÇÕES DIFERENCIAIS APLICADAS EM MODELOS DE COMPARTIMENTOS

EQUAÇÕES DIFERENCIAIS APLICADAS EM MODELOS DE COMPARTIMENTOS EQUAÇÕES DIFERENCIAIS APLICADAS EM MODELOS DE COMPARTIMENTOS Tiago Novllo d Brio Fcilcam, iago-novllo@homail.com ald dos Sanos Coquiro Fcilcam, vcoquiro@yahoo.com.br Rosangla Tixira Guds UTFPR, r_guds@homail.com

Leia mais

Memorize as integrais imediatas e veja como usar a técnica de substituição.

Memorize as integrais imediatas e veja como usar a técnica de substituição. Blém, d maio d 0 aro aluno, om início das intgrais spro qu vocês não troqum as rgras com as da drivada principalmnt d sno d sno. Isso tnho dito assim qu comçamos a studar drivada, lmbra? Mmoriz as intgrais

Leia mais

Seção 2.1: Equações lineares; Fator integrante

Seção 2.1: Equações lineares; Fator integrante Capíulo Sção.: Equaçõs linars; Faor ingran Uma EDO d primira ordm é da forma d d f ond f é linar na variávl. Alguns mplos ípicos ds ipo d quaçõs com coficins consans saõ a b ou quaçõs com coficins variávis:

Leia mais

Análise Matemática IV

Análise Matemática IV Anális Matmática IV Problmas para as Aulas Práticas Smana 7 1. Dtrmin a solução da quação difrncial d y d t = t2 + 3y 2 2ty, t > 0 qu vrifica a condição inicial y(1) = 1 indiqu o intrvalo máximo d dfinição

Leia mais

Secção 8. Equações diferenciais não lineares.

Secção 8. Equações diferenciais não lineares. Scção 8. Equaçõs difrnciais não linars. (Farlow: Sc. 8. a 8.3) Esa scção srá ddicada às EDOs não linars, as quais são gralmn d rsolução analíica difícil ou msmo impossívl. Não vamos porano nar rsolvê-las

Leia mais

1.1 O Círculo Trigonométrico

1.1 O Círculo Trigonométrico Elmntos d Cálculo I - 06/ - Drivada das Funçõs Trigonométricas Logarítmicas Prof Carlos Albrto S Soars Funçõs Trigonométricas. O Círculo Trigonométrico Considrmos no plano a cirncunfrência d quação + =,

Leia mais

Oscilações amortecidas

Oscilações amortecidas Oscilaçõs amortcidas Uso d variávl complxa para obtr a solução harmônica ral A grand vantagm d podr utilizar númros complxos para rsolvr a quação do oscilador harmônico stá associada com o fato d qu ssa

Leia mais

Equações Diferenciais Lineares

Equações Diferenciais Lineares Equaçõs Diriais Liars Rordmos a orma gral d uma quação dirial liar d ordm a d d d d a a a, I d d m qu as uçõs a i são idpdts da variávl. S, a quação diz-s liar homogéa. Caso otrário, diz-s liar omplta.

Leia mais

Função Exponencial: Conforme já vimos, o candidato natural à função exponencial complexa é dado pela função. f z x iy f z e cos y ie sen y.

Função Exponencial: Conforme já vimos, o candidato natural à função exponencial complexa é dado pela função. f z x iy f z e cos y ie sen y. Funçõs Elmntars Função Exponncial: Conform já vimos, o candidato natural à função xponncial complxa é dado pla função Uma v qu : : ( ) x x f x i f cos i sn x f, x. E uma gnraliação para sr útil dv prsrvar

Leia mais

Teoria de Controle (sinopse) 4 Função de matriz. J. A. M. Felippe de Souza

Teoria de Controle (sinopse) 4 Função de matriz. J. A. M. Felippe de Souza Toria d Conrol (sinops) 4 Função d mariz J. A. M. Flipp d Souza Função d mariz Primiramn vamos dfinir polinómio d mariz. Dfinição: Polinómio d mariz (quadrada) Sja p(λ)um polinómio m λd grau n (finio),

Leia mais

CÁLCULO I 2 o Semestre de 2012 Prof. Maurício Fabbri DIFERENCIABILIDADE

CÁLCULO I 2 o Semestre de 2012 Prof. Maurício Fabbri DIFERENCIABILIDADE CÁLCULO I o Smsr d Prof. Mauríio Fabbri a Séri d Eríios : Difrniabilidad; énias rgras d drivação; apliaçõs DIFERENCIABILIDADE f() é difrniávl no pono quando is ( ). f (o gráfio d f admi uma angn no pono

