5. Implementação da solução da equação de estados

Tamanho: px
Começar a partir da página:

Download "5. Implementação da solução da equação de estados"

Transcrição

1 Sisma para vrifiação Lógia do Corolo Dzmbro 3 5. Implmação da solução da uação d sados No apiulo arior abordamos a aális dsvolvimo mamáio d Sismas d Corol por Espaço d Esados u os prmiiu hgar à Solução da Euação d Esados. Esa solução, vai sr o osso poo d parida para dsvolvr algorimos implmaçõs praias para sismas d orolo u prmiam drmiar o sado dos sismas. Vamos porao s apiulo implmar um algorimo para dar rsposa a sa ssidad, para al vamos uilizar a frrama mamáia ompuaioal posa ao osso dispor para s rabalho, ou sa o ATLAB. As d ualur implmação vamos, m primiro lugar, aalisar o dsvolvimo da Solução da Euação d Esados para vr os problmas ssidads vamos orar para o dsvolvimo d um algorimo. 5.. Dsvolvimo da Solução da Euação d Esados No apiulo arior vrifiamos u a Solução da Euação d Esados ão homogéa ivaria o mpo.! ( 5.) x Ax Bu é dada por x A( ) A( τ) () x( ) Bu()τ τ d ( 5.) s poo vamos implmar um algorimos u alul o valor do Esado do Sisma x () para ada isa uado apliado o orolo u () para. A uação ( 5.) pod sr rprsada da sgui forma o aso m u isa iiial. x x () x () Φ(,) x Φ(, τ) Bu() τ ( 5.3) A A Aτ Em u Φ (,) Φ(, τ) Φ(,) Φ(, τ) subsiuido ss valors, a uação ( 5.3) fia x x () x () Φ(,) x Φ(,) Φ(, τ) Bu() τ - -

2 Sisma para vrifiação Lógia do Corolo Dzmbro 3 A omo (,) x x Φ é osa m τ, ão () x () Φ(,) x Φ(, τ) Bu() τ A difiuldad s poo vai sar m sabr u forma oma a fução d orolo u (), vamos por isso, para simplifiar o problma, supor u fução d orolo u () para é dada por. u () u u < Figura 5. : fução d orolo u(). Ds modo fiamos om dois valors u u osas os sus irvalos d igração x x () x () Φ(,) x Φ(, τ) Bu Φ(, τ) Bu Sdo assim a difiuldad d implmação vai sar o álulo da xpoial mariial A (,) Φ do igral da xpoial mariial Φ A (, τ). - -

3 Sisma para vrifiação Lógia do Corolo Dzmbro Cálulo do xpoial mariial Exism vários méodos difrs abordags para alular a xpoial mariial. Ns rabalho vamos uilizar o méodo da diagoalização. A Para alular o xpoial mariial d uma mariz uadrada A uilizado méodo da A diagoalização vamos orgaizar do sgui modo. A Λ m u Λ é mariz diagoal das xpoiais dos valors próprios d A m a sgui forma Λ ", # valors próprios d A,, é mariz dos vors próprios d A, é a mariz ivrsa d. Calulo dos valors próprios vors próprios d A. A ada mariz uadrada A, d dimsõs, podmos assoiar um ouo d valors salars, hamados valors próprios, a ada valor próprio, sá assoiado um vor, hamado vor próprio. Os valors próprios da mariz A drmiam-s rsolvdo a uação homogéa ( A I) vor olua vor ulo A uação arior m soluçõs ão riviais para for ulo. s só s o drmia d( A I) ( A I) d Esa é a uação ararísia d A. Os vors próprios d A drmiam-s a parir d A ou ( A I). Para ilusrar mlhor, vamos osidrar o sgui xmplo d uma mariz uadrada A d dimsão, duas lihas por duas oluas

4 Sisma para vrifiação Lógia do Corolo Dzmbro Exmplo: A. Em primiro lugar vamos drmiar dos valors próprios d A. ( ) ( )( ) d I A d Solução: Λ. Vamos agora drmiar dos vors próprios d A. ( ) I A om [ ] Fazdo as oas m u é um valor osa ualur m u é um valor osa ualur Podmos ormalizar a mariz usado o sgui riério ± ±

5 Sisma para vrifiação Lógia do Corolo Dzmbro solhdo por xmplo os valors posiivos fiamos om Solução: Em ATLAB a fução [,D]ig(A) produz uma mariz diagoal D om os valors próprios uma mariz uas oluas são os vors próprios orrspods. Aé aui á mos os valors d d Λ u são Λ rspivam. Prisamos agora d alular ( ) ( ) d ad Em ATLAB a fução iv() alula a mariz ivrsa d. Tmos agora odos os lmos ssários para o álulo da xpoial mariial A Λ A A Ao olharmos para a solução d A vrifiamos u m uma pariularidad u é a xisêia d duas marizs uadradas a u vamos hamar u mulipliam por rspivam. A &%$ '%'$ &

6 Sisma para vrifiação Lógia do Corolo Dzmbro para obrmos ssas marizs fazmos o sgui sdo s aso, m u mos uma maiz uadrada A d dimsão ou sa m R, a solução d A é, A gralizado para R A Sdo sa úlima a forma géria u vamos uilizar para formulação d um algorimo m ATLAB Cálulo do igral do xpoial mariial Calulado á o xpoial mariial A fala-os agora alular ( ) τ τ τ Φ d d, A ( ) 5.4 Volado ao alulo d A íhamos hgado ao sgui rsulado A s rpirmos o msmo prodimo para A vrifiamos u A

7 Sisma para vrifiação Lógia do Corolo Dzmbro 3 subsiuido s rsulado a uação (.4) A omo as marizs são osas o mpo 5 rsula u A hgamos fialm ao rsulado gério para o alulo do igral do xpoial mariial A ( ) Volado ovam ao osso xmplo A ( ) ( ) 5.4. Implmação m ATLAB. O sado d um dado sisma x! Ax Bu é dado, o aso d supormos o valor d orolo u osa por. x x () x () Φ(,) x Φ(, τ) Bu Nos poos vimos omo s alula Φ (,) Φ(, τ) rspivam. O osso obivo s momo é implmar uma fução, uilizado omo frrama d programação o ATLAB, u alul o valor do sado x () um drmiado isa d mpo parido d um sado iiial x suio ao orolo u supusmos osa u

