Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1"

Transcrição

1 Mtrizes e Sistems de equções lieres D.I.C. Medes

2 s mtrizes são um ferrmet básic formulção de problems de mtemátic e de outrs áres. Podem ser usds: resolução de sistems de equções lieres; resolução de sistems de equções difereciis; resolução de problems de otimizção; teori d computção gráfic, são usds pr represetr trslção, rotção e escl de objectos; s egehris, pr resolver problems de circuitos elétricos e de lihs de trsmissão de eergi elétric; - etc. D.I.C. Medes

3 Sejm e úmeros turis. Um mtriz do tipo m ( m por ) com elemetos reis (complexos) é um tbel de úmeros reis (complexos) dispostos em lihs e colus: m m m m m m m ou, brevidmete, ij, ode i,..., m é o ídice de lih e j,..., é o ídice de colu. Se m., diz-se que é um mtriz qudrd de ordem D.I.C. Medes 3

4 ij ij Diz-se que ou é o elemeto ou etrd de posição (i, j) d mtriz. i é o ídice de lih e j é o ídice de colu. i-ésim lih de é i i... i j-ésim colu de é pr i =,,m e j =,,. j j mj, D.I.C. Medes 4

5 Exemplos () 4 3 é um mtriz do tipo. (b) B 3 9 é um mtriz do tipo 3. (c) C 4 é um mtriz do tipo 3. (d) (e) D 4 é um mtriz do tipo é um mtriz do tipo E D.I.C. Medes

6 Um mtriz que só possui um lih diz-se um mtriz lih. Um mtriz que só possui um colu diz-se um mtriz colu. Mtrizes lih e mtrizes colu tmbém se dizem vectores e, este cso, s sus etrds dizem-se coordeds. Dus mtrizes ij e m B b ij p q dizem-se iguis se e só se m=p, =q e e j=,,. ij b ij pr cd i=,,m D.I.C. Medes 6

7 Sej i um mtriz qudrd de ordem. i ii i i Os elemetos digois (ou elemetos pricipis) de são os elemetos que têm ídices de lih e colu iguis, ou sej, o seu cojuto dá-se o ome de digol pricipl de. su som costitui o trço de ; deot-se por tr(). tr )....,,..., (. D.I.C. Medes 7

8 Um mtriz ij diz-se trigulr superior se ij pr todo i, j,..., com i j. i ii i D.I.C. Medes 8

9 Um mtriz pr todo ij i, j,..., diz-se trigulr iferior se com i j. ij i ii i diz-se trigulr se for trigulr superior ou trigulr iferior. D.I.C. Medes 9

10 Um mtriz ij diz-se digol se i pr todo o i, j,..., com. (tods s etrds ão digois são uls). j ij ii D.I.C. Medes

11 Um mtriz ij diz-se esclr se, pr i, j,...,, ij qudo i j e ii c (c costte). c c. c D.I.C. Medes

12 Um mtriz esclr com todos os elemetos digois iguis, chm-se mtriz idetidde de ordem e deot-se por mtriz, chm-se mtriz ul m, m.. I D.I.C. Medes

13 trspost de um mtriz B b ij m é defiid pel mtriz que se obtém de pel troc ds lihs com s colus; ou sej, bij ji pr cd i,..., m e j,...,. Escreve-se B t. ij m m m m t m m m D.I.C. Medes 3

14 Sej ij um mtriz qudrd e. ij é simétric se t ; ou sej, pr cd ji ij i, j,...,. é ti-simétric se t ; ou sej, pr cd i, j,...,. ji ij Um mtriz ti-simétric tem elemetos digois ulos. D.I.C. Medes 4

15 Sej ij m um mtriz complex. mtriz cojugd de, deotd por é mtriz complex do tipo m cujos elemetos são os complexos cojugdos dos elemetos de :,. ij m * mtriz trscojugd de,, é trspost d mtriz cojugd de, que é o mesmo que cojugd d trspost de : t. * t D.I.C. Medes

16 Sej ij um mtriz complex qudrd. diz-se hermític se * ; isto é, se, pr cd i, j,..., ji ij. Um mtriz hermític tem elemetos digois reis e etrd (j,i) é o cojugdo d etrd (i,j), pr cd i, j,..., e i j. diz-se ti-hermític se ji ij. * ; ou sej, se, pr todo i, j,..., Um mtriz ti-hermític tem elemetos digois ulos e/ou imgiários puros e s etrds (i,j) e (j,i) têm prtes imgiáris iguis e prtes reis simétrics, pr cd i, j,..., e i j. D.I.C. Medes 6