Leia mais

Análise no Domínio do Tempo de Sistemas Contínuos

Análise no Domínio do Tempo de Sistemas Contínuos ES 43 Sinais Sismas Anális no omínio do Tmpo d Sismas Conínuos Prof. Aluizio Fauso Ribiro Araújo po. of Sismas d Compuação Cnro d Informáia - UFPE Capíulo Sinais Sismas Eng. da Compuação Conúdo Inrodução

Leia mais

ESTUDO DAS EQUAÇÕES DIFERENCIAS

ESTUDO DAS EQUAÇÕES DIFERENCIAS ESTUDO DAS EQUAÇÕES DIFERENCIAS Aprsnação Sjam bm vinos ao aprniao as Equaçõs Difrniais Elas fam par a ra urriular os ursos Ennharia Civil Proução Mio Ambin Baharlao m Ciênias a Compuação No orrr su urso

Leia mais

EQUAÇÕES DIFERENCIAIS NOTAS DE AULA

EQUAÇÕES DIFERENCIAIS NOTAS DE AULA Minisério da Educação Univrsidad Tcnológica Fdral do Paraná Campus Curiiba Grência d Ensino Psquisa Dparamno Acadêmico d Mamáica EQUAÇÕES DIFERENCIAIS NOTAS DE AULA Prof. a Paula Francis Bnvids Equaçõs

Leia mais

Equações de Maxwell na Forma Fasorial

Equações de Maxwell na Forma Fasorial quaçõs d Mawll na Forma Fasorial N s o raa-s das quaçõs d Mawll na forma fasorial as rlaçõs consiuivas m mios mariais, as quais srão amplamn mprga- das ao longo o o, por raar-s d uma podrosa frramna mamáica

Leia mais

ANO LECTIVO 2001/2002

ANO LECTIVO 2001/2002 ANO LECTIVO 00/00 ª Fas, ª Chamada 00 Doss rapêuicas iguais d um cro anibióico são adminisradas, pla primira vz, a duas pssoa: a Ana o Carlos Admia qu, duran as doz primiras horas após a omada simulâna

Leia mais

Solução da equação de Poisson 1D com coordenada generalizada

Solução da equação de Poisson 1D com coordenada generalizada Solução da quação d Poisson 1D com coordnada gnralizada Guilhrm Brtoldo 8 d Agosto d 2012 1 Introdução Ao s rsolvr a quação d Poisson unidimnsional d 2 T = fx), 0 x 1, 1) dx2 sujita às condiçõs d contorno

Leia mais

O modelo Von Bertalanffy adaptado para suínos de corte

O modelo Von Bertalanffy adaptado para suínos de corte O modlo Von Bralanffy adapado para suínos d cor Lucas d Olivira nro Fdral d Educação Fdral Tcnológica EFET-MG.5-, Av. Amazonas 525 - Nova Suíça - Blo Horizon - MG - Brasil E-mail: lucasdolivira@gmail.com

Leia mais

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de p-p8 : Continuidad d funçõs rais d variávl ral. Lr atntamnt. Dominar os concitos. Fazr rcícios. Função contínua, prolongávl por continuidad, dscontínua. Classificação d dscontinuidads. Continuidad num

Leia mais

LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA

LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA Fadiga dos Matriais Mtálicos Prof. Carlos Baptista Cap. 4 PROPAGAÇÃO DE TRINCAS POR FADIGA LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA Qualqur solução do campo d tnsõs para um dado problma m lasticidad

Leia mais

( 1). β β. 4.2 Funções Densidades Con2nuas

( 1). β β. 4.2 Funções Densidades Con2nuas 4 Funçõs Dnsidads Connuas Dnsidad Eponncial A dnsidad ponncial é u:lizada comumn para sablcr sruuras d probabilidads m primnos cujos nos são siuados na ra ral [, ] Uma aplicação gral comum corrspond à

Leia mais

VARIÁVEIS ALEATÓRIAS DISCRETAS. Vamos agora analisar em detalhe algumas variáveis aleatórias discretas, nomeadamente:

VARIÁVEIS ALEATÓRIAS DISCRETAS. Vamos agora analisar em detalhe algumas variáveis aleatórias discretas, nomeadamente: 98 99 VARIÁVEIS ALEATÓRIAS DISCRETAS Vamos agora analisar m dalh algumas variávis alaórias discras, nomadamn: uniform Brnoulli binomial binomial ngaiva (ou d Pascal) gomérica hirgomérica oisson mulinomial

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR A =

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR A = Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 4 EQUAÇÕES DIFERENCIAIS LINEARES Formas canónicas d Jordan () Para cada uma das matrizs A