8 Sisma para vrifiação Lógia do Corolo Dzmbro 3 Fução x(a,b,x,u,) fuio xx(a,b,x,u,) a; i_a; lgh(a); [,D]ig(a); for i: zzros(); z(i,i); m*z*iv(); aam*xp(*d(i,i)); i_ai_a-m*((xp(-*d(i,i))-)/d(i,i)); d xa*(xi_a*b*u); Eradas saídas da fução: A fução x(a,b,x,u,) vai r omo rada os sguis parâmros:! a - maiz uadrada A.! b vor B.! x vor rprsaivo do sado iiial.! u orolo u apliado ao sisma.! mpo dorrido r o isa iiial o isa fial. O rsulado dsa fução, ou sa xx(a,b,x,u,), vai sr:! x rsulado da fução, rprsa o valor do sado x (). Dsrição da fução A fução vai sr implmada sguido os poos dsrios ariorm. Em primiro lugar vamos iiializar as variávis a i_a u orrspodm a A a A rspivam. Uilizado a fução lgh(a), drmiamos a dimsão da mariz a. Com fução [,D]ig(a), drmiamos uma mariz diagoal D om os valors próprios d a, uma mariz uas oluas são os vors próprios orrspods. Rlmbrado u: A A ( ) Tmos porao u alular ss dois somaórios, para al rorrmos ao ilo for, u vai r um úmro d ilos igual à dimsão da mariz a. A variávl zzros() vai sr uma mariz uadrada auxiliar d dimsão iiializada a zros mas u vai sdo aualizada m ada ilo - 8 -

9 Sisma para vrifiação Lógia do Corolo Dzmbro 3 z(i,i) d forma a prmiir o álulo das marizs, m*z*iv(). fazdo sa, uso dos valors d iv(). Tmos agora odos os valors ssários para aualizar m ada ilo os valors d aam*xp(*d(i,i)) i_ai_a-m*((xp(-*d(i,i))-)/d(i,i)). No fim dos ilos da fução for vamos r os valors fiais dos somaórios aima dsrios. Fialm após o álulo dos somaórios, podmos alular o valor do sado do sisma x (), para um orolo u (osidrado osa) apliado ao sisma, aravés da sgui opração xa*(xi_a*b*u) u orrspod a: A () A x x τ d Bu. Ts da fução o ATLAB. Esamos agora m odiçõs d sar sa fução o ATLAB, para al vamos osidrar o sgui xmplo para os valors do sisma: A B x» a[ ; ] a» b[;] b» x[;] x» Cosidrado os valors d u para o orolo (osidrado osa) para um isa d mpo.» u u - 9 -

10 Sisma para vrifiação Lógia do Corolo Dzmbro 3»» Podmos agora alular o valor do sado do sisma para o xmplo dado.» xx(a,b,x,u,) x»

Capítulo 5 Transformadas de Fourier

Capítulo 5 Transformadas de Fourier Capíulo 5 Trasformadas d Fourir 5. Aális da composição d sismas aravés da rsposa m frquêcia 5. Trasformadas d Fourir propridads Capíulo 5 Trasformadas d Fourir 5. Aális da composição d sismas aravés da

Leia mais

4. Análise de Sistemas de Controle por Espaço de Estados

4. Análise de Sistemas de Controle por Espaço de Estados Sisma para vrificação Lógica do Corolo Dzmro 3 4. ális d Sismas d Corol por Espaço d Esados No capiulo arior, vimos qu a formulação d um Prolma Básico d Corolo Ópimo Liar, ra cosidrado um sisma diâmico

Leia mais

Tópicos Especiais em Identificação Estrutural. Representação de sistemas mecânicos dinâmicos

Tópicos Especiais em Identificação Estrutural. Representação de sistemas mecânicos dinâmicos Tópicos Espciais m Idiicação Esruural Rprsação d sismas mcâicos diâmicos O problma diro... rada Sisma rsposa rsposa y() rada x() Problma diro: rada x() Cohcimo + rsposa do sisma y() O problma ivrso...

Leia mais

7. Aplicação do Principio do Máximo

7. Aplicação do Principio do Máximo 7. Aplicação do Principio do Máximo Ns capiulo vamos implmnar um algorimo qu uiliz a oria do Principio do Máximo para drminar o conjuno dos sados aingívis. Com o rsulados obidos vamos nar fazr um parallo

Leia mais

Análise de Sistemas Lineares

Análise de Sistemas Lineares Aáli d Sima iar Dvolvido plo Prof Dr Emilo Rocha d Olivira, EEEC-UFG, 6 Traformada d aplac A ididad d Eulr dfi uma rlação r o ial xpocial o iai oidai a forma ± j = co ( ) ± j ( ) N cao, é dfiido como a

Leia mais

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 07. Prof. Dr. Marco Antonio Leonel Caetano

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 07. Prof. Dr. Marco Antonio Leonel Caetano MESTRADO EM MACROECONOMIA FINANÇAS Disiplina d Compuação Aula 7 Prof. Dr. Maro Anonio Lonl Caano Guia d Esudo para Aula 7 Vors Linarmn Indpndns - Vrifiação d vors LI - Cálulo do Wronsiano Equaçõs Difrniais

Leia mais

CÁLCULO I 2º Semestre 2011/2012. Duração: 1 hora e 30 minutos

CÁLCULO I 2º Semestre 2011/2012. Duração: 1 hora e 30 minutos NOVA SCHOOL OF BSINESS AND ECONOMICS CÁLCLO I º Smsr / TESTE INTERMÉDIO Tópi d rsolução Abril Duração: ora miuos Não é prmiido o uso d calculadoras. Não pod dsagraar as olas do uciado. Rspoda d orma jusiicada

Leia mais

Teoria de Controle (sinopse) 4 Função de matriz. J. A. M. Felippe de Souza

Teoria de Controle (sinopse) 4 Função de matriz. J. A. M. Felippe de Souza Toria d Conrol (sinops) 4 Função d mariz J. A. M. Flipp d Souza Função d mariz Primiramn vamos dfinir polinómio d mariz. Dfinição: Polinómio d mariz (quadrada) Sja p(λ)um polinómio m λd grau n (finio),

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire Uivridad Salvador UNIFACS Curo d Egharia Méodo Mmáico Aplicado / Cálculo Avaçado / Cálculo IV Profa: Ilka Rouça Frir A Traformada d Laplac Txo : Irodução. Dfiição. Codiçõ d Exiêcia. Propridad. Irodução

Leia mais

Capítulo 2 Sinais e Espectros

Capítulo 2 Sinais e Espectros Capíulo Siais Espcros Siais léricos d comuicação são quaidads variávis o mpo, ais como são corr. Sial v() o domíio do mpo; Variávl idpd. Embora o sial xisa fisicam o domíio do mpo, ambém pod sr rprsado

Leia mais

4. Radiação electromagnética e a sua interacção com matéria.

4. Radiação electromagnética e a sua interacção com matéria. 4. Radiação lomagéia a sua iação om maéia. Equaçõs d Maxwll odas lomagéias Sisma d quaçõs d Maxwll: divd 4 divb o d dsloamo oe B o 4 D uo om as laçõs maiais: D E B dmiam ompoamo spaço-mpoal das ompos léia

Leia mais

7 Solução de um sistema linear

7 Solução de um sistema linear Toria d Conrol (sinops 7 Solução d um sisma linar J. A. M. Flipp d Souza Solução d um sisma linar Dfinição 1 G(,τ mariz cujos lmnos g ij (,τ são as rsposas na i ésima saída ao impulso aplicado na j ésima

Leia mais

TÓPICOS. Sinais contínuos e sinais discretos. Função impulso unitário discreto.

