POLINÔMIOS ORTOGONAIS E QUADRATURA DE GAUSS

Tamanho: px
Começar a partir da página:

Download "POLINÔMIOS ORTOGONAIS E QUADRATURA DE GAUSS"

Transcrição

1 POLINÔMIOS ORTOGONAIS E QUADRATURA DE GAUSS RESUMO POLIANA MOITA BRAGA Uiversidde Ctólic de Brsíli Curso de Mtemátic Orietdor: José Edurdo Cstilho O grupo de poliômios ortogois vem sedo stte estuddo por presetr proprieddes e crcterístics importtes, que podem ser empregds em váris áres d Mtemátic Pur e Aplicd, priciplmete os cmpos de Egehris, Esttístic e Biologi Atrvés desses poliômios pode-se trlhr s áres de proimção de zeros de fuções, qudrturs umérics, teoris de frções cotíus, teori de códigos, etre outrs Um plicção que será mostrd esse trlho é o desevolvimeto ds fórmuls de Qudrtur de Guss, por se serem s proprieddes desses poliômios e serem de fácil implemetção, com os resultdos e ecelete precisão Plvrs-chve: poliômios ortogois; qudrtur de Guss INTRODUÇÃO As plicções dos poliômios ortogois surgem cd vez mis em prolems fudmetis mtemátic, s áres de proimção de fuções, frções cotíus, teori dos códigos, etre outrs, sedo ssim oeto de estudo de vários pesquisdores A pricipl crcterístic dos poliômios ortogois é que estes formm um se ortogol dos espços de proimção com proprieddes iteresstes resolução de certos prolems relciodos com Equções Difereciis, Frções Cotíus e Teori d Aproimção DARUIS,; DAVIS, 976; DIMITROV, ; GAUTSCHI, 985 Este trlho tem como oetivo, mostrr plicção dos poliômios ortogois clássicos gerção de fórmuls de qudrtur Um método de qudrtur uméric proim o vlor de um itegrl de um fução f, com relção um fução peso w, d seguite form: w f d A f Em gerl s fórmuls de qudrtur são seds estrtégi de proimr fução f por um poliômio iterpoldor e itegrl d fução é sustituíd pel itegrl do poliômio Este é o cso ds Fórmuls de Newto-Côtes, mis cohecid ds fórmuls de qudrtur As Fórmuls de Newto-Côtes seds o poliômio iterpoldor de gru coseguem ser ets pr poliômios de gru meor ou igul, se for ímpr, e et pr poliômios de gru meor ou igul +, se for pr BURDEN e FAIRES, No cso ds fórmuls de qudrtur seds os poliômios ortogois de gru +, tem-se que são ets pr poliômios de gru meor ou igul +, um gho cosiderável precisão de proimção Ests fórmuls são chmds de Qudrtur de Guss, devido o resultdo demostrdo por Guss, em 8, e que será presetdo o Teorem 5

2 O trlho está orgizdo d seguite form: N seção - Poliômios ortogois cotém su defiição, demostrção ds pricipis proprieddes e pricipis poliômios ortogois N seção Qudrtur de Guss com defiição e eemplos de Fórmuls de Qudrturs de Guss N seção 4 Cosiderções Fiis presetdo s coclusões referetes às dus seções teriores POLINÔMIOS ORTOGONAIS Os poliômios ortogois são ferrmets esseciis solução de diversos prolems em Mtemátic Aplicd como tmém em Mtemátic Pur Nest seção será mostrdo que os poliômios ortogois formm um se pr espços de proimção de fuções, o que permite resolução de prolems relciodos à esss proimções Defiição : Se um fmíli de poliômios,,,, de grus,,, Se: i,, pr i e i,, pr i etão, os poliômios,,,, se dizem ortogois Neste estudo, será cosiderdo o produto itero: g w e cotíu em [ ] f, f g w d com, A fução w é chmd de fução peso, podedo triuir vários grus de importâci à proimção em certs porções do itervlo Os poliômios, i,,, podem ser otidos pel ortogolizção d seqüêci {,,,} i ou, recorretemete, pelo resultdo do seguite teorem: Teorem : Sem os poliômios,,,, de grus,,,, defiidos por:,,, e, pr,,,, α β +,, ode: α e β,,

3 Os poliômios,,,, ssim defiidos são dois dois ortogois, isto é, stisfzem A demostrção deste teorem pode ser ecotrd em CUMINATO, 8 Assim, de, tem-se diverss fmílis de poliômios ortogois, que se diferecim pel defiição do produto itero que germ os coeficietes α e β De cert form, do Teorem otém-se de form fácil um seqüêci de poliômios ortogois, pois é utilizdo fórmul de recorrêci pes três termos pr oteção de qulquer poliômio d seqüêci Proprieddes dos poliômios ortogois Seguem io lgums ds proprieddes dos poliômios ortogois que serão importtes pr oteção ds fórmuls de qudrtur de Guss Teorem : Sem,,,, poliômios ortogois, ão ulos, segudo um produto itero qulquer Etão, qulquer poliômio de gru meor ou igul pode ser,,,, escrito como um comição lier de Demostrção: Os poliômios,,,, espço dos poliômios de gru meor ou igul Assim, se form: etão costituem um se pr o Q é um poliômios d Q + + +, Q pode ser escrito, trvés de mudç de se, como: Q Teorem : Sem,,,, s codições do Teorem Etão é ortogol qulquer poliômio Q de gru meor que Demostrção: Se Q um poliômio de gru Pelo teorem terior tem-se que: etão: Q , Q,, +, + +,,,,, sem dois dois ortogois desde que os poliômios Teorem 4: Sem,,,, poliômios ortogois segudo o produto itero: f, g f g w d

4 w e cotíu em [ ] com, Etão tem rízes reis distits em [ ], Demostrção: A fim de verificr vercidde deste teorem, demostrção será dividid em três prtes: possui lgum zero em [ ] os zeros de em [ ] c os zeros de, ;,, são simples; estão em [ ], Os três ites serão provdos por surdo Assim, pr provr, supõe por surdo que [ ],, Etão: ão possui zeros em [ ], w d w d desde que, w >, ms ão pode ser ideticmete ul, e, Portto em em [ ], Ms e são ortogois, coseqüetemete, Logo é um surdo supor que ão possui zeros em [ ], Pr provr por surdo, supõe-se que eist um riz de que se de multiplicidde Se ess riz Portto:, é um poliômios de gru Assim, pelo Teorem :, ms, pels proprieddes de produto itero:, w d 4

5 w, ode iguldde é válid se e somete se surdo supor que os zeros de em [ ] d, ão são simples for o poliômio ulo Portto é um Filmete, pr provr c será suposto, por surdo, que eist pes zeros de em [, ], com < Sem,,, os zeros de em [ ], Etão: q em [ ] ode q, Assim, pelo Teorem, segue que: Ms, pels proprieddes de produto itero:,, w q w q d Portto, é um surdo supor que os zeros de ão estão em [ ], Assim, comprov-se que possui zeros reis, distitos em [ ], d O teorem seguir foi demostrdo por Guss, em 8, reveldo ssim importâci dos poliômios ortogois Cosequetemete, os últimos séculos despertou-se curiosidde o estudo de loclizção precis de zeros desses poliômios BRACCIALI e ANDRADE, 6 Teorem 5: Sem,,,, s codições do Teorem 4 Sem,,, Etão, se f é um poliômio de gru meor ou igul +, s rízes de + w f d A f 4 5