Leia mais

INSTITUTO POLITÉCNICO DE VISEU. f x = x em relação à partição do intervalo. em 4 subintervalos de igual amplitude e tal que o ponto ω

INSTITUTO POLITÉCNICO DE VISEU. f x = x em relação à partição do intervalo. em 4 subintervalos de igual amplitude e tal que o ponto ω INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA Dparamno Mamáica Disciplina Anális Mamáica Curso Engnharia Informáica º Smsr º Ficha nº : Cálculo ingral m IR Drmin a soma d Rimann da função

Leia mais

Equações de Maxwell. Métodos Eletromagnéticos. Equações de Maxwell. Equações de Maxwell

Equações de Maxwell. Métodos Eletromagnéticos. Equações de Maxwell. Equações de Maxwell Méodos Elromagnéicos agoso d 9 Fundamnos Equaçõs d Mawll no domínio do mpo da frqüência Onda plana édison K. ao Equaçõs d Mawll Todos os fnômnos lromagnéicos obdcm às quaçõs mpíricas d Mawll. b d h j ond

Leia mais

Capítulo 2.1: Equações Lineares; Método dos Fatores Integrantes

Capítulo 2.1: Equações Lineares; Método dos Fatores Integrantes Capíulo.: Equaçõs Linars; Méodo dos Faors Ingrans Uma EDO d primira ordm m a forma gral d d f ond f é linar m. Emplos inclum quaçõs com coficins consans a ou quaçõs com coficins variavis: d d b p g Capíulo.:

Leia mais

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M=

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M= Dtrminant. (Upg 4) Considrando as matrizs abaixo, sndo dt A = 5, dtb= dtc=, assinal o qu for orrto. x z x y x A =,B= 4 5 x+ z y C= ) x+ y+ z= 4 ) A C= 4) B C= 4 8) y = x 6) 6 4 A+ B= 6 5 T. (Uds 4) S A

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II MÁXIMOS E MÍNIMOS DE FUNÇÕES DE DUAS VARIÁVEIS. Figura 1: Pontos de máximo e mínimo

CÁLCULO DIFERENCIAL E INTEGRAL II MÁXIMOS E MÍNIMOS DE FUNÇÕES DE DUAS VARIÁVEIS. Figura 1: Pontos de máximo e mínimo Introdução S CÁLCULO DIFERENCIAL E INTEGRAL II MÁXIMOS E MÍNIMOS DE FUNÇÕES DE DUAS VARIÁVEIS é uma unção d duas variávis ntão dizmos qu 1 a b é no máimo igual a a Gomtricamnt o gráico d tm um máimo quando:

Leia mais

4 PROBLEMA ESTRUTURAL DINÂMICO NÃO-LINEAR

4 PROBLEMA ESTRUTURAL DINÂMICO NÃO-LINEAR 4 PROBLEMA ESTRTRAL DINÂMICO NÃO-LINEAR 4. INTRODÇÃO Ns capíulo, a dfinição das quaçõs difrnciais ordinárias d movimno, caracrizando o quilíbrio dinâmico do sisma sruural, bm como as xprssõs das marizs

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática Univrsidad Fdral do Rio d Janiro Instituto d Matmática Dpartamnto d Matmática Gabarito da Prova Final d Cálculo Difrncial Intgral II - 07-I (MAC 8 - IQN+IFN+Mto, 6/06/07 Qustão : (.5 pontos Rsolva { xy.

Leia mais

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O Prparar o Eam 05 Matmática A E X A M E 0.ª FASE, V E R S Ã O P R O P O S T A D E R E S O L U Ç Ã O. Tm-s qu P A P A P A GRUPO I ITENS DE ESCOLHA MÚLTIPLA 0, 0, 0,. Assim: P B A PB A 0,8 0,8 PB A 0,8 0,

Leia mais

Experimento 4 Indutores e circuitos RL com onda quadrada

Experimento 4 Indutores e circuitos RL com onda quadrada Exprimno 4 Induors circuios RL com onda quadrada 1. OBJETIVO O objivo dsa aula é sudar o comporamno d induors associados a rsisors m circuios alimnados com onda quadrada. 2. MATERIAL UTILIZADO osciloscópio;

Leia mais

3. TRANSFORMADA DE LAPLACE. Prof. JOSÉ RODRIGO DE OLIVEIRA

3. TRANSFORMADA DE LAPLACE. Prof. JOSÉ RODRIGO DE OLIVEIRA 3 TRNSFORMD DE LPLCE Prof JOSÉ RODRIGO DE OLIVEIR CONCEITOS BÁSICOS Númro complxo: ond α β prncm ao nº rai Módulo fa d um númro complxo Torma d Eulr: b a an a co co n n Prof Joé Rodrigo CONCEITOS BÁSICOS