17 Operções com mtrizes 7

18 som de dus mtrizes do mesmo tipo ij e B b m ij m é mtriz m, C B ode c b pr i,..., m e j,...,. ij ij ij m m m b b bm b b b m b b b m m b b b m b b b b b b m D.I.C. Medes 8 m m m

19 multiplicção de um mtriz por um esclr (úmero) é mtriz ode pr i=,,m e j=,,. Diz-se que mtriz B é múltiplo esclr d mtriz. m ij B ij ij b m m m m m m D.I.C. Medes 9

20 O produto de dus mtrizes p ij e m B b ij p é mtriz C B, ode c ij b b... i j i j ip b pj pr i=,,m e j=,,. D.I.C. Medes

21 Proprieddes d álgebr mtricil Teorem. Sejm, B e C mtrizes reis (complexs) com tmhos propridos, e esclres. São válids s seguites proprieddes pr s operções mtriciis: () (comuttividde) B B ; (b) (ssocitividde) B C B C; (c) (elemeto eutro) mtriz ul, m é tl que ; pr cd mtriz, m ; (d) (elemeto oposto) Pr cd mtriz, m, existe um úic mtriz, m, defiid por ij tl que ;, D.I.C. Medes

22 (e) (f) (g) (h) (ssocitividde) ( BC) ( B) C; (i) (elemeto eutro) s mtrizes idetidde e são tis que I pr tod mtriz Im, ij. m (j) (distributividde à esquerd) ( B C) B C; (distributividde à direit) ; ; B B; B ( ) B B; (k) (l) ( t ) t ; t t (m) ( B) t t () ( ) ; t t t (o) B B. B t ; ( B C) B C; I I m D.I.C. Medes

23 difereç de dus mtrizes do mesmo tmho, ij m e B b ij m, é mtriz B B ; ou sej, é som d mtriz com mtriz opost de B. D.I.C. Medes 3

24 Sejm um mtriz e p um iteiro positivo. Defie-se potêci p de, por p.... p vezes Pr p, defie-se I. D.I.C. Medes 4

25 Sistems de equções lieres D.I.C. Medes

26 Um sistem (lier) de m equções icógits m x x x m x x x m x x x b b b m x,..., x : ode m, são iteiros positivos e, ( i,..., m; j,..., ) ij b i são úmeros reis (ou complexos) e chmm-se, respectivmete, os coeficietes e os termos idepedetes do sistem. D.I.C. Medes 6

27 O sistem pode escrever-se como um equção mtricil: ode é mtriz dos coeficietes do sistem, é mtriz dos termos idepedetes, é mtriz ds icógits. m m m x x x X b m b b B X B D.I.C. Medes 7

28 Um solução de um sistem lier é um mtriz colu (vetor) s s S s tl que s equções do sistem são simultemete stisfeits qudo substituimos x s O cojuto de tods s soluções de um sistem lier tmbém se diz solução gerl do sistem. Dois sistems lieres dizem-se equivletes se dmitem o mesmo cojuto de soluções., x s,..., x s. D.I.C. Medes 8

29 Clssificção dos sistems lieres Um sistem diz-se: impossível se ão tem solução possível se tem pelo meos um solução determido se tem um úic solução idetermido se tem mis do que um solução D.I.C. Medes 9

30 Um form de resolver um sistem lier cosiste em trsformr o sistem iicil um sistem equivlete de resolução mis simples. O outro sistem pode obter-se trvés d plicção de operções sobre s equções do sistem. Ests operções, que se chmm operções elemetres, são: (E) trocr dus equções do sistem etre si; (E) multiplicr um equção por um esclr diferete de zero; (E3) somr um equção, outr multiplicd por um esclr. D.I.C. Medes 3

31 Qudo se plicm operções elemetres sobre s equções de um sistem lier, somete os coeficietes e os termos idepedetes do sistem são lterdos. Deste modo, s operções podem plicr-se sobre seguite mtriz, que se chm mtriz complet ou mtriz mplid do sistem. B m m m b b b m D.I.C. Medes 3