6 ode e l A w l l são poliômios de Lgrge sore s rízes s se s se s d,,, de +, isto é stisfzem Demostrção: Como,,, são rízes de +, pode-se escrever: + 5 em [ ] Se P o poliômio de iterpolção de f sore,,, f P R +, Se-se que: ode R é o erro iterpolção Assim: com f P R ξ e ξ depededo de ξ + f +! Etão, em vist de 5 e de que ξ é fução de, escreve-se: f P + f +! + Como f é um poliômio de gru meor ou igul +, tem-se que: q + f, +! é um poliômio de gru meor ou igul Deste modo: f + P q 6 Itegrdo 6 de té, com fução peso w, otem-se que: [ f P ] d w + w q d 6

7 Pelo Teorem, o ldo direito d iguldde cim é igul zero Assim: ou [ f P ] d w, w f d w P d l w Portto, fic provd relção 4 f f w l d A f Este teorem grte etão que, pr itegrr um poliômio de certo gru, st trlhr com um poliômio ortogol de gru + /, ode t represet o meor iteiro que super t E mis, descrtdos os erros de rredodmeto, o resultdo deve ser eto CUMINATO, 8 Pricipis poliômios ortogois Detre os poliômios ortogois destcm-se os poliômios de Legedre, Lguerre e Hermite Ness seção será presetdo o produto itero, os primeiros poliômios e os termos de recorrêci de cd um desss fmílis Poliômios de Legedre, P Os poliômios de Legedre,, isto é, com w, e Os primeiros poliômios de Legedre são: P P P 5 P P são otidos segudo o produto itero: f, g f g d 7 7

8 P Os poliômios de Legedre podem, id, ser otidos pel fórmul de recorrêci: Poliômios de Lguerre P P P,,, 8 Os poliômios de Lguerre L, L,, provêm do uso do produto itero: portto, w e, Primeiros poliômios: L L + L 4 + L Fórmul de recorrêci: e Poliômios de Hermite 6 f, g e f g d L L L,,, O produto itero usdo pr se oter os poliômios de Hermite é: ou se, fução peso w Poliômios: H H f, g e, e f g d e, 8

9 H 4 H 8 Com fórmul de recorrêci: H QUADRATURA DE GAUSS H H A Qudrtur de Guss é um método de itegrção uméric que forece fleiilidde em escolher ão somete os coeficietes d fução peso, ms tmém loclizção ode s fuções são vlids Um grde vtgem do método de Qudrtur de Guss é grde precisão que se pode oter em relção às Fórmuls de Newto-Côtes As regrs d Qudrtur de Guss são deduzids pr um itegrl com itervlo de itegrção [,], o qul dos poliômios stisfzem codição de ortogolidde Ms podem ser fcilmete geerlizds um itervlo de itegrção qulquer com um mudç de vriáveis dequd Como demostrdo o Teorem 5, s Fórmuls de Qudrtur de Guss proimm itegrl usdo comição lier dos vlores d fução Assim, são formuls usds pr se clculr: w f d, e clcul-se o vlor proimdo d itegrl usdo: ode : w f d A f A w l d e l são poliômios de Lgrge sore s rízes,,, de + e stisfzem se s l s se s Com isto, o lgoritmo pr se clculr um itegrl usdo Qudrtur de Guss, segue os seguites pssos: Psso : Determir o poliômio ortogol +, segudo o produto itero coveiete, isto é, com fução peso w e o itervlo [, ] Psso : Clculr s rízes,,, de + 9

10 Psso : Determir os poliômios de Lgrge l,,,, usdo os potos,,, do Psso Psso 4: Clculr A w l d,,, Psso 5: Clculr o vlor de f em,,, Psso 6: Clculr, filmete, w f d A f Esse procedimeto é válido pr qulquer fmíli de poliômios ortogois defiids pelo produto itero Eemplos Numéricos Pr ilustrr o procedimeto d Qudrtur de Guss, são presetdos lgus eemplos, que podem ser comprdos com solução et Eemplo : Clculr 5 d N itegrl, tem-se f 5,,, w Poliômios de Legedre Assim f é um poliômio de gru, e pelo Teorem 5, se, o que determi o uso dos f é um poliômio de gru +, o resultdo d itegrl é eto qudo o gru do poliômio ortogol for meos de erros de rredodmeto Assim devem-se utilizr os zeros de relção de recorrêci 8, tem-se: o que filiz o psso +, O psso determi que se ecotre s rízes de 5775 e 5575 Sedo: l, l que:, pr resolver itegrl Aplicdo, sedo ests proimdmete, os poliômios ecotrdos o psso, segue

11 A l d d d Desde que e Do mesmo modo: o que coclui o psso 4 A l d d d, O psso 5 determi que fução f se clculd os zeros de f f f, f Filmete, o psso 6, clcul-se proimção d itegrl: 5 d A f + A f [ ] + [ ] Assim: O vlor otido é o vlor eto d itegrl, á que fução é um poliômio de gru e foi usdo o poliômio de Legedre de gru Eemplo : Clculr d Neste cso o itervlo de itegrção ão coicide com o itervlo [, ] de defiição do produto itero de Legedre Isto eige um procedimeto de mudç de vriável, ode, pr, t e pr, t A equção d ret que pss por,- e, pode ser otid por:

12 t + t + Assim: + t e d dt d Portto: dt + t + dt t Etão, stisfeits s codições de Qudrtur de Guss-Legedre com w, e e f t Seguido os pssos do Eemplo e cosiderdo proimção t + é dd por: dt A f t K t + K Cu solução et é: d l Clculdo com 4 e 9 css decimis proimção otid é: o que pode ser cosiderdo um om resultdo Eemplo : Clculr e cos d d , A itegrl tede o itervlo de itegrção d Fórmul de Guss-Lguerre, ode fução peso é w e, com itervlos e, e f cos Como ão se tem codição de determir o úmero eto de potos que se precis ter pr resolução d itegrl, fi-se, que dotdo os pssos do Eemplo, proimrá itegrl d seguite form: e 4765 cos d

13 Comprdo com o vlor eto, 5, ot-se que proimção otid foi d ordem de Eemplo 4: Clculr e d A itegrl tem como fução peso w e, ssim pode-se empregr Fórmul de Qudrtur de Guss-Lguerre, ms o itervlo de itegrção ão coicide com o do produto itero defiido pr ess qudrtur Logo é ecessário que se fç um mudç de vriável Como um dos limites de itegrção é ifiito, mudç de vriável deverá ser feit vi cálculo Defie-se que z +, tedo que qudo z ; e qudo z ; d dz Etão: e d e z+ z + dz e e z z + dz stisfzedo deste modo, s codições d Fórmul de Qudrtur de Guss-Lguerre Como f é um poliômios de gru, fzedo +, tem-se que, desde que idique o ídice do último poto ser cosiderdo, e, portto deve ser um iteiro Com o poliômio ortogol de gru, itegrl é proimd d form: e z d e e z + dz e O resultdo eto d itegrl é 5 / e A peque difereç que eiste etre o resultdo eto e o vlor otido é devido os erros de rredodmeto Eemplo 5: Clculr e d A itegrl tede s codições d Fórmul de Guss-Hermite, com w e,, e f Assim, seguido os pssos do Eemplo e cosiderdo, proimção é dd por: e d