Leia mais

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia UNIVERSIDADE DE SÃO PAULO Faculdad d Economia, Administração Contabilidad d Ribirão Prto Dpartamnto d Economia Nom: Númro: REC200 MICROECONOMIA II PRIMEIRA PROVA (20) () Para cada uma das funçõs d produção

Leia mais

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia UNIVERSIDADE DE SÃO PAULO Faculdad d Economia, Administração Contabilidad d Ribirão Prto Dpartamnto d Economia Nom: Númro: REC00 MICROECONOMIA II PRIMEIRA PROVA (0) () Para cada uma das funçõs d produção

Leia mais

Questão. Sinais periódicos e não periódicos. Situação limite. Transformada de Fourier de Sinais Contínuos

Questão. Sinais periódicos e não periódicos. Situação limite. Transformada de Fourier de Sinais Contínuos Qusão Srá possívl rprsnar sinais não priódicos como soma d xponnciais? ransformada d Fourir d Sinais Conínuos jorg s. marqus, jorg s. marqus, Sinais priódicos não priódicos Siuação limi Um sinal não priódico

Leia mais

CÁLCULO II MATEMÁTICA PARFOR LISTA DE EXERCICIOS PARA A PROVA SUBSTITUTIVA

CÁLCULO II MATEMÁTICA PARFOR LISTA DE EXERCICIOS PARA A PROVA SUBSTITUTIVA CÁLCULO II MATEMÁTICA PARFOR LISTA DE EXERCICIOS PARA A PROVA SUBSTITUTIVA ) Drmin as Primiivas das funçõs abaio: a) b) ( ) ) ( ) d) ln ) 6ln 6 f) (sn( ) os( )) os( ) sn( ) g) h) / arg ( ) i) j) k) (sn(

Leia mais

EQUAÇÕES DIFERENCIAIS

EQUAÇÕES DIFERENCIAIS EQUAÇÕES DIFERENCIAIS No capítulo qu irmos iniciar, studarmos as quaçõs difrnciais, sus aspctos, caractrísticas suas rspctivas soluçõs. Obviamnt sugrm a rsolução d algum tipo d quação nvolvndo drivadas.

Leia mais

PRODUTOS ESTRUTURADOS E INOVAÇÃO FINANCEIRA 2006/07 PÓS-GRADUAÇÃO EM MERCADOS E ACTIVOS FINANCEIROS EXAME (resolução) 06/06/07 Duração: 3 horas

PRODUTOS ESTRUTURADOS E INOVAÇÃO FINANCEIRA 2006/07 PÓS-GRADUAÇÃO EM MERCADOS E ACTIVOS FINANCEIROS EXAME (resolução) 06/06/07 Duração: 3 horas PRODUTO ETRUTURADO E IOAÇÃO FIACEIRA /7 PÓ-GRADUAÇÃO EM MERCADO E ACTIO FIACEIRO EXAME (rsolução) //7 Duração: 3 horas CAO (.53 valors) a) Comn a sguin afirmação: O sai hging uma posição ura sobr uma ass-or-nohing

Leia mais

+ = x + 3y = x 1. x + 2y z = Sistemas de equações Lineares

+ = x + 3y = x 1. x + 2y z = Sistemas de equações Lineares Sisms d quçõs Linrs Equção Linr Tod qução do ipo:.. n n Ond:,,., n são os ofiins;,,, n são s inógnis; é o rmo indpndn. E.: d - Equção Linr homogên qundo o rmo indpndn é nulo ( ) - Um qução linr não prsn

Leia mais

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo Intgração Múltipla Prof. M.Sc. Armando Paulo da Silva UTFP Campus Cornélio Procópio )INTEGAIS DUPLAS: ESUMO Emplo Emplo Calcul 6 Calcul 6 dd dd O fato das intgrais rsolvidas nos mplos srm iguais Não é

Leia mais

Cálculo de Autovalores, Autovetores e Autoespaços Seja o operador linear tal que. Por definição,, com e. Considere o operador identidade tal que.

