TÓPICOS. Vectores livres. Vectores em R 2 e R 3. Vectores em R n. Vectores iguais. Soma de vectores. Notação matricial.

Tamanho: px
Começar a partir da página:

Download "TÓPICOS. Vectores livres. Vectores em R 2 e R 3. Vectores em R n. Vectores iguais. Soma de vectores. Notação matricial."

Transcrição

1 Not bm: a litra dsts apotamtos ão dispsa d modo algm a litra atta da bibliografia pricipal da cadira TÓPICOS Vctors lirs. AULA 09 Chama-s a atção para a importâcia do trabalho pssoal a ralizar plo alo rsoldo os problmas aprstados a bibliografia, sm coslta préia das solçõs propostas, aális comparatia tr as sas rsposta a rspostas propostas, postrior xposição jto do doct d todas as dúidas associadas. Vctors m R R. Vctors m R. Vctors igais. Soma d ctors. Prodto d m scalar por m ctor. Notação matricial. Vctor lo. Vctor simétrico. Propridads da soma do prodto por m scalar 9. Vctors m R. 9.. Vctors lirs. Rcord do Esio Scdário q m ctor é dfiido por ma dircção, m stido m comprimto, rprsta-s gomtricamt o plao, R, o o spaço, R, por m sgmto oritado, q corrspod a m dslocamto d m poto para otro. A pota da sta do ctor é chamada poto fial o xtrmidad, o otro poto xtrmo é chamado poto iicial o origm do ctor. Sgmtos oritados com a msma dircção, o msmo stido o msmo comprimto rprstam o msmo ctor, o sja, são cosidrados ctors igais. No xmplo figrado tm-s w O ctor simétrico d é o ctor q tm o msmo comprimto, a msma dircção stido oposto ao d. Rprsta-s por. A soma é o ctor q a origm d à xtrmidad d qado s faz coicidir a origm d com a xtrmidad d. Um ctor com comprimto zro dircção stido idtrmiados chama-s ctor lo rprsta-s por 0. ( 0 Figra 9. Prof. Isabl Matos & José Amaral ALGA A

2 V E C T O R E S E M R A L G E B R A L I N E A R O prodto d m scalar ral, α, por m ctor é o ctor S α 0, α é o ctor lo. S α 0, α tm: - comprimto igal a α zs o comprimto d ; - a dircção d ; - o stido d s α > 0 cotrário ao d s α < 0. Propridads da soma d ctors (comtatia ( w ( w (associatia 0 0 (lmto tro ( 0 (todos os ctors têm simétrico Propridads do prodto d m scalar ral por m ctor α ( β ( αβ α ( α α (distribtia ( α β α β (distribtia α tal q: (lmto tro O comprimto d m ctor é o comprimto d qalqr m dos sgmtos oritados q o rprstam é dsigado por orma do ctor, sado-s a otação. Um ctor d orma igal a é chamado ctor itário. Dado m ctor ão lo, o ctor é o ctor itário com a dircção stido d chamas o rsor d. A opração d mltiplicação d m ctor plo irso da sa orma é dsigada por ormalização do ctor. Figra Vctors m R R. Bass caóicas d R R. Um cojto d dois ctors ão coliars {, } diz-s ma bas d ctors m R, m cojto d três ctors {,, } ão complaars diz-s ma bas d ctors m R. Uma bas ortoormada m R é ma bas d R m q os ctors têm comprimto são prpdiclars, ma bas ortoormada m R é ma bas d R m q os ctors, têm orma são prpdiclars dois a dois. Prof. Isabl Matos & José Amaral ALGA A

3 V E C T O R E S E M R A L G E B R A L I N E A R A bas caóica d R é a bas ortoormada d ctors com as dircçõs stidos dos ixos coordados costitída plos ctors (, 0 (0,, {(, 0,(0, }. Idticamt, a bas caóica d R é costitída plos ctors, (0,, 0 (0, 0,, {(, 0, 0,(0,, 0,(0, 0, }. (, 0, 0 Compots coordadas d m ctor m As compots do ctor, d Figra 9. R R R, ma bas {, } q têm, rspctiamt, a dircção d R, ma bas { } são os ctors, cja soma é igal a : As compots do ctor, d,, são os ctors q têm, rspctiamt, as dircçõs d,, cja soma é igal a : R ma bas { } As coordadas do ctor d, são os úmros rais,, q dmos mltiplicar por para obtrmos as compots d Tdo o ctor o s poto iicial a origm do rfrcial, O (0,0, as coordadas do ctor são coicidts com as coordadas do poto od o ctor tm a sa xtrmidad (,, o sja, o cojto d todos os potos do plao corrspod ao cojto d todos os ctors cjo poto iicial é a origm do rfrcial, O, plo q, também é sada a otação (, Tmos, portato, para os rsors da bas caóica,, como já tíhamos isto. 0 (, 0 0 (0, É também sal dsigar como as compots do ctor sgdo, rspctiamt. As coordadas do ctor d R ma bas {,, }, q dmos mltiplicar por, À smlhaça d, rsors,,. são os úmros rais,, para obtrmos as compots d R, é também sal a otação,,, a dsigação d ( como as compots do ctor sgdo cada m dos rspctios Prof. Isabl Matos & José Amaral ALGA A

4 V E C T O R E S E M R A L G E B R A L I N E A R Soma d ctors m R R O ctor soma d dois ctors d R,, é o ctor w d coordadas (,, o sja, rsltat da soma ordada das compots sgdo cada m dos rsors w ( ( w ( w ( O ctor soma d dois ctors d R,, é o ctor w d coordadas,, w ( ( w w ( ( ( w ( Figra 9.4 Prodto d m scalar por m ctor m R O prodto d m scalar α por m ctor d R é o ctor α d coordadas ( α, α, o sja, rsltat do prodto do scalar plas compots sgdo cada m dos rsors α α ( ( α ( α O prodto d m scalar α por m ctor d R é o ctor α d coordadas ( α, α, α α α ( ( α ( α ( α R Figra 9.5 Exmplos. O ctor q tm origm o poto A (, xtrmidad o poto B (,4, AB, é igal ao ctor a posição caóica (com poto iicial a origm do rfrcial Prof. Isabl Matos & José Amaral ALGA A