14 π Oserve que este eemplo solução et é 444, o que mostr que proimção é et té qurt cs 4 CONSIDERAÇÕES FINAIS Os poliômios ortogois, como descritos o trlho, presetm iúmers plicções em váris áres d mtemátic pur e plicd Etre els foi presetd Fórmul de Qudrtur de Guss que se sei s proprieddes desses poliômios e proimm itegrl usdo comição lier dos vlores d fução O que difereci o método d Qudrtur de Guss ds outrs forms de proimção, é que el os forece resultdos mis precisos por serem ets pr poliômios de gru meor ou igul + Ms lev desvtgem de se ter que cohecer fução em potos específicos, pois ão permite trlhr com quisquer prolems em que se tehm somete os potos teldos No cálculo d Qudrtur de Guss, em que se teh um itervlo distito do itervlo [, ] ode os poliômios são mutumete ortogois, st relizr um mudç vriável de itegrção Assim, stisfzedo s codições de ortogoliddes, o procedimeto pr proimção se tor simples, pois qudo prticulrizmos o produto itero, isto é, qudo se utiliz os poliômios de Legredre, Lguerre e Hermite, é ecessário pes efetur os pssos 5 e 6 do lgoritmo, um vez que os vlores de e A podem ser teldos Em lgus eemplos presetdos pr o cálculo de itegris f é um poliômio de ordem + ou meor Em situções reis, f ormlmete ão é poliomil e este cso, é ecessário determir o erro cometido REFERÊNCIAS BIBLIOGRÁFICAS BRACCIALI, Cleoice Fátim; ANDRADA, Eli Xvier Lihres De Zeros de poliômios ortogois: iterpretção eletrostátic e álise de freqüêcis I: Biel d Sociedde Brsileir de Mtemátic, III Uiversidde Federl de Goiás, Slvdor GO, 6 Dispoível em: Acesso em: out 8 BURDEN, Richrd L, Fires Dougls J Aálise uméric, São Pulo: Pioeir Thomso Lerig, CUMINATO, José Alerto Cálculo umérico Nots de ul, ICMC/USP Dispoível em: wwwsimuluelr/hoto/grd/umerico_mt/tetos/cumitopdf Acesso em: out 8 DARUIS, L, NJÅSTAD, O, VAN ASSCHE, W Pr-orthogol polyomils i frequecy lysis Rocy Mouti J Mth,, , DAVIS, PJ, RABINOWITZ, P Numericl itegrtio Blisdell Pul Co, 967 DIMITROV, DK, VAN ASSCHE, W Lmé differetil equtios d electrosttics Proc Amer Mth Soc, 8, 6 68, 4

15 GAUTSCHI, W Orthogol polyomils - costructive theory d pplictios Jourl of Computtiol d Applied Mthemtics, e, 6 76, 985 Poli Moit Brg polirg@gmilcom Curso de Mtemátic, Uiversidde Ctólic de Brsíli EPCT QS 7 Lote Águs Clrs Tgutig CEP:

TP062-Métodos Numéricos para Engenharia de Produção Integração Numérica Regra dos Trapézio

TP062-Métodos Numéricos para Engenharia de Produção Integração Numérica Regra dos Trapézio TP6-Métodos Numéricos pr Egehri de Produção Itegrção Numéric Regr dos Trpézio Prof. Volmir Wilhelm Curiti, 5 Itegrção Defiid Itegrção Numéric Prof. Volmir - UFPR - TP6 Itegrção Numéric Itegrção Defiid

Leia mais

Métodos Numéricos Integração Numérica Regra dos Trapézio. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Integração Numérica Regra dos Trapézio. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numéricos Itegrção Numéric Regr dos Trpézio Professor Volmir Eugêio Wilhelm Professor Mri Klei Itegrção Defiid Itegrção Numéric Itegrção Numéric Itegrção Defiid Há dus situções em que é impossível

Leia mais

Este capítulo tem por objetivo apresentar métodos para resolver numericamente uma integral.

Este capítulo tem por objetivo apresentar métodos para resolver numericamente uma integral. Nots de ul de Métodos Numéricos. c Deprtmeto de Computção/ICEB/UFOP. Itegrção Numéric Mrcoe Jmilso Freits Souz, Deprtmeto de Computção, Istituto de Ciêcis Exts e Biológics, Uiversidde Federl de Ouro Preto,

Leia mais

Universidade Federal Fluminense ICEx Volta Redonda Métodos Quantitativos Aplicados I Professora: Marina Sequeiros

Universidade Federal Fluminense ICEx Volta Redonda Métodos Quantitativos Aplicados I Professora: Marina Sequeiros Uiversidde Federl Flumiese ICE Volt Redod Métodos Qutittivos Aplicdos I Professor: Mri Sequeiros. Poliômios Defiição: Um poliômio ou fução poliomil P, vriável, é tod epressão do tipo: P)=... 0, ode IN,

Leia mais

Cálculo Diferencial e Integral 1

Cálculo Diferencial e Integral 1 NOTAS DE AULA Cálculo Dierecil e Itegrl Limites Proessor: Luiz Ferdo Nues, Dr. 8/Sem_ Cálculo ii Ídice Limites.... Noção ituitiv de ite.... Deiição orml de ite.... Proprieddes dos ites.... Limites lteris...

Leia mais

Artur Miguel Cruz. Escola Superior de Tecnologia Instituto Politécnico de Setúbal 2015/2016 1

Artur Miguel Cruz. Escola Superior de Tecnologia Instituto Politécnico de Setúbal 2015/2016 1 Itegrção Numéric Aálise Numéric Artur Miguel Cruz Escol Superior de Tecologi Istituto Politécico de Setúbl 015/016 1 1 versão 13 de Juho de 017 1 Itrodução Clculr itegris é muito mis difícil do que clculr

Leia mais

DESIGUALDADES Onofre Campos

DESIGUALDADES Onofre Campos OLIMPÍADA BRASILEIRA DE MATEMÁTICA NÍVEL II SEMANA OLÍMPICA Slvdor, 9 6 de jeiro de 00 DESIGUALDADES Oofre Cmpos oofrecmpos@olcomr Vmos estudr lgums desigulddes clássics, como s desigulddes etre s médis

Leia mais

Olimpíada Brasileira de Matemática X semana olímpica 21 a 28 de janeiro de Eduardo Poço. Integrais discretas Níveis III e U

Olimpíada Brasileira de Matemática X semana olímpica 21 a 28 de janeiro de Eduardo Poço. Integrais discretas Níveis III e U Olipíd Brsileir de Mteátic X se olípic 8 de jeiro de 007 Edurdo Poço Itegris discrets Níveis III e U Itegrl discret: dizeos que F é itegrl discret de F F f f se e soete se:, pr iteiro pricípio D es for,

Leia mais

Métodos Numéricos Interpolação Métodos de Lagrange. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Interpolação Métodos de Lagrange. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numéricos Métodos de grge Professor Volmir Eugêio Wilhelm Professor Mri Klei Cosiste em determir um fução g() que descreve de form proimd o comportmeto de outr fução f() que ão se cohece. São cohecidos

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Interpolação Métodos de Lagrange

TP062-Métodos Numéricos para Engenharia de Produção Interpolação Métodos de Lagrange TP6-Métodos Numéricos pr Egehri de Produção Iterpolção Métodos de grge Prof. Volmir Wilhelm Curitib, 5 Iterpolção Cosiste em determir um fução g() que descreve de form proimd o comportmeto de outr fução

Leia mais

Métodos Numéricos Interpolação Métodos de Newton. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Interpolação Métodos de Newton. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numéricos Métodos de Newto Professor Volmir Eugêio Wilhelm Professor Mri Klei Poliomil Revisão No eemplo só se cohece fução pr 5 vlores de - ós de iterpolção Desej-se cohecer o vlor d fução em

Leia mais

Considere uma função contínua arbitrária f(x) definida em um intervalo fechado [a, b].