Cálculo de Autovalores, Autovetores e Autoespaços Seja o operador linear tal que. Por definição,, com e. Considere o operador identidade tal que. AUTOVALORES E AUTOVETORES Dfiniçõs Sja um oprador linar Um vtor, é dito autovtor, vtor próprio ou vtor caractrístico do oprador T, s xistir tal qu O scalar é dnominado autovalor, valor próprio ou valor

Leia mais

Curso de linguagem matemática Professor Renato Tião. 3. Sendo. 4. Considere as seguintes matrizes:

Curso de linguagem matemática Professor Renato Tião. 3. Sendo. 4. Considere as seguintes matrizes: Curso d linguagm mamáica Profssor Rnao Tião 1 PUCRS. No projo Sobrmsa Musical, o Insiuo d Culura da PUCRS raliza aprsnaçõs smanais grauias para a comunidad univrsiária. O númro d músicos qu auaram na aprsnação

Leia mais

Derivadas parciais de ordem superior à primeira. Teorema de Schwarz.

Derivadas parciais de ordem superior à primeira. Teorema de Schwarz. Drivadas parciais d ordm suprior à primira. Torma d Scwarz. As drivadas das primiras drivadas são as sgundas drivadas assim sucssivamnt. Então, para uma unção d duas variávis podmos considrar, s istirm,

Leia mais

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O Prparar o Eam 05 Matmática A E X A M E 0.ª FASE, V E R S Ã O P R O P O S T A D E R E S O L U Ç Ã O. Tm-s qu P A P A P A GRUPO I ITENS DE ESCOLHA MÚLTIPLA 0, 0, 0,. Assim: P B A PB A 0,8 0,8 PB A 0,8 0,

Leia mais

FENOMENOS DE TRANSPORTE 2 o Semestre de 2013 Prof. Maurício Fabbri

FENOMENOS DE TRANSPORTE 2 o Semestre de 2013 Prof. Maurício Fabbri FENOMENOS DE TRANSPORTE o Smsr d 03 Prof. Maurício Fabbri 3ª SÉRIE DE EXERCÍCIOS Transpor d calor por convcção O ransin ponncial simpls Consrvação da nrgia 0-3. O coficin d ransfrência d calor Lia o marial

Leia mais

Dinâmica de Sistemas: Análise Matemática 1. Várias situações problemas do nosso cotidiano podem ser entendidas como sendo sistemas.

Dinâmica de Sistemas: Análise Matemática 1. Várias situações problemas do nosso cotidiano podem ser entendidas como sendo sistemas. inâmica d Sismas: nális amáica Capíulo Várias siuaçõs problmas do nosso coidiano podm sr nndidas como sndo sismas. nominamos d sisma um conjuno d lmnos inrligados com o objivo d dsmpnhar uma drminada função.

Leia mais

estados. Os estados são influenciados por seus próprios valores passados x

estados. Os estados são influenciados por seus próprios valores passados x 3 Filtro d Kalman Criado por Rudolph E. Kalman [BROWN97] m 1960, o filtro d Kalman (FK) foi dsnvolvido inicialmnt como uma solução rcursiva para filtragm linar d dados discrtos. Para isto, utiliza quaçõs

Leia mais

Curso de Engenharia Química Disciplina: Nota: Rubrica. Coordenador Professor: Rudson Alves Aluno:

Curso de Engenharia Química Disciplina: Nota: Rubrica. Coordenador Professor: Rudson Alves Aluno: Curso d Engnharia Química Disciplina: Nota: Rubrica Coordnador Profssor: Rudson Alvs Aluno: Turma: EQ2M Smstr: 2 sm/2016 Data: 06/10/2016 Avaliação: 1 a Prova Bimstral Valor: 10,0 p tos Qustão 1. (1,0pts)

Leia mais

a) (0.2 v) Justifique que a sucessão é uma progressão aritmética e indique o valor da razão.

a) (0.2 v) Justifique que a sucessão é uma progressão aritmética e indique o valor da razão. MatPrp / Matmática Prparatória () unidad tra curricular / E-Fólio B 8 dzmbro a janiro Critérios d corrção orintaçõs d rsposta Qustão ( val) Considr a sucssão d númros rais dfinida por a) ( v) Justifiqu

Leia mais

Capítulo 6 Decaimento Radioativo

Capítulo 6 Decaimento Radioativo Física das Radiaçõs Dosimria Capíulo 6 Dcaimno Radioaivo Dra. Luciana Tourinho Campos Programa acional d Formação m Radiorapia Inrodução Inrodução Consan d dcaimno Vida-média mia-vida Rlaçõs nr núclo pai

Leia mais

g) Faça o gráfico da média condicional de X dado Y = y versus y (a curva de regressão).

g) Faça o gráfico da média condicional de X dado Y = y versus y (a curva de regressão). ENCE CÁLCULO DE PROBABILIDADE II Smstr 9 Proa Monia Barros Lista d ríios SOLUÇÕES (PARTE) Problma Sjam X Y va ontínuas om dnsidad onjunta: (, ) +, a) Enontr a onstant qu a dsta prssão uma dnsidad b) Enontr