32 Chmm-se operções elemetres sobre s lihs de um mtriz: (E) trocr etre si dus lihs d mtriz; (E) multiplicr um lih d mtriz por um esclr diferete de zero; (E3) somr um lih d mtriz, outr multiplicd por um esclr qulquer. Teorem. Sej X B um sistem de m equções icógits. Sej ' B' um mtriz obtid prtir d mtriz mplid do sistem, B, trvés d plicção de um sequêci fiit de operções elemetres sobre s lihs. Etão o sistem ' X B' é equivlete o sistem X B. D.I.C. Medes 3

33 Método de Guss-Jord Pretede-se trsformr mtriz mplid do sistem form de Guss- Jord, cujo sistem ssocido é fácil de resolver. D.I.C. Medes 33

34 Um mtriz está form de Guss-Jord qudo stisfz s seguites codições: () s lihs uls (cso existm) ocorrem depois ds lihs ão uls; (b) o pivô (primeiro elemeto ão ulo) em cd lih é ; (c) o pivô em cd lih ão ul ocorre um colu à direit do pivô d lih precedete; (d) o pivô em cd lih é o úico elemeto ão ulo respetiv colu. Se um mtriz stisfz s proprieddes () e (c), ms ão D.I.C. Medes 34 ecessárimete (b) e (d), diz-se que mtriz está form de Guss.

35 Exemplos. Form de Guss-Jord: Form de Guss:, I 3 3 9, 4 3 C B D.I.C. Medes 3

36 Um mtriz ij diz-se equivlete por lihs um mtriz m B b ij m se B se pode obter de por plicção de um sequêci fiit de operções elemetres sobre s lihs. Teorem. Tod mtriz é equivlete por lihs um úic mtriz form de Guss-Jord. D.I.C. Medes 36

37 Crcterístic de um mtriz crcterístic de um mtriz form de Guss é igul o úmero de pivôs ess mtriz. crcterístic de um mtriz qulquer, que se deot por c(), é igul à crcterístic d mtriz form de Guss que se obtém de utilizdo operções elemetres sobre lihs. mtriz ul tem crcterístic. D.I.C. Medes 37

38 Clssificção dos sistems lieres Um sistem lier X B, ode é do tipo m, è: impossível sse c( ) c([ B]) ; possível e determido sse c( ) c([ B]) ; possível e idetermido sse c( ) c([ B]). Observção. Se o sistem lier é possível, o úmero iteiro ão egtivo -c() chm-se gru de idetermição do sistem e idic o úmero de vriáveis livres (vriáveis que podem tomr vlores rbitrários). D.I.C. Medes 38

39 Um sistem lier diz-se homogéeo se são ulos todos os seus termos idepedetes m x x x m x x x m x x x isto é, se su equção mtricil é d form X. D.I.C. Medes 39

40 Um sistem homogéeo é sempre possível pois dmite sempre solução ul. Se é determido, ess é su úic solução. Se é idetermido, pr lém d solução ul, dmite soluções ão uls. Teorem. Se ij m é tl que m< (º de equções < º de icógits), etão o sistem homogéeo X tem solução ão ul.. Teorem. Sej ij m () Se X e X são soluções do sistem homogéeo X, etão tmbém o é X. X X (b) Se é solução do sistem homogéeo, X, etão tmbém o é, pr qulquer esclr D.I.C. Medes. 4 X 4

41 todo o sistem de equções lieres sistem homogéeo X. X B está ssocido o Relção etre s soluções de um sistem e s soluções do sistem homogéeo ssocido solução gerl do sistem X B pode obter-se somdo um solução prticulr s deste sistem com cd solução s do sistem homogéeo X ssocido. D.I.C. Medes 4

42 Ivers de um mtriz qudrd D.I.C. Medes 4

43 b ij Um mtriz qudrd ij diz-se ivertível ou ão sigulr, se existe um mtriz B tl que B B. I mtriz B chm-se ivers de. Se ão possui ivers, diz-se que mtriz é ão ivertível ou sigulr. Teorem. Se um mtriz ij possui ivers, etão ivers é úic. ivers de um mtriz, qudo existe, deot-se por. D.I.C. Medes 43

44 Teorem. Sejm e B mtrizes. Se B I, etão B I. ssim, pr verigur se um mtriz é ivertível, qudo se tem um mtriz B que é cdidt ivers de, bst fzer um dos produtos B ou B e ver se é igul I. D.I.C. Medes 44

