TRANSFORMADAS DE FOURIER

Tamanho: px
Começar a partir da página:

Download "TRANSFORMADAS DE FOURIER"

Transcrição

1 TRASORMADAS DE OURIER Dfção: É a raformação qu lva uma magm a r rprada o domío da frqüêca Io é poívl porqu uma magm pod r dcompoa m fuçõ o coo com dfr frqüêca amplud A vaagm prcpal d rabalhar o domío da frqüêca é qu a covolução d dua fuçõ o domío pacal pod r raformada m mulplcação o domío da frqüêca A Traformada d ourr Coíua A T d uma fução udmoal f é dfda como { f } f j d od j = - A Traformada Ivra d ourr T I é { } j d A úca dfrça r a T a T I é o al do xpo Exmplo: A T d uma Gauaa f ou } j d j d Mulplcado o lado dro por = produz j d

2 fazdo u = + j du = d du u f par da T A Traformada d ourr Dcra T D j f 3 A vra da TD é j f 4 od ão ídc f é uma qüêca d comprmo obda aravé d amoragm da fução coíua m rvalo gua 3 A Traformada Rápda d ourr T O úmro d mulplcaçõ adçõ cára para mplmar 3 4 é da ordm d O Ex uma cla d algormo chamada d T qu rduz ubacalm forço Implma- o algormo fazdo- = p od p é um ro A quação 3 pod r rprada como f f W W W W 5 ou = W f

3 od o rmo d W ão W j Como a fução xpocal é pródca o produo d há boa mra m W Ea marz pod r faorada m um produo d p marz x qu coêm valor rpdo cludo zro um Porao o faor plo qual a T rduz o forço compuacoal é p log log Para = 4 ==> p = 4 log 4 Traformada d ourr d fuçõ uua ução f Gauaa Pulo Ragular Pulo Tragular Impulo Dgrau Uáro Coo So Expocal Complxa u j co f f f f f f j f f j 5 Proprdad da T Alguma a Par ou Impar Uma fução f é par om f = f -

4 uma fução é ímpar om f o = - f o - Uma fução qu ão ja m par m ímpar pod r qubrada m dua compo par ímpar rpcvam por f f f f o f f od E fo a T pod r aalado como abaxo: f = f + f o 6 j x co x j x Rlação d Eulr Da q f j d f co d j f d xprado a q acma como m 6 f co d f co d j f d j fo d o

5 O gudo rcro rmo ão gra fa com mulplcação d dua fuçõ ímpar par o qu rula m zro Logo f co d j fo d j o f f f j o od f f f f f f o o b O Torma da Adção S f g G ão f g f g j d f j d g j d G Io lva a c f c c = c

6 c O Torma do Dlocamo f a f a j d od a é o dlocamo Mulplcado o lado dro por produz j a j a =

7 f a f a j a j a d fazdo u = a du = d j a f a f u j u j a du d Torma da Covolução f * g f u Plo orma do dlocamo g u f u g u du j d du j f g f u u * G du G j d j u f u du o qu gfca qu f * g G Logo a covolução m um domío gfca mulplcação m ouro Sgu qu G f * g

8 6 Sma Lar Traformada d ourr f g G h H h = f * g H = G f = al d rada = pcro do al d rada g = rpoa ao mpulo G = fução d rafrêca h = al d aída H = pcro do al d aída H G ; porao h g f f cohcda ; h mdda ; g calculada por gração umérca

9 Exmplo: f = rada H = aída g é a rpoa ao mpulo

10 Exmplo: f u

11 j h qu m o pcro j H H G g 7 Traformada d ourr m dmõ Dfção dy dx y x f v u vy ux j dv du v u y x f vy ux j

12 od fxy é uma magm uv é u pcro uv é m gral uma fução complxa d dua varáv u v A varávl u corrpod à frqüêca ao logo do xo x gualm v ao xo y Traformada d ourr b-dmoal Imagm Epcro d amplud b-dmoal 8 Traformada d ourr dcra m -D gk ==> marz k k m j k g m G a TD vra é m k m j m G k g 9 Sparabldad m j k k j k g m G

13 ou ja a opraçõ horzoa vrca podm r parada O rmo r colch é a T udmoal calculada a lha da magm O rulado é calculado como o grado da T udmoal a colua da magm T udmoal pod r ulzada a abordagm A vra da quação acma ambém é parávl Irpração Uma Traformada d ourr pod r va como um pcro d frqüêca qu pod r rprado a forma: jargj j j Exmplo: Supoha f j a j Amplud: a j a j a a a j a D a + b ==> a b a b ==> j a Âgulo d a: b D a + b ==> arcg ==> arg j arcg arcg a a a ==> j a jarcg a

14 a b c d -Ja Bap Joph ourr: a magm d rada; b pcro d amplud; c pcro d fa; d rcorução apa da amplud; rcorução apa da fa

15 -Iluração da mporâca da fa amplud o paço d ourr para o coúdo da magm a b dua mag orga; c magm compoa uado a fa da magm b a amplud da magm a; d magm compoa uado a fa da magm a a amplud da magm b

16 a b c d a Imagm orgal; b pcro d amplud da magm orgal; c pcro d fa caloado d forma a qu π ja curo ja claro; d magm obda alrado o pcro d amplud r a dua mag orga Apar da roca produzr baa ruído la ão alra a rpração da magm ugrdo qu o pcro d fa é ma mpora para a prcpção do qu o pcro d amplud

17 Corrlação Epcro d Poêca Alguma frrama aalíca ão mpora para udar o fo d ruído m um ma lar a Auocorrlação - Auocovolução f * f f f d - ução d Auocorrlação R f f * f f f d Ea fução é mpr par m u máxmo m = Uma proprdad é R f d f d Toda fução m uma úca fução d auocorrlação ma a rcíproca ão é vrdadra b Epcro d Poêca A T da fução d auocorrlação é P * f { R f } { f * f } é chamada fução d ddad pcral ou pcro d poêca d f S f é ral ua fução d auocorrlação é ral par porao u pcro d poêca é ral par ovam qualqur f m um úco pcro d poêca ma a rcíproca ão é o cao c Corrlação cruzada Dada dua fuçõ f g ua fução d auocorrlação é dada por

18 R fg f * g f g d Em drmado do a fução d corrlação cruzada dca o grau rlavo para o qu dua fuçõ cocordam para vára magud d dalhamo hfg A T da C cruzada á a DE cruzada ou Epcro d Poêca Cruzada BIBLIOGRAIA Kh R Calma Dgal Imag Procg Prca-Hall USA 996 B Jäh "Dgal Imag Procg" Sprgr-Vrlag Brl 997 Srag G Iroduco o Appld Mahmac Wllly-Cambrdg Pr Wllly 986 Gly J Advacd Modr Egrg Mahmac Addo-Wly 993 Churchll R V ourr Sr ad Boudary-Valu Problm McGraw-Hll 963

