Resolução Numérica de Sistemas Lineares Parte II

Tamanho: px
Começar a partir da página:

Download "Resolução Numérica de Sistemas Lineares Parte II"

Transcrição

1 Cálculo Numérico Resolução Numéric de Sistems Lieres Prte II Prof Jorge Cvlcti MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - wwwdscufcgedubr/~cum/

2 Sistems Lieres Métodos Itertivos É bstte comum ecotrr sistems lieres que evolvem um grde porcetgem de coeficietes ulos Esses sistems são chmdos de sistems esprsos Pr esses tipos de sistems, o método de Elimição de Guss ão é o mis proprido, pois ele ão preserv ess esprsidde, que pode ser útil por fcilitr resolução do sistem Meir mis proprido pr esse tipo de sistem métodos itertivos

3 Cosistem em ecotrr um seqüêci de estimtivs i (dd um estimtiv iicil i ) que pós um úmero suficietemete grde de iterções covirj pr solução do sistem de equções Métodos Itertivos M M M M

4 Métodos Itertivos Outr vtgem destes métodos ão são tão suscetíveis o cúmulo de erros de rredodmeto como o método de Elimição de Guss É importte lembrr que: Como todo processo itertivo, estes métodos sempre presetrão um resultdo proimdo, que será tão próimo do resultdo rel coforme o úmero de iterções relizds Além disso, tmbém é preciso ter cuiddo com covergêci desses métodos

5 Métodos Itertivos Trsform o sistem lier Ab em Cg A: mtriz dos coeficietes, m : vetor ds vriáveis, ; b: vetor dos termos costtes, C: mtriz g: vetor Métodos utilizdos: Guss-Jcobi Guss-Seidel 5

6 Método de Guss-Jcobi Cohecido () (proimção iicil) obtém-se cosecutivmete os vetores: () () C C () () g, g, (primeir (segud proimção) proimção), etc De um modo gerl, proimção é clculd pel fórmul: C g,,, São gerds ovs proimções té que um dos critérios de prd sej stisfeito: Má i - i ε (Tolerâci), com i, ou: > M, com MNúmero máimo de iterções 6

7 Método de Guss-Jcobi D primeir equção do sistem b obtém-se b - ( ) logmete b ( ) Ou: (/ ) (b - - -,- - ) 7

8 Método de Guss-Jcobi Dest form pr C g C - / - / - / - / - / - / (/ ) (b - - -,- - ) g (b / b / b / ) T 8

9 Método de Guss-Jcobi Etão como C g C - / - / - / - / - / - / (/ )(b ) (/ )(b ) (/ )(b - - -,- - ) g (b / b / b / ) T 9

10 Método de Guss-Jcobi EXEMPLO Sej o sistem e ε,5 C - / - / - / - / - / - / C - / - / -/5 - /5 -/5 / g 7/ -8/5 6/

11 Método de Guss-Jcobi EXEMPLO O Processo itertivo é: (/ )(b ) (/ )(b ) (/ )(b - - -,- - ) Equções de Iterção (/)(7 - ) (,7) (/5)(-8 - ) (- 6) (/)(6 - - (- 6)

12 Método de Guss-Jcobi EXEMPLO Com,7 -,6,6 Obs: X estimdo por (b / ), muito embor poss ser dotdo qulquer vlor iicil, como por eemplo [ ] T Pr :,7 -(-6)-(6), (7)-(6) (7)-(-6)69 Obtemos etão: () C () g,96 -,86,9

13 Método de Guss-Jcobi EXEMPLO Avlido o critério de prd pr ε,5 : Má i - i ε (Tolerâci), com i, ou: () C () g,96 -,86,9 () (),6 () (),6 () (), Má i - i, > ε Prosseguido com s iterções, pr : () () () (),7 -(-86)-(9),7978 () - () () () 6 -(96)-(9)-6-98 () - () () () 6-(96)-(-86)6966

14 Método de Guss-Jcobi EXEMPLO () Pr : (),978 -,98,966,9997 -,9888,98 () (),8 () (), () (),6 Má i - i, > ε () (), () (),8 () (),8 Má i - i,8 < ε *,9997 -,9888,98

15 Método de Guss-Jcobi Resumido: Escolhe-se proimção iicil () : () [ (), (),, () ] T Clculm-se s proimções sucessivs, prtir d iterção: C g Cotiu-se gerr proimções té que um dos critérios de prd sej stisfeito: Má i - i ε (Tolerâci), com i, ou: K > M, com MNúmero máimo de iterções Observr que os elemetos do sistem origil ii, i Cso isso ão ocorr, deve-se reorgizr s equções pr que se cosig ess codição É importte tmbém que digol pricipl estejm os miores vlores bsolutos, pr celerr o processo de covergêci e dr mis precisão o resultdo fil 5

16 Método de Guss-Jcobi EXEMPLO Resolver o sistem bio, com ε - ou >: - Ecotrdo s equções de iterção: ½( ) - ½( - ) Etão: ½( ) ½(- ),,,, 6

17 Método de Guss-Jcobi EXEMPLO Fzedo () [ ] T como solução iicil: Etão, pr : ½( ) () ½( () ) ½( ),5 ½(- ) () ½(- () ) ½( - ),5 Pr : () ½( () ) ½(,5),5 () ½(- () ) ½(,5),5 ε Má i - i ε,5,5,75 > - 7

18 Método de Guss-Jcobi EXEMPLO Pr : () ½( () ) () ½(,5),5 () ½(- () ) () ½(- () ) ½(,5),875 ε,875 -,5,75 > - 8

19 Método de Guss-Jcobi - EXEMPLO Prosseguido com s iterções pr, : X ε -,6 -,5,5,5,98,5,5,875,98,5,75,75,88 Ou >? Etão pre!,998 5,969,,9, 6 7 8,6,8,996,6,99,996,7,,,998, 9,998,,6 9

20 Sistems de Equções Lieres Método de Guss-Seidel Cohecido () (proimção iicil) obtém-se,, j j j,, Ao se clculr,, vlores us-se todos os vlores que já form clculdos e os resttes

21 Descrição do Método Sej o seguite sistem de equções: b b b b M Métodos Itertivos Guss Seidel

22 Isoldo i prtir d lih i, tem-se: ( ) ( ) ( ) ( ) b b b b,,,, M Métodos Itertivos Guss Seidel

23 O processo itertivo é obtido prtir ds equções, fzedo: ( ) ( ) ( ) ( ),,,, b b b b Métodos Itertivos Guss Seidel

24 Métodos Itertivos Guss Seidel Critério de Prd Difereç reltiv etre dus iterções cosecutivs Defie-se por difereç reltiv epressão: d Má, i i i d r má d X ( ) i ( Difereç Reltiv) Fim do processo itertivo - vlor de d R pequeo o bstte pr precisão desejd