TÓPICOS. Sinais contínuos e sinais discretos. Função impulso unitário discreto. Not bm: a litura dsts apotamtos ão dispsa d modo algum a litura atta da bibliografia pricipal da cadira hama-s a atção para a importâcia do trabalho pssoal a ralizar plo aluo rsolvdo os problmas aprstados

Leia mais

Equações Diferenciais Lineares

Equações Diferenciais Lineares Equaçõs Diriais Liars Rordmos a orma gral d uma quação dirial liar d ordm a d d d d a a a, I d d m qu as uçõs a i são idpdts da variávl. S, a quação diz-s liar homogéa. Caso otrário, diz-s liar omplta.

Leia mais

Limites Questões de Vestibulares ( )( ) Solução: Primeiro Modo (Fatorando a fração usando BriotxRuffini): lim. Segundo Modo: lim

Limites Questões de Vestibulares ( )( ) Solução: Primeiro Modo (Fatorando a fração usando BriotxRuffini): lim. Segundo Modo: lim Limis Qusõs d Vsibulars 7. (AMAN-RJ) Calculado o i, coramos: 9 7 a) b) c) d) ) 9 7 Solução: Primiro Modo (Faorado a ração usado BrioRuii): 9 7., qu é uma idrmiação. Faorado a ução, umrador 9. 7 domiador

Leia mais

U.C Investigação Operacional. 27 de junho de INSTRUÇÕES

U.C Investigação Operacional. 27 de junho de INSTRUÇÕES Miisério da Ciêcia, Tcologia Esio uprior U.C. 276 Ivsigação Opracioal 27 d juho d 26 -- INTRUÇÕE O mpo d duração da prova d xam é d 2 horas, acrscida d 3 miuos d olrâcia. Dvrá rspodr a odas as qusõs a

Leia mais

2ª Lei de Newton em forma geral ( p = mv. - momento linear, F = r r dt

2ª Lei de Newton em forma geral ( p = mv. - momento linear, F = r r dt Tópios d Físia Moda 4/5 Fomuláio Mdiçõs os ~ < > i i σ i < > i σ < > ± σ < > ± 3σ < > ± g µ σ πσ mlo simaia do alo dadio a pai d mdidas - média aiméia Dsio padão aaiza a dispsão dos sulados d mdidas do

Leia mais

TÓPICOS. Integração complexa. Integral de linha. Teorema de Cauchy. Fórmulas integrais de Cauchy.

TÓPICOS. Integração complexa. Integral de linha. Teorema de Cauchy. Fórmulas integrais de Cauchy. No m, liur dss pomos ão disps d modo lgum liur d iliogri pricipl d cdir hm-s à ção pr imporâci do rlho pssol rlir plo luo rsolvdo os prolms prsdos iliogri, sm ul prévi ds soluçõs proposs, ális compriv

Leia mais

log 2, qual o valor aproximado de 0, 70

log 2, qual o valor aproximado de 0, 70 UNIERSIDADE FEDERAL DE ITAJUBÁ GABARITO DE FUNDAMENTOS DA MATEMÁTICA PROA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR // CANDIDATO: CURSO PRETENDIDO: OBSERAÇÕES: Prova

Leia mais

TÓPICOS. 4. Método de primitivação por partes.

TÓPICOS. 4. Método de primitivação por partes. No bm, a lira dss apoamos ão dispsa d modo alm a lira aa da bibliorafia pricipal da cadira. Nomadam, o rfr ao Módlo 0, Apoamos d Aális Mamáica, Mamáica - E. Mal Mssias páias: 0 a 9 hama-s à ação para a

Leia mais

CÁLCULO I 2º Semestre 2011/2012. Duração: 2 horas e 15 minutos

CÁLCULO I 2º Semestre 2011/2012. Duração: 2 horas e 15 minutos NOVA SCHOOL OF BSINESS AND ECONOMICS CÁLCLO I º Smstr / CORRECÇÃO DO EXAME ª ÉPOCA Maio Duração: horas miutos Não é prmitido o uso d aluladoras. Não pod dsagraar as olhas do uiado. Rspoda d orma justiiada

Leia mais

Vamos partir de uma antena isotrópica, situada em um ponto T. Ela irradia um sinal com potência PT

Vamos partir de uma antena isotrópica, situada em um ponto T. Ela irradia um sinal com potência PT -POPGÇÃO Propagação d spaço lir amos parir d uma aa isorópica, siuada m um poo. Ela irradia um sial com poêcia P m um mio ambém isorópico como, por xmplo, o ácuo. Esamos irssados m drmiar a isidad do sial

Leia mais

CÁLCULO I 2º Semestre 2011/2012. Duração: 2 horas e 15 minutos

CÁLCULO I 2º Semestre 2011/2012. Duração: 2 horas e 15 minutos NOVA SHOOL OF BSINESS AND EONOMIS ÁLLO I º Ssr / EXAME ª ÉOA TÓIOS DE RESOLÇÃO Juho Duração: horas iuos Não é priido o uso d calculadoras Não pod dsagrafar as folhas do uciado Rspoda d fora jusificada

Leia mais

UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA

UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA EAE 206 Macrocooia I 1º Ssr d 2017 Profssors: Gilbro Tadu Lia Pdro Garcia Duar Lisa d Exrcícios 3

Leia mais

TRANSFORMADA DE FOURIER

TRANSFORMADA DE FOURIER 8 RASFORMADA DE FORIER 8. IRODÇÃO o sdo da rprsação d siais m difrs bass comço-s por aalisar siais priódicos, dcompodo-os, iicialm, m somaório mrávl d cissóids, o q gro a séri xpocial d Forir, posriorm,

Leia mais

3. VIBRAÇÃO FORÇADA - FORÇA HARMÔNICA

3. VIBRAÇÃO FORÇADA - FORÇA HARMÔNICA VIBAÇÕE MECÂNICA - CAPÍTULO 3 VIBAÇÃO OÇADA 8 3. VIBAÇÃO OÇADA - OÇA HAMÔNICA No apíulo aio sudou-s a vibação liv d sisas o u gau d libdad. A vibação liv é obida aavés da solução hoogêa da quação difial

Leia mais

Dinâmica Estocástica Aula 7 Ifusp, setembro de Tânia - Din Estoc

Dinâmica Estocástica Aula 7 Ifusp, setembro de Tânia - Din Estoc Diâmica Estocástica Aula 7 Iusp, stmbro d 016 Tâia - Di Estoc - 016 1 . Discrtização da quação d Lagvi. Obtção da quação d Fokkr-Plack Tâia - Di Estoc - 016 Discrtização da quação d Lagvi A orma discrtizada