Análise de Sistemas Lineares

Análise de Sistemas Lineares Aáli d Sima iar Dvolvido plo Prof Dr Emilo Rocha d Olivira, EEEC-UFG, 6 Traformada d aplac A ididad d Eulr dfi uma rlação r o ial xpocial o iai oidai a forma ± j = co ( ) ± j ( ) N cao, é dfiido como a

Leia mais

TRANSFORMADA DE LAPLACE- PARTE I

TRANSFORMADA DE LAPLACE- PARTE I TRNSFORMD DE LLE- RTE I Eor. d Barro. INTRODUÇÃO odmo dfiir a Traformada d Laplac como uma opração mamáica qu covr uma fução d variávl ral m uma fução d variávl complxa: Od, F f d i f é uma fução ral da

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire Uivridad Salvador UNIFACS Curo d Egharia Méodo Mmáico Aplicado / Cálculo Avaçado / Cálculo IV Profa: Ilka Rouça Frir A Traformada d Laplac Txo : Irodução. Dfiição. Codiçõ d Exiêcia. Propridad. Irodução

Leia mais

Capítulo 5 Transformadas de Fourier

Capítulo 5 Transformadas de Fourier Capíulo 5 Trasformadas d Fourir 5. Aális da composição d sismas aravés da rsposa m frquêcia 5. Trasformadas d Fourir propridads Capíulo 5 Trasformadas d Fourir 5. Aális da composição d sismas aravés da

Leia mais

1. A TRANSFORMADA DE LAPLACE

1. A TRANSFORMADA DE LAPLACE Equaçõ Difrciai - Traformada d Laplac A TRANSFORMADA DE LAPLACE Dfiição: Sja f() uma fução ral dfiida para > Eão a raformada d Laplac d f(), doada por L [ ( ) ] f é dfiida por: L [ f ( ) ] F( ) f( )d,

Leia mais

3. TRANSFORMADA DE LAPLACE. Prof. JOSÉ RODRIGO DE OLIVEIRA

3. TRANSFORMADA DE LAPLACE. Prof. JOSÉ RODRIGO DE OLIVEIRA 3 TRNSFORMD DE LPLCE Prof JOSÉ RODRIGO DE OLIVEIR CONCEITOS BÁSICOS Númro complxo: ond α β prncm ao nº rai Módulo fa d um númro complxo Torma d Eulr: b a an a co co n n Prof Joé Rodrigo CONCEITOS BÁSICOS

Leia mais

NÚMEROS COMPLEXOS. Podemos definir o conjunto dos números complexos como sendo o conjunto dos números escritos na forma:

NÚMEROS COMPLEXOS. Podemos definir o conjunto dos números complexos como sendo o conjunto dos números escritos na forma: NÚMEROS COMPLEXOS DEFINIÇÃO No cojuto dos úmros ras R, tmos qu a a a é smpr um úmro ão gatvo para todo a Ou sja, ão é possívl xtrar a ra quadrada d um úmro gatvo m R Portato, podmos dfr um cojuto d úmros

Leia mais

Tópicos Especiais em Identificação Estrutural. Representação de sistemas mecânicos dinâmicos

Tópicos Especiais em Identificação Estrutural. Representação de sistemas mecânicos dinâmicos Tópicos Espciais m Idiicação Esruural Rprsação d sismas mcâicos diâmicos O problma diro... rada Sisma rsposa rsposa y() rada x() Problma diro: rada x() Cohcimo + rsposa do sisma y() O problma ivrso...

Leia mais

y z CC2: na saída do reator: z = 1: 0. Pe dz Os valores característicos do problema são as raízes de: Da Pe 0 Pe Pe

y z CC2: na saída do reator: z = 1: 0. Pe dz Os valores característicos do problema são as raízes de: Da Pe 0 Pe Pe COQ-86 Méodos Nuércos para Ssas Dsrbuídos Explos Ilusravos d EDO co Problas d Valors o Cooro -) Modlo sacoáro do raor co dsprsão soérco Coo o obvo ds sudo d caso é lusrar o ovo procdo avalar o su dspo

Leia mais

Sistemas e Sinais (LEIC) Resposta em Frequência

Sistemas e Sinais (LEIC) Resposta em Frequência Sismas Siais (LEIC Rsposa m Frquêcia Carlos Cardira Diaposiivos para acompahamo da bibliografia d bas (Srucur ad Irpraio of Sigals ad Sysms, Edward A. L ad Pravi Varaiya Sumário Dfiiçõs Sismas sm mmória

Leia mais

Análise de Processos ENG 514

Análise de Processos ENG 514 áli d Proco NG 54 apítulo 5 Modlo do Tipo trada-saída Pro. Édlr Li d lbuqurqu Julho d 4 Forma d Rprtação d Modlo Matmático Fomológico Modlo dcrito por quaçõ Dirciai Modlo a orma d paço d tado Modlo do

Leia mais

Amostragem de sinais contínuos

Amostragem de sinais contínuos Amoragm inai conínuo 0.8 0.6 0.4 0. 0 0 0. 0. 0.3 0.4 0.5 0.6 0.7 0.8 0.9 SS MIEIC 008/009 Programa SS Sinai Sima aula Sima Linar Invarian aula Análi Fourir (mpo conínuo 3 aula Análi Fourir (mpo icro aula

Leia mais

( )( ) ( ) 2 2 ( ) ( ) 2. Questões tipo exame. Pág θ =. θ =, logo. Portanto, 1.1. ( ) 2. = θ 4.º Q, ou. = θ, tem-se.

( )( ) ( ) 2 2 ( ) ( ) 2. Questões tipo exame. Pág θ =. θ =, logo. Portanto, 1.1. ( ) 2. = θ 4.º Q, ou. = θ, tem-se. + 8...... Sdo Arg( ) θ, tm-s sja, taθ θ.º quadrat, tão Portato,. Pág. 8 taθ θ.º Q, ou θ. + + b ( + ) + b( + ) + c b c + + + + c + + + b b c b+ b+ c ( b ) b+ c+ b+ c b c + b b c b Portato, b c.. + S Arg(

Leia mais

Leonardo da Vinci ( ), artista, engenheiro e cientista italiano

Leonardo da Vinci ( ), artista, engenheiro e cientista italiano ormas dos rabalhos Vrtuas Itrodução Loardo da Vc (45-59), artsta, ghro ctsta talao Aplcou oçõs do prcípo dos dslocamtos vrtuas para aalsar o qulíbro d sstmas d polas alavacas PEF-40 Prof. João Cyro Adré