25 Métodos Itertivos Guss Seidel E: Resolv: 5 y y z z 5 6 y 6z Solução: com D R 5 y z 5 6 ( 5 y z) ( 6 z) ( y) z ( y) 5

26 Métodos Itertivos Guss Seidel D y D y z D z D R ,8,5,65 -,75,79,79,5,,9,9 -,967,5,9,9,6,985,66 -,997,,66,,7,998, -,,, y,998 z - Verificção (substituição o sistem): 5(,) (,998) (-) 5,8 5 o (,) (,998) (-) 5,998 6 o (,) (,998) 6(-) o 6

27 Método de Guss-Seidel Critérios de Covergêci Processo itertivo covergêci pr solução et ão é grtid pr qulquer sistem Eistem certs codições que devem ser stisfeits por um sistem de equções lieres pr se grtir covergêci do método As codições podem ser determids por dois critérios: Critério de Sssefeld Critério ds Lihs 7

28 Critério de Sssefeld Sejm s qutiddes β i dds por: β j j e β i i ij β j ii j j i ij pr i,,, - ordem do sistem lier que se desej resolver ij - são os coeficietes ds equções que compõem o sistem Este critério grte que o método de Guss-Seidel covergirá pr um ddo sistem lier se qutidde M, defiid por: M m β i for meor que (M<) i 8

29 Critério de Sssefeld Eemplo: Sej A, mtriz dos coeficietes e b o vetor dos termos costtes ddos por: b b b b β β β ( ) ( β ) ( β β ) β ( β β β ) 9

30 Eemplo: Mostre se solução do sistem lier ddo pels equções: covergirá pelo método de Guss-Seidel Critério de Sssefeld

31 Critério de Sssefeld M Solução: critério de Sssefeld Clculr os vlores ds qutiddes β i β β β β ( ) 7 ( ) ( 7 ) 58 ( ) 76 m i β i A B M é meor que solução desse sistem irá covergir usdo o método de Guss-Seidel

32 Critério ds Lihs Segudo esse critério, um determido sistem irá covergir pelo método de Guss-Seidel, se: ij < j j i ii, pr i,,,,

33 Critério ds Lihs Eemplo: O sistem do eemplo terior stisfz o critério ds lihs e ess verificção pode ser feit de meir quse imedit, observdo-se que: > > > > ij < j j i ii pr i,,,

34 Cosiderções Fiis É importte sber que: A covergêci de um sistem INDEPENDE dos vlores iiciis estimdos Os Critérios são codições suficietes, porém ão ecessáris, pr covergêci do método de Guss-Seidel pr um ddo sistem lier Isso sigific que um sistem pode ão stisfzer esses critérios e id covergir Um sistem pode ão stisfzer o critério ds lihs e stisfzer o critério de Sssefeld, o que grtirá su covergêci

35 Cosiderções Fiis Eemplo: Sej o sistem: 6 8 Note que esse sistem ão stisfz o critério ds lihs, pois: < porém, ele stisfz o critério de Sssefeld: 6 β M β i < i β ( 6 ) m Covergêci grtid 5

36 Cosiderções Fiis Outr observção importte A ordem com que s equções precem o sistem pode ser lterd pr se vlir covergêci Apesr d ordem ds equções ão lterr solução do sistem, el pode lterr covergêci do mesmo pelo método d Guss-Seidel 6

37 Cosiderções Fiis Eemplo: Sej o sistem: N form como o sistem está represetdo, ele ão stisfz o critério ds lihs (verifique isso), portto su covergêci ão é grtid Porém, trocdo-se ordem ds dus equções, o sistem stisfz esse critério, e su covergêci pelo método de Guss-Seidel é grtid (verifique isso tmbém) 7

Cálculo Numérico Resolução Numérica de Sistemas Lineares Parte II

Cálculo Numérico Resolução Numérica de Sistemas Lineares Parte II Cálculo Numérico Resolução Numéric de Sistems Lieres Prte II Prof: Reildo Hs Métodos Itertivos Motivção I Ocorrêci em lrg escl de sistems lieres em cálculos de Egehri e modelgem cietífic Eemplos: Simulções

Leia mais

Apostila de Introdução Aos Métodos Numéricos

Apostila de Introdução Aos Métodos Numéricos Apostil de Itrodução Aos étodos Numéricos PARTE II o Semestre - Prof. Slete Souz de Oliveir Buffoi Ídice SISTEAS LINEARES... INTRODUÇÃO... ÉTODOS DIRETOS: ELIINAÇÃO DE GAUSS... Sistem lier com...5 Eemplo:...7

Leia mais

MÉTODOS ITERATIVOS PARA RESOLUÇÃO DE SISTEMAS

MÉTODOS ITERATIVOS PARA RESOLUÇÃO DE SISTEMAS MÉTODO ITRATIVO PARA ROLUÇÃO D ITMA ) NORMA D UMA MATRIZ: ej A=[ ij ] um mtriz de ordem m: Norm lih: A má i m j ij Norm colu: A má jm i ij emplos: I) A 0 A A má má ; 0 má{4 ; } 4 0 ; má{; 5} 5 Os.: por

Leia mais

Método de Eliminação de Gauss. Método de Eliminação de Gauss

Método de Eliminação de Gauss. Método de Eliminação de Gauss Método de Elimição de Guss idei básic deste método é trsormr o sistem b um sistem equivlete b, ode é um mtriz trigulr superior, eectudo trsormções elemetres sobre s lihs do sistem ddo. Cosidere-se o sistem

Leia mais

TE231 Capitulo 3 Sistemas de Equações Lineares; Prof. Mateus Duarte Teixeira

TE231 Capitulo 3 Sistemas de Equações Lineares; Prof. Mateus Duarte Teixeira TE Cpitulo Sistems de Equções Lieres; Prof. Mteus Durte Teieir Sumário. Itrodução. Históri. Mtrizes. Sistems de Equções Lieres 5. Norms Vetoriis e Mtriciis 6. Métodos Diretos. Istbiliddes. Codiciometo

Leia mais

Apostila de Introdução Aos Métodos Numéricos

Apostila de Introdução Aos Métodos Numéricos Apostil de Itrodução Aos Métodos Numéricos PARTE II o Semestre - Prof. Slete Souz de Oliveir Buffoi Ídice SISTEMAS LINEARES... INTRODUÇÃO... MÉTODOS DIRETOS: ELIMINAÇÃO DE GAUSS... Sistem lier com... Eemplo:...