45 Teorem. Sej um mtriz. s seguites codições são equivletes: () é ivertível; (b) c( ) ; (c) é equivlete por lihs à mtriz idetidde I. Dd um mtriz,, tl que c( ), (logo ivertível), ivers de é solução d equção mtricil X I. Etão, pr clculr, bst trsformr mtriz I um mtriz I B trvés d plicção de um úmero fiito de operções elemetres sobre s lihs. Etão B. D.I.C. Medes 4

46 Proprieddes d ivers Teorem. Sejm e B mtrizes ivertíveis do tipo, um esclr ão ulo e m um iteiro positivo. Tem-se: () é ivertível e ; t (b) é ivertível e t t ; (c) é ivertível e ; (d) (e) B é ivertível e m m. B B ; Not. Se positivo m, é ivertível, etão defie-se, pr qulquer iteiro m m. D.I.C. Medes 46

47 . Teorem. Sej ij () O sistem X B possui um úic solução sse é ivertível. Neste cso, solução é X B. (b) O sistem homogéeo X tem solução ão trivil sse é sigulr (ão ivertível). D.I.C. Medes 47

Redes elétricas Circuitos que contém resistências e geradores de energia podem ser analisados usando sistemas de equações lineares;

Redes elétricas Circuitos que contém resistências e geradores de energia podem ser analisados usando sistemas de equações lineares; Álger Lier Mtrizes e vetores Sistems lieres Espços vetoriis Bse e dimesão Trsformções lieres Mtriz de um trsformção lier Aplicções d Álger Lier: Redes elétrics Circuitos que cotém resistêcis e gerdores

Leia mais

Matrizes e Vectores. Conceitos

Matrizes e Vectores. Conceitos Mtrizes e Vectores Coceitos Mtriz, Vector, Colu, Lih. Mtriz rigulr Iferior; Mtriz rigulr Superior; Mtriz Digol. Operções etre Mtrizes. Crcterístic de um mtriz; Crcterístic máxim de um mtriz. Mtriz Ivertível,

Leia mais

MATRIZES. Exemplo: A tabela abaixo descreve as safras de milho, trigo, soja, arroz e feijão, em toneladas, durante os anos de 1991, 1992, 1993 e 1994.

MATRIZES. Exemplo: A tabela abaixo descreve as safras de milho, trigo, soja, arroz e feijão, em toneladas, durante os anos de 1991, 1992, 1993 e 1994. Professor Muricio Lut MTRIZES INTRODUÇÃO Qudo um prolem evolve um grde úmero de ddos (costtes ou vriáveis), disposição destes um tel retgulr de dupl etrd propici um visão mis glol do mesmo s tels ssim

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear Geometri Alític e Álgebr Lier 8. Sistems Lieres Muitos problems ds ciêcis turis e sociis, como tmbém ds egehris e ds ciêcis físics, trtm de equções que relciom dois cojutos de vriáveis. Um equção do tipo,

Leia mais

Vale ressaltar que um programa foi desenvolvido em MatLab para solucionar os sistemas de equações propostos.

Vale ressaltar que um programa foi desenvolvido em MatLab para solucionar os sistemas de equações propostos. MSc Alexdre Estácio Féo Associção Educciol Dom Bosco - Fculdde de Egehri de Resede Cix Postl: 8.698/87 - CEP: 75-97 - Resede - RJ Brsil Professor e Doutordo de Egehri efeo@uifei.edu.br Resumo: Neste trblho

Leia mais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA Equções Epoeciis... Fução Epoecil..4 Logritmos: Proprieddes 6 Fução Logrítmic. Equções Logrítmics...5 Iequções Epoeciis e Logrítmics.8 Equções Epoeciis 0. (ITA/74)

Leia mais

MÓDULO IV. EP.02) Determine o valor de: a) 5 3 = b) 3 4 = c) ( 4) 2 = d) 4 2 = EP.03) Determine o valor de: a) 2 3 = b) 5 2 = c) ( 3) 4 = d) 3 4 =

MÓDULO IV. EP.02) Determine o valor de: a) 5 3 = b) 3 4 = c) ( 4) 2 = d) 4 2 = EP.03) Determine o valor de: a) 2 3 = b) 5 2 = c) ( 3) 4 = d) 3 4 = MÓDULO IV. Defiição POTENCIACÃO Qudo um úmero é multiplicdo por ele mesmo, dizemos que ele está elevdo o qudrdo, e escrevemos:. Se um úmero é multiplicdo por ele mesmo váris vezes, temos um potêci:.. (