Leia mais

Sinais de Potência. ( t) Período: Frequência fundamental: f = T T

Sinais de Potência. ( t) Período: Frequência fundamental: f = T T Siais d Poêcia P lim ( ) d < Siais Priódicos ( ) ( + ) com Ζ ( ) Príodo: P Frquêcia udamal: ( ) d Exmplos Sial cosa ( ) Sial siusoidal Fas ula Im si θ c Fórmulas d Eulr xp ± jθ cosθ ± j si ( ) θ jθ θ cosθ

Leia mais

(Propagation and Spread of Wave Packets) Departamento de Fsica -Fundac~ao Universidade Estadual de Maringa

(Propagation and Spread of Wave Packets) Departamento de Fsica -Fundac~ao Universidade Estadual de Maringa Rva Bralra d Eo d Fca, vol. 19, ọ, juo, 1997 01 Propagac~ao Alargamo d Paco d Oda (Propagao ad Sprad of Wav Pack) E. K. Lz, L. C. Malacar R. S. Md Dparamo d Fca -Fudac~ao Uvrdad Eadual d Marga Av. Colombo,

Leia mais

TÓPICOS. Teoria dos residuos. Classificação de singularidades. Teorema dos resíduos.

TÓPICOS. Teoria dos residuos. Classificação de singularidades. Teorema dos resíduos. Not bm a ltura dsts apotamtos ão dspsa d modo algum a ltura atta da bblograa prcpal da cadra hama-s à atção para a mportâca do trabalho pssoal a ralar plo aluo rsolvdo os problmas aprstados a bblograa

Leia mais

XXXI Olimpíada Brasileira de Matemática GABARITO Primeira Fase

XXXI Olimpíada Brasileira de Matemática GABARITO Primeira Fase XXXI Olimpíada Brasilira d Matmática GABARITO Primira Fas Soluçõs Nívl Uivrsitário Primira Fas PROBLEMA ( x) a) A drivada da fução f é f ( x) =, qu s aula apas para x =, sdo gativa para x < positiva para

Leia mais

TRANSFORMADA DE LAPLACE: ALGUMAS APLICAÇÕES

TRANSFORMADA DE LAPLACE: ALGUMAS APLICAÇÕES UNIVERSIDADE FEDERAL DE SANTA CATARINA Programa d Pó-Graduação m Mamáica Aoio Luiz Schalaa Pachco TRANSFORMADA DE LAPLACE: ALGUMAS APLICAÇÕES Moografia ubmida à Uivridad Fdral d Saa Caaria para obção do

Leia mais

4. Análise de Sistemas de Controle por Espaço de Estados

4. Análise de Sistemas de Controle por Espaço de Estados Sisma para vrificação Lógica do Corolo Dzmro 3 4. ális d Sismas d Corol por Espaço d Esados No capiulo arior, vimos qu a formulação d um Prolma Básico d Corolo Ópimo Liar, ra cosidrado um sisma diâmico

Leia mais

Equações Diferenciais Lineares

Equações Diferenciais Lineares Equaçõs Diriais Liars Rordmos a orma gral d uma quação dirial liar d ordm a d d d d a a a, I d d m qu as uçõs a i são idpdts da variávl. S, a quação diz-s liar homogéa. Caso otrário, diz-s liar omplta.

Leia mais

Análise de Temperaturas em uma Barra Uniforme de Aço-Carbono com o Método Explícito

Análise de Temperaturas em uma Barra Uniforme de Aço-Carbono com o Método Explícito Aáls d mprauras m uma Barra Uform d Aço-Carboo com o Méodo Eplíco Jorg Corrêa d Araújo Rosa García Márquz Rsumo Nss rabalho é dsvolvda uma solução umérca por dfrças fas com o méodo plíco para a codução

Leia mais

Questão (a) 3.(b) 3.(c) 3.(d) 4.(a) 4.(b) 5.(a) 5.(b) 6 Cotação

Questão (a) 3.(b) 3.(c) 3.(d) 4.(a) 4.(b) 5.(a) 5.(b) 6 Cotação Faculdad d Ciêcias Exatas da Egharia PROVA DE AVALIAÇÃO DE CONHECIMENTOS E COMPETÊNCIAS PARA ADMISSÃO AO ENSINO SUPERIOR PARA MAIORES DE ANOS - 07 Matmática - 4/06/07 Atção: Justifiqu os raciocíios utilizados

Leia mais

Capítulo 8. (d) 1) 0,5 2) 1,0 3) 0,5 4) 0 5) 2/3 6) 1/2. Problema 02. (a) (b)

Capítulo 8. (d) 1) 0,5 2) 1,0 3) 0,5 4) 0 5) 2/3 6) 1/2. Problema 02. (a) (b) Capítulo Problma. Ω{C C C C C5 C R R R R R5 R} Od: Ccara Rcoroa 5 P 5 5 P 7 7 7 7 7 7 c Sm pos P j P P j j d 5 5 5 / / Problma. P 5 P 5 9 5 7 9 c Não pos P P P 9 d P / P / 5 P 5 P 5 Problma. Prchdo os

Leia mais

Capítulo 5 Transformadas de Fourier

Capítulo 5 Transformadas de Fourier Capítulo 5 Trasformadas d Fourir 5. Aális da composição d sistmas através da rsposta m frquêcia 5.2 Trasformadas d Fourir propridads Capítulo 5 Trasformadas d Fourir 5. Aális da composição d sistmas através

Leia mais

NOTA: ESCREVA AS RESPOSTAS COMO FRAÇÕES OU COM 4 CASAS DECIMAIS NOTA 2: O FORMULÁRIO ESTÁ NO FINAL DA PROVA

NOTA: ESCREVA AS RESPOSTAS COMO FRAÇÕES OU COM 4 CASAS DECIMAIS NOTA 2: O FORMULÁRIO ESTÁ NO FINAL DA PROVA IND 5 Ifrêca statístca Smstr 7. Tst 3//7 Nom: NOTA: SCRVA AS RSPOSTAS COMO FRAÇÕS OU COM 4 CASAS DCIMAIS NOTA : O FORMULÁRIO STÁ NO FINAL DA PROVA Problma (5 potos A quatdad d rfrgrat uma garrafa PT d

Leia mais

2 Técnica de Transmissão OFDM

2 Técnica de Transmissão OFDM 5 2 écca ramão OFD Na ára lcomucaçõ, ova aplcaçõ ão urgo como, por xmplo, o volvmo a ramão rrr V com moulação gal, o qu ca um gra compromo r a axa b ramo a largura baa. Para o aua ma mulmía, a axa b varam

Leia mais

Sinais e Sistemas. Env. CS1 Ground Revolute. Sine Wave Joint Actuator. Double Pendulum Two coupled planar pendulums with

