Sistemas e Sinais (LEIC) Resposta em Frequência
|
|
- Tomás Pinheiro Castilho
- 2 Há anos
- Visualizações:
Transcrição
1 Sismas Siais (LEIC Rsposa m Frquêcia Carlos Cardira Diaposiivos para acompahamo da bibliografia d bas (Srucur ad Irpraio of Sigals ad Sysms, Edward A. L ad Pravi Varaiya
2 Sumário Dfiiçõs Sismas sm mmória Sismas causais Sismas Ivarias o Tmpo Sismas Liars Rsposa m Frquêcia
3 Dfiiçõs x S y x Eradas = [mpo Rais ou Complxos] y Eradas = [mpo Rais ou Complxos] Tmpo = Iiros ou Rais
4 Exmplos (coíuos Gaho K Dlay T Média Móvl ( ( (,, x x G R x ( ( (,, T x x D R x T d x M x MA R C R R x M ( ( (, ],, [
5 Exmplos (coíuos Rvrs x,, Rv( x( x( Fas Forward Câmara La Ergia x,, FF ( x( x(.5 x,, CL( x( x(.5 x,, E( x( x ( d 2
6 Dfiiçõs: Rsposa Impulsiva A saída do sisma pod-s calcular aravés da covolução da rsposa impulsiva com a rada x,, H ( x( h( s x( s ds s
7 Exmplos (discros Gaho K x, Iiros, G ( x( x( Dlay T (T iiro x, Iiros, D ( x( x( T T Média Móvl x [ R R, C], Iiros, MA( x( M M x(
8 Exmplos (discros Rvrs x,, Rv( x( x( Dow Sampl (subamosrar x,, Dow( x( x(2 Up Sampl (sobramosrar, iroduzido zro ou ouro valor, os poos ão dfiidos x,, Up( x( x 2 par ímpar
9 Rsposa Impulsiva (discros A saída do sisma pod-s calcular aravés da covolução da rsposa impulsiva com a rada x,, H ( x( h( m x( m m
10 Sisma sm mmória Um sisma S ão m mmória s xisir uma fução al qu: Exmplos:, x, S( x( f ( x(, x, S( x( x 2 ( Sm mmória, x, S( x( 2x( Sm mmória, x, S( x( x( x( 2 Com mmória
11 Dfiiçõs: Sisma causal Um sisma S é causal s a saída ão dpdr d radas fuuras:, w, x, x( s w( s, s S( x( S( w( S duas radas form iguais aé um drmiado isa, a saída, aé ss isa, é igual para ambas
12 Causalidad O sisma é causal porqu para radas x w, iguais aé ao isa, produz a msma saída S(x S(w.
13 Dfiiçõs: Sisma Ivaria o mpo Cosidr-s a fução Dlay x,, D ( x( x( T T Um sisma é ivaria o mpo s, para qualqur dlay T, ivrmos: D S S D T T Ou sja: x,, D ( S( x( S( D ( x( T T
14 Exmplo: Sisma Ivaria o mpo Arasar uma rada produz um araso quival a saída. As fuçõs araso S podm sr aplicadas a ordm qu quisrmos.
15 Exmplos S(x(=x(+3 D T o S = x(+3-t S o D T = x(-t+3 O sisma é ivaria o mpo
16 Exmplos S(x(=x(- D T o S = D T (S(x((= D T (x(-( =x(--t S o D T = S(D T (x((=s(x(-t(=x(-+t Não é Ivaria o Tmpo
17 Exmplos S(x(=(x(- 2 D T o S = D T (S(x((= D T ((x(- 2 ( =(x(-t- 2 S o D T = S(D T (x((=s(x(-t(=(x(-t- 2 É causal
18 Exmplos E ( x( x ( s ds 2 É ivaria o mpo E ( x( x ( s ds a Não é ivaria o mpo. Só o sria s a fução x foss ula para <a 2
19 Exmplos - Covolução x ( h( s ds É ivaria o mpo
20 Liaridad S(x+w=S(x+S(w S(ax=aS(x S(ax+bw=aS(x+bS(w S( m qu sr porqu são ão sria possívl garair S(ax=aS(x para qualqur a
21 Liaridad
22 Exmplos Média Móvl Liar Ivaria o Tmpo Dlay Liar Ivaria o Tmpo Gaho Liar Ivaria o Tmpo Rvrs Liar Não Ivaria o Tmpo
23 Exmplos Fas Forward Liar Não Ivaria o Tmpo Câmara La Liar Não Ivaria o Tmpo Ergia Não Liar Ivaria o Tmpo Covolução Liar Ivaria o Tmpo
24 Rsposa m Frquêcia Torma: S a rada for uma xpocial complxa ( iw d drmiada frquêcia, a saída ambém rá a msma frquêcia H(w é a rsposa m frquêcia do sisma
25 Exmplo: H ( w jw H ( w j arca w w 2
26 Exmplo: H(w H ( w w 2 Filro passa baixo
27 Exmplo: fas arca(w
28 Cálculo da Rsposa m Frquêcia O circuio RC (s ormalizado d forma a R=C= m a forma: dy d y( x( Qual srá a rsposa m frquêcia?