Leia mais

Análise Numérica (3) Sistemas de equações lineares V1.0, Victor Lobo, 2004

Análise Numérica (3) Sistemas de equações lineares V1.0, Victor Lobo, 2004 Aálise Numéric (3) Sistems de equções lieres V.0, Victor Lobo, 004 Sistems de fiições Equção Lier Form mtricil: A X=B Sistem de equções icógits + +... + + +... +... + +... + Form mtricil: AX=B Utilidde

Leia mais

Á R E A, S O M A D E R I E M A N N E A I N T E G R A L D E F I N I D A

Á R E A, S O M A D E R I E M A N N E A I N T E G R A L D E F I N I D A Á R E A, S O M A D E R I E M A N N E A I N T E G R A L D E F I N I D A Prof. Beito Frzão Pires - hors. áre A oção de áre de um polígoo ou região poligol) é um coceito bem cohecido. Começmos defiido áre

Leia mais

MATLAB - Trabalho Prático 4

MATLAB - Trabalho Prático 4 U N I V E R S I D A D E D A B E I R A I N T E R I O R Deprtmeto de Egehri Electromecâic CONTROLO DE SISTEMAS (Lortório) MATLAB - Trlho Prático Todos os eercícios devem ser escritos um script.m. Deverão

Leia mais

3 SISTEMAS DE EQUAÇÕES LINEARES

3 SISTEMAS DE EQUAÇÕES LINEARES . Itrodução SISTEAS DE EQUAÇÕES INEARES A solução de sistems lieres é um ferrmet mtemátic muito importte egehri. Normlmete os prolems ão-lieres são soluciodos por ferrmets lieres. As fotes mis comus de

Leia mais

2. Resolução Numérica de Equações Não-Lineares

2. Resolução Numérica de Equações Não-Lineares . Resolução Numéric de Equções Não-Lieres. Itrodução Neste cpítulo será visto lgoritmos itertivos pr ecotrr rízes de fuções ão-lieres. Nos métodos itertivos, s soluções ecotrds ão são ets, ms estrão detro

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Sistemas Lineares Métodos Iterativos

TP062-Métodos Numéricos para Engenharia de Produção Sistemas Lineares Métodos Iterativos TP6-Métodos Numércos pr Egehr de Produção Sstems Leres Métodos Itertvos Prof. Volmr Wlhelm Curt, 5 Resolução de Sstems Leres Métodos Itertvos Itrodução É stte comum ecotrr sstems leres que evolvem um grde

Leia mais

Métodos Numéricos Sistemas Lineares Métodos Iterativos. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Sistemas Lineares Métodos Iterativos. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numércos Sstems Leres Métodos Itertvos Professor Volmr Eugêo Wlhelm Professor Mr Kle Resolução de Sstems Leres Métodos Itertvos Itrodução É stte comum ecotrr sstems leres que evolvem um grde porcetgem

Leia mais

Métodos Numéricos Sistemas Lineares Métodos Diretos. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Sistemas Lineares Métodos Diretos. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numéricos Sistems Lieres Métodos Diretos Professor Volmir uêio Wilhelm Professor Mri Klei limição de Guss Decomposição LU Decomposição Cholesky Prtição d mtriz limição de Guss limição de Guss Motivção

Leia mais

José Álvaro Tadeu Ferreira. Cálculo Numérico. Notas de aulas

José Álvaro Tadeu Ferreira. Cálculo Numérico. Notas de aulas UNIVERSIDADE FEDERA DE OURO PRETO Istituto de Ciêcis Ets e Biológics Deprtmeto de Computção José Álvro Tdeu Ferreir Cálculo Numérico Nots de uls Resolução de Sistems de Equções ieres Simultâes Ouro Preto

Leia mais

Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1

Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1 Mtrizes e Sistems de equções lieres D.I.C. Medes s mtrizes são um ferrmet básic formulção de problems de mtemátic e de outrs áres. Podem ser usds: resolução de sistems de equções lieres; resolução de sistems

Leia mais

1- SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES

1- SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES - SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES.- Métodos etos pr solução de sistems lieres Métodos pr solução de sistems de equções lieres são divididos priciplmete em dois grupos: ) Métodos Etos:

Leia mais

Métodos Numéricos. Autores: Mário Barreto de Moura Neto Rafael Martins Gomes Nascimento Samara Anny Maia Fava Victor Sampaio Gondim

Métodos Numéricos. Autores: Mário Barreto de Moura Neto Rafael Martins Gomes Nascimento Samara Anny Maia Fava Victor Sampaio Gondim Métodos Numéricos Autores: Mário Brreto de Mour Neto Rel Mrtis Gomes Nscimeto Smr Ay Mi Fv Victor Smpio Godim Orietdor: Velser Drll Beício Corre Apresetção Itrodução Métodos pr Ecotrr Rízes Prte d Smr

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano.

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano. CÁLCULO NUMÉRICO Prof. Dr. Yr de Souz Tdno yrtdno@utfpr.edu.br Aul 0 0/04 Sistems de Equções Lineres Prte MÉTODOS ITERATIVOS Cálculo Numérico /9 MOTIVAÇÃO Os métodos itertivos ou de proimção fornecem um

Leia mais

José Álvaro Tadeu Ferreira. Cálculo Numérico Notas de aulas

José Álvaro Tadeu Ferreira. Cálculo Numérico Notas de aulas UNIVERSIDADE FEDERA DE OURO PRETO Istituto de Ciêcis Ets e Biológics Deprtmeto de Computção José Álvro Tdeu Ferreir Cálculo Numérico Nots de uls Resolução de Sistems de Equções ieres Simultâes Ouro Preto

Leia mais

Quando o polinômio divisor é da forma x + a, devemos substituir no polinômio P(x), x por a, visto que: x + a = x ( a).

Quando o polinômio divisor é da forma x + a, devemos substituir no polinômio P(x), x por a, visto que: x + a = x ( a). POLINÔMIOS II. TEOREMA DE D ALEMBERT O resto d divisão de um poliômio P(x) por x é igul P(). m m Sej, com efeito, P x x x..., um poliômio de x, ordedo segudo s potecis m m decrescetes de x. Desigemos o

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A 4º Teste º Ao de escolridde Versão Nome: Nº Turm: Professor: José Tioco 09/0/08 Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods

Leia mais

Olimpíada Brasileira de Matemática X semana olímpica 21 a 28 de janeiro de Eduardo Poço. Integrais discretas Níveis III e U

Olimpíada Brasileira de Matemática X semana olímpica 21 a 28 de janeiro de Eduardo Poço. Integrais discretas Níveis III e U Olipíd Brsileir de Mteátic X se olípic 8 de jeiro de 007 Edurdo Poço Itegris discrets Níveis III e U Itegrl discret: dizeos que F é itegrl discret de F F f f se e soete se:, pr iteiro pricípio D es for,