5 V E C T O R E S E M R A L G E B R A L I N E A R B A (, 4 (, (,4 (4,, o aida, igal ao ctor w CD com origm o poto C (0,5 xtrmidad o poto D D C (0,5 (4, (0 4,5 (4,7 Figra 9.6, o sja, w ( 4, 4.. Dados os ctors, o ctor w é w ( 4 ( 4, o, w (, (, (4, (, (,4. >> [ ]; >> [ -]; >> w*- w 4 Figra 9.7. Dados os ctors , o ctor w é w ( (0.5 >> [ 0.5 ]; >> [0.5 ]; >> w w Prof. Isabl Matos & José Amaral ALGA A

6 V E C T O R E S E M R A L G E B R A L I N E A R 9.. Vctors m R. Sdo m itiro positio, dfi-s o spaço R como o cojto d todas as sqêcias ordadas d úmros rais, x x, x, x, (ditas -plos. ( Tal como m R R, os lmtos d R podm sr itrprtados como potos, o como ctors, m spaço -dimsioal. Exmplos 4. R é o cojto d todos os úmros rais q rprstamos sobr m ixo oritado x. R é o cojto d todos os pars ordados d úmros rais, x ( x, x, q salmt rprstamos gomtricamt o plao D rcorrdo a m sistma d ixos cartsiao xy. R é o cojto d todos os tros ordados d úmros rais, x ( x, x, x, q salmt rprstamos gomtricamt o spaço D rcorrdo a m sistma d ixos cartsiao xyz. R, R, R,..., R, é o cojto d todos os qádrplos, x x, x, x,, qítplos, ( x4 ( x, x, x, x4, x5, x6 x x, x, x, x,, sêxtplos, x,..., -plos, ( 4 x5 ( x, x, x x, q ão podmos rprstar gomtricamt, mas q podmos cotiar a psar como potos, o ctors, d m spaço 4D, 5D, 6D,..., D Vctors igais. Em R, dois ctors, (,, (,,, são igais s, ordadamt, cada ma das sas coordadas é igal,,, 9.5. Soma d ctors. O ctor soma d dois ctors, (,, (,,, é o ctor w cjas coordadas são a soma ordada das coordadas dos ctors w,, ( 9.6. Prodto d m scalar por m ctor. O prodto d m scalar ral α por m ctor é o ctor α α, α, α (, dizdo-s q é m múltiplo scalar d Notação matricial. Um ctor d R pod sr scrito m otação matricial como ma matriz liha (o ctor liha o ma matriz cola (o ctor cola. Tmos assim q pod sr scrito a forma da matriz liha (,, Prof. Isabl Matos & José Amaral ALGA A

7 V E C T O R E S E M R A L G E B R A L I N E A R Prof. Isabl Matos & José Amaral ALGA A [ ] o a forma da matriz cola Utilizado a otação matricial as opraçõs ctoriais d soma prodto por m scalar são idêticas às dfiidas para as matrizs w, α α α α α Exmplos 5. Em R, m altratia à otação, (, pod sr scrito a forma d m ctor cola Tmos [ ] Dados os ctors d 4 R,,,, (,0,, ( o ctor w é 8,,, (,0 (6,, 6,9, (,,0 (,,,, (, w, o, m otação matricial,

8 V E C T O R E S E M R A L G E B R A L I N E A R w >> [ - ]'; >> [ - 0]'; >> w*-* w Vctor lo. Vctor simétrico. O ctor lo é rprstado por 0 dfi-s como sdo o lmto tro da adição m R, o sja, Sdo (,, m ctor d por, é 0 ( 0,0, 0 R, o ctor simétrico d, rprsta-s (,,, ma z q ( (,, (,, (0,0,, Propridads da soma do prodto por m scalar. As propridads da soma d ctors do prodto d m ctor por m scalar ral são idêticas às cohcidas para ctors lirs. Sdo (,, (,, dois ctors m scalars, tmos α ( β ( αβ ( w ( w α ( α α ( 0 0 ( α β α β ( 0 R, α β dois Prof. Isabl Matos & José Amaral ALGA A

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (V ) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Ídic 5 o plao o spaço 5 Itrodção 5 Gralidads sobr

Leia mais

TÓPICOS. Números complexos. Plano complexo. Forma polar. Fórmulas de Euler e de Moivre. Raízes de números complexos.

TÓPICOS. Números complexos. Plano complexo. Forma polar. Fórmulas de Euler e de Moivre. Raízes de números complexos. Not m: litur dsts potmtos ão disps d modo lgum litur tt d iliogrfi pricipl d cdir Chm-s tção pr importâci do trlho pssol rlir plo luo rsolvdo os prolms prstdos iliogrfi, sm cosult prévi ds soluçõs proposts,

Leia mais

NÚMEROS COMPLEXOS. Podemos definir o conjunto dos números complexos como sendo o conjunto dos números escritos na forma:

NÚMEROS COMPLEXOS. Podemos definir o conjunto dos números complexos como sendo o conjunto dos números escritos na forma: NÚMEROS COMPLEXOS DEFINIÇÃO No cojuto dos úmros ras R, tmos qu a a a é smpr um úmro ão gatvo para todo a Ou sja, ão é possívl xtrar a ra quadrada d um úmro gatvo m R Portato, podmos dfr um cojuto d úmros

Leia mais

Proposta de Exame Final de Matemática A

Proposta de Exame Final de Matemática A Proposta d Eam Fial d Matmática. N DE ESCLRIDDE Duração da prova: 50 miutos. Tolrâcia: 30 miutos Data: Grupo I Na rsposta aos its dst grupo, slcio a opção corrta. Escrva, a olha d rspostas, o úmro do itm

Leia mais

Escola Básica e Secundária Dr. Ângelo Augusto da Silva Teste de MATEMÁTICA A 12º Ano

Escola Básica e Secundária Dr. Ângelo Augusto da Silva Teste de MATEMÁTICA A 12º Ano Escola Básica Scdária Dr. Âglo Agsto da Silva Tst d MATEMÁTICA A º Ao Dração: 9 mitos Maio/ Nom Nº T: ª PARTE Para cada ma das sgits qstõs d scolha múltipla, slccio a rsposta corrcta d tr as altrativas

Leia mais

MATEMÁTICA. QUESTÃO 1 De quantas maneiras n bolas idênticas podem ser distribuídas em três cestos de cores verde, amarelo e azul?