Sinais e Sistemas. Env. CS1 Ground Revolute. Sine Wave Joint Actuator. Double Pendulum Two coupled planar pendulums with -4-6 -8-2 -22-24 -26-28 -3-32 Frqucy (khz) Hammig kaisr Chbyshv Siais Sismas Powr Spcral Dsiy Ev B F CS CS2 B F CS Groud Rvolu Body Rvolu Body Powr/frqucy (db/hz) Si Wav Joi Acuaor Joi Ssor Rvolu.5..5.2.25.3.35.4.45.5-34

Leia mais

IND 1115 Inferência Estatística Semestre turma B Teste 2 10/06/2005 GABARITO

IND 1115 Inferência Estatística Semestre turma B Teste 2 10/06/2005 GABARITO IND 5 Ifrêca statístca Smstr 5. turma B Tst /6/5 GABARITO PROBLMA ( potos m caa qustão abao, qu s a afrmatva é vrara ou falsa (marqu um a altratva corrta. Não é cssáro justfcar a sua rsposta. Vraro Falso

Leia mais

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ PR UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Prof Mc ARMANDO PAULO DA SILVA Prof Mc JOSÉ DONIZETTI DE LIMA INTEGRAIS IMPRÓPRIAS A TRANSFORMADA DE LAPLACE g ()d = lim R R g()d o limit it Qudo o limit it

Leia mais

Análise de regressão : uma introdução à econometria

Análise de regressão : uma introdução à econometria Uvrsdad d São Paulo Bbloca Dgal da Produção Ilcual - BDPI Dparamo d Ecooma, Admsração Socologa - ESALQ/LES Lvros Capíulos d Lvros - ESALQ/LES 6 Aáls d rgrssão : uma rodução à coomra hp://www.producao.usp.br/hadl/bdpi/4866

Leia mais

que representa uma sinusoide com a amplitude modulada por uma exponencial. Com s real, tem-se,

que representa uma sinusoide com a amplitude modulada por uma exponencial. Com s real, tem-se, Curo d Engnharia Elcrónica d Compuador - Elcrónica III Frquência Complxa rvião n Conidr- a xprão, σ v V co qu rprna uma inuoid com a ampliud modulada por uma xponncial. Com ral, m-, n σ>0 a ampliud d v

Leia mais

= n + 1. a n. n 1 =,,,,,, K,,K. K descreve uma sequência finita.

= n + 1. a n. n 1 =,,,,,, K,,K. K descreve uma sequência finita. DICIPINA: CÁCUO A CONTEÚDO: EQUÊNCIA PROFEORA: NEYVA ROMEIRO PERÍODO: BIMETRE EQUÊNCIA Um squêc um fução f cujo domío o cojuo dos ros posvos su gráfco o plo y do po, ou d, squêc um cojuo d prs orddos do

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Equaçõs Dfrcas Ordáras ISIG Eg. d Ssmas Dcsoas Eg. d Iformáca Vasco A. Smõs Aáls Ifsmal III Vasco Smõs Aáls Ifsmal III Vasco Smõs ÍNDICE ag.. Irodução. Equaçõs Dfrcas d rmra Ordm. Equaçõs dfrcas d varávs

Leia mais

C5 C O termo geral do desenvolvimento de A( x ) é. Assim, vem: Número de casos possíveis: 6 C

C5 C O termo geral do desenvolvimento de A( x ) é. Assim, vem: Número de casos possíveis: 6 C Tst d avalação Pág Estm duas stuaçõs, a sabr: A Crsta ão va, ortato, o Atóo também ão va Os quatro blhts srão dstrbuídos los rstats quatro jovs, assm, o úmro d gruos é gual a um A Crsta va; os rstats três

Leia mais

sen( x h) sen( x) sen xcos h sen hcos x sen x

sen( x h) sen( x) sen xcos h sen hcos x sen x MAT00 Cálculo Difrcial Itgral I RESUMO DA AULA TEÓRICA Livro do Stwart: Sçõs 3., 3.4 3.8. DEMONSTRAÇÕES Nssa aula srão aprstadas dmostraçõs, ou sboços d dmostraçõs, d algus rsultados importats do cálculo

Leia mais

Transformada de Laplace. Prof. Eng. Antonio Carlos Lemos Júnior

Transformada de Laplace. Prof. Eng. Antonio Carlos Lemos Júnior Trormd d plc Pro. Eg. oio Crlo mo Júior GEND Diição d Trormd d plc Trormd d plc d lgu ii Propridd d Trormd d plc Exrcício Corol d Sm Mcâico Trormd d plc Obivo: O obivo d ção é zr um irodução à Trormd d

Leia mais

3. VARIÁVEIS ALEATÓRIAS

3. VARIÁVEIS ALEATÓRIAS 3. VARIÁVEIS ALEATÓRIAS 0 Varávl alatóra Ω é o spaço amostral d um prmnto alatóro. Uma varávl alatóra,, é uma função qu atrbu um númro ral a cada rsultado m Ω. Emplo. Rtra-s, ao acaso, um tm produzdo d

Leia mais

GABARITO DA SEGUNDA PROVA DE PTC-2433 TEORIA DAS COMUNICAÇÕES II - 19/10/2015

GABARITO DA SEGUNDA PROVA DE PTC-2433 TEORIA DAS COMUNICAÇÕES II - 19/10/2015 GABARITO DA EGUDA PROVA DE PTC-4 TEORIA DA COMUICAÇÕE II - 9// a. Qustão (, oto Dtrm a míma rlação (/ d um caal tlfôco (bada d Hz ara rmtr a trasmssão cofávl d. bts/s. Comt su rsultado. D C Blog ( + vm

Leia mais

sendo classificado como modelo de primeira ordem com (p) variáveis independentes.

sendo classificado como modelo de primeira ordem com (p) variáveis independentes. RGRSSAO MULTIPLA - comlmtação Itrodução O modlo lar d rgrssão múltla é da forma: sdo classfcado como modlo d rmra ordm com () varávs ddts. od: é a varávl d studo (ddt, xlcada, rsosta ou dóga); é o cofct

Leia mais

CÁLCULO I 2º Semestre 2011/2012. Duração: 1 hora e 30 minutos

CÁLCULO I 2º Semestre 2011/2012. Duração: 1 hora e 30 minutos NOVA SCHOOL OF BSINESS AND ECONOMICS CÁLCLO I º Smsr / TESTE INTERMÉDIO Tópi d rsolução Abril Duração: ora miuos Não é prmiido o uso d calculadoras. Não pod dsagraar as olas do uciado. Rspoda d orma jusiicada

Leia mais

Definições. 3. Misturadores 3.1. Introdução Objectivo específico

Definições. 3. Misturadores 3.1. Introdução Objectivo específico . Msuradors.. rodução... Objco spcífco fçõs rasposção a frquêca d u sal co foração f para ua frquêca f s para aproar a lhor fcêca da rasssão d sas ala frquêca spaço lr a rádo rrsr ou a saél ou guada a