Leia mais

Sistemas de Equações Lineares Métodos Directos. Computação 2º Semestre 2016/2017

Sistemas de Equações Lineares Métodos Directos. Computação 2º Semestre 2016/2017 Sistems de Equções Lieres Métodos Directos Computção º Semestre 06/07 Sistems de Equções Muitos pricípios fudmetis em problems de ciêci e egehri podem ser epressos em termos de equções: vriável depedete

Leia mais

Capítulo 5.1: Revisão de Série de Potência

Capítulo 5.1: Revisão de Série de Potência Cpítulo 5.: Revisão de Série de Potêci Ecotrr solução gerl de um equção diferecil lier depede de determir um cojuto fudmetl ds soluções d equção homogêe. Já cohecemos um procedimeto pr costruir soluções

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 4º Teste º Ao de escolridde Versão Nome: Nº Turm: Professor: José Tioco 09/0/08 Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods

Leia mais

Cálculo Numérico Módulo III Resolução Numérica de Sistemas Lineares Parte I

Cálculo Numérico Módulo III Resolução Numérica de Sistemas Lineares Parte I Cálculo Numérico Módulo III Resolução Numéric de Sistems Lineres Prte I Prof: Reinldo Hs Sistems Lineres Form Gerl... n n b... n n b onde: ij n n coeficientes i incógnits b i termos independentes... nn

Leia mais

2- Resolução de Sistemas de Equações Lineares

2- Resolução de Sistemas de Equações Lineares - Resolução de Sistems de Equções ieres Um sistem de equções lieres, com m equções e vriáveis, é escrito gerlmete como: m m m m ode ij são coeficietes m i j são vráveis j i são costtes m i A resolução

Leia mais

Resolução Numérica de Sistemas Lineares Parte I

Resolução Numérica de Sistemas Lineares Parte I Cálculo Numérico Resolução Numéric de Sistems ineres Prte I Prof. Jorge Cvlcnti jorge.cvlcnti@univsf.edu.br MATERIA ADAPTADO DOS SIDES DA DISCIPINA CÁCUO NUMÉRICO DA UFCG - www.dsc.ufcg.edu.br/~cnum/ Sistems

Leia mais

Resolução de sistemas lineares SME 0200 Cálculo Numérico I

Resolução de sistemas lineares SME 0200 Cálculo Numérico I Resolução de sistems lieres SME Cálculo Numérico I Docete: Prof. Dr. Mrcos Areles Estgiário PAE: Pedro Muri [reles@icmc.usp.br, muri@icmc.usp.br] Itrodução Sistems lieres são de grde importâci pr descrição

Leia mais

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFEREÇA ( ( x( Coeficiete costte. ( ( x ( Coeficiete vriável (depedete do tempo. Aplicmos x( pr e cosidermos codição iicil ( ( ( M ( ( ( ( x( x( ( x(

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.4

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.4 FICHA de AVALIAÇÃO de MATEMÁTICA A 5º Teste º Ao de escolridde Versão4 Nome: Nº Turm: Professor: José Tioco /4/8 Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods

Leia mais

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFEREÇA Coeficiete costte. SISTEMAS LIT CARACTERIZADOS POR EQUAÇÕES A DIFEREÇA COM COEFICIETES COSTATES Sistems descritos por equções difereç com coeficiete

Leia mais

As funções exponencial e logarítmica

As funções exponencial e logarítmica As fuções epoecil e logrítmic. Potêcis em Sej um úmero rel positivo, isto é, * +. Pr todo, potêci, de bse e epoete é defiid como o produto de ftores iguis o úmero rel :...... vezes Pr, estbelece-se 0,

Leia mais

SISTEMAS LINEARES. Cristianeguedes.pro.br/cefet

SISTEMAS LINEARES. Cristianeguedes.pro.br/cefet SISTEMAS LINEARES Cristieguedes.pro.r/cefet Itrodução Notção B A X Mtricil Form. : m m m m m m m A es Mtri dos Coeficiet : X Mtri dsvriáveis : m B Termos Idepede tes : Número de soluções Ddo um sistem

Leia mais

CÁLCULO I. Exibir o cálculo de algumas integrais utilizando a denição.

CÁLCULO I. Exibir o cálculo de algumas integrais utilizando a denição. CÁLCULO I Prof Mrcos Diiz Prof Adré Almeid Prof Edilso Neri Prof Emerso Veig Prof Tigo Coelho Aul o : A Itegrl de Riem Objetivos d Aul Deir itegrl de Riem; Exibir o cálculo de lgums itegris utilizdo deição

Leia mais

Matemática C Extensivo V. 6

Matemática C Extensivo V. 6 Mtemátic C Etesivo V 6 Eercícios ) D ) D ) C O vlor uitário do isumo é represetdo por y Portto pelo produto ds mtrizes A e B temos o seguite sistem: 5 5 9 y 5 5y 5y 9 5y 5 Portto: y 4 y 4 As médis uis

Leia mais

Capítulo 2: Resolução Numérica de Equações

Capítulo 2: Resolução Numérica de Equações Cpítulo : Resolução Numéric de Equções.. Riz de um equção Em muitos prolems de egehri há ecessidde de determir um úmero ξ pr qul ução sej zero, ou sej, ξ. A ξ chmmos riz d equção ou zero d ução. Equções

Leia mais

Métodos Numéricos Integração Numérica Regra dos Trapézio. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Integração Numérica Regra dos Trapézio. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numéricos Itegrção Numéric Regr dos Trpézio Professor Volmir Eugêio Wilhelm Professor Mri Klei Itegrção Defiid Itegrção Numéric Itegrção Numéric Itegrção Defiid Há dus situções em que é impossível

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Integração Numérica Regra dos Trapézio

TP062-Métodos Numéricos para Engenharia de Produção Integração Numérica Regra dos Trapézio TP6-Métodos Numéricos pr Egehri de Produção Itegrção Numéric Regr dos Trpézio Prof. Volmir Wilhelm Curiti, 5 Itegrção Defiid Itegrção Numéric Prof. Volmir - UFPR - TP6 Itegrção Numéric Itegrção Defiid

Leia mais

Transformada z. A transformada z é a TFTD da sequência r -n x[n] e a ROC é determinada pelo intervalo de valores de r para os quais.