29 Cálculo da Rsposa m Frquêcia do circuio R/C x( jw y( H ( w jw jwh ( w jw H ( w jw jw H ( w jw Filro passa baixo
30 Exmplo: Rsposa m Frquêcia da Média Móvl
31 Exmplo: Rsposa m Frquêcia da fução Dlay A ampliud maém-s, apas a fas do sial varia
32 Exmplo: Rsposa m Frquêcia da fução Gaho K x,, G x( H ( w jw jw H ( w A ampliud é muliplicada por K, a fas maém-s
33 Rsposa m Frquêcia
34 Liar Ivaria o Tmpo Liar porqu as drivadas são opradors liars Ivaria o mpo s a i b i ão dpdrm d
35 Causalidad Rsposa Impulsiva Cosidr-s um sisma dfiido pla covolução: S( x( h( s x( s ds h( h( s x( s ds, h( s x( s ds ( causalidad
36 Rsposa m Frquêcia A rsposa m frquêcia d um sisma dfiido pla covolução da rada com a rsposa impulsiva é: S( x( s h( s x( s ds H ( w jw s h( s jws ds jw s h( s jw( s ds jw jwu h( u du s H ( w O qu sigifica qu a rsposa m frquêcia d um sisma é a rasformada d Fourir da rsposa impulsiva
37 Rsposa m Frquêcia d Sismas Discros Aalogam:, x( jw y( H( w jw
38 Exmplo: média móvl 2( ( 2 2 ( ( ( 2 ( (,, ( jw jw jw jw jw jw w H w H x x x MA x
39 Exmplo: média móvl + auorgrssão y( y( 2 x( x( x( 3 H ( w( j2w jw jw ( jw j3w H ( w jw j2w j3w D uma forma gral, a compo média móvl fica o umrador a compo auorgrssiva o domiador. Cosgu-s scrvr a rsposa m frquêcia sm r qu fazr as coas
40 Exmplo: quação às difrças gérica
41 Pridicidad da rsposa m frquêcia para sismas discros x( jw y( H ( w jw x ' ( j( w 2 y( H ( w 2 j( w 2 Mas como x(=x ( : H( w H( w 2 Em sismas discros, H(w m smpr príodo 2 E, por covção, dsha-s apas r - ou ão apas r porqu a fução é par
42 Rsposa m frquêcia d dois sismas LTI m cascaa A rsposa m frquêcia é o produo das rsposas m frquêcia d cada sisma H(w G(w jw H(w jw H(wG(W jw
43 Rsposa m Frquêcia d dois sismas com fdbac. jw E(w jw Y(w jw + H R(w jw G Y(w=E(w.H(w R(w=Y(w.G(w E(w=+R(w
44 Rsposa m Frquêcia d sismas com fdbac Y(w=E(w.H(w R(w=Y(w.G(w E(w=+R(w Y(w=(+R(w.H(w= =(+Y(w.G(wH(w Y(w=H(w/(-G(wH(w
45 Ampliud fas H(w= H(w H(w, H(w rprsa o agulo d H(w com o ixo ral H(w é a ampliud da rsposa m Frq. H(w é a fas da rsposa m frquêcia
46 Exmplo: y(=/2(x(+x(- H(w=/2(+ -jw H(w =/2 +cos(w-jsi(w = =/2 sqr((+cos(w 2 +si 2 (w H(w=-aa(si(w/(+cos(w
47 Exmplo: >> w=-2*pi:pi/:2*pi; %mbora basass d a pi >> H=(+xp(-i*w/2; >> subplo(2,, >> plo(w,abs(h >> subplo(2,,2 >> plo(w,agl(h
48 Exmplo
49 Dcibls É vulgar mdir a ampliud m db db 2log H( w
50 Propridads (siais rais
51 Propridads S a rada for priódica d príodo p a saída é priodica com o msmo príodo Como cos(w=cos(-w rmos H(w=H*(w H(w = H(-w ampliud é par H(w=- H(-w fas é ímpar
52 Propridads (Discros
53 Exmplo d fdbac para aumar a largura d bada
54 Exmplo d fdbac para aumar a largura d bada
55 Fdbac para mlhorar a rsposa m frquêcia S s prd qu o sisma rspoda mais rapidam a rsposa às alas frquêcias m qu mlhorar À par o problma das sauraçõs s é um mcaismo usado m robôs.
56 Propridads (Discros S a rada for priódica d príodo p a saída é priodica com o msmo príodo Como cos(w=cos(-w rmos H(w=H*(w H(w = H(-w ampliud é par H(w=- H(-w fas é ímpar E porqu jw = j(w+2 Tmos: H(w=H(w+2 (m sismas discros a rsposa m frquêcia é priódica
57 Coficis da Séri d Fourir X : R R, p, w 2 P rad / sc x( A A cos( w
58 Séri d Fourir A é a compo DC (valor médio do sial Prmi rprsar qualqur sial priódico S o sial ão for priódico mas for fiio (o mpo, pod ambém sr rprsado por uma séri s o rplicarmos ao logo do mpo.
59 A forma xpocial é mais práica x( X jw o X X *
60 Equivalêcia r as formas xpocial coso ( 2 ( 2 ( ( 2 2 cos( ( ( ( A X A X A X X x A A A w A A x j j jw w j w j X X - são Complxos Cojugados