Leia mais

Probabilidade II Aula 6

Probabilidade II Aula 6 obabilidad II Aula 6 Março d 9 Mônica Barros, DSc Conúdo Mais sobr momnos condicionais Cálculo d valors srados aravés do condicionamno numa variávl rlação nr valors srados condicionais incondicionais fórmulas

Leia mais

Cálculo Diferencial e Integral II

Cálculo Diferencial e Integral II Cálculo Difrncial Intgral II Lista 7 - Rsumo a Toria A Rgra a Caia No stuo funçõs uma variávl usamos a Rgra a Caia para calcular a rivaa uma função composta Nst caso sno w f uma função ifrnciávl sno g

Leia mais

CÁLCULO I 2º Semestre 2011/2012. Duração: 1 hora e 30 minutos

CÁLCULO I 2º Semestre 2011/2012. Duração: 1 hora e 30 minutos NOVA SCHOOL OF BSINESS AND ECONOMICS CÁLCLO I º Smsr / TESTE INTERMÉDIO Tópi d rsolução Abril Duração: ora miuos Não é prmiido o uso d calculadoras. Não pod dsagraar as olas do uciado. Rspoda d orma jusiicada

Leia mais

ANÁLISE MATEMÁTICA IV A =

ANÁLISE MATEMÁTICA IV A = Instituto uprior Técnico Dpartamnto d Matmática cção d Álgbra Anális ANÁLIE MATEMÁTICA IV FICHA 5 ITEMA DE EQUAÇÕE LINEARE E EQUAÇÕE DE ORDEM UPERIOR À PRIMEIRA () Considr a matriz A 3 3 (a) Quais são

Leia mais

Material Teórico - Módulo Equações e Sistemas de Equações Fracionárias. Sistemas de Equações Fracionárias. Oitavo Ano

Material Teórico - Módulo Equações e Sistemas de Equações Fracionárias. Sistemas de Equações Fracionárias. Oitavo Ano Matrial Tórico - Módulo Equaçõs Sistmas d Equaçõs Fracionárias Sistmas d Equaçõs Fracionárias Oitavo Ano Autor: Prof Ulisss Lima Parnt Rvisor: Prof Antonio Caminha M Nto Sistmas d quaçõs fracionárias Nssa

Leia mais

4. Modelos matemáticos de crescimento

4. Modelos matemáticos de crescimento 2 Sumário (3ª aula) Exrcícios d consolidação (coninuação) 4. Modlos mamáicos d crscimno 4..Progrssão ariméica (variação absolua consan) 4.2.Progrssão goméricas (variação rlaiva consan) Exrcício 2) Compaibiliz

Leia mais

Capítulo 3 Transmissão de Sinais e Filtragem

Capítulo 3 Transmissão de Sinais e Filtragem Capíulo 3 Transmissão d Sinais Filragm 3.1 Rsposa d Sismas Linars Invarians no Tmpo No diagrama d blocos da Figura 3.1-1, é o sinal d nrada é o sinal d saída. Elmnos qu armaznam nrgia ouros ios inrnos

Leia mais

Matemática C Extensivo V. 7

Matemática C Extensivo V. 7 Matmática C Extnsivo V 7 Exrcícios 0) 0 0) D 0 Falsa B A 4 0 6 0 4 6 4 6 0 Vrdadira A + B 0 0 + 4 6 7 04 Vrdadira A B 0 0 4 6 6 4 08 Vrdadira dt ( A) dt (A) 9 ( ) 9 dt (B) 9 0 6 Vrdadira A A 0 0 0 0 0

Leia mais

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ PR UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ NOTAS DE AULA ELABORADA POR: Prof. M.Sc. Armando Paulo da Silva Prof. M.Sc. José Doniztti d Lima Equação comparação d igualdad Equação difrncial é uma quação

Leia mais

ModelosProbabilísticos paravariáveis Discretas. Modelo de Poisson

ModelosProbabilísticos paravariáveis Discretas. Modelo de Poisson ModlosProbabilísticos paravariávis Discrtas Modlo d Poisson Na aula passada 1 Dfinimos o concito d modlo probabilístico. 2 Aprndmos a utilizar o Modlo Binomial. 3 Vimos como o Modlo Binomial pod facilitar

Leia mais

1 O Pêndulo de Torção

1 O Pêndulo de Torção Figura 1.1: Diagrama squmático rprsntando um pêndulo d torção. 1 O Pêndulo d Torção Essa aula stá basada na obra d Halliday & Rsnick (1997). Considr o sistma físico rprsntado na Figura 1.1. Ess sistma