Transformada z. A transformada z é a TFTD da sequência r -n x[n] e a ROC é determinada pelo intervalo de valores de r para os quais. Trsformd A TFTD de um sequêci é: Pr covergir série deve ser solutmete somável. Ifelimete muitos siis ão podem ser trtdos: A trsformd é um geerlição d TFTD que permite o trtmeto desses siis: Ζ Defiição:

Leia mais

BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL

BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL Itrodução Biômio de Newto: O iômio de Newto desevolvido elo célere Isc Newto serve r o cálculo de um úmero iomil do tio ( ) Se for, fic simles é es decorr que ()²

Leia mais

6/16/2011. Relações de Girard Relações entre raizes e coeficientes. a x. a 1. Considere-se as raízes i, i=1,2,...n, e P(x) na forma fatorada:

6/16/2011. Relações de Girard Relações entre raizes e coeficientes. a x. a 1. Considere-se as raízes i, i=1,2,...n, e P(x) na forma fatorada: 66 Numero de Rizes Reis Teorem de Bolzo Sej = um equção lgébric com coeficietes reis,b. Se b , etão eiste um úmero pr de rízes reis, ou ão eistem

Leia mais

Resolução Numérica de Sistemas Lineares Parte I

Resolução Numérica de Sistemas Lineares Parte I Cálculo Numérico Módulo V Resolução Numéric de Sistems ineres Prte I Profs.: Bruno Correi d Nóbreg Queiroz José Eustáquio Rngel de Queiroz Mrcelo Alves de Brros Sistems ineres Form Gerl... n n b... n n

Leia mais

Universidade Federal Fluminense ICEx Volta Redonda Métodos Quantitativos Aplicados I Professora: Marina Sequeiros

Universidade Federal Fluminense ICEx Volta Redonda Métodos Quantitativos Aplicados I Professora: Marina Sequeiros Uiversidde Federl Flumiese ICE Volt Redod Métodos Qutittivos Aplicdos I Professor: Mri Sequeiros. Poliômios Defiição: Um poliômio ou fução poliomil P, vriável, é tod epressão do tipo: P)=... 0, ode IN,

Leia mais

Sistems Lineres Form Gerl onde: ij ij coeficientes n n nn n n n n n n b... b... b...

Sistems Lineres Form Gerl onde: ij ij coeficientes n n nn n n n n n n b... b... b... Cálculo Numérico Módulo V Resolução Numéric de Sistems Lineres Prte I Profs.: Bruno Correi d Nóbreg Queiroz José Eustáquio Rngel de Queiroz Mrcelo Alves de Brros Sistems Lineres Form Gerl onde: ij ij coeficientes

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A 0.º Ao Versão Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods s justificções ecessáris. Qudo, pr um resultdo, ão é pedid um proimção,

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.1

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.1 FICHA de AVALIAÇÃO de MATEMÁTICA A 5º Teste º Ao de escolridde Versão Nome: Nº Turm: Proessor: José Tioco 3/4/8 Apresete o seu rciocíio de orm clr, idicdo todos os cálculos que tiver de eetur e tods s

Leia mais

SISTEMAS LINEARES. Sendo x e y, respectivamente, o número de pontos que cada jogador marcou, temos uma equação com duas incógnitas:

SISTEMAS LINEARES. Sendo x e y, respectivamente, o número de pontos que cada jogador marcou, temos uma equação com duas incógnitas: SISTEMAS LINEARES Do grego system ( Sy sigific juto e st, permecer, sistem, em mtemátic,é o cojuto de equções que devem ser resolvids juts,ou sej, os resultdos devem stisfzêlos simultemete. Já há muito

Leia mais

Vale ressaltar que um programa foi desenvolvido em MatLab para solucionar os sistemas de equações propostos.

Vale ressaltar que um programa foi desenvolvido em MatLab para solucionar os sistemas de equações propostos. MSc Alexdre Estácio Féo Associção Educciol Dom Bosco - Fculdde de Egehri de Resede Cix Postl: 8.698/87 - CEP: 75-97 - Resede - RJ Brsil Professor e Doutordo de Egehri efeo@uifei.edu.br Resumo: Neste trblho

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A. TESTE Nº 4 Grupo I

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A. TESTE Nº 4 Grupo I ESOLA SEUNDÁRIA OM º ILO D. DINIS º ANO DE ESOLARIDADE DE MATEMÁTIA A TESTE Nº Grupo I As seis questões deste grupo são de escolh múltipl. Pr cd um dels são idicds qutro ltertivs, ds quis só um está correct.

Leia mais

Revisão de Álgebra Matricial

Revisão de Álgebra Matricial evisão de Álgebr Mtricil Prof. Ptrici Mri ortolo Fote: OLDINI, C. e WETZLE, F.; Álgebr Lier. ª. ed. São Pulo. Editor Hrbr, 986 Álgebr Mtricil D Mtemátic do º. Gru: y ( y ( De( : y Em ( : ( Em ( : y y 8

Leia mais

APOSTILA Centro Federal de Educação Tecnológica do Paraná

APOSTILA Centro Federal de Educação Tecnológica do Paraná APOSTIA Cetro Federl de Educção Tecológic do Prá CEFET PR uro Césr Glvão, Dr. e uiz Ferdo Nues, Dr. Ídices NOÇÕES BÁSICAS SOBRE ERROS...-. ERROS...-. ERROS ABSOUTOS E REATIVOS...-.. Erro Asoluto...-..

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear Geometri Alític e Álgebr Lier 8. Sistems Lieres Muitos problems ds ciêcis turis e sociis, como tmbém ds egehris e ds ciêcis físics, trtm de equções que relciom dois cojutos de vriáveis. Um equção do tipo,

Leia mais

APOSTILA Cálculo Numérico

APOSTILA Cálculo Numérico APOSTIA Cálculo Numérico Prof. Especilist uricio Cris. Ídices NOÇÕES BÁSICAS SOBRE ERROS...-. ERROS...-. ERROS ABSOUTOS E REATIVOS...-.. Erro Asoluto...-.. Erro Reltivo ou T de Erro...-. ERROS DE ARREDONDAENTO

Leia mais

; determine a matriz inversa A -1

; determine a matriz inversa A -1 - REVISÃO MATEMÁTICA Neste cpítulo recordrão-se lgus coceitos de Álger Lier e Aálise Mtemátic que serão ecessários pr o estudo d teori do Método Simple - Mtrizes Iversíveis Defiição Um mtriz A de ordem

Leia mais

UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS - CCE DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS - CCE DEPARTAMENTO DE MATEMÁTICA UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS - CCE DEPARTAMENTO DE MATEMÁTICA Cmpus Uiversitário - Viços, MG 657- Telefoe: () 899-9 E-mil: dm@ufv.br 6ª LISTA DE MAT 4 /II SÉRIES NUMÉRICAS.