Leia mais

MODELAGEM MATEMÁTICA DE UM TANQUE DE ARMAZENAMENTO

MODELAGEM MATEMÁTICA DE UM TANQUE DE ARMAZENAMENTO MODELGEM MTEMÁTIC DE UM TNQUE DE RMZENMENTO Emrso Marim marim@rla.pupr.br Dparamo d Egaria Químia Poifíia Uirsidad Caólia do Paraá - PUCPR Rua Imaulada Coição, 55, Prado Vlo 86-97 - Curiiba, PR, Brasil

Leia mais

XXXI Olimpíada Brasileira de Matemática GABARITO Primeira Fase

XXXI Olimpíada Brasileira de Matemática GABARITO Primeira Fase XXXI Olimpíada Brasilira d Matmática GABARITO Primira Fas Soluçõs Nívl Uivrsitário Primira Fas PROBLEMA ( x) a) A drivada da fução f é f ( x) =, qu s aula apas para x =, sdo gativa para x < positiva para

Leia mais

A EQUAÇÃO DE TRANSFERÊNCIA DE CALOR COM CONDIÇÕES MISTAS DE FRONTEIRA 1 THE HEATING TRANSFERENCE EQUATION WITH MIXED BOUNDARY CONDITIONS

A EQUAÇÃO DE TRANSFERÊNCIA DE CALOR COM CONDIÇÕES MISTAS DE FRONTEIRA 1 THE HEATING TRANSFERENCE EQUATION WITH MIXED BOUNDARY CONDITIONS Disc Sciia Séri: Ciêcias Narais Tcológicas, S Maria, v 9,, p 63-74, 008 63 ISSN 98-84 A EQUAÇÃO DE TRANSFERÊNCIA DE CAOR COM CONDIÇÕES MISTAS DE FRONTEIRA THE HEATING TRANSFERENCE EQUATION WITH MIXED BOUNDARY

Leia mais

Efeito da pressão decrescente da atmosfera com o aumento da altitude

Efeito da pressão decrescente da atmosfera com o aumento da altitude Efio da prssão dcrscn da amosfra com o aumno da aliud S lançarmos um projéil com uma vlocidad inicial suficinmn ala l aingirá aliuds ond o ar é mais rarfio do qu próximo à suprfíci da Trra Logo a rsisência

Leia mais

TRANSFORMADA DE LAPLACE- PARTE I

TRANSFORMADA DE LAPLACE- PARTE I TRNSFORMD DE LLE- RTE I Eor. d Barro. INTRODUÇÃO odmo dfiir a Traformada d Laplac como uma opração mamáica qu covr uma fução d variávl ral m uma fução d variávl complxa: Od, F f d i f é uma fução ral da

Leia mais

CÁLCULO I 1º Semestre 2011/2012. Duração: 2 horas e 30 minutos

CÁLCULO I 1º Semestre 2011/2012. Duração: 2 horas e 30 minutos NOVA SCHOOL OF USINESS AND ECONOMICS CÁLCULO I º Smsr / EXAME ª ÉOCA Jiro Durção: hors miuos Não é prmiido o uso d luldors. Não pod dsgrfr s folhs do uido. O uido ds m é omposo por págis. Rspod d form

Leia mais

u seja, pode ser escrito como uma combinação linear de.

u seja, pode ser escrito como uma combinação linear de. Toma d Cayly-Hamilo ja x sja d I α... α poliômio caacísico d. Eão: α α... α α I Toda maiz é um zo d su poliômio caacísico., mos qu qu:... I { I,,..., } u sja, pod s scio como uma combiação lia d. Também,

Leia mais

Capítulo 5 Modulação CW Exponencial

Capítulo 5 Modulação CW Exponencial Capíulo 5 Modulação CW Expoial Na odulação liar, o spro odulado osis o spro da sag rasladado pla rquêia da poradora, uja largura d bada d rasissão ua xd o dobro da bada d sag W. Srá sudado o Capíulo qu,

Leia mais

Sistemas e Sinais (LEIC) Resposta em Frequência

Sistemas e Sinais (LEIC) Resposta em Frequência Sismas Siais (LEIC Rsposa m Frquêcia Carlos Cardira Diaposiivos para acompahamo da bibliografia d bas (Srucur ad Irpraio of Sigals ad Sysms, Edward A. L ad Pravi Varaiya Sumário Dfiiçõs Sismas sm mmória

Leia mais

TÓPICOS. Vectores livres. Vectores em R 2 e R 3. Vectores em R n. Vectores iguais. Soma de vectores. Notação matricial.

TÓPICOS. Vectores livres. Vectores em R 2 e R 3. Vectores em R n. Vectores iguais. Soma de vectores. Notação matricial. Not bm: a litra dsts apotamtos ão dispsa d modo algm a litra atta da bibliografia pricipal da cadira TÓPICOS Vctors lirs. AULA 09 Chama-s a atção para a importâcia do trabalho pssoal a ralizar plo alo

Leia mais

CLAUDIO ICHIBA UNIVERSIDADE ESTADUAL DE MARINGÁ. Soluções exatas para a equação de Fokker-Planck não-linear PÓS-GRADUAÇÃO EM FÍSICA

CLAUDIO ICHIBA UNIVERSIDADE ESTADUAL DE MARINGÁ. Soluções exatas para a equação de Fokker-Planck não-linear PÓS-GRADUAÇÃO EM FÍSICA UNIVERSIAE ESTAUAL E MARINGÁ PÓS-GRAUAÇÃO EM FÍSICA CLAUIO ICHIBA Soluçõs aas para a uação Fokkr-Plak ão-liar issração aprsaa à Uivrsia Esaual Marigá para a obção o grau Msr m Físia. Oriaor: Prof. r. Rio

Leia mais

sen( x h) sen( x) sen xcos h sen hcos x sen x

sen( x h) sen( x) sen xcos h sen hcos x sen x MAT00 Cálculo Difrcial Itgral I RESUMO DA AULA TEÓRICA Livro do Stwart: Sçõs 3., 3.4 3.8. DEMONSTRAÇÕES Nssa aula srão aprstadas dmostraçõs, ou sboços d dmostraçõs, d algus rsultados importats do cálculo

Leia mais

Monitorização e Modelação do Comportamento Dinâmico de Barragens de Betão. Interação barragem-fundação-albufeira

Monitorização e Modelação do Comportamento Dinâmico de Barragens de Betão. Interação barragem-fundação-albufeira coro Nacioal BÃO SRUURAL - B FUP, -6 d ouuro d Moiorização Modlação do Comporamo Diâmico d Barrags d Bão. Iração arragm-fudação-alufira Sérgio Olivira Adré Silvsr Margarida spada Romao Câmara RSUMO Os