MATEMÁTICA. QUESTÃO 1 De quantas maneiras n bolas idênticas podem ser distribuídas em três cestos de cores verde, amarelo e azul? (9) - www.litcampias.com.br O ELITE RESOLVE IME 8 TESTES MATEMÁTICA MATEMÁTICA QUESTÃO D quatas mairas bolas idêticas podm sr distribuídas m três cstos d cors vrd, amarlo azul? a) b) d) ( )! ) Rsolução

Leia mais

Escola Básica e Secundária Dr. Ângelo Augusto da Silva

Escola Básica e Secundária Dr. Ângelo Augusto da Silva Escola Básica Scdária Dr. Âglo Agsto da Silva Tst d MATEMÁTICA A º Ao Dração: 9 mitos Fvriro/ Nom Nº T: Classificação O Prof. (Lís Abr) ª PARTE Para cada ma das sgits qstõs d scolha múltipla, slccio a

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

Notas de Aulas de Cálculo Diferencial e Integral II Engenharia de Materiais Prof.: Adriana Borssoi 5

Notas de Aulas de Cálculo Diferencial e Integral II Engenharia de Materiais Prof.: Adriana Borssoi 5 Prof: Adriaa Borssoi 5 FUNÇÕES DE VÁRIAS VARIÁVEIS Ercícios Rcomdados: ANTON, H, BIVENS, I DAVIS, S Cálculo vol Tradução: Claus I Dorig 8 d Porto Algr: Bookma, 007 Págias, d 93 à 936 Págias, d 944 945

Leia mais

UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA

UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA CURSO BIETÁPICO EM ENGENHARIA CIVIL º ciclo Rgim Diro/Noctro Disciplia d COMPLEMENTOS DE MATEMÁTICA Ao lctio d 7/8 - º Smstr Cosidr a ção ( ) 4 o poto

Leia mais

3. Geometria Analítica Plana

3. Geometria Analítica Plana MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,

Leia mais

sen( x h) sen( x) sen xcos h sen hcos x sen x

sen( x h) sen( x) sen xcos h sen hcos x sen x MAT00 Cálculo Difrcial Itgral I RESUMO DA AULA TEÓRICA Livro do Stwart: Sçõs 3., 3.4 3.8. DEMONSTRAÇÕES Nssa aula srão aprstadas dmostraçõs, ou sboços d dmostraçõs, d algus rsultados importats do cálculo

Leia mais

Resoluções de Exercícios

Resoluções de Exercícios Rsoluçõs d Ercícios MATEMÁTICA II Capítulo 0 Fução Poliomial do o Grau Rsolução d Problmas; Composição d Fuçõs; Fução Ivrsa Iquaçõs BLOCO 0 BLOCO 0 Cohcimtos Algébricos 0 A Nos miutos iiciais, trmos a

Leia mais

SISTEMA DE PONTO FLUTUANTE

SISTEMA DE PONTO FLUTUANTE Lógica Matmática Computacional - Sistma d Ponto Flutuant SISTEM DE PONTO FLUTUNTE s máquinas utilizam a sguint normalização para rprsntação dos númros: 1d dn * B ± 0d L ond 0 di (B 1), para i = 1,,, n,

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MTRIZES ulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz no 06 Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE

Leia mais

Polos Olímpicos de Treinamento. Aula 9. Curso de Álgebra - Nível 3. Somas de Newton. Prof. Cícero Thiago / Prof. Marcelo Mendes

Polos Olímpicos de Treinamento. Aula 9. Curso de Álgebra - Nível 3. Somas de Newton. Prof. Cícero Thiago / Prof. Marcelo Mendes Polos Olímpicos d Trinamnto Curso d Álgbra - Nívl 3 Prof Cícro Thiago / Prof Marclo Aula 9 Somas d Nwton Chamarmos d somas d Nwton as somas das k - ésimas potências das raízs d um polinômio Iniciarmos

Leia mais

Variáveis aleatórias Conceito de variável aleatória

Variáveis aleatórias Conceito de variável aleatória Variávis alatórias Muitos primtos alatórios produzm rsultados ão-uméricos. Ats d aalisá-los, é covit trasformar sus rsultados m úmros, o qu é fito através da variávl alatória, qu é uma rgra d associação

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MATRIZES Aulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz Sumário MATRIZES NOÇÃO DE MATRIZ REPRESENTAÇÃO DE UMA MATRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDAMENTAL MATRIZES ESPECIAIS IGUALDADE

Leia mais

Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I. Ano Lectivo º Semestre

Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I. Ano Lectivo º Semestre Faculdad d Ecoomia Uivrsidad Nova d Lisboa EXAME DE CÁLCULO I Ao Lctivo 8-9 - º Smstr Eam Fial d ª Época m d Jairo 9 Tópicos d Corrcção Duração: horas miutos É proibido usar máquias d calcular ou tlmóvis

Leia mais

Escola Básica e Secundária Dr. Ângelo Augusto da Silva. Teste de MATEMÁTICA A 12º Ano. Duração: 90 minutos Março/ 2014. Nome Nº T:

Escola Básica e Secundária Dr. Ângelo Augusto da Silva. Teste de MATEMÁTICA A 12º Ano. Duração: 90 minutos Março/ 2014. Nome Nº T: Escola Básica Scdária Dr Âglo Agsto da Silva Tst d MATEMÁTICA A º Ao Dração: 9 mitos Março/ Nom Nº T: Classificação O Prof (Lís Abr) ª PARTE Para cada ma das sgits qstõs d scolha múltipla slcio a rsposta

Leia mais

Fun»c~oesexponenciaiselogar ³tmicas. Uma revis~ao e o n umero e

Fun»c~oesexponenciaiselogar ³tmicas. Uma revis~ao e o n umero e Aula 9 Fun»c~osponnciaislogar ³tmicas. Uma rvis~ao o n umro Nsta aula farmos uma pquna rvis~ao das fun»c~os f() =a g() =log a, sndo a uma constant ral, a>0 a 6=. Farmos ainda uma aprsnta»c~ao do n umro,

Leia mais

ÁLGEBRA LINEAR ESPAÇOS VETORIAIS

ÁLGEBRA LINEAR ESPAÇOS VETORIAIS + ÁLGEBRA LINEAR ESPAÇOS VETORIAIS + INTRODUÇÃO n Ao final do séclo XIX, após o estabelecimento das bases matemáticas da teoria de matries, foi obserado pelos matemáticos qe árias entidades matemáticas