Leia mais

Métodos Numéricos Interpolação Métodos de Newton. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Interpolação Métodos de Newton. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numéricos Métodos de Newto Professor Volmir Eugêio Wilhelm Professor Mri Klei Poliomil Revisão No eemplo só se cohece fução pr 5 vlores de - ós de iterpolção Desej-se cohecer o vlor d fução em

Leia mais

Redes elétricas Circuitos que contém resistências e geradores de energia podem ser analisados usando sistemas de equações lineares;

Redes elétricas Circuitos que contém resistências e geradores de energia podem ser analisados usando sistemas de equações lineares; Álger Lier Mtrizes e vetores Sistems lieres Espços vetoriis Bse e dimesão Trsformções lieres Mtriz de um trsformção lier Aplicções d Álger Lier: Redes elétrics Circuitos que cotém resistêcis e gerdores

Leia mais

SISTEMA DE EQUAÇÕES LINEARES

SISTEMA DE EQUAÇÕES LINEARES SISTEM DE EQUÇÕES LINERES Defiição Ddos os úmeros reis b com equção b ode são vriáveis ou icógits é deomid equção lier s vriáveis Os úmeros reis são deomidos coeficietes ds vriáveis respectivmete e b é

Leia mais

Considere uma função contínua arbitrária f(x) definida em um intervalo fechado [a, b].

Considere uma função contínua arbitrária f(x) definida em um intervalo fechado [a, b]. Mtemátic II 9. Prof.: Luiz Gozg Dmsceo E-mils: dmsceo@yhoo.com.r dmsceo@uol.com.r dmsceo@hotmil.com http://www.dmsceo.ifo www.dmsceo.ifo dmsceo.ifo Itegris defiids Cosidere um fução cotíu ritrári f() defiid

Leia mais

retangular: Corte: 2 Fatias: 4 Corte: Fatias: 7 Corte: 4 Fatias: 11 com n cor a definição função. Isto n+ a n 2.

retangular: Corte: 2 Fatias: 4 Corte: Fatias: 7 Corte: 4 Fatias: 11 com n cor a definição função. Isto n+ a n 2. Métodos de Cotgem e Esttístic Cristi Pol e Luverci Nscimeto. RELAÇÕES DE RECORRÊNCIA. Itrodução Algums relções mtemátics podem ser deiids por recorrêci. O objetivo dess ul cosiste em estudr esses tipos

Leia mais

Matrizes - revisão. No caso da multiplicação ser possível, é associativa e distributiva Não é, em geral, comutativa 2013/03/12 MN 1

Matrizes - revisão. No caso da multiplicação ser possível, é associativa e distributiva Não é, em geral, comutativa 2013/03/12 MN 1 Mtrizes - revisão No cso d multiplicção ser possível, é ssocitiv e distributiv A ( BC) ( AB) C A( B C) AB AC Não é, em gerl, comuttiv AB BA 03/03/ MN Mtrizes - revisão A divisão de mtrizes ão é um operção

Leia mais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA Equções Epoeciis... Fução Epoecil..4 Logritmos: Proprieddes 6 Fução Logrítmic. Equções Logrítmics...5 Iequções Epoeciis e Logrítmics.8 Equções Epoeciis 0. (ITA/74)

Leia mais

SISTEMAS DE EQUAÇÕES LINEARES

SISTEMAS DE EQUAÇÕES LINEARES SISTEMAS DE EQUAÇÕES LINEARES Um problem fudmetl que ormlmete é ecotrdo descrição mtemátic de feômeos físicos é o d solução simultâe de um cojuto de equções. Trduzido pr liuem mtemátic, tis feômeos pssm

Leia mais

SÉRIES DE FOURIER Prof. Me. Ayrton Barboni

SÉRIES DE FOURIER Prof. Me. Ayrton Barboni SUMÁRIO SÉRIES DE FOURIER Prof. Me. Arto Brboi. INTRODUÇÃO.... SÉRIES DE FOURIER..... Fuções Periódics..... Fuções secciolmete difereciáveis..... Fuções de rcos múltiplos..... Coeficietes de Fourier...

Leia mais

SOLUÇÕES DE EDO LINEARES DE 2 A ORDEM NA FORMA INFINITA

SOLUÇÕES DE EDO LINEARES DE 2 A ORDEM NA FORMA INFINITA SOLUÇÕES DE EDO LINEARES DE A ORDEM NA FORMA INFINITA Coforme foi visto é muito simples se obter solução gerl de um EDO lier de ordem coeficietes costtes y by cy em termos ds fuções lgébrics e trscedetes

Leia mais

0K72'26 180K5,&26. Universidade Federal do Paraná Departamento de Informática CI-202 CURITIBA 01/2004

0K72'26 180K5,&26. Universidade Federal do Paraná Departamento de Informática CI-202 CURITIBA 01/2004 Uiversidde Federl do Prá Deprtmeto de Iformátic CI- K7'6 8K5,&6 URI,RQLOGR-RVp6DQFKHV URI'LyJHQHV&RJRUODQ E-Mil: ioildo@ioildo.cj.et URL: http://www.ioildo.cj.et/metodos/ CURITIBA /4 SUMÁRIO REPRESENTAÇÃO

Leia mais

7 Solução aproximada Exemplo de solução aproximada. k critérios que o avaliador leva em consideração.

7 Solução aproximada Exemplo de solução aproximada. k critérios que o avaliador leva em consideração. 7 olução proximd Neste cpítulo é feit elborção de um ov formulção simplificd prtir de um estudo de Lel (008), demostrd por dus forms á cohecids de proximção do cálculo do vetor w de prioriddes retirds

Leia mais

PESQUISA OPERACIONAL Método Simplex. Professor Volmir Wilhelm Professora Mariana Kleina

PESQUISA OPERACIONAL Método Simplex. Professor Volmir Wilhelm Professora Mariana Kleina PESQUISA OPERACIONAL Método Simple Professor Volmir Wilhelm Professor Mri Klei Limitções d progrmção lier m (mi) s. Z c c... m, m,...,... c... c 0... c m b b m. Coeficietes costtes. Divisibilidde 3. Proporciolidde

Leia mais

Uma figura plana bem conhecida e que não possui lados é o círculo. Como determinar o perímetro de um círculo?

Uma figura plana bem conhecida e que não possui lados é o círculo. Como determinar o perímetro de um círculo? erímetro A defiição de erímetro de um figur l muits vezes ode ser ecotrd do seguite modo: é som ds medids dos ldos d figur. Ms será que ess defiição é bo? or exemlo, um figur como que segue bixo ossui

Leia mais

Unidade 2 Progressão Geométrica

Unidade 2 Progressão Geométrica Uidde Progressão Geométric Seuêci e defiição de PG Fórmul do termo gerl Fução expoecil e PG Juros compostos e PG Iterpolção geométric Som dos termos de um PG Seuêci e defiição de PG Imgie ue você tem dus

Leia mais

10/09/2016 UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS DA TERRA DEPARTAMENTO DE GEOMÁTICA AJUSTAMENTO II GA110. Prof. Alvaro Muriel Lima Machado