61 Obção dos coficis A parir d X o jw jw jw jw jw o X X A X w X X X X X X w A X A o o o o o 2 cos( 2 2 R cos( *
62 Cálculo dos coficis X ( ( ( ( 2 ( ( ( ( p d d d X d X d X d x X x p p j p w j p w j p w j p jw jw p jw jw
63 Cálculo dos Coficis x( p X x( p jw p X x( jw d X jw p d
64 Bas As fuçõs qu compõm a séri d Fourir cosium uma bas. Qualqur fução pod sr rprsada por uma combiação liar dlas.
65 Cálculo dos Coficis (mpo discro C X X x ou w A A x amosra rad p w Is Is X l p l jlw l p, (, cos( (, / 2, : 2 /
66 Cálculo d X (discro ( ( ( ( p jw p l p w l j l p p l w l j l p jw x p X p X X X x Muliplicado ambos os lados por xp(-jw o
67 Cálculo dos Coficis (mpo discro p j( l w s l l
68
4. Análise de Sistemas de Controle por Espaço de Estados
Sisma para vrificação Lógica do Corolo Dzmro 3 4. ális d Sismas d Corol por Espaço d Esados No capiulo arior, vimos qu a formulação d um Prolma Básico d Corolo Ópimo Liar, ra cosidrado um sisma diâmico
Sinais de Potência. ( t) Período: Frequência fundamental: f = T T
Siais d Poêcia P lim ( ) d < Siais Priódicos ( ) ( + ) com Ζ ( ) Príodo: P Frquêcia udamal: ( ) d Exmplos Sial cosa ( ) Sial siusoidal Fas ula Im si θ c Fórmulas d Eulr xp ± jθ cosθ ± j si ( ) θ jθ θ cosθ
Capítulo 3. Análise de Sinais Dep. Armas e Electronica, Escola Naval V1.1 - Victor Lobo 2004. Page 1. Domínio da frequência
Dp. Armas Elcronica, Escola Naval V. - Vicor Lobo 004 Capíulo 3 Transformadas ourir ourir Discra Bibliografia Domínio da frquência Qualqur sinal () po sr composo numa soma xponnciais complxas Uma xponncial
Questão. Sinais periódicos e não periódicos. Situação limite. Transformada de Fourier de Sinais Contínuos
Qusão Srá possívl rprsnar sinais não priódicos como soma d xponnciais? ransformada d Fourir d Sinais Conínuos jorg s. marqus, jorg s. marqus, Sinais priódicos não priódicos Siuação limi Um sinal não priódico
Sistemas Dinâmicos. Sistema massa-mola-atrito. O que é um sistema? Sistemas Lineares e Invariantes no Tempo
Sisemas Diâmicos Sisemas Lieares e Ivariaes o Tempo O que é um sisema? Sisema massa-mola-ario Um sisema é um objeco ou grupo de objecos que ieragem com o mudo. Essa ieracção é represeada aravés de eradas
, onde F n é uma força de tracção e d o alongamento correspondente. F n [N] -1000 -2000
º Tst d CONTROLO DE SISTEMS (TP E PRO) Licciatura m Eg.ª Mcâica Prof. Rsposávl: Pdro Maul Goçalvs Lourti d bril d 00 º Smstr Duração: hora miutos. Tst com cosulta. Rsolução. Cosidr o sistma rprstado a
UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO" FACULDADE DE ENGENHARIA DE ILHA SOLTEIRA DEPARTAMENTO DE ENGENHARIA ELÉTRICA
UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO" FACULDADE DE ENGENHARIA DE ILHA SOLTEIRA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELE 33 PRINCÍPIOS DE COMUNICAÇÕES SINAIS E SISTEMAS Ricardo Tokio Higui
1. A TRANSFORMADA DE LAPLACE
Equaçõ Difrciai - Traformada d Laplac A TRANSFORMADA DE LAPLACE Dfiição: Sja f() uma fução ral dfiida para > Eão a raformada d Laplac d f(), doada por L [ ( ) ] f é dfiida por: L [ f ( ) ] F( ) f( )d,
7 Solução de um sistema linear
Toria d Conrol (sinops 7 Solução d um sisma linar J. A. M. Flipp d Souza Solução d um sisma linar Dfinição 1 G(,τ mariz cujos lmnos g ij (,τ são as rsposas na i ésima saída ao impulso aplicado na j ésima
4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL)
4. Método das Aproimaçõs Sucssivas ou Método d Itração Linar MIL O método da itração linar é um procsso itrativo qu aprsnta vantagns dsvantagns m rlação ao método da bisscção. Sja uma função f contínua
Limites Questões de Vestibulares ( )( ) Solução: Primeiro Modo (Fatorando a fração usando BriotxRuffini): lim. Segundo Modo: lim
Limis Qusõs d Vsibulars 7. (AMAN-RJ) Calculado o i, coramos: 9 7 a) b) c) d) ) 9 7 Solução: Primiro Modo (Faorado a ração usado BrioRuii): 9 7., qu é uma idrmiação. Faorado a ução, umrador 9. 7 domiador
Sinais e Sistemas Lineares
ES 43 Sinais Sismas Sinais Sismas Linars Prof. Aluizio Fauso Ribiro Araújo Dpo. of Sismas d Compuação Cnro d Informáica - UFPE Capíulo Sinais Sismas Eng. da Compuação Conúdo Sinais Tamanho d um Sinal Opraçõs
ANALISE DE CIRCUITOS DE 1 a E 2 a. J.R. Kaschny ORDENS
ANAISE DE IRUITOS DE a E a J.R. Kaschny ORDENS Inrodução As caracrísicas nsão-corrn do capacior do induor inroduzm as quaçõs difrnciais na anális dos circuios léricos. As is d Kirchhoff as caracrísicas
Dinâmica Longitudinal do Veículo
Dinâmica Longitudinal do Vículo 1. Introdução A dinâmica longitudinal do vículo aborda a aclração frnagm do vículo, movndo-s m linha rta. Srão aqui usados os sistmas d coordnadas indicados na figura 1.