Leia mais

Cálculo Vetorial. Geometria Analítica e Álgebra Linear - MA Aula 04 - Vetores. Profa Dra Emília Marques Depto de Matemática

Cálculo Vetorial. Geometria Analítica e Álgebra Linear - MA Aula 04 - Vetores. Profa Dra Emília Marques Depto de Matemática Cálclo Vetorial Estdaremos neste tópico as grandezas etoriais, sas operações, propriedades e aplicações. Este estdo se jstifica pelo fato de, na natreza, se apresentarem 2 tipo de grandezas, as escalares

Leia mais

Capitulo 4 Resolução de Exercícios

Capitulo 4 Resolução de Exercícios FORMULÁRIO i Taxa Proporcioal ou quivalt (juros simpls) i k Taxas Equivalts (juros compostos) 3 i i i i i i i 4 6 360 a s q t b m d Taxa Eftiva Nomial k i i p ao príodo d capitalização ; i k Taxa Ral Taxa

Leia mais

NÚMEROS REAIS E OPERAÇÕES

NÚMEROS REAIS E OPERAÇÕES Reisão de Pré-Cálclo NÚMEROS REAIS E OPERAÇÕES Prof Dr José Ricardo de Rezede Zei Departameto de Matemática, FEG, UNESP Lc Ismael Soares Madreira Júior Garatigetá, SP, Otbro, 2016 Direitos reserados Reprodção

Leia mais

Representação de Números no Computador e Erros

Representação de Números no Computador e Erros Rprsntação d Númros no Computador Erros Anális Numérica Patrícia Ribiro Artur igul Cruz Escola Suprior d Tcnologia Instituto Politécnico d Stúbal 2015/2016 1 1 vrsão 23 d Fvriro d 2017 Contúdo 1 Introdução...................................

Leia mais

Exercícios de Cálculo Numérico - Erros

Exercícios de Cálculo Numérico - Erros Ercícios d Cálculo Numérico - Erros. Cosidr um computador d bits com pot máimo ( a rprstação m aritmética lutuat a bas. (a Dtrmi o mor úmro positivo rprstávl sta máquia a bas. (b Dtrmi o maior úmro positivo

Leia mais

Anexo III Temperatura equivalente de ruído, Figura de ruído e Fator de mérito para estações de recepção (G/T)

Anexo III Temperatura equivalente de ruído, Figura de ruído e Fator de mérito para estações de recepção (G/T) Axo III mpratura quivalt d ruído, igura d ruído ator d mérito para staçõs d rcpção (/) III.. mpratura Equivalt d Ruído A tmpratura quivalt d ruído d um compot pod sr dfiida como sdo o valor d tmpratura

Leia mais

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período Rsolução da Prova d Física Tórica Turma C2 d Engnharia Civil Príodo 2005. Problma : Qustõs Dados do problma: m = 500 kg ; v i = 4; 0 m=s ;! a = 5! g d = 2 m. Trabalho ralizado por uma força constant: W

Leia mais

Física Computacional 5

Física Computacional 5 Física Computacioal 5. Drivaas com irças iitas a. O cocito rivaa mos simpls qu o itgral b. Cálculo umérico a rivaa com irças iitas c. Um outro cocito Equação Dircial Oriária. Solução aalítica as EDO liars.

Leia mais

Aula 2: Vetores tratamento algébrico

Aula 2: Vetores tratamento algébrico Ala : Vetores tratamento algébrico Vetores no R e no R Decomposição de etores no plano ( R ) Dados dois etores e não colineares então qalqer etor pode ser decomposto nas direções de e. O problema é determinar

Leia mais

Regra dos Trapézios Composta i :

Regra dos Trapézios Composta i : FP_Ex1: Calcul um valor aproximado do itgral I = / 0 x si( x) dx com um rro d trucatura, ão suprior, m valor absoluto a 0.01 usado: a) a rgra dos Trapézios a rgra d Simpso (composta) Rgra dos Trapézios

Leia mais

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita:

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita: Máquinas Térmicas Para qu um dado sistma raliz um procsso cíclico no qual rtira crta quantidad d nrgia, por calor, d um rsrvatório térmico cd, por trabalho, outra quantidad d nrgia à vizinhança, são ncssários

Leia mais

Aula Teórica nº 8 LEM-2006/2007. Trabalho realizado pelo campo electrostático e energia electrostática

Aula Teórica nº 8 LEM-2006/2007. Trabalho realizado pelo campo electrostático e energia electrostática Aula Tórica nº 8 LEM-2006/2007 Trabalho ralizado plo campo lctrostático nrgia lctrostática Considr-s uma carga q 1 no ponto P1 suponha-s qu s trás uma carga q 2 do até ao ponto P 2. Fig. S as cargas form

Leia mais

Exercício: Exercício:

Exercício: Exercício: Smântica Opracional Estrutural Smântica Opracional Estrutural O ênfas dsta smântica é nos passos individuais d xcução d um programa A rlação d transição tm a forma rprsnta o primiro passo d xcução do programa

Leia mais

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O Prparar o Eam 05 Matmática A E X A M E 0.ª FASE, V E R S Ã O P R O P O S T A D E R E S O L U Ç Ã O. Tm-s qu P A P A P A GRUPO I ITENS DE ESCOLHA MÚLTIPLA 0, 0, 0,. Assim: P B A PB A 0,8 0,8 PB A 0,8 0,

Leia mais

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2 FILTROS Como tmos visto, quando tmos lmntos rativos nos circuitos, as tnsõs sobr os lmntos d um circuitos m CA são dpndnts da frquência. Est comportamnto m circuitos montados como divisors d tnsão prmit

Leia mais

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M=

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M= Dtrminant. (Upg 4) Considrando as matrizs abaixo, sndo dt A = 5, dtb= dtc=, assinal o qu for orrto. x z x y x A =,B= 4 5 x+ z y C= ) x+ y+ z= 4 ) A C= 4) B C= 4 8) y = x 6) 6 4 A+ B= 6 5 T. (Uds 4) S A

Leia mais

MOQ-12: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS. Distribuições Notáveis