10/09/2016 UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS DA TERRA DEPARTAMENTO DE GEOMÁTICA AJUSTAMENTO II GA110. Prof. Alvaro Muriel Lima Machado UNIVERSIDDE FEDERL DO PRNÁ SEOR DE IÊNIS D ERR DEPRMENO DE GEOMÁI JUSMENO II G Prof. lvro Muriel Lim Mchdo justmento de Observções Qundo s medids não são feits diretmente sobre s grndezs procurds, ms sim

Leia mais

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE ASSUNTO: SOMAÇÃO E ÁRAS E INTEGRAIS DEFINIDAS. INTEGRAIS DEFINIDAS

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE ASSUNTO: SOMAÇÃO E ÁRAS E INTEGRAIS DEFINIDAS. INTEGRAIS DEFINIDAS FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ENGENHARIA DE PRODUÇÃO ASSUNTO: SOMAÇÃO E ÁRAS E INTEGRAIS DEFINIDAS. PROFESSOR: MARCOS AGUIAR CÁLCULO II INTEGRAIS DEFINIDAS. NOTAÇÃO DE SOMAÇÃO

Leia mais

MÓDULO IV. EP.02) Determine o valor de: a) 5 3 = b) 3 4 = c) ( 4) 2 = d) 4 2 = EP.03) Determine o valor de: a) 2 3 = b) 5 2 = c) ( 3) 4 = d) 3 4 =

MÓDULO IV. EP.02) Determine o valor de: a) 5 3 = b) 3 4 = c) ( 4) 2 = d) 4 2 = EP.03) Determine o valor de: a) 2 3 = b) 5 2 = c) ( 3) 4 = d) 3 4 = MÓDULO IV. Defiição POTENCIACÃO Qudo um úmero é multiplicdo por ele mesmo, dizemos que ele está elevdo o qudrdo, e escrevemos:. Se um úmero é multiplicdo por ele mesmo váris vezes, temos um potêci:.. (

Leia mais

ALGUMAS CONSIDERAÇÕES TEORICAS 1. Sistema de equações Lineares

ALGUMAS CONSIDERAÇÕES TEORICAS 1. Sistema de equações Lineares LGUMS CONSIDERÇÕES TEORICS. Siste de equções Lieres De fo gerl, podeos dier que u siste de equções lieres ou siste lier é u cojuto coposto por dus ou is equções lieres. U siste lier pode ser represetdo

Leia mais

Exemplo: As funções seno e cosseno são funções de período 2π.

Exemplo: As funções seno e cosseno são funções de período 2π. 4. Séries de Fourier 38 As séries de Fourier têm váris plicções, como por eemplo resolução de prolems de vlor de cotoro. 4.. Fuções periódics Defiição: Um fução f() é periódic se eistir um costte T> tl

Leia mais

FUNÇÃO EXPONENCIAL. P potência. Se na potência a n a e n Q, temos: 1- Um número, não-nulo elevado a 0 (zero) é igual a 1 (um).

FUNÇÃO EXPONENCIAL. P potência. Se na potência a n a e n Q, temos: 1- Um número, não-nulo elevado a 0 (zero) é igual a 1 (um). FUNÇÃO EXPONENCIAL - Iicilmete, pr estudr fução epoecil e, coseqüetemete, s equções epoeciis, devemos rever os coceitos sore Potecição. - POTENCIAÇÃO Oserve o produto io.... = 6 Este produto pode ser revido

Leia mais

PROPRIEDADES DAS POTÊNCIAS

PROPRIEDADES DAS POTÊNCIAS EXPONENCIAIS REVISÃO DE POTÊNCIAS Represetos por, potêci de bse rel e epoete iteiro. Defiios potêci os csos bio: 0) Gráfico d fução f( ) 0 Crescete I ]0, [.....,, ftores 0, se 0 PROPRIEDADES DAS POTÊNCIAS

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOTS E U Geometri lític e Álger ier Sistems de Equções ieres Professor: ui Ferdo Nues, r Geometri lític e Álger ier ii Ídice Sistems de Equções ieres efiições Geris Iterpretção Geométric de Sistems de

Leia mais

Anotações de Aula. Cursos: Análise e Desenvolvimento de Sistemas e Ciência da Computação

Anotações de Aula. Cursos: Análise e Desenvolvimento de Sistemas e Ciência da Computação Aotções de Aul Cursos: Aálise e Desevolvimeto de Sistems e Ciêci d Computção Discipli: Cálculo Numérico Computciol Série: ª Prof. Ms. Leoor F.F.Me Assis 6 Mtries Itrodução Muits vees, pr desigr com clre

Leia mais

NOTAS DE AULA. Cálculo Numérico. Universidade Tecnológica Federal do Paraná - UTFPR - Professores: Lauro Cesar Galvão Luiz Fernando Nunes

NOTAS DE AULA. Cálculo Numérico. Universidade Tecnológica Federal do Paraná - UTFPR - Professores: Lauro Cesar Galvão Luiz Fernando Nunes NOTAS DE AULA Cálculo Numérico Uiversidde Tecolóic Federl do Prá - UTFPR - Professores: Luro Cesr Glvão Luiz Ferdo Nues Ídice Cálculo Numérico Luro / Nues ii Noções ásics sore Erros... -. Erros... -. Erros

Leia mais

0,01. Qual a resposta correta à pergunta de Chiquinho, considerandose os valores atribuídos às variáveis pelo professor?

0,01. Qual a resposta correta à pergunta de Chiquinho, considerandose os valores atribuídos às variáveis pelo professor? GABARIO Questão: Chiquiho ergutou o rofessor qul o vlor umérico d eressão + y+ z. Este resodeu-lhe com cert iroi: como queres sber o vlor umérico de um eressão, sem tribuir vlores às vriáveis? Agor, eu

Leia mais

Matemática Computacional. Carlos Alberto Alonso Sanches Juliana de Melo Bezerra

Matemática Computacional. Carlos Alberto Alonso Sanches Juliana de Melo Bezerra CCI- Mteátic Coputciol Crlos Alberto Aloso Sches Juli de Melo Bezerr CCI- Rízes de Sistes ieres Eliição de Guss Guss-Jord Decoposição U Guss-Jcobi Guss-Seidel CCI- Itrodução Métodos diretos Regr de Crer

Leia mais

0.2 Exercícios Objetivo. (c) (V)[ ](F)[ ] A segunda derivada de f é (4) x 0 2

0.2 Exercícios Objetivo. (c) (V)[ ](F)[ ] A segunda derivada de f é (4) x 0 2 A segud derivd de f é f() = { < 0 0 0 (4) Cálculo I List úmero 07 Logritmo e epoecil trcisio.prcio@gmil.com T. Prcio-Pereir Dep. de Computção lu@: Uiv. Estdul Vle do Acrú 3 de outubro de 00 pági d discipli