Leia mais

PROVA NACIONAL ESCRITA DE MATEMÁTICA

PROVA NACIONAL ESCRITA DE MATEMÁTICA PROVA NACIONAL ESCRITA DE MATEMÁTICA Equip Rsposávl Pl Elorção Corrção d Prov: Prof. Douor Sérgio Brrir Prof.ª Douor Cri Lmos Durção d Prov: 0 miuos. Tolrâci: 30 miuos Coção: 00 PONTOS Escol d Proviêci

Leia mais

Módulo 03. Determinantes. [Poole 262 a 282]

Módulo 03. Determinantes. [Poole 262 a 282] Móulo Not m, ltur sts potmtos ão sps moo lum ltur tt lor prpl r Cm-s à tção pr mportâ o trlo pssol rlzr plo luo rsolvo os prolms prstos lor, sm osult prév s soluçõs proposts, áls omprtv tr s sus rspost

Leia mais

Sinais de Potência. ( t) Período: Frequência fundamental: f = T T

Sinais de Potência. ( t) Período: Frequência fundamental: f = T T Siais d Poêcia P lim ( ) d < Siais Priódicos ( ) ( + ) com Ζ ( ) Príodo: P Frquêcia udamal: ( ) d Exmplos Sial cosa ( ) Sial siusoidal Fas ula Im si θ c Fórmulas d Eulr xp ± jθ cosθ ± j si ( ) θ jθ θ cosθ

Leia mais

1. A TRANSFORMADA DE LAPLACE

1. A TRANSFORMADA DE LAPLACE Equaçõ Difrciai - Traformada d Laplac A TRANSFORMADA DE LAPLACE Dfiição: Sja f() uma fução ral dfiida para > Eão a raformada d Laplac d f(), doada por L [ ( ) ] f é dfiida por: L [ f ( ) ] F( ) f( )d,

Leia mais

Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I. Ano Lectivo º Semestre

Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I. Ano Lectivo º Semestre aculdad d Ecoomia Uivrsidad Nova d Lisboa EXAME DE CÁLCULO I Ao Lctivo 009-0 - º Smstr Eam ial d ª Época m d Jairo d 00 Duração: horas 0 miutos É proibido usar máquias d calcular ou tlmóvis Não tha o su

Leia mais

ANALISE DE CIRCUITOS DE 1 a E 2 a. J.R. Kaschny ORDENS

ANALISE DE CIRCUITOS DE 1 a E 2 a. J.R. Kaschny ORDENS ANAISE DE IRUITOS DE a E a J.R. Kaschny ORDENS Inrodução As caracrísicas nsão-corrn do capacior do induor inroduzm as quaçõs difrnciais na anális dos circuios léricos. As is d Kirchhoff as caracrísicas

Leia mais

Sinais e Sistemas. Env. CS1 Ground Revolute. Sine Wave Joint Actuator. Double Pendulum Two coupled planar pendulums with

Sinais e Sistemas. Env. CS1 Ground Revolute. Sine Wave Joint Actuator. Double Pendulum Two coupled planar pendulums with -4-6 -8-2 -22-24 -26-28 -3-32 Frqucy (khz) Hammig kaisr Chbyshv Siais Sismas Powr Spcral Dsiy Ev B F CS CS2 B F CS Groud Rvolu Body Rvolu Body Powr/frqucy (db/hz) Si Wav Joi Acuaor Joi Ssor Rvolu.5..5.2.25.3.35.4.45.5-34

Leia mais

Departamento de Matemática e Ciências Experimentais

Departamento de Matemática e Ciências Experimentais Objivo: Dparao d Maáica Ciêcias Expriais Física.º Ao Aividad Laboraorial TL. Assuo: Força d ario sáico força d ario ciéico Esudar as forças d ario sáico ario ciéico driado os faors d qu dpd. Irodução órica:

Leia mais

Análise de Sinais no Domínio do Tempo e da Freqüência

Análise de Sinais no Domínio do Tempo e da Freqüência UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARAMENO DE ENGENHARIA MECÂNICA Aális d Siais Dmíi d mp da Frqüêcia SEM4 Mdidas Mcâicas Lpld P.R. d Olivira Irduçã Ja Bapis Jsph Furir sudava

Leia mais

Analogia de Mohr. Viga Análoga.

Analogia de Mohr. Viga Análoga. nalogia de Mohr analogia de Mohr se baseia no fato ue a euação da linha elástia e a euação do relaionamento entre a arga apliada, a força ortante e o momento fletor possuem a mesma forma. expressão 1 é

Leia mais

EEN300-MÉTODOS MATEMÁTICOS EM ENGENHARIA NAVAL. Série No. 2

EEN300-MÉTODOS MATEMÁTICOS EM ENGENHARIA NAVAL. Série No. 2 N3-MÉODOS MAMÁICOS M NGNHARIA NAVAL Sér No.. Faça ma aáls d sabldad lar d vo Nma o sqma crado plíco mosrado abao lzado para rsolvr a qação da oda m ma dmsão drm o rvalo do úmro d CFL para a sabldad ds

Leia mais

Sistema para a Predição do Crescimento da Cortiça

Sistema para a Predição do Crescimento da Cortiça Silva Lusiaa 6(): 83-95, 008 EFN, Lisboa. Porugal 83 Sisma para a Prdição do Crscimo da Coriça lic lmida* Margarida Tomé** *Msr m Egharia dos Mariais Lhoclulósicos **Profssora Cadráica Isiuo Suprior d

Leia mais

PRODUTOS ESTRUTURADOS E INOVAÇÃO FINANCEIRA 2006/07 PÓS-GRADUAÇÃO EM MERCADOS E ACTIVOS FINANCEIROS EXAME (resolução) 06/06/07 Duração: 3 horas

PRODUTOS ESTRUTURADOS E INOVAÇÃO FINANCEIRA 2006/07 PÓS-GRADUAÇÃO EM MERCADOS E ACTIVOS FINANCEIROS EXAME (resolução) 06/06/07 Duração: 3 horas PRODUTO ETRUTURADO E IOAÇÃO FIACEIRA /7 PÓ-GRADUAÇÃO EM MERCADO E ACTIO FIACEIRO EXAME (rsolução) //7 Duração: 3 horas CAO (.53 valors) a) Comn a sguin afirmação: O sai hging uma posição ura sobr uma ass-or-nohing

Leia mais

+ = x + 3y = x 1. x + 2y z = Sistemas de equações Lineares

+ = x + 3y = x 1. x + 2y z = Sistemas de equações Lineares Sisms d quçõs Linrs Equção Linr Tod qução do ipo:.. n n Ond:,,., n são os ofiins;,,, n são s inógnis; é o rmo indpndn. E.: d - Equção Linr homogên qundo o rmo indpndn é nulo ( ) - Um qução linr não prsn

Leia mais

NÚMEROS COMPLEXOS. Podemos definir o conjunto dos números complexos como sendo o conjunto dos números escritos na forma:

NÚMEROS COMPLEXOS. Podemos definir o conjunto dos números complexos como sendo o conjunto dos números escritos na forma: NÚMEROS COMPLEXOS DEFINIÇÃO No cojuto dos úmros ras R, tmos qu a a a é smpr um úmro ão gatvo para todo a Ou sja, ão é possívl xtrar a ra quadrada d um úmro gatvo m R Portato, podmos dfr um cojuto d úmros

Leia mais

Princípios de Telecomunicações

Princípios de Telecomunicações UNVERSDADE FEDERAL DE PERNAMBUO ro d cologi Gociêcis urso d Eghri Eléric Elrôic ODE Grupo d Psquis m omuicçõs Pricípios d lcomuicçõs élio MAGALÃES DE OLVERA, BEE, MEE, Docur, MEEE Lis d Exrcício 9 d Novmbro

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 1/3

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 1/3 FICHA d AVALIAÇÃO d MATEMÁTICA A.º Ano Vrsão / Nom: N.º Trma: Aprsn o s raciocínio d orma clara, indicando odos os cálclos q ivr d ar odas as jsiicaçõs ncssárias. Qando, para m rslado, não é pdida ma aproimação,

Leia mais

MODELAGEM DA INFLUÊNCIA DATAXA DE CARREGAMENTO NA RESISTÊNCIA DOS RESÍDUOS SÓLIDOS URBANOS

MODELAGEM DA INFLUÊNCIA DATAXA DE CARREGAMENTO NA RESISTÊNCIA DOS RESÍDUOS SÓLIDOS URBANOS DELAGEM DA INFLUÊNCIA DATAXA DE CARREGAMENTO NA REITÊNCIA DO REÍDUO ÓLIDO URBANO Licia Maria Nocko 1 Eduardo Dll Avazi 2 1 Eghira Ambial, Mc. Uivrsidad Fdral do Paraá, Curiiba, Brasil. Currículo Las: las.cpq.br/814764271824736.

Leia mais

1 Eliminação gaussiana com pivotamento parcial

1 Eliminação gaussiana com pivotamento parcial 1 Elimiação gaussiaa com pivotamto parcial Exmplo sm pivotamto parcial Costruimos a matriz complta: 0 2 2 1 1 1 6 0 2 2 1 2 1 1 1 1 0 2 2 1 1 1 6 1 2 0 0 2 0 6 x y z = 9 6 0 2 2 0 1 0 3 1 0 0 2 0 2 0 6

Leia mais

y z CC2: na saída do reator: z = 1: 0. Pe dz Os valores característicos do problema são as raízes de: Da Pe 0 Pe Pe

y z CC2: na saída do reator: z = 1: 0. Pe dz Os valores característicos do problema são as raízes de: Da Pe 0 Pe Pe COQ-86 Méodos Nuércos para Ssas Dsrbuídos Explos Ilusravos d EDO co Problas d Valors o Cooro -) Modlo sacoáro do raor co dsprsão soérco Coo o obvo ds sudo d caso é lusrar o ovo procdo avalar o su dspo

Leia mais

Oscilações amortecidas

Oscilações amortecidas Oscilaçõs amortcidas Uso d variávl complxa para obtr a solução harmônica ral A grand vantagm d podr utilizar númros complxos para rsolvr a quação do oscilador harmônico stá associada com o fato d qu ssa

Leia mais

ANO LECTIVO 2001/2002

ANO LECTIVO 2001/2002 ANO LECTIVO 00/00 ª Fas, ª Chamada 00 Doss rapêuicas iguais d um cro anibióico são adminisradas, pla primira vz, a duas pssoa: a Ana o Carlos Admia qu, duran as doz primiras horas após a omada simulâna

Leia mais

Simulação por Eventos Discretos

Simulação por Eventos Discretos imulação por Eveos Disreos Apliação à simulação de ráfego isemas de Teleomuiações IEEC - Área de Teleomuiações 4º Ao - º emesre FEUP 009-0 JL, PR Ieioalmee em brao imulação por eveos disreos - priípios

Leia mais

CARGA E DESCARGA DE CAPACITORES

CARGA E DESCARGA DE CAPACITORES ARGA E DESARGA DE APAITORES O assuno dscudo ns argo, a carga a dscarga d capacors, aparcu dos anos conscuvos m vsbulars do Insuo Mlar d Engnhara ( 3). Ns sudo, srão mosradas as dduçõs das uaçõs d carga

Leia mais

Funções de Várias Variáveis (FVV) UFABC, 2019-Q1

Funções de Várias Variáveis (FVV) UFABC, 2019-Q1 Funçõs d Várias Variávis (FVV UFABC, 209-Q Pr Hazard 4 Drivadas Toal, Dircional Parcial 4. Drivadas a rspio d um vor. Dfinição 4.. Sja A R n um abro, sja f: A R, P A v R n. Digamos qu f é drivávl (ou difrnciávl

Leia mais

A trajetória sob a ação de uma força central inversamente proporcional ao quadrado da distância

A trajetória sob a ação de uma força central inversamente proporcional ao quadrado da distância A trajtória sob a ação d uma força cntral invrsamnt proporcional ao quadrado da distância A força gravitacional a força ltrostática são cntrais proporcionais ao invrso do quadrado da distância ao cntro

Leia mais

DINÂMICA DA CORDA VIBRANTE. A equação da onda unidimensional: por que deveríamos estudar o deslocamento de uma corda

DINÂMICA DA CORDA VIBRANTE. A equação da onda unidimensional: por que deveríamos estudar o deslocamento de uma corda DINÂMICA DA CORDA VIBRANTE A eqação da oda idimesioal: por qe deveríamos esdar o desloameo de ma orda Cosidere ma orda de omprimeo, levemee esiada: Na figra o desloameo em sido proposialmee eagerado...

Leia mais

ModelosProbabilísticos paravariáveis Discretas. Modelo de Poisson

ModelosProbabilísticos paravariáveis Discretas. Modelo de Poisson ModlosProbabilísticos paravariávis Discrtas Modlo d Poisson Na aula passada 1 Dfinimos o concito d modlo probabilístico. 2 Aprndmos a utilizar o Modlo Binomial. 3 Vimos como o Modlo Binomial pod facilitar

Leia mais

IX CONGRESSO BRASILEIRO DE ENGENHARIA E CIÊNCIAS TÉRMICAS. 9th BRAZILIAN CONGRESS OF THERMAL ENGINEERING AND SCIENCES

IX CONGRESSO BRASILEIRO DE ENGENHARIA E CIÊNCIAS TÉRMICAS. 9th BRAZILIAN CONGRESS OF THERMAL ENGINEERING AND SCIENCES IX CONGRESSO BRASILEIRO DE ENGENHARIA E CIÊNCIAS TÉRMICAS 9h BRAZILIAN CONGRESS OF THERMAL ENGINEERING AND SCIENCES apr CIT0-048 ESCOAMENTO TURBULENTO EM UM ARRANJO TRIANGULAR DE HASTES CILÍNDRICAS USANDO

Leia mais

Sistemas de Controle I

Sistemas de Controle I 4. Repoa o Domíio do Tempo Pólo, Zero e Repoa do Siema: Defiiçõe Siema de Corole I Repoa do iema: oma da repoa forçada repoa aural. Repoa forçada é ambém chamada de repoa eacioária ou olução paricular;.