MOQ-12: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS. Distribuições Notáveis MOQ-: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS Distribuiçõs Discrtas: Distribuição Uiform Discrta: Distribuiçõs Notávis Uma va discrta dfiida os potos,,..., tm distribuição uiform discrta s assum cada um

Leia mais

(1) Raízes n-ésimas. r cos. nϕ = θ + 2kπ; k = 0, 1, 2, 3, 4,... ρ n cos nϕ = r cos θ ρ n = r ρ= (r) 1/n. Portanto:

(1) Raízes n-ésimas. r cos. nϕ = θ + 2kπ; k = 0, 1, 2, 3, 4,... ρ n cos nϕ = r cos θ ρ n = r ρ= (r) 1/n. Portanto: Raís -ésmas A ra -ésma d um úmro complxo s é o complxo s Vamos vr qu os complxos possum raís dfrts!!! Em coordadas polars: s r cos θ s θ ρ cos ϕ s ϕ Aplcado Movr trmos: r cos θ s θ ρ cos ϕ s ϕ Portato:

Leia mais

Critérios de falha PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL

Critérios de falha PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL A avaliação das tnsõs dformaçõs smpr é fita m função d crtas propridads do matrial. Entrtanto, não basta apnas calcular ssas grandzas.

Leia mais

TÓPICOS. Matriz inversa. Método de condensação. Matriz ortogonal. Propriedades da álgebra matricial.

TÓPICOS. Matriz inversa. Método de condensação. Matriz ortogonal. Propriedades da álgebra matricial. Note bem: a leitura destes apotametos ão dispesa de modo algum a leitura ateta da bibliografia pricipal da cadeira ÓPICOS Matriz iversa. U 6 Chama-se a ateção para a importâcia do trabalho pessoal a realizar

Leia mais

Matemática: Lista de exercícios 2º Ano do Ensino Médio Período: 1º Bimestre

Matemática: Lista de exercícios 2º Ano do Ensino Médio Período: 1º Bimestre Matmática: Lista d xrcícios 2º Ano do Ensino Médio Príodo: 1º Bimstr Qustão 1. Três amigos saíram juntos para comr no sábado no domingo. As tablas a sguir rsumm quantas garrafas d rfrigrant cada um consumiu

Leia mais

Análise em Frequência de Sistemas Lineares e Invariantes no Tempo

Análise em Frequência de Sistemas Lineares e Invariantes no Tempo Anális m Frquência d Sistmas Linars Invariants no Tmpo Luís Caldas d Olivira Rsumo. Rsposta m Frquência 2. Sistmas com Função d Transfrência Racional 3. Sistmas d Fas Mínima 4. Sistmas d Fas Linar Gnralizada

Leia mais

Capítulo 4 Resposta em frequência

Capítulo 4 Resposta em frequência Capítulo 4 Rsposta m frquência 4. Noção do domínio da frquência 4.2 Séris d Fourir propridads 4.3 Rsposta m frquência dos SLITs 4.4 Anális da composição d sistmas através da rsposta m frquência 4.5 Transformadas

Leia mais

Leonardo da Vinci ( ), artista, engenheiro e cientista italiano

Leonardo da Vinci ( ), artista, engenheiro e cientista italiano ormas dos rabalhos Vrtuas Itrodução Loardo da Vc (45-59), artsta, ghro ctsta talao Aplcou oçõs do prcípo dos dslocamtos vrtuas para aalsar o qulíbro d sstmas d polas alavacas PEF-40 Prof. João Cyro Adré

Leia mais

LISTA DE EXERCÍCIOS 4 GABARITO

LISTA DE EXERCÍCIOS 4 GABARITO LISTA DE EXERCÍCIOS 4 GABARITO 1) Uma sfra d massa 4000 g é abandonada d uma altura d 50 cm num local g = 10 m/s². Calcular a vlocidad do corpo ao atingir o solo. Dsprz os fitos do ar. mas, como o corpo

Leia mais

Aula 16 Transformada de Fourier Rápida (FFT) - DIT

Aula 16 Transformada de Fourier Rápida (FFT) - DIT Comuicaçõs Digitais Aula 6 Profssor Marcio Eiscraft abril Aula 6 Trasformada d Fourir Rápida (FFT) - DIT Bibliografia OPPEHEIM A. V.; SCHAFER. Discrt-tim sigal procssig 3rd. d. Prtic-Hall. ISB 97839884.

Leia mais

Eduardo. Matemática Matrizes

Eduardo. Matemática Matrizes Matemática Matrizes Eduardo Definição Tabela de números dispostos em linhas e colunas. Representação ou Ordem da Matriz Se uma matriz A possui m linhas e n colunas, dizemos que A tem ordem m por n e escrevemos

Leia mais

ANÁLISE DIMENSIONAL E SEMELHANÇA. Determinação dos parâmetros

ANÁLISE DIMENSIONAL E SEMELHANÇA. Determinação dos parâmetros ANÁLISE IMENSIONAL E SEMELHANÇA trminação dos parâmtros Procdimnto: d Buckingham 1. Listar todas as grandzas nvolvidas.. Escolhr o conjunto d grandzas fundamntais (básicas), x.: M, L, t, T. 3. Exprssar

Leia mais

Álgebra. Matrizes. . Dê o. 14) Dada a matriz: A =.

Álgebra. Matrizes.  . Dê o. 14) Dada a matriz: A =. Matrizs ) Dada a matriz A = Dê o su tipo os lmntos a, a a ) Escrva a matriz A, do tipo x, ond a ij = i + j ) Escrva a matriz A x, ond a ij = i +j ) Escrva a matriz A = (a ij ) x, ond a ij = i + j ) Escrva

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adriano Pdrira Cattai apcattai@ahoocombr Univrsidad Fdral da Bahia UFBA, MAT A01, 006 3 Suprfíci Cilíndrica 31 Introdução Dfinição d Suprfíci Podmos obtr suprfícis não somnt por mio d uma quação do tipo

Leia mais

TÓPICOS. Integração complexa. Integral de linha. Teorema de Cauchy. Fórmulas integrais de Cauchy.