Leia mais

Métodos Numéricos Interpolação Métodos de Lagrange. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Interpolação Métodos de Lagrange. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numéricos Métodos de grge Professor Volmir Eugêio Wilhelm Professor Mri Klei Cosiste em determir um fução g() que descreve de form proimd o comportmeto de outr fução f() que ão se cohece. São cohecidos

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Interpolação Métodos de Lagrange

TP062-Métodos Numéricos para Engenharia de Produção Interpolação Métodos de Lagrange TP6-Métodos Numéricos pr Egehri de Produção Iterpolção Métodos de grge Prof. Volmir Wilhelm Curitib, 5 Iterpolção Cosiste em determir um fução g() que descreve de form proimd o comportmeto de outr fução

Leia mais

Aula 9 Limite de Funções

Aula 9 Limite de Funções Alise Mtemátic I Aul 9 Limite de Fuções Ao cdémico 017 Tem 1. Cálculo Dierecil Noção ituitiv e deiição de ite. Eemplos de ites. Limites lteris. Proprieddes. Bibliogri Básic Autor Título Editoril Dt Stewrt,

Leia mais

Somatórios e Recorrências

Somatórios e Recorrências Somtórios e Recorrêcis Uiversidde Federl do Amzos Deprtmeto de Eletrôic e Computção Exemplo: MxMi () Problem: Ddo um vetor de iteiros A, ecotrr o mior e o meor elemetos de A O úmero de comprções etre elemetos

Leia mais

Este capítulo tem por objetivo apresentar métodos para resolver numericamente uma integral.

Este capítulo tem por objetivo apresentar métodos para resolver numericamente uma integral. Nots de ul de Métodos Numéricos. c Deprtmeto de Computção/ICEB/UFOP. Itegrção Numéric Mrcoe Jmilso Freits Souz, Deprtmeto de Computção, Istituto de Ciêcis Exts e Biológics, Uiversidde Federl de Ouro Preto,

Leia mais

INTERPOLAÇÃO POLINOMIAL

INTERPOLAÇÃO POLINOMIAL 98 INTERPOLAÇÃO POLINOMIAL Iterpolr um ução () cosiste em proimr ess ução por outr ução g() escolid etre um clsse de uções deiid priori e que stisç lgums proprieddes A ução g() é etão usd em substituição

Leia mais

OS MÉTODOS NUMÉRICOS DE EULER, O MÉTODO DE HEUN E O MÉTODO DE RUNGE-KUTTA DE 4P PARA EDOS DE 1P

OS MÉTODOS NUMÉRICOS DE EULER, O MÉTODO DE HEUN E O MÉTODO DE RUNGE-KUTTA DE 4P PARA EDOS DE 1P T T HTU UTH ORDEM ORDEM. OS MÉTODOS NUMÉRICOS DE EULER, O MÉTODO DE HEUN E O MÉTODO DE RUNGE-UTT DE 4 R EDOS DE Mrcos Freits de Mores¹ Docete d Uioeste, Uiversidde Estdul do Oeste do rá Cetro de Egeris

Leia mais

Progressões 16 2, 32 2 e por aí vai. outubro. julho a10. janeiro a7

Progressões 16 2, 32 2 e por aí vai. outubro. julho a10. janeiro a7 Progressões Itrodução Ao lçrmos um moed, teremos dois resultdos possíveis: cr ou coro. e lçrmos dus moeds diferetes, pssmos ter qutro resultdos diferetes: (cr, cr), (cr, coro), (coro, cr) e (coro, coro).

Leia mais

séries de termos positivos e a n b n, n (div.) (conv.)

séries de termos positivos e a n b n, n (div.) (conv.) Teorem.9 Sej e b i) (div.) ii) b º Critério de Comprção séries de termos positivos e b, N b (div.) (cov.) (cov.) Estude turez d série = sbedo que,! Ν! Teorem.0 º Critério de Comprção Sejm 0, b > 0 e lim

Leia mais

AULAS 7 A 9 MÉDIAS LOGARITMO. Para n números reais positivos dados a 1, a 2,..., a n, temos as seguintes definições:

AULAS 7 A 9 MÉDIAS LOGARITMO.  Para n números reais positivos dados a 1, a 2,..., a n, temos as seguintes definições: 009 www.cursoglo.com.br Treimeto pr Olimpíds de Mtemátic N Í V E L AULAS 7 A 9 MÉDIAS Coceitos Relciodos Pr úmeros reis positivos ddos,,...,, temos s seguites defiições: Médi Aritmétic é eésim prte d som

Leia mais

CAPÍTULO VIII APROXIMAÇÃO POLINOMIAL DE FUNÇÕES

CAPÍTULO VIII APROXIMAÇÃO POLINOMIAL DE FUNÇÕES CAPÍTULO VIII APROXIMAÇÃO POLINOMIAL DE FUNÇÕES 1. Poliómios de Tylor Sej (x) um ução rel de vriável rel com domíio o cojuto A R e cosidere- -se um poto iterior do domíio. Supoh-se que ução dmite derivds

Leia mais

(fg) (x + T ) = f (x + T ) g (x + T ) = f (x) g (x) = (fg) (x). = lim. f (t) dt independe de a. f(s)ds. f(s)ds =

(fg) (x + T ) = f (x + T ) g (x + T ) = f (x) g (x) = (fg) (x). = lim. f (t) dt independe de a. f(s)ds. f(s)ds = LISTA DE EXERCÍCIOS - TÓPICOS DE MATEMÁTICA APLICADA (MAP 33 PROF: PEDRO T P LOPES WWWIMEUSPBR/ PPLOPES/TMA Os eercícios seguir form seleciodos dos livros dos utores G Folld (F, Djiro Figueiredo (D e E

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire Uiversidde Slvdor UNIFACS Cursos de Egehri Métodos Mtemáticos Aplicdos / Cálculo Avçdo / Cálculo IV Prof: Ilk Rebouçs Freire Série de Fourier Texto : Itrodução. Algus Pré-requisitos No curso de Cálculo

Leia mais

Sequências Numéricas Progressão Aritmética. Prof.: Joni Fusinato

Sequências Numéricas Progressão Aritmética. Prof.: Joni Fusinato Sequêcis Numérics Progressão Aritmétic Prof.: Joi Fusito joi.fusito@ifsc.edu.br jfusito@gmil.com Sequêci de Fibocci Leordo Fibocci (1170 150) foi um mtemático itlio. Ficou cohecido pel descobert d sequêci

Leia mais

APOSTILA DE CÁLCULO NUMÉRICO

APOSTILA DE CÁLCULO NUMÉRICO APOSTILA DE CÁLCULO NUMÉRICO Professor: Willim Wger Mtos Lir Moitor: Ricrdo Albuquerque Ferdes ERROS. Itrodução.. Modelgem e Resolução A utilizção de simuldores uméricos pr determição d solução de um problem

Leia mais