Leia mais

O He Líquido. e α N V. Caso de 1 mol de He em CNTP:

O He Líquido. e α N V. Caso de 1 mol de He em CNTP: Caso d mol d H m CNTP: α O H Líquido h c N (,4 kv.m) ( ) / mc V ( 4 GV,5 V) 5 (,4 V.m) 6,5 6 / ( 4 V 5 V) /,4 m ( 68) FNC76 - Física Modra / 6,4,5 4,5 cm 6

Leia mais

Variáveis aleatórias Conceito de variável aleatória

Variáveis aleatórias Conceito de variável aleatória Variávis alatórias Muitos primtos alatórios produzm rsultados ão-uméricos. Ats d aalisá-los, é covit trasformar sus rsultados m úmros, o qu é fito através da variávl alatória, qu é uma rgra d associação

Leia mais

AULA 9 CONDUÇÃO DE CALOR EM REGIME TRANSITÓRIO SÓLIDO SEMI-INFINITO

AULA 9 CONDUÇÃO DE CALOR EM REGIME TRANSITÓRIO SÓLIDO SEMI-INFINITO Noas d aula d PME 336 Procssos d ransfrênca d Calor 66 AULA 9 CONDUÇÃO DE CALOR EM REGIME RANSIÓRIO SÓLIDO SEMI-INFINIO Fluo d Calor num Sóldo Sm-Infno Na aula anror fo sudado o caso da condução d calor

Leia mais

Análise no Domínio do Tempo de Sistemas Contínuos

Análise no Domínio do Tempo de Sistemas Contínuos ES 43 Sinais Sismas Anális no omínio do Tmpo d Sismas Conínuos Prof. Aluizio Fauso Ribiro Araújo po. of Sismas d Compuação Cnro d Informáia - UFPE Capíulo Sinais Sismas Eng. da Compuação Conúdo Inrodução

Leia mais

PARTE 8 DERIVADAS PARCIAIS DE ORDENS SUPERIORES

PARTE 8 DERIVADAS PARCIAIS DE ORDENS SUPERIORES PARTE 8 DERIVADAS PARCIAIS DE ORDENS SUPERIORES 8.1 Drivadas Parciais d Ordns Supriors Dada a função ral d duas variávis f : Dom(f) R 2 R X = ) f(x) = f ) aprndmos antriormnt como construir suas drivadas

Leia mais

TÓPICOS. Vectores livres. Vectores em Rn. Produto interno. Norma. Resulta da definição de produto interno entre vectores que:

TÓPICOS. Vectores livres. Vectores em Rn. Produto interno. Norma. Resulta da definição de produto interno entre vectores que: Not bm: a litra dsts apotamtos ão dispsa d modo algm a litra atta da bibliografia pricipal da cadira TÓPICOS Vctors lirs AULA 8 Chama-s a atção para a importâcia do trabalho pssoal a ralizar plo alo rsoldo

Leia mais

EXERCÍCIO: DIMENSIONAMENTO ITERATIVO

EXERCÍCIO: DIMENSIONAMENTO ITERATIVO Enenaria de Tráfeo EXERCÍCIO: DIMENSIONAMENTO ITERATIVO Considere o ruzamento abaixo om as seuintes araterístias:. A interseção abaixo atua om operação em três estáios, omo mostra o esuema: Tempos E1 E

Leia mais

Anexo III Temperatura equivalente de ruído, Figura de ruído e Fator de mérito para estações de recepção (G/T)

Anexo III Temperatura equivalente de ruído, Figura de ruído e Fator de mérito para estações de recepção (G/T) Axo III mpratura quivalt d ruído, igura d ruído ator d mérito para staçõs d rcpção (/) III.. mpratura Equivalt d Ruído A tmpratura quivalt d ruído d um compot pod sr dfiida como sdo o valor d tmpratura

Leia mais

Transporte Vestiário Higiene Pessoal Poupança

Transporte Vestiário Higiene Pessoal Poupança Álgbr Mricil PRTE LGUMS CONSDERÇÕES TEORCS MTRZES Noção d mriz Mrizs formm um impor cocio m mmáic, d spcil uso o sudo d rsformçõs lirs mriiz é um bl d lmos disposos m lih colus Mriz m é um bl d m úmros

Leia mais

Definição clássica de probabilidade. Seja S finito e S, o número de elementos de S, por exemplo, quaisquer!,! 0 2 S. Então

Definição clássica de probabilidade. Seja S finito e S, o número de elementos de S, por exemplo, quaisquer!,! 0 2 S. Então Dfiição clássica probabili Dfiição Sja S fiito S o úmro lmtos S por xmplo S {a b c S 3 Supoha P({) P({ 0 )para quaisr 0 2 S Etão P({) /S Dmostração Como S é do tipo S { 2 o S sgu S { [ { 2 [ [ { portato

Leia mais

FORMULAÇÕES DO MÉTODO DOS ELEMENTOS DE CONTORNO PARA ANÁLISE DE PLACAS VISCOELÁSTICAS

FORMULAÇÕES DO MÉTODO DOS ELEMENTOS DE CONTORNO PARA ANÁLISE DE PLACAS VISCOELÁSTICAS ISS 1809-5860 FORMULAÇÕES O MÉTOO OS ELEMETOS E COTORO PARA AÁLISE E PLACAS VISCOELÁSTICAS Rodrigo Couto da Costa 1 & Wilso Srgio Vturii 2 Rsumo st trabalho são propostas formulaçõs do Método dos Elmtos

Leia mais

Enunciados equivalentes

Enunciados equivalentes Lógica para Ciência da Computação I Lógica Matmática Txto 6 Enunciados quivalnts Sumário 1 Equivalência d nunciados 2 1.1 Obsrvaçõs................................ 5 1.2 Exrcícios rsolvidos...........................

Leia mais

TESE DE DOUTORADO MODELAGEM, CONTROLE E EMPREGO DE ROBÔS EM PROCESSOS DE USINAGEM FELIPE BARRETO CAMPELO CRUZ

TESE DE DOUTORADO MODELAGEM, CONTROLE E EMPREGO DE ROBÔS EM PROCESSOS DE USINAGEM FELIPE BARRETO CAMPELO CRUZ TESE DE DOUTORDO MODELGEM, CONTROLE E EMPREGO DE ROBÔS EM PROCESSOS DE USINGEM FELIPE BRRETO CMPELO CRUZ UNIVERSIDDE FEDERL DE SNT CTRIN PROGRM DE PÓS-GRDUÇÃO EM ENGENHRI MECÂNIC UNIVERSIDDE FEDERL DE

Leia mais

Dinâmica de Sistemas: Análise Matemática 1. Várias situações problemas do nosso cotidiano podem ser entendidas como sendo sistemas.