TÓPICOS. Integração complexa. Integral de linha. Teorema de Cauchy. Fórmulas integrais de Cauchy. No m, liur dss pomos ão disps d modo lgum liur d iliogri pricipl d cdir hm-s à ção pr imporâci do rlho pssol rlir plo luo rsolvdo os prolms prsdos iliogri, sm ul prévi ds soluçõs proposs, ális compriv

Leia mais

Equações Diferenciais Lineares

Equações Diferenciais Lineares Equaçõs Diriais Liars Rordmos a orma gral d uma quação dirial liar d ordm a d d d d a a a, I d d m qu as uçõs a i são idpdts da variávl. S, a quação diz-s liar homogéa. Caso otrário, diz-s liar omplta.

Leia mais

TEOREMA DE TAYLOR 2! 1 1. (n) n (n 1) 0 + f x0 x x0 + f (c) x

TEOREMA DE TAYLOR 2! 1 1. (n) n (n 1) 0 + f x0 x x0 + f (c) x (Tóp. Tto Complmta) TEOREMA DE TAYLOR TEOREMA DE TAYLOR S uma ução suas pimias divadas istm um itvalo abto I cotdo, sgu-s do toma do valo médio galizado (dado o tópico dsta aula), substituido a ou b po,

Leia mais

Enunciados equivalentes

Enunciados equivalentes Lógica para Ciência da Computação I Lógica Matmática Txto 6 Enunciados quivalnts Sumário 1 Equivalência d nunciados 2 1.1 Obsrvaçõs................................ 5 1.2 Exrcícios rsolvidos...........................

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}.

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}. Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR LOGARITMOS E INTEGRAÇÃO DE FUNÇÕES COMPLEXAS Logaritmos () Para cada um dos sguints conjuntos

Leia mais

AULA Exercícios. DEMONSTRAR QUE UMA TRANSFORMAÇÃO É LINEAR Se A é uma matriz real m n e. u R, a aplicação T : R R tal que

AULA Exercícios. DEMONSTRAR QUE UMA TRANSFORMAÇÃO É LINEAR Se A é uma matriz real m n e. u R, a aplicação T : R R tal que Note bem: a leitura destes apontamentos não dispensa de modo algum a leitura atenta da bibliografia principal da cadeira Chama-se a atenção para a importância do trabalho pessoal a realizar pelo aluno

Leia mais

RESUMO de LIMITES X CONTINUIDADE. , tivermos que f(x) arbitr

RESUMO de LIMITES X CONTINUIDADE. , tivermos que f(x) arbitr RESUMO d LIMITES X CONTINUIDADE I. Limits finitos no ponto 1. Noção d Limit Finito num ponto Sjam f uma função x o IR. Dizmos qu f tm it (finito) no ponto x o (m símbolo: f(x) = l IR) quando x convn x

Leia mais

EXAME NACIONAL DE SELEÇÃO 2016

EXAME NACIONAL DE SELEÇÃO 2016 EXAME NACIONAL DE SELEÇÃO 016 PROA DE MATEMÁTICA o Dia: 4/09/015 QUINTA-EIRA HORÁRIO: 8h00m às 10h15m (horário d Brasília) EXAME NACIONAL DE SELEÇÃO 016 PROA DE MATEMÁTICA º Dia: 4/09 - QUINTA-EIRA (Mahã)

Leia mais

Hewlett-Packard CONJUNTOS NUMÉRICOS. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos

Hewlett-Packard CONJUNTOS NUMÉRICOS. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Hwltt-Packard CONJUNTOS NUMÉRICOS Aulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz Ramos Ano: 206 Sumário CONJUNTOS NUMÉRICOS 2 Conjunto dos númros Naturais 2 Conjunto dos númros Intiros 2 Conjunto

Leia mais

Escola Básica Tecnopolis Matemática - PLANIFICAÇÃO ANUAL 6ºano

Escola Básica Tecnopolis Matemática - PLANIFICAÇÃO ANUAL 6ºano DGEstE Dirção-GraL dos Establcimntos Escolars DSRAI Dirção d Srviços da Rgião Algarv AGRUPAMENTO DE ESCOLAS JÚLIO DANTAS LAGOS (145415) Escola Básica Tcnopolis Matmática - PLANIFICAÇÃO ANUAL 6ºano 2013-2014

Leia mais

AULA Matriz inversa Matriz inversa.

AULA Matriz inversa Matriz inversa. Note bem: a leitura destes apotametos ão dispesa de modo algum a leitura ateta da bibliografia pricipal da cadeira ÓPICOS Matriz iversa. U 6 Chama-se a ateção para a importâcia do trabalho pessoal a realizar

Leia mais

PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA

PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA CONTEÚDOS EIXO TEMÁTICO COMPETÊNCIAS Sistma d Numração - Litura scrita sistma d numração indo-arábico

Leia mais

1. Revisão Matemática

1. Revisão Matemática Se x é um elemeto do cojuto Notação S: x S Especificação de um cojuto : S = xx satisfaz propriedadep Uião de dois cojutos S e T : S T Itersecção de dois cojutos S e T : S T existe ; para todo f : A B sigifica

Leia mais

Derivada Escola Naval

Derivada Escola Naval Drivada Escola Naval EN A drivada f () da função f () = l og é: l n (B) 0 l n (E) / l n EN S tm-s qu: f () = s s 0 s < < 0 s < I - f () só não é drivávl para =, = 0 = II - f () só não é contínua para =

Leia mais

NÚMEROS RACIONAIS E SUA REPRESEN- TAÇÃO FRACIONÁRIA

NÚMEROS RACIONAIS E SUA REPRESEN- TAÇÃO FRACIONÁRIA NÚMEROS RACIONAIS E SUA REPRESEN- TAÇÃO FRACIONÁRIA. FRAÇÕES Com crtza todos nós já ouvimos frass como: d xícara d açúcar; d frmnto m pó tc. Basta pgar uma rcita,d bolo qu lá stão númros como sts. Ests

Leia mais

= 80s. Podemos agora calcular as distâncias percorridas em cada um dos intervalos e obtermos a distância entre as duas estações:

= 80s. Podemos agora calcular as distâncias percorridas em cada um dos intervalos e obtermos a distância entre as duas estações: Solução Comntada da Prova d Física 53 Um trm, após parar m uma stação, sor uma aclração, d acordo com o gráico da igura ao lado, até parar novamnt na próxima stação ssinal a altrnativa qu aprsnta os valors