Considere uma função contínua arbitrária f(x) definida em um intervalo fechado [a, b]. Mtemátic II 9. Prof.: Luiz Gozg Dmsceo E-mils: dmsceo@yhoo.com.r dmsceo@uol.com.r dmsceo@hotmil.com http://www.dmsceo.ifo www.dmsceo.ifo dmsceo.ifo Itegris defiids Cosidere um fução cotíu ritrári f() defiid

Leia mais

3 SISTEMAS DE EQUAÇÕES LINEARES

3 SISTEMAS DE EQUAÇÕES LINEARES . Itrodução SISTEAS DE EQUAÇÕES INEARES A solução de sistems lieres é um ferrmet mtemátic muito importte egehri. Normlmete os prolems ão-lieres são soluciodos por ferrmets lieres. As fotes mis comus de

Leia mais

Exemplo: As funções seno e cosseno são funções de período 2π.

Exemplo: As funções seno e cosseno são funções de período 2π. 4. Séries de Fourier 38 As séries de Fourier têm váris plicções, como por eemplo resolução de prolems de vlor de cotoro. 4.. Fuções periódics Defiição: Um fução f() é periódic se eistir um costte T> tl

Leia mais

n i i Adotando o polinômio interpolador de Lagrange para representar p n (x):

n i i Adotando o polinômio interpolador de Lagrange para representar p n (x): EQE-58 MÉTODOS UMÉRICOS EM EGEHARIA QUÍMICA PROFS. EVARISTO E ARGIMIRO Cpítulo 6 Itegrção uméric Vimos os cpítulos e que etre os motivos pr o uso de poliômios proimção de fuções está fcilidde de cálculos

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire Uiversidde Slvdor UNIFACS Cursos de Egehri Métodos Mtemáticos Aplicdos / Cálculo Avçdo / Cálculo IV Prof: Ilk Rebouçs Freire Série de Fourier Texto : Itrodução. Algus Pré-requisitos No curso de Cálculo

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.4

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.4 FICHA de AVALIAÇÃO de MATEMÁTICA A 5º Teste º Ao de escolridde Versão4 Nome: Nº Turm: Professor: José Tioco /4/8 Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods

Leia mais

Resolução Numérica de Sistemas Lineares Parte II

Resolução Numérica de Sistemas Lineares Parte II Cálculo Numérico Resolução Numéric de Sistems Lieres Prte II Prof Jorge Cvlcti jorgecvlcti@uivsfedubr MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - wwwdscufcgedubr/~cum/ Sistems

Leia mais

Quando o polinômio divisor é da forma x + a, devemos substituir no polinômio P(x), x por a, visto que: x + a = x ( a).

Quando o polinômio divisor é da forma x + a, devemos substituir no polinômio P(x), x por a, visto que: x + a = x ( a). POLINÔMIOS II. TEOREMA DE D ALEMBERT O resto d divisão de um poliômio P(x) por x é igul P(). m m Sej, com efeito, P x x x..., um poliômio de x, ordedo segudo s potecis m m decrescetes de x. Desigemos o

Leia mais

BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL

BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL Itrodução Biômio de Newto: O iômio de Newto desevolvido elo célere Isc Newto serve r o cálculo de um úmero iomil do tio ( ) Se for, fic simles é es decorr que ()²

Leia mais

Integrais Duplos. Definição de integral duplo

Integrais Duplos. Definição de integral duplo Itegris uplos Recorde-se defiição de itegrl de Riem em : Um fução f :,, limitd em,, é itegrável à Riem em, se eiste e é fiito lim m j 0 j1 ft j j j1. ode P 0,, um qulquer prtição de, e t 1,,t um sequêci

Leia mais

As funções exponencial e logarítmica

As funções exponencial e logarítmica As fuções epoecil e logrítmic. Potêcis em Sej um úmero rel positivo, isto é, * +. Pr todo, potêci, de bse e epoete é defiid como o produto de ftores iguis o úmero rel :...... vezes Pr, estbelece-se 0,

Leia mais

MÉTODOS ITERATIVOS PARA RESOLUÇÃO DE SISTEMAS

MÉTODOS ITERATIVOS PARA RESOLUÇÃO DE SISTEMAS MÉTODO ITRATIVO PARA ROLUÇÃO D ITMA ) NORMA D UMA MATRIZ: ej A=[ ij ] um mtriz de ordem m: Norm lih: A má i m j ij Norm colu: A má jm i ij emplos: I) A 0 A A má má ; 0 má{4 ; } 4 0 ; má{; 5} 5 Os.: por

Leia mais

SOLUÇÕES DE EDO LINEARES DE 2 A ORDEM NA FORMA INFINITA

SOLUÇÕES DE EDO LINEARES DE 2 A ORDEM NA FORMA INFINITA SOLUÇÕES DE EDO LINEARES DE A ORDEM NA FORMA INFINITA Coforme foi visto é muito simples se obter solução gerl de um EDO lier de ordem coeficietes costtes y by cy em termos ds fuções lgébrics e trscedetes

Leia mais

Capítulo 2: Resolução Numérica de Equações

Capítulo 2: Resolução Numérica de Equações Cpítulo : Resolução Numéric de Equções.. Riz de um equção Em muitos prolems de egehri há ecessidde de determir um úmero ξ pr qul ução sej zero, ou sej, ξ. A ξ chmmos riz d equção ou zero d ução. Equções

Leia mais

CÁLCULO I. Exibir o cálculo de algumas integrais utilizando a denição.

CÁLCULO I. Exibir o cálculo de algumas integrais utilizando a denição. CÁLCULO I Prof Mrcos Diiz Prof Adré Almeid Prof Edilso Neri Prof Emerso Veig Prof Tigo Coelho Aul o : A Itegrl de Riem Objetivos d Aul Deir itegrl de Riem; Exibir o cálculo de lgums itegris utilizdo deição

Leia mais

Aula 9 Limite de Funções

Aula 9 Limite de Funções Alise Mtemátic I Aul 9 Limite de Fuções Ao cdémico 017 Tem 1. Cálculo Dierecil Noção ituitiv e deiição de ite. Eemplos de ites. Limites lteris. Proprieddes. Bibliogri Básic Autor Título Editoril Dt Stewrt,

Leia mais

Capítulo 5.1: Revisão de Série de Potência

Capítulo 5.1: Revisão de Série de Potência Cpítulo 5.: Revisão de Série de Potêci Ecotrr solução gerl de um equção diferecil lier depede de determir um cojuto fudmetl ds soluções d equção homogêe. Já cohecemos um procedimeto pr costruir soluções

Leia mais

f(x + 2P ) = f ( (x + P ) + P ) = f(x + P ) = f(x)

f(x + 2P ) = f ( (x + P ) + P ) = f(x + P ) = f(x) Seção 17: Séries de Fourier Fuções Periódics Defiição Dizemos que um fução f : R R é periódic de período P, ou id, mis resumidmete, P periódic se f(x + P ) = f(x) pr todo x Note que só defiimos fução periódic

Leia mais

SISTEMA DE EQUAÇÕES LINEARES

SISTEMA DE EQUAÇÕES LINEARES SISTEM DE EQUÇÕES LINERES Defiição Ddos os úmeros reis b com equção b ode são vriáveis ou icógits é deomid equção lier s vriáveis Os úmeros reis são deomidos coeficietes ds vriáveis respectivmete e b é

Leia mais

CAPÍTULO VIII APROXIMAÇÃO POLINOMIAL DE FUNÇÕES

CAPÍTULO VIII APROXIMAÇÃO POLINOMIAL DE FUNÇÕES CAPÍTULO VIII APROXIMAÇÃO POLINOMIAL DE FUNÇÕES 1. Poliómios de Tylor Sej (x) um ução rel de vriável rel com domíio o cojuto A R e cosidere- -se um poto iterior do domíio. Supoh-se que ução dmite derivds