Dinâmica de Sistemas: Análise Matemática 1. Várias situações problemas do nosso cotidiano podem ser entendidas como sendo sistemas. inâmica d Sismas: nális amáica Capíulo Várias siuaçõs problmas do nosso coidiano podm sr nndidas como sndo sismas. nominamos d sisma um conjuno d lmnos inrligados com o objivo d dsmpnhar uma drminada função.

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

1ª Lista de Exercícios. 1. São dados 2n números distintos distribuídos em dois vetores com n elementos A e B ordenados de maneira tal que

1ª Lista de Exercícios. 1. São dados 2n números distintos distribuídos em dois vetores com n elementos A e B ordenados de maneira tal que Uiversidade Federal de Mias Gerais Departameto de Ciêia da Computação Algoritmos e Estruturas de Dados II (Turmas M, N, W, F) 1º Semestre de 01 Profs. Camilo Oliveira, Gisele Pappa, Ítalo Cuha, Loï Cerf,

Leia mais

VARIÁVEIS ALEATÓRIAS DISCRETAS. Vamos agora analisar em detalhe algumas variáveis aleatórias discretas, nomeadamente:

VARIÁVEIS ALEATÓRIAS DISCRETAS. Vamos agora analisar em detalhe algumas variáveis aleatórias discretas, nomeadamente: 98 99 VARIÁVEIS ALEATÓRIAS DISCRETAS Vamos agora analisar m dalh algumas variávis alaórias discras, nomadamn: uniform Brnoulli binomial binomial ngaiva (ou d Pascal) gomérica hirgomérica oisson mulinomial

Leia mais

Representação de Sistemas Dinâmicos. Profa. Vilma A. Oliveira USP São Carlos Março de 2011

Representação de Sistemas Dinâmicos. Profa. Vilma A. Oliveira USP São Carlos Março de 2011 Rprsação d Ssmas Dâmcos Smáro Profa Vlma A Olvra USP São Carlos Março d Ssmas físcos modlos Dscrção rada-saída Eqaçõs d ssmas dâmcos Ssmas rlaados, casas lars dscros por opradors 3 Igral d sprposção 3

Leia mais

O guia de ondas retangular é uma região do espaço delimitada por dois condutores em

O guia de ondas retangular é uma região do espaço delimitada por dois condutores em 5 Gui d ods gul O gui d ods gul é um gião do spço dlimid po dois oduos m b Figu 8 Gui d ods gul As soluçõs d qução d od p o sism d oodds gul á om obids iom s quçõs (38 (39, pliqumos ss soluçõs às odiçõs

Leia mais

ORBITAIS EM ÁTOMOS E. André Bathista Instituto de Física de São Carlos Universidade de São Paulo

ORBITAIS EM ÁTOMOS E. André Bathista Instituto de Física de São Carlos Universidade de São Paulo ORBITAIS EM ÁTOMOS E MOLÉCULAS Adré Bathista Istituto d Física d São Carlos Uivrsidad d São Paulo Torias º Toria da Coordação d Wrr. É a mais simpls das torias d orbitais atômicos molculars º Toria dos

Leia mais

W = Q Q Q F. 1 ε = 1 1 re γ. 1 r c. r e

W = Q Q Q F. 1 ε = 1 1 re γ. 1 r c. r e 66 APÍTULO 3. ENTROPIA E 2a LEI DA TERMODINÂMIA e também, W = Q Q Q F e eliminando W entre as duas equações, segue que: Q Q Q F = Q Q Q F ou ainda, Q Q Q Q = Q F Q F = Q e de aordo om a desigualdade dada

Leia mais

Estudo Dirigido de Matemática 2 o Trimestre

Estudo Dirigido de Matemática 2 o Trimestre Nome: Nº Colégio Nossa Senhora das Dores 1º ano EM Prof. Manuel Data: / /009 Estudo Dirigido de Matemátia o Trimestre Prezado(a) aluno(a), Devido à interrupção das aulas durante o período ompreendido entre

Leia mais

Capítulo 5 Transformadas de Fourier

Capítulo 5 Transformadas de Fourier Capítulo 5 Trasformadas d Fourir 5. Aális da composição d sistmas através da rsposta m frquêcia 5.2 Trasformadas d Fourir propridads Capítulo 5 Trasformadas d Fourir 5. Aális da composição d sistmas através

Leia mais

Eletromagnetismo II 1 o Semestre de 2007 Noturno - Prof. Alvaro Vannucci. 23 aula 12jun/2007

Eletromagnetismo II 1 o Semestre de 2007 Noturno - Prof. Alvaro Vannucci. 23 aula 12jun/2007 Eletromagnetismo II o Semestre de 7 Noturno - Prof. Alaro annui aula jun/7 imos: Para uma distribuição arbitrária de argas em moimento, em torno da origem, os poteniais etor e esalar orrespondentes são:

Leia mais

Em termos da fração da renda total da população recebida por cada pessoa, na distribuição dual temos. pessoas

Em termos da fração da renda total da população recebida por cada pessoa, na distribuição dual temos. pessoas 6. Dual do Ídic d hil Dfiição Gral do Dual: Sja x uma variávl alatória com média µ distribuição tal qu o valor d crta mdida d dsigualdad é M. Chama-s dual a distribuição com as sguits caractrísticas: a.

Leia mais

MATEMÁTICA. QUESTÃO 1 De quantas maneiras n bolas idênticas podem ser distribuídas em três cestos de cores verde, amarelo e azul?

MATEMÁTICA. QUESTÃO 1 De quantas maneiras n bolas idênticas podem ser distribuídas em três cestos de cores verde, amarelo e azul? (9) - www.litcampias.com.br O ELITE RESOLVE IME 8 TESTES MATEMÁTICA MATEMÁTICA QUESTÃO D quatas mairas bolas idêticas podm sr distribuídas m três cstos d cors vrd, amarlo azul? a) b) d) ( )! ) Rsolução

Leia mais

z 0 0 w = = 1 Grupo A 42. alternativa C det A = Como A é inteiro positivo, então n deve ser par. 43. A comuta com B A B = B A

z 0 0 w = = 1 Grupo A 42. alternativa C det A = Como A é inteiro positivo, então n deve ser par. 43. A comuta com B A B = B A Resoluções das aividades adicioais Capíulo 6 Grupo A. aleraiva C de A 6 (de A) 8 de A. aleraiva C de A de( A) (de A) de A (de A) de A Como A é ieiro posiivo, eão deve ser par.. A comua com B A B B A y

Leia mais