Leia mais

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro Razão Proporção Noção d Razão Suponha qu o profssor d Educação Física d su colégio tnha organizado um tornio d basqutbol com quatro quips formadas plos alunos da ª séri. Admita qu o su tim foi o vncdor

Leia mais

Universidade Federal do Rio de Janeiro COPPE Programa de Engenharia Química 2014/1 1

Universidade Federal do Rio de Janeiro COPPE Programa de Engenharia Química 2014/1 1 Univrsidd Fdrl do Rio d Jniro COPPE Progrm d Engnhri Químic COQ 79 ANÁLISE DE SISEMAS DA ENGENHARIA QUÍMICA AULA : Rprsnção m Espço d Esdos 4/ Rprsnção m Espço d Esdos Esdo: O sdo d um sism no mpo é o

Leia mais

5. Implementação da solução da equação de estados

5. Implementação da solução da equação de estados Sisma para vrifiação Lógia do Corolo Dzmbro 3 5. Implmação da solução da uação d sados No apiulo arior abordamos a aális dsvolvimo mamáio d Sismas d Corol por Espaço d Esados u os prmiiu hgar à Solução

Leia mais

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5 P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5 GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Agrupando num bloco a Ana, a Bruna, o Carlos, a Diana o Eduardo, o bloco os rstants st amigos prmutam

Leia mais

ONDAS ELETROMAGNÉTICAS

ONDAS ELETROMAGNÉTICAS ONDS LTROMGNÉTICS J.R. Kashn () Físia Gral primnal III Inrodução ao lromagnismo Inrodução m 864 Jams Clrk Mawll publiou o rabalho Toria Dinâmia do Campo lromagnéio (Dnamial Thor of h lromagni Filds) no

Leia mais

A trajetória sob a ação de uma força central inversamente proporcional ao quadrado da distância

A trajetória sob a ação de uma força central inversamente proporcional ao quadrado da distância A trajtória sob a ação d uma força cntral invrsamnt proporcional ao quadrado da distância A força gravitacional a força ltrostática são cntrais proporcionais ao invrso do quadrado da distância ao cntro

Leia mais

6ª LISTA DE EXERCÍCIOS - DINÂMICA

6ª LISTA DE EXERCÍCIOS - DINÂMICA UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE FÍSICA DEPARTAMENTO DE FÍSICA DA TERRA E DO MEIO AMBIENTE CURSO: FÍSICA GERAL E EXPERIMENTAL I E SEMESTRE: 2008.1 6ª LISTA DE EXERCÍCIOS - DINÂMICA Considr g=10

Leia mais

para Z t (lembre que = 1 B)

para Z t (lembre que = 1 B) Economria III ANE59 Lisa d Ercícios d Economria d Séris mporais Pro. Rogério Siva d Maos (Juho 6) Si: www.uj.br/rogrio_maos A. MODELOS ARIMA. Escrva por nso:. ARMA(,) para. ARMA(,) para X. ( B B ) Z (

Leia mais

yy + (y ) 2 = 0 Demonstração. Note que esta EDO não possui a variável independente e assim faremos a mudança de variável

yy + (y ) 2 = 0 Demonstração. Note que esta EDO não possui a variável independente e assim faremos a mudança de variável UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL 4-018.1 1A VERIFICAÇÃO DE APRENDIZAGEM - PARTE Nome Legível Turma RG CPF Resposas sem

Leia mais

CÁLCULO I 2º Semestre 2011/2012. Duração: 2 horas e 15 minutos

CÁLCULO I 2º Semestre 2011/2012. Duração: 2 horas e 15 minutos NOVA SCHOOL OF BSINESS AND ECONOMICS CÁLCLO I º Smstr / CORRECÇÃO DO EXAME ª ÉPOCA Maio Duração: horas miutos Não é prmitido o uso d aluladoras. Não pod dsagraar as olhas do uiado. Rspoda d orma justiiada

Leia mais

, ou seja, 8, e 0 são os valores de x tais que x e, Página 120

, ou seja, 8, e 0 são os valores de x tais que x e, Página 120 Prparar o Eam 0 07 Matmática A Página 0. Como g é uma função contínua stritamnt crscnt no su domínio. Logo, o su contradomínio é g, g, ou sja, 8,, porqu: 8 g 8 g 8 8. D : 0, f Rsposta: C Cálculo Auiliar:

Leia mais

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período Rsolução da Prova d Física Tórica Turma C2 d Engnharia Civil Príodo 2005. Problma : Qustõs Dados do problma: m = 500 kg ; v i = 4; 0 m=s ;! a = 5! g d = 2 m. Trabalho ralizado por uma força constant: W

Leia mais

RESPOSTA TEMPORAL. 1. Motivação. 2. Solução homogênea. Calcular a resposta temporal de sistemas dinâmicos LIT na forma SS.