Leia mais

0.2 Exercícios Objetivo. (c) (V)[ ](F)[ ] A segunda derivada de f é (4) x 0 2

0.2 Exercícios Objetivo. (c) (V)[ ](F)[ ] A segunda derivada de f é (4) x 0 2 A segud derivd de f é f() = { < 0 0 0 (4) Cálculo I List úmero 07 Logritmo e epoecil trcisio.prcio@gmil.com T. Prcio-Pereir Dep. de Computção lu@: Uiv. Estdul Vle do Acrú 3 de outubro de 00 pági d discipli

Leia mais

Aula de Medidas Dinâmicas I.B De Paula

Aula de Medidas Dinâmicas I.B De Paula Aul de Medids Diâmics I.B De Pul A medição é um operção, ou cojuto de operções, destids determir o vlor de um grdez físic. O seu resultdo, comphdo d uidde coveiete, costitui medid d grdez. O objetivo dest

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.1

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.1 FICHA de AVALIAÇÃO de MATEMÁTICA A 5º Teste º Ao de escolridde Versão Nome: Nº Turm: Proessor: José Tioco 3/4/8 Apresete o seu rciocíio de orm clr, idicdo todos os cálculos que tiver de eetur e tods s

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A 0.º Ao Versão Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods s justificções ecessáris. Qudo, pr um resultdo, ão é pedid um proimção,

Leia mais

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE ASSUNTO: SOMAÇÃO E ÁRAS E INTEGRAIS DEFINIDAS. INTEGRAIS DEFINIDAS

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE ASSUNTO: SOMAÇÃO E ÁRAS E INTEGRAIS DEFINIDAS. INTEGRAIS DEFINIDAS FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ENGENHARIA DE PRODUÇÃO ASSUNTO: SOMAÇÃO E ÁRAS E INTEGRAIS DEFINIDAS. PROFESSOR: MARCOS AGUIAR CÁLCULO II INTEGRAIS DEFINIDAS. NOTAÇÃO DE SOMAÇÃO

Leia mais

2. Resolução Numérica de Equações Não-Lineares

2. Resolução Numérica de Equações Não-Lineares . Resolução Numéric de Equções Não-Lieres. Itrodução Neste cpítulo será visto lgoritmos itertivos pr ecotrr rízes de fuções ão-lieres. Nos métodos itertivos, s soluções ecotrds ão são ets, ms estrão detro

Leia mais

1- SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES

1- SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES - SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES.- Métodos etos pr solução de sistems lieres Métodos pr solução de sistems de equções lieres são divididos priciplmete em dois grupos: ) Métodos Etos:

Leia mais

6/16/2011. Relações de Girard Relações entre raizes e coeficientes. a x. a 1. Considere-se as raízes i, i=1,2,...n, e P(x) na forma fatorada:

6/16/2011. Relações de Girard Relações entre raizes e coeficientes. a x. a 1. Considere-se as raízes i, i=1,2,...n, e P(x) na forma fatorada: 66 Numero de Rizes Reis Teorem de Bolzo Sej = um equção lgébric com coeficietes reis,b. Se b , etão eiste um úmero pr de rízes reis, ou ão eistem

Leia mais

,,,,,,,,, A Integral Definida como Limite de uma Soma. A Integral Definida como Limite de uma Soma

,,,,,,,,, A Integral Definida como Limite de uma Soma. A Integral Definida como Limite de uma Soma UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Exemplo : Utilize

Leia mais

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFEREÇA ( ( x( Coeficiete costte. ( ( x ( Coeficiete vriável (depedete do tempo. Aplicmos x( pr e cosidermos codição iicil ( ( ( M ( ( ( ( x( x( ( x(

Leia mais

INTERPOLAÇÃO POLINOMIAL

INTERPOLAÇÃO POLINOMIAL 98 INTERPOLAÇÃO POLINOMIAL Iterpolr um ução () cosiste em proimr ess ução por outr ução g() escolid etre um clsse de uções deiid priori e que stisç lgums proprieddes A ução g() é etão usd em substituição

Leia mais

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFEREÇA Coeficiete costte. SISTEMAS LIT CARACTERIZADOS POR EQUAÇÕES A DIFEREÇA COM COEFICIETES COSTATES Sistems descritos por equções difereç com coeficiete

Leia mais

Á R E A, S O M A D E R I E M A N N E A I N T E G R A L D E F I N I D A

Á R E A, S O M A D E R I E M A N N E A I N T E G R A L D E F I N I D A Á R E A, S O M A D E R I E M A N N E A I N T E G R A L D E F I N I D A Prof. Beito Frzão Pires - hors. áre A oção de áre de um polígoo ou região poligol) é um coceito bem cohecido. Começmos defiido áre

Leia mais

Matemática C Extensivo V. 6

Matemática C Extensivo V. 6 Mtemátic C Etesivo V 6 Eercícios ) D ) D ) C O vlor uitário do isumo é represetdo por y Portto pelo produto ds mtrizes A e B temos o seguite sistem: 5 5 9 y 5 5y 5y 9 5y 5 Portto: y 4 y 4 As médis uis

Leia mais

Transformada z. A transformada z é a TFTD da sequência r -n x[n] e a ROC é determinada pelo intervalo de valores de r para os quais.

Transformada z. A transformada z é a TFTD da sequência r -n x[n] e a ROC é determinada pelo intervalo de valores de r para os quais. Trsformd A TFTD de um sequêci é: Pr covergir série deve ser solutmete somável. Ifelimete muitos siis ão podem ser trtdos: A trsformd é um geerlição d TFTD que permite o trtmeto desses siis: Ζ Defiição:

Leia mais

Cálculo Numérico Resolução Numérica de Sistemas Lineares Parte II

Cálculo Numérico Resolução Numérica de Sistemas Lineares Parte II Cálculo Numérico Resolução Numéric de Sistems Lieres Prte II Prof: Reildo Hs Métodos Itertivos Motivção I Ocorrêci em lrg escl de sistems lieres em cálculos de Egehri e modelgem cietífic Eemplos: Simulções

Leia mais

FÍSICA MODERNA I AULA 19

FÍSICA MODERNA I AULA 19 Uiversidde de São ulo Istituto de Físic FÍSIC MODRN I U 9 rof. Márci de lmeid Rizzutto elletro sl rizzutto@if.us.br o. Semestre de 0 Moitor: Gbriel M. de Souz Stos ági do curso: htt:discilis.sto.us.brcourseview.h?id=905

Leia mais

FUNÇÃO EXPONENCIAL. P potência. Se na potência a n a e n Q, temos: 1- Um número, não-nulo elevado a 0 (zero) é igual a 1 (um).