Leia mais

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2 Eam Nacional d 0 (. a fas) Prova Escrita d Matmática. o no d Escolaridad Prova 3/Vrsõs GRUPO I Itns Vrsão Vrsão. (C) (). () (C) 3. () (C). (D) (). (C) (). () () 7. () (D) 8. (C) (D) Justificaçõs:. P( )

Leia mais

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS M MIOS CONDUTORS A quação d onda dduida no capítulo antrior é para mios sm prdas ( = ). Vamos agora ncontrar a quação da onda m um mio qu aprsnta condutividad não

Leia mais

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro Razão Proporção Noção d Razão Suponha qu o profssor d Educação Física d su colégio tnha organizado um tornio d basqutbol com quatro quips formadas plos alunos da ª séri. Admita qu o su tim foi o vncdor

Leia mais

Limite Escola Naval. Solução:

Limite Escola Naval. Solução: Limit Escola Naval (EN (A 0 (B (C (D (E é igal a: ( 0 In dt r min ação, do tipo divisão por zro, log o não ist R par q pod sr tão grand qanto qisrmos, pois, M > 0, δ > 0 tal q 0 < < δ > M M A última ha

Leia mais

. A é uma matriz linha se m=1, A é uma matriz coluna se n=1, A é uma matriz quadrada se m=n, e neste caso diz-se que A é uma matriz de ordem n.

. A é uma matriz linha se m=1, A é uma matriz coluna se n=1, A é uma matriz quadrada se m=n, e neste caso diz-se que A é uma matriz de ordem n. Apontamntos d álgbra Linar 1 - Matrizs 11 - Dfiniçõs A é uma matriz linha s m=1 A é uma matriz coluna s n=1 A é uma matriz quadrada s m=n nst caso diz-s qu A é uma matriz d ordm n 12 - Opraçõs com matrizs

Leia mais

r = (x 2 + y 2 ) 1 2 θ = arctan y x

r = (x 2 + y 2 ) 1 2 θ = arctan y x Sção 0: Equação d Laplac m coordnadas polars Laplaciano m coordnadas polars. Sja u = ux, y uma função d duas variávis. Dpndndo da rgião m qu a função stja dfinida, pod sr mais fácil trabalhar com coordnadas

Leia mais

4. Análise de Sistemas de Controle por Espaço de Estados

4. Análise de Sistemas de Controle por Espaço de Estados Sisma para vrificação Lógica do Corolo Dzmro 3 4. ális d Sismas d Corol por Espaço d Esados No capiulo arior, vimos qu a formulação d um Prolma Básico d Corolo Ópimo Liar, ra cosidrado um sisma diâmico

Leia mais

Curso: Engenharia Industrial Elétrica. Análise de variáveis Complexas MAT 216 Turma: 01

Curso: Engenharia Industrial Elétrica. Análise de variáveis Complexas MAT 216 Turma: 01 urso: Egharia Idustrial Elétrica Aális d variávis omplas MAT 6 Profssora: Edmary S B Araújo Turma: Lista d Provas Rspodu Jsus: Em vrdad, m vrdad t digo: qum ão ascr da água do Espírito ão pod trar o rio

Leia mais

( ) a. 2 e x dx = 2. b. 2 = e dx. e dx e 2 dx. = u. Integrais Exponenciais e Logarítmicas. e dx = e du = e + C dx

( ) a. 2 e x dx = 2. b. 2 = e dx. e dx e 2 dx. = u. Integrais Exponenciais e Logarítmicas. e dx = e du = e + C dx UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. Aplicação da rgra

Leia mais

Matrizes. Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais. Abril de 2014

Matrizes. Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais. Abril de 2014 es Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais Abril de 2014 Matrizes Matrizes Uma matriz A, m n (m por n), é uma tabela de mn números dispostos em m linhas e n colunas.

Leia mais

Definição de Termos Técnicos

Definição de Termos Técnicos Dfinição d Trmos Técnicos Eng. Adriano Luiz pada Attack do Brasil - THD - (Total Harmonic Distortion Distorção Harmônica Total) É a rlação ntr a potência da frqüência fundamntal mdida na saída d um sistma

Leia mais

COLÉGIO OBJETIVO JÚNIOR

COLÉGIO OBJETIVO JÚNIOR COLÉGIO OBJETIVO JÚNIOR NOME: N. o : DATA: / /01 FOLHETO DE MATEMÁTICA (V.C. E R.V.) 6. o ANO Est folhto é um rotiro d studo para você rcuprar o contúdo trabalhado m 01. Como l vai srvir d bas para você

Leia mais

02 de outubro de 2013

02 de outubro de 2013 Gnralidads planjamnto Exprimntos Univrsidad Fdral do Pampa (Unipampa) 02 d outubro d 2013 Gnralidads planjamnto 1 Gnralidads planjamnto 2 3 4 5 6 Contúdo 7 Parclas subdivididas (split plot) Gnralidads

Leia mais

Faculdade de Engenharia. Óptica de Fourier OE MIEEC 2014/2015

Faculdade de Engenharia. Óptica de Fourier OE MIEEC 2014/2015 Faculdad d Engnharia Óptica d Fourir sin OE MIEEC 4/5 Introdução à Óptica d Fourir Faculdad d Engnharia transformada d Fourir spacial D função d transfrência para a propagação m spaço livr aproimação d

Leia mais

Sinais de Potência. ( t) Período: Frequência fundamental: f = T T

Sinais de Potência. ( t) Período: Frequência fundamental: f = T T Siais d Poêcia P lim ( ) d < Siais Priódicos ( ) ( + ) com Ζ ( ) Príodo: P Frquêcia udamal: ( ) d Exmplos Sial cosa ( ) Sial siusoidal Fas ula Im si θ c Fórmulas d Eulr xp ± jθ cosθ ± j si ( ) θ jθ θ cosθ

Leia mais

Guias de ondas de seção transversal constante

Guias de ondas de seção transversal constante Guias d ondas d sção transvrsal constant Ants d considrarmos uma aplicação spcífica, suponhamos um tubo rto, oco infinito, fito d matrial condutor idal, com sção transvrsal constant. Vamos considrar qu

Leia mais

Instituto Federal Goiano

Instituto Federal Goiano planjamnto Anális d Exprimntos Instituto Fdral Goiano planjamnto Anális d 1 planjamnto 2 Anális d 3 4 5 6 7 Contúdo 8 Parclas subdivididas (split plot) planjamnto Anális d É um dlinamnto xprimntal? Parclas

Leia mais

Campo elétrico. Antes de estudar o capítulo PARTE I

Campo elétrico. Antes de estudar o capítulo PARTE I PART I Unidad A 2 Capítulo Sçõs: 21 Concito d 22 d cargas puntiforms 2 uniform Ants d studar o capítulo Vja nsta tabla os tmas principais do capítulo marqu um X na coluna qu mlhor traduz o qu você pnsa

Leia mais

1- Resolução de Sistemas Lineares.