Leia mais

Z = {, 3, 2, 1,0,1,2,3, }

Z = {, 3, 2, 1,0,1,2,3, } Pricípios Aritméticos O cojuto dos úmeros Iteiros (Z) Em Z estão defiids operções + e. tis que Z = {, 3,, 1,0,1,,3, } A) + y = y + (propriedde comuttiv d dição) B) ( + y) + z = + (y + z) (propriedde ssocitiv

Leia mais

José Álvaro Tadeu Ferreira. Cálculo Numérico Notas de aulas

José Álvaro Tadeu Ferreira. Cálculo Numérico Notas de aulas UNIVERSIDADE FEDERA DE OURO PRETO Istituto de Ciêcis Ets e Biológics Deprtmeto de Computção José Álvro Tdeu Ferreir Cálculo Numérico Nots de uls Resolução de Sistems de Equções ieres Simultâes Ouro Preto

Leia mais

MATEMÁTICA BÁSICA. a c ad bc. b d bd EXERCÍCIOS DE AULA. 01) Calcule o valor de x em: FRAÇÕES

MATEMÁTICA BÁSICA. a c ad bc. b d bd EXERCÍCIOS DE AULA. 01) Calcule o valor de x em: FRAÇÕES MATEMÁTICA BÁSICA FRAÇÕES EXERCÍCIOS DE AULA ) Clcule o vlor de x em: A som e sutrção de frções são efetuds prtir d oteção do míimo múltiplo comum dos deomidores. É difícil respoder de imedito o resultdo

Leia mais

Unidade 2 Progressão Geométrica

Unidade 2 Progressão Geométrica Uidde Progressão Geométric Seuêci e defiição de PG Fórmul do termo gerl Fução expoecil e PG Juros compostos e PG Iterpolção geométric Som dos termos de um PG Seuêci e defiição de PG Imgie ue você tem dus

Leia mais

SISTEMAS DE EQUAÇÕES LINEARES

SISTEMAS DE EQUAÇÕES LINEARES SISTEMAS DE EQUAÇÕES LINEARES Um problem fudmetl que ormlmete é ecotrdo descrição mtemátic de feômeos físicos é o d solução simultâe de um cojuto de equções. Trduzido pr liuem mtemátic, tis feômeos pssm

Leia mais

Métodos Matemáticos Aplicados a Processos Químicos e Bioquímicos. Capítulo III : Equações Diferenciais Ordinárias

Métodos Matemáticos Aplicados a Processos Químicos e Bioquímicos. Capítulo III : Equações Diferenciais Ordinárias J.L. de Medeiros & Oféli Q.F. rújo DISCILI Métodos Mtemáticos plicdos rocessos Químicos e Bioquímicos Cpítulo III : Equções Difereciis Ordiáris José Luiz de Medeiros e Oféli Q.F. rújo Egehri Químic FRJ

Leia mais

MATEMÁTICA PARA REFLETIR! EXERCÍCIOS EXERCÍCIOS COMPLEMENTARES OPERAÇÕES COM MATRIZES PARA REFLETIR!...437

MATEMÁTICA PARA REFLETIR! EXERCÍCIOS EXERCÍCIOS COMPLEMENTARES OPERAÇÕES COM MATRIZES PARA REFLETIR!...437 ÍNICE MATEMÁTICA... PARA REFLETIR!... EXERCÍCIOS... EXERCÍCIOS COMPLEMENTARES... OPERAÇÕES COM MATRIZES... PARA REFLETIR!...7 EXERCÍCIOS E APLICAÇÃO...8 EXERCÍCIOS COMPLEMENTARES...8...9 PARA REFLETIR!...

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

Sistems Lineres Form Gerl onde: ij ij coeficientes n n nn n n n n n n b... b... b...

Sistems Lineres Form Gerl onde: ij ij coeficientes n n nn n n n n n n b... b... b... Cálculo Numérico Módulo V Resolução Numéric de Sistems Lineres Prte I Profs.: Bruno Correi d Nóbreg Queiroz José Eustáquio Rngel de Queiroz Mrcelo Alves de Brros Sistems Lineres Form Gerl onde: ij ij coeficientes

Leia mais

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática 1 NÚMEROS E OPERAÇÕES 1.1 Lingugem Mtemátic AULA 1 1 1.2 Conjuntos Numéricos Chm-se conjunto o grupmento num todo de objetos, bem definidos e discerníveis, de noss percepção ou de nosso entendimento, chmdos

Leia mais

Bhaskara e sua turma Cícero Thiago B. Magalh~aes

Bhaskara e sua turma Cícero Thiago B. Magalh~aes 1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como

Leia mais

TEORIA DAS MATRIZES Professor Judson Santos

TEORIA DAS MATRIZES Professor Judson Santos TEORIA DAS I - DEFINIÇÃO Deomimos mtriz rel do tipo m (lei: m por ) tod tbel formd por m. úmeros reis dispostos em m lihs e colus. Exemplos: é um mtriz rel. 5 - é um mtriz rel. 8 II - MATRIZ QUADRADA.