FUNÇÃO EXPONENCIAL. P potência. Se na potência a n a e n Q, temos: 1- Um número, não-nulo elevado a 0 (zero) é igual a 1 (um). FUNÇÃO EXPONENCIAL - Iicilmete, pr estudr fução epoecil e, coseqüetemete, s equções epoeciis, devemos rever os coceitos sore Potecição. - POTENCIAÇÃO Oserve o produto io.... = 6 Este produto pode ser revido

Leia mais

M M N. Logo: MN = DC = DP + PC DC = AB + AB DC = 2 AB S ABCD = (AB + DC). = (AB + 2 AB). = 3 AB S M N CD = Assim temos que: M'N'CD h

M M N. Logo: MN = DC = DP + PC DC = AB + AB DC = 2 AB S ABCD = (AB + DC). = (AB + 2 AB). = 3 AB S M N CD = Assim temos que: M'N'CD h QUESTÃO Sejm i, r + si e + (r s) + (r + s)i ( > ) termos de um seqüêci. etermie, em fução de, os vlores de r e s que torm est seqüêci um progressão ritmétic, sbedo que r e s são úmeros reis e i. Sbemos

Leia mais

SISTEMAS LINEARES. Cristianeguedes.pro.br/cefet

SISTEMAS LINEARES. Cristianeguedes.pro.br/cefet SISTEMAS LINEARES Cristieguedes.pro.r/cefet Itrodução Notção B A X Mtricil Form. : m m m m m m m A es Mtri dos Coeficiet : X Mtri dsvriáveis : m B Termos Idepede tes : Número de soluções Ddo um sistem

Leia mais

Sexta Feira. Cálculo Diferencial e Integral A

Sexta Feira. Cálculo Diferencial e Integral A Set Feir Cálculo Diferecil e Itegrl A // Fuções Reis iite de Fuções Código: EXA7 A Tur: EEAN MECAN Prof. HANS-URICH PICHOWSKI Prof. Hs-Ulrich Pilchowski Nots de ul Cálculo Diferecil iites de Fuções Sej

Leia mais

... Soma das áreas parciais sob a curva que fornece a área total sob a curva.

... Soma das áreas parciais sob a curva que fornece a área total sob a curva. CAPÍTULO 7 - INTEGRAL DEFINIDA OU DE RIEMANN 7.- Notção Sigm pr Soms A defiição forml d itegrl defiid evolve som de muitos termos, pr isso itroduzimos o coceito de somtório ( ). Eemplos: ( + ) + + + +

Leia mais

Z = {, 3, 2, 1,0,1,2,3, }

Z = {, 3, 2, 1,0,1,2,3, } Pricípios Aritméticos O cojuto dos úmeros Iteiros (Z) Em Z estão defiids operções + e. tis que Z = {, 3,, 1,0,1,,3, } A) + y = y + (propriedde comuttiv d dição) B) ( + y) + z = + (y + z) (propriedde ssocitiv

Leia mais

MATLAB - Trabalho Prático 4

MATLAB - Trabalho Prático 4 U N I V E R S I D A D E D A B E I R A I N T E R I O R Deprtmeto de Egehri Electromecâic CONTROLO DE SISTEMAS (Lortório) MATLAB - Trlho Prático Todos os eercícios devem ser escritos um script.m. Deverão

Leia mais

Métodos Numéricos. Autores: Mário Barreto de Moura Neto Rafael Martins Gomes Nascimento Samara Anny Maia Fava Victor Sampaio Gondim

Métodos Numéricos. Autores: Mário Barreto de Moura Neto Rafael Martins Gomes Nascimento Samara Anny Maia Fava Victor Sampaio Gondim Métodos Numéricos Autores: Mário Brreto de Mour Neto Rel Mrtis Gomes Nscimeto Smr Ay Mi Fv Victor Smpio Godim Orietdor: Velser Drll Beício Corre Apresetção Itrodução Métodos pr Ecotrr Rízes Prte d Smr

Leia mais

7 Solução aproximada Exemplo de solução aproximada. k critérios que o avaliador leva em consideração.

7 Solução aproximada Exemplo de solução aproximada. k critérios que o avaliador leva em consideração. 7 olução proximd Neste cpítulo é feit elborção de um ov formulção simplificd prtir de um estudo de Lel (008), demostrd por dus forms á cohecids de proximção do cálculo do vetor w de prioriddes retirds

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOTS E U Geometri lític e Álger ier Sistems de Equções ieres Professor: ui Ferdo Nues, r Geometri lític e Álger ier ii Ídice Sistems de Equções ieres efiições Geris Iterpretção Geométric de Sistems de

Leia mais

retangular: Corte: 2 Fatias: 4 Corte: Fatias: 7 Corte: 4 Fatias: 11 com n cor a definição função. Isto n+ a n 2.

retangular: Corte: 2 Fatias: 4 Corte: Fatias: 7 Corte: 4 Fatias: 11 com n cor a definição função. Isto n+ a n 2. Métodos de Cotgem e Esttístic Cristi Pol e Luverci Nscimeto. RELAÇÕES DE RECORRÊNCIA. Itrodução Algums relções mtemátics podem ser deiids por recorrêci. O objetivo dess ul cosiste em estudr esses tipos

Leia mais

Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1

Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1 Mtrizes e Sistems de equções lieres D.I.C. Medes s mtrizes são um ferrmet básic formulção de problems de mtemátic e de outrs áres. Podem ser usds: resolução de sistems de equções lieres; resolução de sistems

Leia mais

5- Método de Elementos Finitos Aplicado às Equações Diferenciais Parciais.

5- Método de Elementos Finitos Aplicado às Equações Diferenciais Parciais. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS 5- Método de Elemetos Fiitos Aplicdo às Equções Difereciis Prciis. 5.1- Breve Itrodução Históric. 5.2- Solução de Equções Difereciis Ordiáris: Prolem

Leia mais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA Equções Epoeciis... Fução Epoecil..4 Logritmos: Proprieddes 6 Fução Logrítmic. Equções Logrítmics...5 Iequções Epoeciis e Logrítmics.8 Equções Epoeciis 0. (ITA/74)

Leia mais

OS MÉTODOS NUMÉRICOS DE EULER, O MÉTODO DE HEUN E O MÉTODO DE RUNGE-KUTTA DE 4P PARA EDOS DE 1P

OS MÉTODOS NUMÉRICOS DE EULER, O MÉTODO DE HEUN E O MÉTODO DE RUNGE-KUTTA DE 4P PARA EDOS DE 1P T T HTU UTH ORDEM ORDEM. OS MÉTODOS NUMÉRICOS DE EULER, O MÉTODO DE HEUN E O MÉTODO DE RUNGE-UTT DE 4 R EDOS DE Mrcos Freits de Mores¹ Docete d Uioeste, Uiversidde Estdul do Oeste do rá Cetro de Egeris

Leia mais

PARTE 1: INTEGRAIS IMEDIATAS. Propriedades da integral indefinida: Ex)Encontre as seguintes integrais:

PARTE 1: INTEGRAIS IMEDIATAS. Propriedades da integral indefinida: Ex)Encontre as seguintes integrais: Deprtmeto de Mtemátic, Físic, Químic e Egehri de Alimetos Projeto Clcule! Prof s : Rosimr Fchi Pelá Vd Domigos Vieir Cdero Itegris e Aplicções PARTE : INTEGRAIS IMEDIATAS Defiimos: f ( ) d F( ) k k IR

Leia mais

1. (6,0 val.) Determine uma primitiva de cada uma das seguintes funções. (considere a mudança de variável u = tan 2

1. (6,0 val.) Determine uma primitiva de cada uma das seguintes funções. (considere a mudança de variável u = tan 2 Istituto Superior Técico Deprtmeto de Mtemátic Secção de Álgebr e Aálise o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBiom e MEFT o Sem. 00/ 5/J/0 - v. Durção: h30m RESOLUÇÃO. 6,0 vl. Determie um

Leia mais

Unidade 2 Progressão Geométrica

Unidade 2 Progressão Geométrica Uidde Progressão Geométric Seuêci e defiição de PG Fórmul do termo gerl Fução expoecil e PG Juros compostos e PG Iterpolção geométric Som dos termos de um PG Seuêci e defiição de PG Imgie ue você tem dus

Leia mais

SÉRIES DE FOURIER Prof. Me. Ayrton Barboni

SÉRIES DE FOURIER Prof. Me. Ayrton Barboni SUMÁRIO SÉRIES DE FOURIER Prof. Me. Arto Brboi. INTRODUÇÃO.... SÉRIES DE FOURIER..... Fuções Periódics..... Fuções secciolmete difereciáveis..... Fuções de rcos múltiplos..... Coeficietes de Fourier...