A DERIVADA DE UM INTEGRAL
A DERIVADA DE UM INTEGRAL HÉLIO BERNARDO LOPES Rsumo. O cálculo o valor a rivaa um ingral ocorr com cra frquência na via profissional físicos, químicos, ngnhiros, conomisas ou biólogos. É frqun, conuo,
SISTEMA DE PONTO FLUTUANTE
Lógica Matmática Computacional - Sistma d Ponto Flutuant SISTEM DE PONTO FLUTUNTE s máquinas utilizam a sguint normalização para rprsntação dos númros: 1d dn * B ± 0d L ond 0 di (B 1), para i = 1,,, n,
Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período
Rsolução da Prova d Física Tórica Turma C2 d Engnharia Civil Príodo 2005. Problma : Qustõs Dados do problma: m = 500 kg ; v i = 4; 0 m=s ;! a = 5! g d = 2 m. Trabalho ralizado por uma força constant: W
CAPÍTULO 4 Exercícios Propostos
53. Calcular o valor dos juros pagos por um fiaciamto d capital d giro d $1.500 por cico dias cotratado à taxa d 3% a.m., capitalizada diariamt. Dados: P = $1.500, j = 3% a.m.. k =, m = 5 dias, J =? k
Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita:
Máquinas Térmicas Para qu um dado sistma raliz um procsso cíclico no qual rtira crta quantidad d nrgia, por calor, d um rsrvatório térmico cd, por trabalho, outra quantidad d nrgia à vizinhança, são ncssários
Curso: Engenharia Industrial Elétrica. Análise de variáveis Complexas MAT 216 Turma: 01
urso: Egharia Idustrial Elétrica Aális d variávis omplas MAT 6 Profssora: Edmary S B Araújo Turma: Lista d Provas Rspodu Jsus: Em vrdad, m vrdad t digo: qum ão ascr da água do Espírito ão pod trar o rio
MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 07. Prof. Dr. Marco Antonio Leonel Caetano
MESTRADO EM MACROECONOMIA FINANÇAS Disiplina d Compuação Aula 7 Prof. Dr. Maro Anonio Lonl Caano Guia d Esudo para Aula 7 Vors Linarmn Indpndns - Vrifiação d vors LI - Cálulo do Wronsiano Equaçõs Difrniais
UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT 013 - Matemática I Prof.: Leopoldina Cachoeira Menezes
UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT - Mamáica I Prof.: Lopoldina Cachoira Mnzs Prof.: Mauricio Sobral Brandão ª Lisa d Ercícios Par I: Funçõs Econômicas
Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T.
Pêndulo Simpls Um corpo suspnso por um fio, afastado da posição d quilíbrio sobr a linha vrtical qu passa plo ponto d suspnsão, abandonado, oscila. O corpo o fio formam o objto qu chamamos d pêndulo. Vamos
Análises de sistemas no domínio da frequência
prmno d Engnhri Químic d Prólo UFF iciplin: TEQ0- COTROLE E PROCESSOS náli d im no domínio d frquênci Prof inok Boorg Rpo d Frquênci Cliqu pr dir o ilo do xo mr COCEITO: Coni d um méodo gráfico-nlíico
10. EXERCÍCIOS (ITA-1969 a ITA-2001)
. EXERCÍCIOS (ITA-969 a ITA-) - (ITA - 969) Sjam f() = + g() = duas funçõs rais d variávl ral. Então (gof)(y ) é igual a: a) y y + b) (y ) + c) y + y d) y y + ) y - (ITA -97) Sjam A um conjunto finito
J, o termo de tendência é positivo, ( J - J
6. Anxo 6.. Dinâmica da Economia A axa d juros (axa SEL LBO) sgu um modlo. Ou sja, o procsso da axa d juros (nuro ao risco) é dscrio por: dj ( J J ) d J ond: J : axa d juros (SEL ou LBO) no insan : vlocidad
Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de
p-p8 : Continuidad d funçõs rais d variávl ral. Lr atntamnt. Dominar os concitos. Fazr rcícios. Função contínua, prolongávl por continuidad, dscontínua. Classificação d dscontinuidads. Continuidad num
PREÇOS APLICÁVEIS ÀS CHAMADAS DESTINADAS A SERVIÇOS NÃO GEOGRÁFICOS DE OUTROS OPERADORES
PREÇOS APLICÁVEIS ÀS CHAMADAS DESTINADAS A SERVIÇOS NÃO GEOGRÁFICOS DE OUTROS OPERADORES OPS DE DESTINO SERVIÇ O DE DESTIN O REDE MÓVEL DE ORIGEM (Fixa/ Móvl/ Ambas) DATA DE EFEITOS Cadência d taxação
log 2, qual o valor aproximado de 0, 70
UNIERSIDADE FEDERAL DE ITAJUBÁ GABARITO DE FUNDAMENTOS DA MATEMÁTICA PROA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR // CANDIDATO: CURSO PRETENDIDO: OBSERAÇÕES: Prova
O Uso da Álgebra Linear nas Equações Diferenciais
Uso d Álgr ir s Equçõs ifriis íi Gri ol úi Rsd rir Bofim Fuldd d mái FT Uivrsidd Fdrl d Urlâdi UFU 88 - Urlâdi ril d 8 Rsumo Álgr ir é um supor mmáio pr muis árs d iêi Vrmos omo lgus d sus rsuldos podm
66 (5,99%) 103 (9,35%) Análise Combinatória 35 (3,18%)
Distribuição das 0 Qustõs do I T A 9 (8,6%) 66 (,99%) Equaçõs Irracionais 09 (0,8%) Equaçõs Exponnciais (,09%) Conjuntos 9 (,6%) Binômio d Nwton (,9%) 0 (9,%) Anális Combinatória (,8%) Go. Analítica Funçõs
Capítulo 4 Resposta em frequência
Capítulo 4 Rsposta m frquência 4. Noção do domínio da frquência 4.2 Séris d Fourir propridads 4.3 Rsposta m frquência dos SLITs 4.4 Anális da composição d sistmas através da rsposta m frquência 4.5 Transformadas
2.2 Transformada de Fourier e Espectro Contínuo
2.2 Transformada d Fourir Espctro Contínuo Analisam-s a sguir, sinais não priódicos, concntrados ao longo d um curto intrvalo d tmpo. Dfinição: sinal stritamnt limitado no tmpo Dado um sinal não priódico
Curso de Engenharia Mecânica Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno:
Curso d Engnharia Mcânica Disciplina: Física 2 Nota: Rubrica Coordnador Profssor: Rudson R Alvs Aluno: Turma: EA3N Smstr: 1 sm/2017 Data: 20/04/2017 Avaliação: 1 a Prova Valor: 10,0 p tos INSTRUÇÕES DA
sen( x h) sen( x) sen xcos h sen hcos x sen x
MAT00 Cálculo Difrcial Itgral I RESUMO DA AULA TEÓRICA Livro do Stwart: Sçõs 3., 3.4 3.8. DEMONSTRAÇÕES Nssa aula srão aprstadas dmostraçõs, ou sboços d dmostraçõs, d algus rsultados importats do cálculo
2 Mbps (2.048 kbps) Telepac/Sapo, Clixgest/Novis e TV Cabo; 512 kbps Cabovisão e OniTelecom. 128 kbps Telepac/Sapo, TV Cabo, Cabovisão e OniTelecom.