Leia mais

Este tipo de fundação tem como campo de aplicação as seguintes situações

Este tipo de fundação tem como campo de aplicação as seguintes situações aura m Eghara Cvl Dpla d Fudaçõ Opção d Eruura. Fudaçõ dra.. Irodução fudaçõ dra podm r d dvro po ) Eaa; ) Poço d fudação; ) ro-aa; v) E.... Eaa... Irodução E po d fudação m omo ampo d aplação a gu uaçõ

Leia mais

1 O Pêndulo de Torção

1 O Pêndulo de Torção Figura 1.1: Diagrama squmático rprsntando um pêndulo d torção. 1 O Pêndulo d Torção Essa aula stá basada na obra d Halliday & Rsnick (1997). Considr o sistma físico rprsntado na Figura 1.1. Ess sistma

Leia mais

Oscilações amortecidas

Oscilações amortecidas Oscilaçõs amortcidas Uso d variávl complxa para obtr a solução harmônica ral A grand vantagm d podr utilizar númros complxos para rsolvr a quação do oscilador harmônico stá associada com o fato d qu ssa

Leia mais

Estatística Clássica

Estatística Clássica Estatística Clássica As rgias das difrts partículas do sistma (um istat particular s distribum d acordo com uma fução distribuição d probabilidad distribuição d Boltzma qu dpd da tmpratura T. Um xmplo

Leia mais

CAPÍTULO 3. Exercícios é contínua, decrescente e k 2 positiva no intervalo [ 3, [. De ln x 1 para x 3, temos. dx 3.

CAPÍTULO 3. Exercícios é contínua, decrescente e k 2 positiva no intervalo [ 3, [. De ln x 1 para x 3, temos. dx 3. CAPÍTULO Exrcícios.. b) Sj séri. A fução f( x) é cotíu, dcrsct l x l x positiv o itrvlo [, [. D l x pr x, tmos dx dx. x l x x dx x covrgt Þ l x covrgt. l d) Sj séri 0 m [ 0, [. Tmos: x 4. A fução f( x)

Leia mais

CÁLCULO I 2º Semestre 2011/2012. Duração: 2 horas e 15 minutos

CÁLCULO I 2º Semestre 2011/2012. Duração: 2 horas e 15 minutos NOVA SCHOOL OF BSINESS AND ECONOMICS CÁLCLO I º Smstr / CORRECÇÃO DO EXAME ª ÉPOCA Maio Duração: horas miutos Não é prmitido o uso d aluladoras. Não pod dsagraar as olhas do uiado. Rspoda d orma justiiada

Leia mais

ESTE FORMULÁRIO É SOMENTE PARA CONSULTA. NÃO O UTILIZE COMO RASCUNHO.

ESTE FORMULÁRIO É SOMENTE PARA CONSULTA. NÃO O UTILIZE COMO RASCUNHO. Uvrdd Tcológc drl do Prá DAMAT Dprmo Acdêmco d Mmác Dcpl: álculo Drcl grl 4 Proor: Rudmr u Nó ORMUÁRO ETE ORMUÁRO É OMENTE PARA ONUTA. NÃO O UTZE OMO RAUNHO.. ér d ourr/oc d ourr b co d b d co d. A orm

Leia mais

Representação de Sistemas Dinâmicos. Profa. Vilma A. Oliveira USP São Carlos Março de 2011

Representação de Sistemas Dinâmicos. Profa. Vilma A. Oliveira USP São Carlos Março de 2011 Rprsação d Ssmas Dâmcos Smáro Profa Vlma A Olvra USP São Carlos Março d Ssmas físcos modlos Dscrção rada-saída Eqaçõs d ssmas dâmcos Ssmas rlaados, casas lars dscros por opradors 3 Igral d sprposção 3

Leia mais

MATEMÁTICA. QUESTÃO 1 De quantas maneiras n bolas idênticas podem ser distribuídas em três cestos de cores verde, amarelo e azul?

MATEMÁTICA. QUESTÃO 1 De quantas maneiras n bolas idênticas podem ser distribuídas em três cestos de cores verde, amarelo e azul? (9) - www.litcampias.com.br O ELITE RESOLVE IME 8 TESTES MATEMÁTICA MATEMÁTICA QUESTÃO D quatas mairas bolas idêticas podm sr distribuídas m três cstos d cors vrd, amarlo azul? a) b) d) ( )! ) Rsolução

Leia mais

7 Solução de um sistema linear

7 Solução de um sistema linear Toria d Conrol (sinops 7 Solução d um sisma linar J. A. M. Flipp d Souza Solução d um sisma linar Dfinição 1 G(,τ mariz cujos lmnos g ij (,τ são as rsposas na i ésima saída ao impulso aplicado na j ésima

Leia mais

Limites Questões de Vestibulares ( )( ) Solução: Primeiro Modo (Fatorando a fração usando BriotxRuffini): lim. Segundo Modo: lim

Limites Questões de Vestibulares ( )( ) Solução: Primeiro Modo (Fatorando a fração usando BriotxRuffini): lim. Segundo Modo: lim Limis Qusõs d Vsibulars 7. (AMAN-RJ) Calculado o i, coramos: 9 7 a) b) c) d) ) 9 7 Solução: Primiro Modo (Faorado a ração usado BrioRuii): 9 7., qu é uma idrmiação. Faorado a ução, umrador 9. 7 domiador

Leia mais

r R a) Aplicando a lei das malhas ao circuito, temos: ( 1 ) b) A tensão útil na bateria é: = 5. ( 2 ) c) A potência fornecida pela fonte é: .

r R a) Aplicando a lei das malhas ao circuito, temos: ( 1 ) b) A tensão útil na bateria é: = 5. ( 2 ) c) A potência fornecida pela fonte é: . Aula xploraóra 07. Qusão 0: Um rssor d Ω é lgado aos rmnas d uma bara com fm d 6V rssênca nrna d Ω. Drmn: (a) a corrn; (b) a nsão úl da bara (so é, V V ); a b (c) a poênca forncda pla fon da fm ; (d) a

Leia mais

Princípios de Telecomunicações

Princípios de Telecomunicações UNVERSDADE FEDERAL DE PERNAMBUO ro d cologi Gociêcis urso d Eghri Eléric Elrôic ODE Grupo d Psquis m omuicçõs Pricípios d lcomuicçõs élio MAGALÃES DE OLVERA, BEE, MEE, Docur, MEEE Lis d Exrcício 9 d Novmbro

Leia mais

Dinâmica Estocástica Aula 7 Ifusp, setembro de Tânia - Din Estoc

Dinâmica Estocástica Aula 7 Ifusp, setembro de Tânia - Din Estoc Diâmica Estocástica Aula 7 Iusp, stmbro d 016 Tâia - Di Estoc - 016 1 . Discrtização da quação d Lagvi. Obtção da quação d Fokkr-Plack Tâia - Di Estoc - 016 Discrtização da quação d Lagvi A orma discrtizada

Leia mais

Função Exponencial: Conforme já vimos, o candidato natural à função exponencial complexa é dado pela função. f z x iy f z e cos y ie sen y.