Leia mais

MÓDULO IV. EP.02) Determine o valor de: a) 5 3 = b) 3 4 = c) ( 4) 2 = d) 4 2 = EP.03) Determine o valor de: a) 2 3 = b) 5 2 = c) ( 3) 4 = d) 3 4 =

MÓDULO IV. EP.02) Determine o valor de: a) 5 3 = b) 3 4 = c) ( 4) 2 = d) 4 2 = EP.03) Determine o valor de: a) 2 3 = b) 5 2 = c) ( 3) 4 = d) 3 4 = MÓDULO IV. Defiição POTENCIACÃO Qudo um úmero é multiplicdo por ele mesmo, dizemos que ele está elevdo o qudrdo, e escrevemos:. Se um úmero é multiplicdo por ele mesmo váris vezes, temos um potêci:.. (

Leia mais

Geometricamente, um esboço da interpolante g(x) sobre a função f(x) é visto na figura 3.1.

Geometricamente, um esboço da interpolante g(x) sobre a função f(x) é visto na figura 3.1. 4 APROXIMAÇÃO DE FUNÇÕES 4- INTERPOAÇÃO POINOMIA Itroução: A iterpolção Iterpolr um ução () cosiste em proimr ess ução por um outr ução g() escolhi etre um clsse e uções eii priori e que stisç lgums propriees

Leia mais

VA L O R M É D I O D E U M A F U N Ç Ã O. Prof. Benito Frazão Pires

VA L O R M É D I O D E U M A F U N Ç Ã O. Prof. Benito Frazão Pires 3 VA L O R M É D I O D E U M A F U N Ç Ã O Prof. Beito Frzão Pires 3. médi ritmétic A médi ritmétic (ou simplesmete médi) de vlores y, y 2,..., y é defiid como sedo o úmero y = y + y 2 + + y. () A médi

Leia mais

3 Teoria dos Conjuntos Fuzzy

3 Teoria dos Conjuntos Fuzzy 0 Teori dos Conjuntos Fuzzy presentm-se qui lguns conceitos d teori de conjuntos fuzzy que serão necessários pr o desenvolvimento e compreensão do modelo proposto (cpítulo 5). teori de conjuntos fuzzy

Leia mais

Redes elétricas Circuitos que contém resistências e geradores de energia podem ser analisados usando sistemas de equações lineares;

Redes elétricas Circuitos que contém resistências e geradores de energia podem ser analisados usando sistemas de equações lineares; Álger Lier Mtrizes e vetores Sistems lieres Espços vetoriis Bse e dimesão Trsformções lieres Mtriz de um trsformção lier Aplicções d Álger Lier: Redes elétrics Circuitos que cotém resistêcis e gerdores

Leia mais

1 Integral Indefinida

1 Integral Indefinida Itegrl Idefiid. Método d Sustituição (ou Mudç de Vriável) pr Itegrção As fórmuls de primitivção ão mostrm omo lulr s itegris Idefiids do tipo 5x + 7 Ms lgums vezes, é possível determir itegrl de um dd

Leia mais

Apostila de Introdução Aos Métodos Numéricos

Apostila de Introdução Aos Métodos Numéricos Apostil de Itrodução Aos Métodos Numéricos PARTE II o Semestre - Prof. Slete Souz de Oliveir Buffoi Ídice SISTEMAS LINEARES... INTRODUÇÃO... MÉTODOS DIRETOS: ELIMINAÇÃO DE GAUSS... Sistem lier com... Eemplo:...

Leia mais

Somatórios e Recorrências

Somatórios e Recorrências Somtórios e Recorrêcis Uiversidde Federl do Amzos Deprtmeto de Eletrôic e Computção Exemplo: MxMi () Problem: Ddo um vetor de iteiros A, ecotrr o mior e o meor elemetos de A O úmero de comprções etre elemetos

Leia mais

Lista 5. Funções de Uma Variável. Antiderivadas e Integral. e 4x dx. 1 + x 2 dx. 3 x dx

Lista 5. Funções de Uma Variável. Antiderivadas e Integral. e 4x dx. 1 + x 2 dx. 3 x dx List 5 Fuções de Um Vriável Atiderivds e Itegrl O gráfico d fução f é presetdo bio. Idetifique o gráfico d tiderivd de f. i j k l m o p q e cos + e 5 + cos cos + se 7 + sec se Clcule s seguites tiderivds:

Leia mais

Cálculo I 3ª Lista de Exercícios Limites

Cálculo I 3ª Lista de Exercícios Limites Cálculo I ª List de Eercícios Liites Clcule os liites: 9 / /8 Resp.: 6 li li li li li li e d c e d c Clcule os liites io: Clcule: 8 6 li 8 li e d li li c li li / /.: Resp e d c Resp.: li li li li li li

Leia mais

Novo Espaço Matemática A, 12.º ano Proposta de teste de avaliação [março 2019]

Novo Espaço Matemática A, 12.º ano Proposta de teste de avaliação [março 2019] Propost de teste de vlição [mrço 09] Nome: Ao / Turm: N.º: Dt: - - Não é permitido o uso de corretor. Deves riscr quilo que pretedes que ão sej clssificdo. A prov iclui um formulário. As cotções dos ites

Leia mais

Função Logaritmo - Teoria

Função Logaritmo - Teoria Fução Logritmo - Teori Defiição: O ritmo de um úmero rel positivo, bse IR { } podemos escrever Resumido temos: +, é o úmero rel tl que, equivletemete E: 7 8 8 8 8 7 * { }, IR { } * +, IR + Usdo que fução

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A 4º Teste º Ao de escolridde Versão Nome: Nº Turm: Professor: José Tioco 09/0/08 Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods

Leia mais

AULAS 7 A 9 MÉDIAS LOGARITMO. Para n números reais positivos dados a 1, a 2,..., a n, temos as seguintes definições:

AULAS 7 A 9 MÉDIAS LOGARITMO.  Para n números reais positivos dados a 1, a 2,..., a n, temos as seguintes definições: 009 www.cursoglo.com.br Treimeto pr Olimpíds de Mtemátic N Í V E L AULAS 7 A 9 MÉDIAS Coceitos Relciodos Pr úmeros reis positivos ddos,,...,, temos s seguites defiições: Médi Aritmétic é eésim prte d som

Leia mais

SISTEMAS LINEARES. Sendo x e y, respectivamente, o número de pontos que cada jogador marcou, temos uma equação com duas incógnitas:

SISTEMAS LINEARES. Sendo x e y, respectivamente, o número de pontos que cada jogador marcou, temos uma equação com duas incógnitas: SISTEMAS LINEARES Do grego system ( Sy sigific juto e st, permecer, sistem, em mtemátic,é o cojuto de equções que devem ser resolvids juts,ou sej, os resultdos devem stisfzêlos simultemete. Já há muito

Leia mais

UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS - CCE DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS - CCE DEPARTAMENTO DE MATEMÁTICA UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS - CCE DEPARTAMENTO DE MATEMÁTICA Cmpus Uiversitário - Viços, MG 657- Telefoe: () 899-9 E-mil: dm@ufv.br 6ª LISTA DE MAT 4 /II SÉRIES NUMÉRICAS.