4 CONCLUSÕES Os Indicadors d Rndimnto avaliados nst studo, têm como objctivo a mdição d parâmtros numa situação d acsso a uma qualqur ára na Intrnt. A anális dsts indicadors, nomadamnt Vlocidads d Download
Resposta em frequência
Rsposta frquêcia Nocatura a rsposta frquêcia é úti a caractrização d u sista LSI. Dfi d quato a apitud copa d ua pocia copa é atrada ao sr fitrada po sista. Epociais copas são autofuçõs d sistas LSI. Cosidrado
EC1 - LAB - CIRCÚITOS INTEGRADORES E DIFERENCIADORES
- - EC - LB - CIRCÚIO INEGRDORE E DIFERENCIDORE Prof: MIMO RGENO CONIDERÇÕE EÓRIC INICII: Imaginmos um circuito composto por uma séri R-C, alimntado por uma tnsão do tipo:. H(t), ainda considrmos qu no
Definição de Termos Técnicos
Dfinição d Trmos Técnicos Eng. Adriano Luiz pada Attack do Brasil - THD - (Total Harmonic Distortion Distorção Harmônica Total) É a rlação ntr a potência da frqüência fundamntal mdida na saída d um sistma
PSICROMETRIA 1. É a quantificação do vapor d água no ar de um ambiente, aberto ou fechado.
PSICROMETRIA 1 1. O QUE É? É a quantificação do vapor d água no ar d um ambint, abrto ou fchado. 2. PARA QUE SERVE? A importância da quantificação da umidad atmosférica pod sr prcbida quando s qur, dntr
TÓPICOS. Integração complexa. Integral de linha. Teorema de Cauchy. Fórmulas integrais de Cauchy.
No m, liur dss pomos ão disps d modo lgum liur d iliogri pricipl d cdir hm-s à ção pr imporâci do rlho pssol rlir plo luo rsolvdo os prolms prsdos iliogri, sm ul prévi ds soluçõs proposs, ális compriv
Emerson Marcos Furtado
Emrson Marcos Furtado Mstr m Métodos Numéricos pla Univrsidad Fdral do Paraná (UFPR). Graduado m Matmática pla UFPR. Profssor do Ensino Médio nos stados do Paraná Santa Catarina dsd 1992. Profssor do Curso
Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz
Hwltt-Packard MTRIZES ulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz no 06 Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE
Módulo II Resistores, Capacitores e Circuitos
Módulo laudia gina ampos d arvalho Módulo sistors, apacitors ircuitos sistência Elétrica () sistors: sistor é o condutor qu transforma nrgia létrica m calor. omo o rsistor é um condutor d létrons, xistm
Capitulo 4 Resolução de Exercícios
FORMULÁRIO i Taxa Proporcioal ou quivalt (juros simpls) i k Taxas Equivalts (juros compostos) 3 i i i i i i i 4 6 360 a s q t b m d Taxa Eftiva Nomial k i i p ao príodo d capitalização ; i k Taxa Ral Taxa
Análise em Frequência de Sistemas Lineares e Invariantes no Tempo
Anális m Frquência d Sistmas Linars Invariants no Tmpo Luís Caldas d Olivira Rsumo. Rsposta m Frquência 2. Sistmas com Função d Transfrência Racional 3. Sistmas d Fas Mínima 4. Sistmas d Fas Linar Gnralizada
A EQUAÇÃO DE TRANSFERÊNCIA DE CALOR COM CONDIÇÕES MISTAS DE FRONTEIRA 1 THE HEATING TRANSFERENCE EQUATION WITH MIXED BOUNDARY CONDITIONS
Disc Sciia Séri: Ciêcias Narais Tcológicas, S Maria, v 9,, p 63-74, 008 63 ISSN 98-84 A EQUAÇÃO DE TRANSFERÊNCIA DE CAOR COM CONDIÇÕES MISTAS DE FRONTEIRA THE HEATING TRANSFERENCE EQUATION WITH MIXED BOUNDARY
RESUMO de LIMITES X CONTINUIDADE. , tivermos que f(x) arbitr
RESUMO d LIMITES X CONTINUIDADE I. Limits finitos no ponto 1. Noção d Limit Finito num ponto Sjam f uma função x o IR. Dizmos qu f tm it (finito) no ponto x o (m símbolo: f(x) = l IR) quando x convn x
Vamos partir de uma antena isotrópica, situada em um ponto T. Ela irradia um sinal com potência PT
-POPGÇÃO Propagação d spaço lir amos parir d uma aa isorópica, siuada m um poo. Ela irradia um sial com poêcia P m um mio ambém isorópico como, por xmplo, o ácuo. Esamos irssados m drmiar a isidad do sial
03/04/2014. Força central. 3 O problema das forças centrais TÓPICOS FUNDAMENTAIS DE FÍSICA. Redução a problema de um corpo. A importância do problema
Força cntral 3 O problma das forças cntrais TÓPICOS FUNDAMENTAIS DE FÍSICA Uma força cntralé uma força (atrativa ou rpulsiva) cuja magnitud dpnd somnt da distância rdo objto à origm é dirigida ao longo
/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P
26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ
CARGA E DESCARGA DE CAPACITORES
ARGA E DESARGA DE APAITORES O assuno dscudo ns argo, a carga a dscarga d capacors, aparcu dos anos conscuvos m vsbulars do Insuo Mlar d Engnhara ( 3). Ns sudo, srão mosradas as dduçõs das uaçõs d carga
EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9
AULA 9 EXPRESSÕES LÓGICAS 9.1 Lógica proposicional Lógica é o studo do raciocínio 1. Em particular, utilizamos lógica quando dsjamos dtrminar s um dado raciocínio stá corrto. Nsta disciplina, introduzimos
E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O
Prparar o Eam 05 Matmática A E X A M E 0.ª FASE, V E R S Ã O P R O P O S T A D E R E S O L U Ç Ã O. Tm-s qu P A P A P A GRUPO I ITENS DE ESCOLHA MÚLTIPLA 0, 0, 0,. Assim: P B A PB A 0,8 0,8 PB A 0,8 0,
Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2
Eam Nacional d 0 (. a fas) Prova Escrita d Matmática. o no d Escolaridad Prova 3/Vrsõs GRUPO I Itns Vrsão Vrsão. (C) (). () (C) 3. () (C). (D) (). (C) (). () () 7. () (D) 8. (C) (D) Justificaçõs:. P( )
Tratamento da Imagem Transformações
Univrsidad Fdral do Rio d Janiro - IM/DCC & NCE Tratamnto da Imagm Transormaçõs Antonio G. Thomé thom@nc.urj.br Sala AEP/33 Tratamnto d Imagns - Sumário Dtalhado Objtivos Alguns Concitos Básicos Transormaçõs
PROVA DE MATEMÁTICA APLICADA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia
PROVA DE MATEMÁTICA APLICADA VESTIBULAR 013 - FGV CURSO DE ADMINISTRAÇÃO Profa. Maria Antônia C. Gouvia 1. A Editora Progrsso dcidiu promovr o lançamnto do livro Dscobrindo o Pantanal m uma Fira Intrnacional
NÚMEROS COMPLEXOS. Podemos definir o conjunto dos números complexos como sendo o conjunto dos números escritos na forma:
NÚMEROS COMPLEXOS DEFINIÇÃO No cojuto dos úmros ras R, tmos qu a a a é smpr um úmro ão gatvo para todo a Ou sja, ão é possívl xtrar a ra quadrada d um úmro gatvo m R Portato, podmos dfr um cojuto d úmros
A relação formal (parataxe ou hipotaxe) é assegurada pelas conjunções (no caso da coordenação e da subordinação).
Rita Vloso - matriais d PPE Faculdad d Ltras da Univrsida d Lisboa Cosão intrfrásica assgurada por procssos d squncialização qu xprimm vários tipos d intrdpndência smântica das frass qu ocorrm na suprfíci
Capitulo 5 Resolução de Exercícios
Captulo 5 Rsolução Exrcícos FORMULÁRIO Dscoto Racoal Smpls D ; D ; ; D R R R R R R Dscoto Comrcal Smpls D ; ; D C C C C Dscoto Bacáro Smpls D s ; s ; D b b b b s Db ; b Rlaçõs tr o Dscoto Racoal Smpls
Implementação de Controle Proporcional, Integral e Derivativo Digital em Controladores Lógico Programáveis
Uivrsidad Fdral d Prambuco Ctro d Tcologia Gociêcias Curso d Espcialização m Egharia d Istrumtação Implmtação d Cotrol Proporcioal, Itgral Drivativo Digital m Cotroladors Lógico Programávis Wladimir d
DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 03
DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 0 Em algum momnto da sua vida você dcorou a tabuada (ou boa part dla). Como você mmorizou qu x 6 = 0, não prcisa fazr st cálculo todas as vzs qu s dpara com l. Além
3. TRANSFORMADA DE LAPLACE. Prof. JOSÉ RODRIGO DE OLIVEIRA
3 TRNSFORMD DE LPLCE Prof JOSÉ RODRIGO DE OLIVEIR CONCEITOS BÁSICOS Númro complxo: ond α β prncm ao nº rai Módulo fa d um númro complxo Torma d Eulr: b a an a co co n n Prof Joé Rodrigo CONCEITOS BÁSICOS
Aula Teórica nº 8 LEM-2006/2007. Trabalho realizado pelo campo electrostático e energia electrostática
Aula Tórica nº 8 LEM-2006/2007 Trabalho ralizado plo campo lctrostático nrgia lctrostática Considr-s uma carga q 1 no ponto P1 suponha-s qu s trás uma carga q 2 do até ao ponto P 2. Fig. S as cargas form
Exercícios de Cálculo Numérico - Erros
Ercícios d Cálculo Numérico - Erros. Cosidr um computador d bits com pot máimo ( a rprstação m aritmética lutuat a bas. (a Dtrmi o mor úmro positivo rprstávl sta máquia a bas. (b Dtrmi o maior úmro positivo
Critérios de falha PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL
PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL A avaliação das tnsõs dformaçõs smpr é fita m função d crtas propridads do matrial. Entrtanto, não basta apnas calcular ssas grandzas.