RESPOSTA TEMPORAL. 1. Motivação. 2. Solução homogênea. Calcular a resposta temporal de sistemas dinâmicos LIT na forma SS. Euaro Lobo Luoa Cabral RESPOST TEMPORL. Moiação Calcular a rpoa mporal ima inâmico LT na forma SS. Rpoa mporal prmi analiar comporamno inâmico o ima no omínio o mpo. Dua oluçõ: Solução homogêna rpoa à

Leia mais

A Transformada de Laplace

A Transformada de Laplace UFPEL IFM/DME - Equaçõ Difrnciai Tranformada ingrai: A Tranformada d Laplac Uma da difrn manira d rolvr quaçõ difrnciai linar é conidrar a chamada ranformada ingrai. Uma ranformada ingral é uma rlação

Leia mais

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ PR UNIVERSIDADE TECNOÓGICA FEDERA DO PARANÁ OBSERVAÇÃO: O TEXTO É ADAPTADO DO IVRO: BRONSON. R. Modrna introdução à quaçõ difrniai. tradução d Alfrdo Alv d Faria, rvião ténia Robrto Romano. São Paulo:

Leia mais

UCP Gestão/Economia Matemática II 9 de Abril de 2010

UCP Gestão/Economia Matemática II 9 de Abril de 2010 UCP Gstão/Economia Matmática II 9 d Abril d 00 ª frquência h30m GRUPO (.5). Sja f ( x, ) x com x u uv, u sn t, v log( t ). Calcul df dt. z4 x (.0). Dtrmin a drivada da função f x no ponto P (,,) na dircção

Leia mais

Resolução do exame de Análise Matemática I (24/1/2003) Cursos: CA, GE, GEI, IG. 1ª Chamada

Resolução do exame de Análise Matemática I (24/1/2003) Cursos: CA, GE, GEI, IG. 1ª Chamada Rsolução do am d nális Matmática I (//) Cursos: C, GE, GEI, IG ª Chamada Ercício > > como uma função ponncial d bas mnor do qu ntão o gráfico dsta função é o rprsntado na figura ao lado. Esta função é

Leia mais

UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 10/07/2010 FILA A Aluno (a): Matrícula: Turma:

UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 10/07/2010 FILA A Aluno (a): Matrícula: Turma: UFJF ICE Dpartamnto d Matmática Cálculo I Trcira Avaliação 0/07/00 FILA A Aluno (a): Matrícula: Turma: Instruçõs Grais: - A prova pod sr fita a lápis, cto o quadro d rspostas das qustõs d múltipla scolha.

Leia mais

Exame de Matemática Página 1 de 6. obtém-se: 2 C.

Exame de Matemática Página 1 de 6. obtém-se: 2 C. Eam d Matmática -7 Página d 6. Simplificando a prssão 9 ( ) 6 obtém-s: 6.. O raio r = m d uma circunfrência foi aumntado m 5%. Qual foi o aumnto prcntual da ára da sgunda circunfrência m comparação com

Leia mais

Análise Modal. Mecânica Estrutural (10391/1411) 2018 Pedro V. Gamboa. Departamento de Ciências Aeroespaciais

Análise Modal. Mecânica Estrutural (10391/1411) 2018 Pedro V. Gamboa. Departamento de Ciências Aeroespaciais Anális Modal Mcânica Estrutural (1091/1411) 018 1. Introdução Um problma d valors próprios é dfinido como sndo um problma m qu dsjamos obtr os valors do parâmtro l d forma qu a quação A( u) lb( u) é satisfita

Leia mais

UFPB CCEN DEPARTAMENTO DE MATEMÁTICA CÁLCULO DIFERENCIAL I 5 a LISTA DE EXERCÍCIOS PERÍODO

UFPB CCEN DEPARTAMENTO DE MATEMÁTICA CÁLCULO DIFERENCIAL I 5 a LISTA DE EXERCÍCIOS PERÍODO UFPB CCEN DEPARTAMENTO DE MATEMÁTICA CÁLCULO DIFERENCIAL I 5 a LISTA DE EXERCÍCIOS PERÍODO 0 Nos rcícios a) ), ncontr a drivada da função dada, usando a dfinição a) f ( ) + b) f ( ) c) f ( ) 5 d) f ( )

Leia mais