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES DETERMINANTES

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES DETERMINANTES Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - APES DETERMINANTES Prof Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr iêncis

Leia mais

Definição 1 O determinante de uma matriz quadrada A de ordem 2 é por definição a aplicação. det

Definição 1 O determinante de uma matriz quadrada A de ordem 2 é por definição a aplicação. det 5 DETERMINANTES 5 Definição e Proprieddes Definição O erminnte de um mtriz qudrd A de ordem é por definição plicção ( ) : M IR IR A Eemplo : 5 A ( A ) ( ) ( ) 5 7 5 Definição O erminnte de um mtriz qudrd

Leia mais

Apostila de Introdução Aos Métodos Numéricos

Apostila de Introdução Aos Métodos Numéricos Apostil de Itrodução Aos étodos Numéricos PARTE II o Semestre - Prof. Slete Souz de Oliveir Buffoi Ídice SISTEAS LINEARES... INTRODUÇÃO... ÉTODOS DIRETOS: ELIINAÇÃO DE GAUSS... Sistem lier com...5 Eemplo:...7

Leia mais

QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA.

QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. 006 PROVA CONHECIMENTOS ESPECÍFICOS MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetrl do Vestibulr Uificdo Trigoometri

Leia mais

Progressões Geométricas. Progressões. Aritméticas. A razão é... somada multiplicada. Condição para 3 termos Termo geral. b) 20 c) 40 3.

Progressões Geométricas. Progressões. Aritméticas. A razão é... somada multiplicada. Condição para 3 termos Termo geral. b) 20 c) 40 3. Aritmétics Geométrics A rzão é... somd multiplicd Codição pr termos Termo gerl om dos termos p r p p p q q q q 0) (UNIFEP) e os primeiros qutro termos de um progressão ritmétic são, b, 5, d, o quociete

Leia mais

1. Conceito de logaritmo

1. Conceito de logaritmo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Logritmos Prof.: Rogério

Leia mais

AVALIAÇÃO TRIMESTRE. DISCIPLINA Matemática ALUNO(A) GABARITO

AVALIAÇÃO TRIMESTRE. DISCIPLINA Matemática ALUNO(A) GABARITO COORDENAÇÃO ENSINO MÉDIO AVALIAÇÃO - 0 TRIMESTRE NOTA UNIDADE(S): CAMBOINHAS PROFESSOR Equie DISCIPLINA Mtemátic SÉRIE/TURMA O /A E B DATA /0/00 NITERÓI SÃO GONÇALO X X ALUNO(A) GABARITO N IMPORTANTE:.

Leia mais

Matemática 1 Professor Paulo Cesar Pfaltzgraff Ferreira. Sumário

Matemática 1 Professor Paulo Cesar Pfaltzgraff Ferreira. Sumário Mtemátic Professor Pulo Cesr Pfltgrff Ferreir i Sumário Uidde Revisão de Tópicos Fudmetis do Esio Médio... 0. Apresetção... 0. Simologi Mtemátic mis usul... 0. Cojutos Numéricos... 0. Operções com Números

Leia mais

Linhas 1 2 Colunas 1 2. (*) Linhas 1 2 (**) Colunas 2 1.