3. Geometria Analítica Plana
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,
NOTA SOBRE INDETERMINAÇÕES
NOTA SOBRE INDETERMINAÇÕES HÉLIO BERNARDO LOPES Rsumo. Em domínios divrsos da Matmática, como por igual nas suas aplicaçõs, surgm com alguma frquência indtrminaçõs, d tipos divrsos, no cálculo d its, sja
CAPÍTULO 9. y(t). y Medidor. Figura 9.1: Controlador Analógico
146 CAPÍULO 9 Inrodução ao Conrole Discreo 9.1 Inrodução Os sisemas de conrole esudados aé ese pono envolvem conroladores analógicos, que produzem sinais de conrole conínuos no empo a parir de sinais da
Augusto Massashi Horiguti. Doutor em Ciências pelo IFUSP Professor do CEFET-SP. Palavras-chave: Período; pêndulo simples; ângulos pequenos.
DETERMNAÇÃO DA EQUAÇÃO GERAL DO PERÍODO DO PÊNDULO SMPLES Doutor m Ciências plo FUSP Profssor do CEFET-SP Est trabalho aprsnta uma rvisão do problma do pêndulo simpls com a dmonstração da quação do príodo
Leonardo da Vinci ( ), artista, engenheiro e cientista italiano
ormas dos rabalhos Vrtuas Itrodução Loardo da Vc (45-59), artsta, ghro ctsta talao Aplcou oçõs do prcípo dos dslocamtos vrtuas para aalsar o qulíbro d sstmas d polas alavacas PEF-40 Prof. João Cyro Adré
Sinais e Sistemas. Env. CS1 Ground Revolute. Sine Wave Joint Actuator. Double Pendulum Two coupled planar pendulums with
-4-6 -8-0 - -4-6 -8-30 -3 Frequec Hz Hammig aiser Chebshev Faculdade de Egeharia iais e isemas Power pecral Desi Ev B F C C B F C Groud Revolue Bod Revolue Bod Power/frequec db/hz ie Wave Joi Acuaor Joi
Análise no Domínio do Tempo de Sistemas Contínuos
ES 43 Sinais Sismas Anális no omínio do Tmpo d Sismas Conínuos Prof. Aluizio Fauso Ribiro Araújo po. of Sismas d Compuação Cnro d Informáia - UFPE Capíulo Sinais Sismas Eng. da Compuação Conúdo Inrodução
Adriano Pedreira Cattai
Adriano Pdrira Cattai apcattai@ahoocombr Univrsidad Fdral da Bahia UFBA, MAT A01, 006 3 Suprfíci Cilíndrica 31 Introdução Dfinição d Suprfíci Podmos obtr suprfícis não somnt por mio d uma quação do tipo
TÓPICOS DE RESOLUÇÃO DO EXAME DE CÁLCULO I
Faculdad d Ecoomia Uivrsidad Nova d Lisboa TÓPICOS DE RESOLUÇÃO DO EXAME DE CÁLCULO I Ao Lctivo 7-8 - º Smstr Eam Fial d 1ª Época m d Juho d 8 Duração: horas 3 miutos É proibido usar máquias d calcular
2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo
Intgração Múltipla Prof. M.Sc. Armando Paulo da Silva UTFP Campus Cornélio Procópio )INTEGAIS DUPLAS: ESUMO Emplo Emplo Calcul 6 Calcul 6 dd dd O fato das intgrais rsolvidas nos mplos srm iguais Não é
Experiência n 2 1. Levantamento da Curva Característica da Bomba Centrífuga Radial HERO
8 Expriência n 1 Lvantamnto da Curva Caractrística da Bomba Cntrífuga Radial HERO 1. Objtivo: A prsnt xpriência tm por objtivo a familiarização do aluno com o lvantamnto d uma CCB (Curva Caractrística
Coordenadas polares. a = d2 r dt 2. Em coordenadas cartesianas, o vetor posição é simplesmente escrito como
Coordnadas polars Sja o vtor posição d uma partícula d massa m rprsntado por r. S a partícula s mov, ntão su vtor posição dpnd do tmpo, isto é, r = r t), ond rprsntamos a coordnada tmporal pla variávl
Mecânica dos Materiais. Instabilidade de Colunas. Tradução e adaptação: Victor Franco
Mcânica dos Matiais Instabilidad d Colunas 10 Tadução adaptação: Victo Fanco Rf.: Mchanics of Matials, B, Johnston & DWolf McGaw-Hill. Mchanics of Matials, R. Hibbl, asons Education. Estabilidad d Estutuas
+ = x + 3y = x 1. x + 2y z = Sistemas de equações Lineares
Sisms d quçõs Linrs Equção Linr Tod qução do ipo:.. n n Ond:,,., n são os ofiins;,,, n são s inógnis; é o rmo indpndn. E.: d - Equção Linr homogên qundo o rmo indpndn é nulo ( ) - Um qução linr não prsn
Programa de Pós-Graduação Processo de Seleção 2 0 Semestre 2008 Exame de Conhecimento em Física
UNIVERSIDADE FEDERAL DE GOIAS INSTITUTO DE FÍSICA C.P. 131, CEP 74001-970, Goiânia - Goiás - Brazil. Fon/Fax: +55 62 521-1029 Programa d Pós-Graduação Procsso d Slção 2 0 Smstr 2008 Exam d Conhcimnto m
Anexo III Temperatura equivalente de ruído, Figura de ruído e Fator de mérito para estações de recepção (G/T)
Axo III mpratura quivalt d ruído, igura d ruído ator d mérito para staçõs d rcpção (/) III.. mpratura Equivalt d Ruído A tmpratura quivalt d ruído d um compot pod sr dfiida como sdo o valor d tmpratura
J. A. M. Felippe de Souza 9 Diagramas de Bode
9 Diagramas de Bode 9. Itrodução aos diagramas de Bode 3 9. A Fução de rasferêcia 4 9.3 Pólos e zeros da Fução de rasferêcia 8 Equação característica 8 Pólos da Fução de rasferêcia 8 Zeros da Fução de
ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES
LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS M MIOS CONDUTORS A quação d onda dduida no capítulo antrior é para mios sm prdas ( = ). Vamos agora ncontrar a quação da onda m um mio qu aprsnta condutividad não
r = (x 2 + y 2 ) 1 2 θ = arctan y x
Sção 0: Equação d Laplac m coordnadas polars Laplaciano m coordnadas polars. Sja u = ux, y uma função d duas variávis. Dpndndo da rgião m qu a função stja dfinida, pod sr mais fácil trabalhar com coordnadas
Modelo de Oferta e Demanda Agregada (OA-DA)
Modlo d Ofrta Dmanda Agrgada (OA-DA) Lops Vasconcllos (2008), capítulo 7 Dornbusch, Fischr Startz (2008), capítulos 5 6 Blanchard (2004), capítulo 7 O modlo OA-DA xamina as condiçõs d quilíbrio dos mrcados
CONTINUIDADE A idéia de uma Função Contínua
CONTINUIDADE A idéia d uma Função Contínua Grosso modo, uma função contínua é uma função qu não aprsnta intrrupção ou sja, uma função qu tm um gráfico qu pod sr dsnhado sm tirar o lápis do papl. Assim,
TRANSFORMADAS DE FOURIER
TRASORMADAS DE OURIER Dfção: É a raformação qu lva uma magm a r rprada o domío da frqüêca Io é poívl porqu uma magm pod r dcompoa m fuçõ o coo com dfr frqüêca amplud A vaagm prcpal d rabalhar o domío da
CONTROLO. 1º semestre 2007/2008. Transparências de apoio às aulas teóricas. Capítulo 10 Diagrama de Bode e Relação Tempo-Frequência
Mestrado Itegrado em Egeharia Electrotécica e de Computadores (LEEC Departameto de Egeharia Electrotécica e de Computadores (DEEC CONTROLO º semestre 007/008 Trasparêcias de apoio às aulas teóricas Capítulo
A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é:
nrgia no MHS Para studar a nrgia mcânica do oscilador harmônico vamos tomar, como xmplo, o sistma corpo-mola. A nrgia cinética do sistma stá no corpo d massa m. A mola não tm nrgia cinética porqu é uma
PSI-2432: Projeto e Implementação de Filtros Digitais Projeto Proposto: Conversor de taxas de amostragem
PSI-2432: Projto Implmntação d Filtros Digitais Projto Proposto: Convrsor d taxas d amostragm Migul Arjona Ramírz 3 d novmbro d 2005 Est projto consist m implmntar no MATLAB um sistma para troca d taxa
Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I. Ano Lectivo º Semestre
Faculdad d Ecoomia Uivrsidad Nova d Lisboa EXAME DE CÁLCULO I Ao Lctivo 8-9 - º Smstr Eam Fial d ª Época m d Jairo 9 Tópicos d Corrcção Duração: horas miutos É proibido usar máquias d calcular ou tlmóvis
(1) Raízes n-ésimas. r cos. nϕ = θ + 2kπ; k = 0, 1, 2, 3, 4,... ρ n cos nϕ = r cos θ ρ n = r ρ= (r) 1/n. Portanto:
Raís -ésmas A ra -ésma d um úmro complxo s é o complxo s Vamos vr qu os complxos possum raís dfrts!!! Em coordadas polars: s r cos θ s θ ρ cos ϕ s ϕ Aplcado Movr trmos: r cos θ s θ ρ cos ϕ s ϕ Portato:
Variáveis aleatórias Conceito de variável aleatória
Variávis alatórias Muitos primtos alatórios produzm rsultados ão-uméricos. Ats d aalisá-los, é covit trasformar sus rsultados m úmros, o qu é fito através da variávl alatória, qu é uma rgra d associação
Desta maneira um relacionamento é mostrado em forma de um diagrama vetorial na Figura 1 (b). Ou poderia ser escrito matematicamente como:
ASSOCIAÇÃO EDUCACIONA DOM BOSCO FACUDADE DE ENGENHAIA DE ESENDE ENGENHAIA EÉICA EEÔNICA Disciplina: aboratório d Circuitos Elétricos Circuitos m Corrnt Altrnada EXPEIMENO 9 IMPEDÂNCIA DE CICUIOS SÉIE E
ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}.
Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR LOGARITMOS E INTEGRAÇÃO DE FUNÇÕES COMPLEXAS Logaritmos () Para cada um dos sguints conjuntos
Equações Diferenciais Lineares
Equaçõs Diriais Liars Rordmos a orma gral d uma quação dirial liar d ordm a d d d d a a a, I d d m qu as uçõs a i são idpdts da variávl. S, a quação diz-s liar homogéa. Caso otrário, diz-s liar omplta.
Resolução. Admitindo x = x. I) Ax = b
Considr uma população d igual númro d homns mulhrs, m qu sjam daltônicos % dos homns 0,% das mulhrs. Indiqu a probabilidad d qu sja mulhr uma pssoa daltônica slcionada ao acaso nssa população. a) b) c)
MACROECONOMIA. Capítulo 1 - Introdução aos Modelos Macroeconômicos 1. Ciclo e Crescimento Econômico 2. Inflação e Nível de Atividade Econômica
MACROECONOMIA Capíulo 1 - Inrodução aos Modlos Macroconômicos 1. Ciclo Crscimno Econômico 2. Inflação Nívl d Aividad Econômica Frnando d Holanda Barbosa Capíulo 2 - As Curvas IS LM: A Dmanda Agrgada 1.
5. MÁXIMOS E MÍNIMOS DE FUNÇÕES DE VÁRIAS VARIÁVEIS 1
5 MÁXIMOS E MÍNIMOS DE FUNÇÕES DE VÁRIAS VARIÁVEIS 5 Introdução: Considrmos os sguints nunciados: Quais são as dimnsõs d uma caia rtangular sm tampa com volum v com a mnor ára d supríci possívl? A tmpratura