Função Exponencial: Conforme já vimos, o candidato natural à função exponencial complexa é dado pela função. f z x iy f z e cos y ie sen y. Funçõs Elmntars Função Exponncial: Conform já vimos, o candidato natural à função xponncial complxa é dado pla função Uma v qu : : ( ) x x f x i f cos i sn x f, x. E uma gnraliação para sr útil dv prsrvar

Leia mais

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 07. Prof. Dr. Marco Antonio Leonel Caetano

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 07. Prof. Dr. Marco Antonio Leonel Caetano MESTRADO EM MACROECONOMIA FINANÇAS Disiplina d Compuação Aula 7 Prof. Dr. Maro Anonio Lonl Caano Guia d Esudo para Aula 7 Vors Linarmn Indpndns - Vrifiação d vors LI - Cálulo do Wronsiano Equaçõs Difrniais

Leia mais

Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I. Ano Lectivo º Semestre

Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I. Ano Lectivo º Semestre aculdad d Ecoomia Uivrsidad Nova d Lisboa EXAME DE CÁLCULO I Ao Lctivo 009-0 - º Smstr Eam ial d ª Época m d Jairo d 00 Duração: horas 0 miutos É proibido usar máquias d calcular ou tlmóvis Não tha o su

Leia mais

Pág Circunferência: ( ) ( ) 5.4. Circunferência: ( ) ( ) A reta r passa nos pontos de coordenadas (0, 1) e (2, 2).

Pág Circunferência: ( ) ( ) 5.4. Circunferência: ( ) ( ) A reta r passa nos pontos de coordenadas (0, 1) e (2, 2). Númros complxos Atvdad d dagnóstco AB + + + AB ( ) ( ) ( ) + + + 9+ A, ; B, ; P x, y Pág AP BP x+ y x + y + x + x + + y x + x x + + y + x + yx y x A bsstr dos quadrants ímpars é a mdatr d [AB] B(, ) ;

Leia mais

Ondas Electromagnéticas

Ondas Electromagnéticas Faculdad d ghaa Odas lcomagécas Op - MIB 007/008 Pogama d Ópca lcomagsmo Faculdad d ghaa Aáls Vcoal (vsão) aulas lcosáca Magosáca 8 aulas Odas lcomagécas 6 aulas Ópca Goméca 3 aulas Fbas Ópcas 3 aulas

Leia mais

Análise de Sistemas Lineares

Análise de Sistemas Lineares nál Sma Lnar Dnvolvo plo Prof. Dr. Emlon Rocha Olvra, EEE-UFG, 6. Propra a ranformaa Laplac Propra a convolção. propra a convolção no omíno o mpo m ma vaa aplcação na anál o ma lnar. Dao o na () h(), cja

Leia mais

Sistemas: Propriedades

Sistemas: Propriedades SS-TSS 6 Sima: Propridad. Conidrando o ima cuja função aprna (x() nrada y() aíd, drmin quai da guin propridad vrificam: i) mmória; ii) invariância no mpo; iii) linaridad; iv) caualidad; v) abilidad. (

Leia mais

Análise Matemática IV

Análise Matemática IV Anális Matmática IV Problmas para as Aulas Práticas Smana 7 1. Dtrmin a solução da quação difrncial d y d t = t2 + 3y 2 2ty, t > 0 qu vrifica a condição inicial y(1) = 1 indiqu o intrvalo máximo d dfinição

Leia mais

Processos Aleatórios e Ruído. Revisões Estatística. cov X X. Caso geral. Momentos centrais de ordem n. Momento central de ordem 2 é a variância

Processos Aleatórios e Ruído. Revisões Estatística. cov X X. Caso geral. Momentos centrais de ordem n. Momento central de ordem 2 é a variância vsõs Esaísa Varávl alaóra uçã d uçã dsdad d Mms dsrbuçã umulava d Ordm Mms mas mpras sã prbabldad E [ ] x ( x ) ( x ) P ( x ) ( x ) ( x ) dx - méda (valr sprad) µ E[] - valr quadrá méd E[ ] d dx lmuaçõs

Leia mais

Estudo da interação genótipo ambiente sobre características de crescimento de bovinos de corte utilizando-se inferência bayesiana 1

Estudo da interação genótipo ambiente sobre características de crescimento de bovinos de corte utilizando-se inferência bayesiana 1 Rva Bralra d Zooca 6 Socdad Bralra d Zooca ISSN mpro: 1516-3598 ISSN o-l: 186-99 www.bz.org.br R. Bra. Zooc., v.35,.6, p.75-84, 6 Eudo da ração gópo amb obr caracríca d crcmo d bovo d cor ulzado- frêca

Leia mais

Efeito da pressão decrescente da atmosfera com o aumento da altitude

Efeito da pressão decrescente da atmosfera com o aumento da altitude Efio da prssão dcrscn da amosfra com o aumno da aliud S lançarmos um projéil com uma vlocidad inicial suficinmn ala l aingirá aliuds ond o ar é mais rarfio do qu próximo à suprfíci da Trra Logo a rsisência

Leia mais

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5 P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5 GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Agrupando num bloco a Ana, a Bruna, o Carlos, a Diana o Eduardo, o bloco os rstants st amigos prmutam

Leia mais

Transformadas ortogonais e processamento de sinais não estacionários

Transformadas ortogonais e processamento de sinais não estacionários Transformadas ortogonais procssamnto d sinais não stacionários Transformaçõs ortogonais Considr um sinal discrto x(n) com amostras: χ (k)= x (n)ϕ ( k, n) n= 0 Transformada dirta, quação d anális, dcomposição.

Leia mais

Questão. Sinais periódicos e não periódicos. Situação limite. Transformada de Fourier de Sinais Contínuos

Questão. Sinais periódicos e não periódicos. Situação limite. Transformada de Fourier de Sinais Contínuos Qusão Srá possívl rprsnar sinais não priódicos como soma d xponnciais? ransformada d Fourir d Sinais Conínuos jorg s. marqus, jorg s. marqus, Sinais priódicos não priódicos Siuação limi Um sinal não priódico

Leia mais

Novo Espaço Matemática A 12.º ano Proposta de Teste [janeiro ]

Novo Espaço Matemática A 12.º ano Proposta de Teste [janeiro ] Novo Espaço Matmática A.º ao Proposta d Tst [jairo - 08] Nom: Ao / Turma: N.º: Data: / / Não é prmitido o uso d corrtor. Dvs riscar aquilo qu prtds qu ão sja classificado. A prova iclui um formulário.