Linhas 1 2 Colunas 1 2. (*) Linhas 1 2 (**) Colunas 2 1. Resumos ds uls teórics -------------------- Cp 5 -------------------------------------- Cpítulo 5 Determinntes Definição Consideremos mtriz do tipo x A Formemos todos os produtos de pres de elementos de

Leia mais

Somas de Riemann e Integração Numérica. Cálculo 2 Prof. Aline Paliga

Somas de Riemann e Integração Numérica. Cálculo 2 Prof. Aline Paliga Soms de Riem e Itegrção Numéric Cálculo 2 Prof. Alie Plig Itrodução Problems de tgete e de velocidde Problems de áre e distâci Derivd Itegrl Defiid 1.1 Áres e distâcis 1.2 Itegrl Defiid 1.1 Áres e distâcis

Leia mais

2. Resolução Numérica de Equações Não-Lineares

2. Resolução Numérica de Equações Não-Lineares . Resolução Numéric de Equções Não-Lieres. Itrodução Neste cpítulo será visto lgoritmos itertivos pr ecotrr rízes de fuções ão-lieres. Nos métodos itertivos, s soluções ecotrds ão são ets, ms estrão detro

Leia mais

Elementos de Análise Financeira Fluxos de Caixa Séries Uniformes de Pagamento

Elementos de Análise Financeira Fluxos de Caixa Séries Uniformes de Pagamento Elemetos de Aálise Ficeir Fluxos de Cix Séries Uiformes de Pgmeto Fote: Cpítulo 4 - Zetgrf (999) Mtemátic Ficeir Objetiv 2ª. Ed. Editorção Editor Rio de Jeiro - RJ Séries de Pgmetos - Defiição Defiição:

Leia mais

TURMA DO M RIO. Taxa percentual ou porcentagem de um número a sobre um número b, b 0 é a razão x 100 tal que: x

TURMA DO M RIO. Taxa percentual ou porcentagem de um número a sobre um número b, b 0 é a razão x 100 tal que: x TURM DO M RIO Álger Porcetgem Tx percetul ou porcetgem de um úmero sore um úmero, 0 é rzão x 00 tl que: x = x, e se idic: x% 00 00 =. plvr porcetgem deriv de por (dividido) e cetgem (00). Qudo se fl x

Leia mais

FUNÇÃO EXPONENCIAL. a 1 para todo a não nulo. a. a. a a. a 1. Chamamos de Função Exponencial a função definida por: f( x) 3 x. f( x) 1 1. 1 f 2.

FUNÇÃO EXPONENCIAL. a 1 para todo a não nulo. a. a. a a. a 1. Chamamos de Função Exponencial a função definida por: f( x) 3 x. f( x) 1 1. 1 f 2. 49 FUNÇÃO EXPONENCIAL Professor Lur. Potêcis e sus proprieddes Cosidere os úmeros ( 0, ), mr, N e, y, br Defiição: vezes por......, ( ), ou sej, potêci é igul o úmero multiplicdo Proprieddes 0 pr todo

Leia mais

Matemática Computacional. Carlos Alberto Alonso Sanches Juliana de Melo Bezerra

Matemática Computacional. Carlos Alberto Alonso Sanches Juliana de Melo Bezerra CCI- Mteátic Coputciol Crlos Alberto Aloso Sches Juli de Melo Bezerr CCI- Rízes de Sistes ieres Eliição de Guss Guss-Jord Decoposição U Guss-Jcobi Guss-Seidel CCI- Itrodução Métodos diretos Regr de Crer

Leia mais

FICHA DE TRABALHO N.º 3 MATEMÁTICA A - 10.º ANO RADICAIS E POTÊNCIAS DE EXPOENTE RACIONAL

FICHA DE TRABALHO N.º 3 MATEMÁTICA A - 10.º ANO RADICAIS E POTÊNCIAS DE EXPOENTE RACIONAL Rdicis e Potêcis de Expoete Rciol Site: http://recursos-pr-mtemtic.webode.pt/ FIH E TRLHO N.º MTEMÁTI - 0.º NO RIIS E POTÊNIS E EXPOENTE RIONL ohece Mtemátic e domirás o Mudo. Glileu Glilei GRUPO I ITENS

Leia mais

Prof. Weber Campos Copyri'ght. Curso Agora eu Passo - Todos os direitos reservados ao autor.

Prof. Weber Campos Copyri'ght. Curso Agora eu Passo - Todos os direitos reservados ao autor. AEP FISCAL Rciocínio Lógico - MATRIZES E DETERMINANTES - SISTEMAS LINEARES Prof. Weer Cmpos weercmpos@gmil.com Copyri'ght. Curso Agor eu Psso - Todos os direitos reservdos o utor. Rciocínio Lógico EXERCÍCIOS

Leia mais

Revisão para o Vestibular do Instituto Militar de Engenharia www.rumoaoita.com & Sistema Elite de Ensino