Leia mais

Somas de Riemann e Integração Numérica. Cálculo 2 Prof. Aline Paliga

Somas de Riemann e Integração Numérica. Cálculo 2 Prof. Aline Paliga Soms de Riem e Itegrção Numéric Cálculo 2 Prof. Alie Plig Itrodução Problems de tgete e de velocidde Problems de áre e distâci Derivd Itegrl Defiid 1.1 Áres e distâcis 1.2 Itegrl Defiid 1.1 Áres e distâcis

Leia mais

NOTAS DE AULA. Cálculo Numérico. Universidade Tecnológica Federal do Paraná - UTFPR - Professores: Lauro Cesar Galvão Luiz Fernando Nunes

NOTAS DE AULA. Cálculo Numérico. Universidade Tecnológica Federal do Paraná - UTFPR - Professores: Lauro Cesar Galvão Luiz Fernando Nunes NOTAS DE AULA Cálculo Numérico Uiversidde Tecolóic Federl do Prá - UTFPR - Professores: Luro Cesr Glvão Luiz Ferdo Nues Ídice Cálculo Numérico Luro / Nues ii Noções ásics sore Erros... -. Erros... -. Erros

Leia mais

o quociente C representa a quantidade de A por unidade de B. Exemplo Se um objecto custar 2, então 10 objectos custam 20. Neste caso temos 20 :10 2.

o quociente C representa a quantidade de A por unidade de B. Exemplo Se um objecto custar 2, então 10 objectos custam 20. Neste caso temos 20 :10 2. Mtemátic I - Gestão ESTG/IPB Resolução. (i).0 : r 0.000.0 00.0 00 0 0.0 00 0 00.000 00 000.008 90 0.000.000 00 000 008 90.00 00 00 00 9 Dividedo = Divisor x Quociete + Resto.0 = x.008 + 0.000. Num divisão

Leia mais

APOSTILA Centro Federal de Educação Tecnológica do Paraná

APOSTILA Centro Federal de Educação Tecnológica do Paraná APOSTIA Cetro Federl de Educção Tecológic do Prá CEFET PR uro Césr Glvão, Dr. e uiz Ferdo Nues, Dr. Ídices NOÇÕES BÁSICAS SOBRE ERROS...-. ERROS...-. ERROS ABSOUTOS E REATIVOS...-.. Erro Asoluto...-..

Leia mais

3 Integral Indefinida

3 Integral Indefinida 3 Itegrl Idefiid 3. Método d Sustituição (ou Mudç de Vriável) pr Itegrção As fórmuls de primitivção ão mostrm omo lulr s itegris Idefiids do tipo 5x + 7 Ms lgums vezes, é possível determir itegrl de um

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A. TESTE Nº 4 Grupo I

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A. TESTE Nº 4 Grupo I ESOLA SEUNDÁRIA OM º ILO D. DINIS º ANO DE ESOLARIDADE DE MATEMÁTIA A TESTE Nº Grupo I As seis questões deste grupo são de escolh múltipl. Pr cd um dels são idicds qutro ltertivs, ds quis só um está correct.

Leia mais

Resolução de sistemas lineares SME 0200 Cálculo Numérico I

Resolução de sistemas lineares SME 0200 Cálculo Numérico I Resolução de sistems lieres SME Cálculo Numérico I Docete: Prof. Dr. Mrcos Areles Estgiário PAE: Pedro Muri [reles@icmc.usp.br, muri@icmc.usp.br] Itrodução Sistems lieres são de grde importâci pr descrição

Leia mais

A utilização de séries de potências no cálculo de um valor aproximado para o número pi

A utilização de séries de potências no cálculo de um valor aproximado para o número pi Uiversidde Federl de Mis Geris Istituto de Ciêcis Ets Deprtmeto de Mtemátic Progrm de Pós-Grdução em Mtemátic Especilizção em Mtemátic pr Professores / Cálculo A utilizção de séries de potêcis o cálculo

Leia mais

Curso de linguagem matemática Professor Renato Tião. 1. Resolver as seguintes equações algébricas: GV. Simplifique a expressão 2 GV.

Curso de linguagem matemática Professor Renato Tião. 1. Resolver as seguintes equações algébricas: GV. Simplifique a expressão 2 GV. Curso de liguge teátic Professor Reto Tião. Resolver s seguites equções lgébrics: ) x + = b) x = c) x = d) x = e) x = f) x = g) x = ) x = i) x = j) = k) logx = l) logx= x GV. GV. Siplifique expressão 8

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 4º Teste º Ao de escolridde Versão Nome: Nº Turm: Professor: José Tioco 09/0/08 Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods

Leia mais

MATEMÁTICA BÁSICA. a c ad bc. b d bd EXERCÍCIOS DE AULA. 01) Calcule o valor de x em: FRAÇÕES

MATEMÁTICA BÁSICA. a c ad bc. b d bd EXERCÍCIOS DE AULA. 01) Calcule o valor de x em: FRAÇÕES MATEMÁTICA BÁSICA FRAÇÕES EXERCÍCIOS DE AULA ) Clcule o vlor de x em: A som e sutrção de frções são efetuds prtir d oteção do míimo múltiplo comum dos deomidores. É difícil respoder de imedito o resultdo

Leia mais

Espaços Vetoriais. Profª Cristiane Guedes. Bibliografia: Algebra Linear Boldrini/Costa/Figueiredo/Wetzler

Espaços Vetoriais. Profª Cristiane Guedes. Bibliografia: Algebra Linear Boldrini/Costa/Figueiredo/Wetzler Espços Vetoriis Profª Cristie Gedes iliogrfi: Alger Lier oldrii/cost/figeiredo/wetzler Itrodção Ddo m poto P(,,z o espço, temos m etor ssocido esse poto: OP (,, z pode ser escrito d segite form: z z V

Leia mais

PESQUISA OPERACIONAL Método Simplex. Professor Volmir Wilhelm Professora Mariana Kleina

PESQUISA OPERACIONAL Método Simplex. Professor Volmir Wilhelm Professora Mariana Kleina PESQUISA OPERACIONAL Método Simple Professor Volmir Wilhelm Professor Mri Klei Limitções d progrmção lier m (mi) s. Z c c... m, m,...,... c... c 0... c m b b m. Coeficietes costtes. Divisibilidde 3. Proporciolidde

Leia mais

ALGUMAS CONSIDERAÇÕES TEORICAS 1. Sistema de equações Lineares

ALGUMAS CONSIDERAÇÕES TEORICAS 1. Sistema de equações Lineares LGUMS CONSIDERÇÕES TEORICS. Siste de equções Lieres De fo gerl, podeos dier que u siste de equções lieres ou siste lier é u cojuto coposto por dus ou is equções lieres. U siste lier pode ser represetdo

Leia mais

APOSTILA Cálculo Numérico

APOSTILA Cálculo Numérico APOSTIA Cálculo Numérico Prof. Especilist uricio Cris. Ídices NOÇÕES BÁSICAS SOBRE ERROS...-. ERROS...-. ERROS ABSOUTOS E REATIVOS...-.. Erro Asoluto...-.. Erro Reltivo ou T de Erro...-. ERROS DE ARREDONDAENTO

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Sistemas Lineares Métodos Iterativos

TP062-Métodos Numéricos para Engenharia de Produção Sistemas Lineares Métodos Iterativos TP6-Métodos Numércos pr Egehr de Produção Sstems Leres Métodos Itertvos Prof. Volmr Wlhelm Curt, 5 Resolução de Sstems Leres Métodos Itertvos Itrodução É stte comum ecotrr sstems leres que evolvem um grde

Leia mais

Métodos Numéricos Sistemas Lineares Métodos Iterativos. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Sistemas Lineares Métodos Iterativos. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numércos Sstems Leres Métodos Itertvos Professor Volmr Eugêo Wlhelm Professor Mr Kle Resolução de Sstems Leres Métodos Itertvos Itrodução É stte comum ecotrr sstems leres que evolvem um grde porcetgem

Leia mais