1- Resolução de Sistemas Lineares. MÉTODOS NUMÉRICOS PR EQUÇÕES DIFERENCIIS PRCIIS 1- Resolução de Sistemas Lieares. 1.1- Matrizes e Vetores. 1.2- Resolução de Sistemas Lieares de Equações lgébricas por Métodos Exatos (Diretos). 1.3- Resolução

Leia mais

Escola Básica e Secundária Dr. Ângelo Augusto da Silva

Escola Básica e Secundária Dr. Ângelo Augusto da Silva Escla Básica Scdária Dr. Âgl Agst da Silva Tst d MATEMÁTICA A º A Draçã: 9 mits Març/ Nm Nº T: Classificaçã O Prf. (Lís Abr) ª PARTE Para cada ma das sgits qstõs d sclha múltipla, slcci a rspsta crrcta

Leia mais

Módulo II Resistores e Circuitos

Módulo II Resistores e Circuitos Módulo Claudia gina Campos d Carvalho Módulo sistors Circuitos sistência Elétrica () sistors: sistor é o condutor qu transforma nrgia létrica m calor. Como o rsistor é um condutor d létrons, xistm aquls

Leia mais

INTRODUÇÃO À ESTATÍSTICA

INTRODUÇÃO À ESTATÍSTICA INTRODUÇÃO À ESTATÍSTICA ERRATA (capítulos 1 a 6 CAP 1 INTRODUÇÃO. DADOS ESTATÍSTICOS Bnto Murtira Carlos Silva Ribiro João Andrad Silva Carlos Pimnta Pág. 10 O xmplo 1.10 trmina a sguir ao quadro 1.7,

Leia mais

PSICROMETRIA 1. É a quantificação do vapor d água no ar de um ambiente, aberto ou fechado.

PSICROMETRIA 1. É a quantificação do vapor d água no ar de um ambiente, aberto ou fechado. PSICROMETRIA 1 1. O QUE É? É a quantificação do vapor d água no ar d um ambint, abrto ou fchado. 2. PARA QUE SERVE? A importância da quantificação da umidad atmosférica pod sr prcbida quando s qur, dntr

Leia mais

8º CONGRESSO IBEROAMERICANO DE ENGENHARIA MECANICA Cusco, 23 a 25 de Outubro de 2007

8º CONGRESSO IBEROAMERICANO DE ENGENHARIA MECANICA Cusco, 23 a 25 de Outubro de 2007 8º CONGRESSO IBEROAMERICANO DE ENGENHARIA MECANICA Cusco, 23 a 25 d Outubro d 2007 SIMULAÇÃO NUMÉRICA DO TRANSPORTE DE CALOR E MASSA DURANTE A SECAGEM DE TIJOLOS CERÂMICOS VAZADOS Dail Olivira Avlio*,

Leia mais

Resposta em frequência

Resposta em frequência Rsposta frquêcia Nocatura a rsposta frquêcia é úti a caractrização d u sista LSI. Dfi d quato a apitud copa d ua pocia copa é atrada ao sr fitrada po sista. Epociais copas são autofuçõs d sistas LSI. Cosidrado

Leia mais

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL)

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL) 4. Método das Aproimaçõs Sucssivas ou Método d Itração Linar MIL O método da itração linar é um procsso itrativo qu aprsnta vantagns dsvantagns m rlação ao método da bisscção. Sja uma função f contínua

Leia mais

Coordenadas polares. a = d2 r dt 2. Em coordenadas cartesianas, o vetor posição é simplesmente escrito como

Coordenadas polares. a = d2 r dt 2. Em coordenadas cartesianas, o vetor posição é simplesmente escrito como Coordnadas polars Sja o vtor posição d uma partícula d massa m rprsntado por r. S a partícula s mov, ntão su vtor posição dpnd do tmpo, isto é, r = r t), ond rprsntamos a coordnada tmporal pla variávl

Leia mais

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é:

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é: nrgia no MHS Para studar a nrgia mcânica do oscilador harmônico vamos tomar, como xmplo, o sistma corpo-mola. A nrgia cinética do sistma stá no corpo d massa m. A mola não tm nrgia cinética porqu é uma

Leia mais

Funções Trigonométricas

Funções Trigonométricas Funçõs Trigonométricas META: Introduzir as principais funçõs trigonométricas: sno, cossno tangnt. AULA 7 OBJETIVOS: Dfinir as funçõs sno, cossno tangnt. Mostrar algumas idntidads trigonométricas. Calcular

Leia mais

Módulo III Capacitores

Módulo III Capacitores laudia gina ampos d arvalho Módulo apacitors apacitors: Dnomina-s condnsador ou capacitor ao conjunto d condutors dilétricos arrumados d tal manira qu s consiga armaznar a máxima quantidad d cargas létricas.

Leia mais

, onde F n é uma força de tracção e d o alongamento correspondente. F n [N] -1000 -2000

, onde F n é uma força de tracção e d o alongamento correspondente. F n [N] -1000 -2000 º Tst d CONTROLO DE SISTEMS (TP E PRO) Licciatura m Eg.ª Mcâica Prof. Rsposávl: Pdro Maul Goçalvs Lourti d bril d 00 º Smstr Duração: hora miutos. Tst com cosulta. Rsolução. Cosidr o sistma rprstado a

Leia mais

28 a Aula AMIV LEAN, LEC Apontamentos

28 a Aula AMIV LEAN, LEC Apontamentos 8 a Aula 49 AMIV LEAN, LEC Apontamntos (RcardoCoutnho@mathstutlpt) 8 Exponncal d matrzs smlhants Proposção 8 S A SJS ond A, S J são matrzs n n,(comdt S 6 ), ntão A S J S Dmonstração Tmos A SJS, dond por

Leia mais