Leia mais

10. EXERCÍCIOS (ITA-1969 a ITA-2001)

10. EXERCÍCIOS (ITA-1969 a ITA-2001) . EXERCÍCIOS (ITA-969 a ITA-) - (ITA - 969) Sjam f() = + g() = duas funçõs rais d variávl ral. Então (gof)(y ) é igual a: a) y y + b) (y ) + c) y + y d) y y + ) y - (ITA -97) Sjam A um conjunto finito

Leia mais

5.10 EXERCÍCIO pg. 215

5.10 EXERCÍCIO pg. 215 EXERCÍCIO pg Em cada um dos sguints casos, vriicar s o Torma do Valor Médio s aplica Em caso airmativo, achar um númro c m (a, b, tal qu (c ( a - ( a b - a a ( ; a,b A unção ( é contínua m [,] A unção

Leia mais

AULA 9 CONDUÇÃO DE CALOR EM REGIME TRANSITÓRIO SÓLIDO SEMI-INFINITO

AULA 9 CONDUÇÃO DE CALOR EM REGIME TRANSITÓRIO SÓLIDO SEMI-INFINITO Noas d aula d PME 336 Procssos d ransfrênca d Calor 66 AULA 9 CONDUÇÃO DE CALOR EM REGIME RANSIÓRIO SÓLIDO SEMI-INFINIO Fluo d Calor num Sóldo Sm-Infno Na aula anror fo sudado o caso da condução d calor

Leia mais

Regra dos Trapézios Composta i :

Regra dos Trapézios Composta i : FP_Ex1: Calcul um valor aproximado do itgral I = / 0 x si( x) dx com um rro d trucatura, ão suprior, m valor absoluto a 0.01 usado: a) a rgra dos Trapézios a rgra d Simpso (composta) Rgra dos Trapézios

Leia mais

MEEC Mestrado em Engenharia Electrotécnica e de Computadores. MCSDI Modelação e Controlo de Sistemas Dinâmicos. Exercícios de.

MEEC Mestrado em Engenharia Electrotécnica e de Computadores. MCSDI Modelação e Controlo de Sistemas Dinâmicos. Exercícios de. EEC rado Engnharia Elroénia d Copuador CDI odlação Conrolo d ia Dinâio Exríio d Função Driiva Conuno d xríio laborado plo don Joé Tnriro ahado JT, anul ano ilva, Víor Rodrigu da Cunha VRC Jorg Erla da

Leia mais

TÓPICOS. Sinais contínuos e sinais discretos. Função impulso unitário discreto.

TÓPICOS. Sinais contínuos e sinais discretos. Função impulso unitário discreto. Not bm: a litura dsts apotamtos ão dispsa d modo algum a litura atta da bibliografia pricipal da cadira hama-s a atção para a importâcia do trabalho pssoal a ralizar plo aluo rsolvdo os problmas aprstados

Leia mais

DESDOBRAMENTO DA FUNÇÃO QUALIDADE - QFD UM MODELO CONCEITUAL APLICADO EM TREINAMENTO

DESDOBRAMENTO DA FUNÇÃO QUALIDADE - QFD UM MODELO CONCEITUAL APLICADO EM TREINAMENTO G 996 DDBM D FUÇÃ QUDD QFD UM MD U D M M h v, M M h h, hd Jã B, M F gh jbá F / D çã D v. B,.0 hh jbá MG 700000 b: h h f g h f y, w, h k f g, whh h h. h Qy F Dy ( QFD ) hq g b f g h h w. Fy, QFD y hw g

Leia mais

Teoria de Controle (sinopse) 4 Função de matriz. J. A. M. Felippe de Souza

Teoria de Controle (sinopse) 4 Função de matriz. J. A. M. Felippe de Souza Toria d Conrol (sinops) 4 Função d mariz J. A. M. Flipp d Souza Função d mariz Primiramn vamos dfinir polinómio d mariz. Dfinição: Polinómio d mariz (quadrada) Sja p(λ)um polinómio m λd grau n (finio),

Leia mais

CADERNO 1. (É permitido o uso de calculadora gráfica) N.º de possibilidades de representar os 4 algarismos ímpares e a sequência de pares: 5!

CADERNO 1. (É permitido o uso de calculadora gráfica) N.º de possibilidades de representar os 4 algarismos ímpares e a sequência de pares: 5! Novo Espaço Matmática A º ao Proposta d Rsolução [jairo - 08] Algarismos ímpars:,,, 7, 9 Algarismos pars:, 4, 6, 8 CADERNO (É prmitido o uso d calculadora gráfica) Nº d possibilidads para o algarismo das

Leia mais

( C) lim g( x) 2x 4 0 ( D) lim g( x) 2x

( C) lim g( x) 2x 4 0 ( D) lim g( x) 2x AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha d Trabalho º6 - Fuçõs - º ao Eams 0 a 04. Na figura stá rprstada um rfrcial o.. Oy, part do gráfico d uma fução g, d domíio 3,. A rta d quação y 4 é assítota do

Leia mais

1 Eliminação gaussiana com pivotamento parcial

1 Eliminação gaussiana com pivotamento parcial 1 Elimiação gaussiaa com pivotamto parcial Exmplo sm pivotamto parcial Costruimos a matriz complta: 0 2 2 1 1 1 6 0 2 2 1 2 1 1 1 1 0 2 2 1 1 1 6 1 2 0 0 2 0 6 x y z = 9 6 0 2 2 0 1 0 3 1 0 0 2 0 2 0 6

Leia mais

ORBITAIS EM ÁTOMOS E. André Bathista Instituto de Física de São Carlos Universidade de São Paulo

ORBITAIS EM ÁTOMOS E. André Bathista Instituto de Física de São Carlos Universidade de São Paulo ORBITAIS EM ÁTOMOS E MOLÉCULAS Adré Bathista Istituto d Física d São Carlos Uivrsidad d São Paulo Torias º Toria da Coordação d Wrr. É a mais simpls das torias d orbitais atômicos molculars º Toria dos

Leia mais

RESPOSTA DO SISTEMA. Resposta em Regime Transitório Resposta em Regime Permanente

RESPOSTA DO SISTEMA. Resposta em Regime Transitório Resposta em Regime Permanente RESPOSTA DO SISTEMA Rsps m Rgm Trsór Rsps m Rgm Prm Exmpls d ssms d prmr rdm Tqu d águ crld pr um bó Tx d vrçã lur é prprcl (H-h) dh k( H h) k h H ( ) Ssm RC, cpcr m sér cm rssr dv C RC ( V V C ) V C RC

Leia mais

Ondas - 2EE 2003 / 04

Ondas - 2EE 2003 / 04 Ondas - 3 / 4 1 Inodução 1.1 Conco d onda móvl Uma função f dscv o pfl d vaação d uma onda móvl vlocdad v no spaço no mpo. Paa qu o pfl d vaação f caac uma onda móvl dv sasfa a quação d onda sgun: f 1

Leia mais

INTRODUÇÃO AO MÉTODO DE VOLUMES FINITOS

INTRODUÇÃO AO MÉTODO DE VOLUMES FINITOS UNIVERIDDE DO EDO DE N RIN ENRO DE IÊNI ENOLÓGI DERMENO DE ENGENHRI MEÂNI INRODUÇÃO O MÉODO DE VOLUME FINIO Mgul Va Júor E.Mc. M.Eg. h.d. Fvrro, 5 5 a Edção L M E Laboraóro d Mcâca omuacoal amu Uvráro

Leia mais

Anexo III Temperatura equivalente de ruído, Figura de ruído e Fator de mérito para estações de recepção (G/T)

Anexo III Temperatura equivalente de ruído, Figura de ruído e Fator de mérito para estações de recepção (G/T) Axo III mpratura quivalt d ruído, igura d ruído ator d mérito para staçõs d rcpção (/) III.. mpratura Equivalt d Ruído A tmpratura quivalt d ruído d um compot pod sr dfiida como sdo o valor d tmpratura

Leia mais

EEN300-MÉTODOS MATEMÁTICOS EM ENGENHARIA NAVAL. Série No. 2

EEN300-MÉTODOS MATEMÁTICOS EM ENGENHARIA NAVAL. Série No. 2 N3-MÉODOS MAMÁICOS M NGNHARIA NAVAL Sér No.. Faça ma aáls d sabldad lar d vo Nma o sqma crado plíco mosrado abao lzado para rsolvr a qação da oda m ma dmsão drm o rvalo do úmro d CFL para a sabldad ds

Leia mais

Exercícios de Cálculo Numérico - Erros

Exercícios de Cálculo Numérico - Erros Ercícios d Cálculo Numérico - Erros. Cosidr um computador d bits com pot máimo ( a rprstação m aritmética lutuat a bas. (a Dtrmi o mor úmro positivo rprstávl sta máquia a bas. (b Dtrmi o maior úmro positivo

Leia mais

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL)

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL) 4. Método das Aproimaçõs Sucssivas ou Método d Itração Linar MIL O método da itração linar é um procsso itrativo qu aprsnta vantagns dsvantagns m rlação ao método da bisscção. Sja uma função f contínua

Leia mais

Resolver problemas com amostragem aleatória significa gerar vários números aleatórios (amostras) e repetir operações matemáticas para cada amostra.

Resolver problemas com amostragem aleatória significa gerar vários números aleatórios (amostras) e repetir operações matemáticas para cada amostra. Dscplna: SComLMol Numann, Ulam Mtropols (945-947) Numann Ulam [945] prcbram qu problmas dtrmnístcos podm sr transormados num análogo probablístco qu pod sr rsolvdo com amostragm alatóra. Els studavam dusão

Leia mais

Problemas. Regressão Linear Múltipla. Ajuda a encontrar relações Ceteris Paribus entre variáveis; Melhora o ajuste ao dados; Maior flexibilidade.

Problemas. Regressão Linear Múltipla. Ajuda a encontrar relações Ceteris Paribus entre variáveis; Melhora o ajuste ao dados; Maior flexibilidade. Prof. Lorí Val, Dr. val@at.ufrgs.br http://www.at.ufrgs.br/~val/ Rgrssão Lar Múltpla O odlo d rgrssão lar últpla Itrodução Dfção trologa Itrprtação Estação Itrprtação rvstada Qualdad do aust Proprdads

Leia mais

CAPÍTULO 3 TÉCNICAS USADAS NA DISCRETIZAÇÃO. capítulo ver-se-á como obter um sistema digital controlado através de técnicas

CAPÍTULO 3 TÉCNICAS USADAS NA DISCRETIZAÇÃO. capítulo ver-se-á como obter um sistema digital controlado através de técnicas 3 CAPÍTULO 3 TÉCNICAS USADAS NA DISCRETIZAÇÃO A técnca uada para obtr um tma dgtal controlado nctam, bacamnt, da aplcação d algum método d dcrtação. Matmatcamnt falando, pod- obrvar qu o método d dcrtação

Leia mais

log 2, qual o valor aproximado de 0, 70

log 2, qual o valor aproximado de 0, 70 UNIERSIDADE FEDERAL DE ITAJUBÁ GABARITO DE FUNDAMENTOS DA MATEMÁTICA PROA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR // CANDIDATO: CURSO PRETENDIDO: OBSERAÇÕES: Prova

Leia mais

PRINCIPAIS DISTRIBUIÇÕES DISCRETAS.

PRINCIPAIS DISTRIBUIÇÕES DISCRETAS. PRINCIPAIS DISTRIBUIÇÕES DISCRETAS 1 Uifor Discrta: ocorr quado cada u dos valors possävis d ua va discrta t sa probabilidad 1 P ),,, ), i = 1,, i 1, i i i E ) 1 i Var ) 1 E ) fda: F ) P ) P i ), i od

Leia mais

TÓPICOS. Integração complexa. Integral de linha. Teorema de Cauchy. Fórmulas integrais de Cauchy.

TÓPICOS. Integração complexa. Integral de linha. Teorema de Cauchy. Fórmulas integrais de Cauchy. No m, liur dss pomos ão disps d modo lgum liur d iliogri pricipl d cdir hm-s à ção pr imporâci do rlho pssol rlir plo luo rsolvdo os prolms prsdos iliogri, sm ul prévi ds soluçõs proposs, ális compriv

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR A =

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR A = Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 4 EQUAÇÕES DIFERENCIAIS LINEARES Formas canónicas d Jordan () Para cada uma das matrizs A

Leia mais

Análise de Sinais no Domínio do Tempo e da Freqüência

Análise de Sinais no Domínio do Tempo e da Freqüência UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARAMENO DE ENGENHARIA MECÂNICA Aális d Siais Dmíi d mp da Frqüêcia SEM4 Mdidas Mcâicas Lpld P.R. d Olivira Irduçã Ja Bapis Jsph Furir sudava

Leia mais

Identifique todas as folhas Folhas não identificadas NÃO SERÃO COTADAS. Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I

Identifique todas as folhas Folhas não identificadas NÃO SERÃO COTADAS. Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I Idtifiqu todas as folhas Folhas ão idtificadas NÃO SERÃO COTADAS Faculdad d Ecoomia Uivrsidad Nova d Lisboa EXAME DE CÁLCULO I Ao Lctivo 8-9 - º Smstr Exam Fial d ª Época m 5 d Maio 9 Duração: horas miutos

Leia mais