Revisão para o Vestibular do Instituto Militar de Engenharia www.rumoaoita.com & Sistema Elite de Ensino Revisão pr o Vestibulr do Istituto Militr de Egehri wwwrumooitcom Sistem Elite de Esio CÔNICAS (IME-8/8) Determie equção de um círculo que tgeci hipérbole potos em que est hipérbole é ecotrd pel ret os

Leia mais

UNITAU APOSTILA DETERMINANTES PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: Bibliografia: Curso de Matemática Volume Único

UNITAU APOSTILA DETERMINANTES PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: Bibliografia: Curso de Matemática Volume Único ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA DETERMINANTES PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: Bibliogrfi: Curso de Mtemátic Volume Único Autores: Binchini&Pccol Ed. Modern Mtemátic

Leia mais

APOSTILA DE CÁLCULO NUMÉRICO

APOSTILA DE CÁLCULO NUMÉRICO APOSTILA DE CÁLCULO NUMÉRICO Professor: Willim Wger Mtos Lir Moitor: Ricrdo Albuquerque Ferdes ERROS. Itrodução.. Modelgem e Resolução A utilizção de simuldores uméricos pr determição d solução de um problem

Leia mais

Função Modular. x, se x < 0. x, se x 0

Função Modular. x, se x < 0. x, se x 0 Módulo de um Número Rel Ddo um número rel, o módulo de é definido por:, se 0 = `, se < 0 Observção: O módulo de um número rel nunc é negtivo. Eemplo : = Eemplo : 0 = ( 0) = 0 Eemplo : 0 = 0 Geometricmente,

Leia mais

EQUAÇÕES LINEARES E DECOMPOSIÇÃO DOS VALORES SINGULARES (SVD)

EQUAÇÕES LINEARES E DECOMPOSIÇÃO DOS VALORES SINGULARES (SVD) EQUAÇÕES LINEARES E DECOMPOSIÇÃO DOS VALORES SINGULARES (SVD) 1 Equções Leres Em otção mtrcl um sstem de equções leres pode ser represetdo como 11 21 1 12 22 2 1 x1 b1 2 x2 b2. x b ou A.X = b (1) Pr solução,

Leia mais

1. Revisão Matemática

1. Revisão Matemática Se x é um elemeto do cojuto Notação S: x S Especificação de um cojuto : S = xx satisfaz propriedadep Uião de dois cojutos S e T : S T Itersecção de dois cojutos S e T : S T existe ; para todo f : A B sigifica

Leia mais

a é dita potência do número real a e representa a

a é dita potência do número real a e representa a IFSC / Mteátic Básic Prof. Júlio Césr TOMIO POTENCIAÇÃO [ou Expoecição] # Potêci co Expoete Nturl: Defiição: Ddo u úero iteiro positivo, expressão ultiplicção do úero rel e questão vezes. é dit potêci

Leia mais

TÓPICOS. Determinantes de 1ª e 2ª ordem. Submatriz. Menor. Cofactor. Expansão em cofactores. Determinante de ordem n. Propriedades dos determinantes.

TÓPICOS. Determinantes de 1ª e 2ª ordem. Submatriz. Menor. Cofactor. Expansão em cofactores. Determinante de ordem n. Propriedades dos determinantes. Note bem: leitur destes pontmentos não dispens de modo lgum leitur tent d bibliogrfi principl d cdeir Chm-se tenção pr importânci do trblho pessol relizr pelo luno resolvendo os problems presentdos n bibliogrfi,

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA PRIMEIRO SEMESTRE DE 2015 13 de Fevereiro de 2015 Prte I Álgebr Liner 1 Questão: Sejm

Leia mais

Matemática. Resolução das atividades complementares. M13 Determinantes. 1 (Unifor-CE) Sejam os determinantes A 5. 2 (UFRJ) Dada a matriz A 5 (a ij

Matemática. Resolução das atividades complementares. M13 Determinantes. 1 (Unifor-CE) Sejam os determinantes A 5. 2 (UFRJ) Dada a matriz A 5 (a ij Resolução ds tividdes complementres Mtemátic M Determinntes p. (Unifor-CE) Sejm os determinntes A, B e C. Nests condições, é verdde que AB C é igul : ) c) e) b) d) A?? A B?? B C?? C AB C ()? AB C, se i,

Leia mais

MATRIZES E DETERMINANTES

MATRIZES E DETERMINANTES Professor: Cssio Kiechloski Mello Disciplin: Mtemátic luno: N Turm: Dt: MTRIZES E DETERMINNTES MTRIZES: Em quse todos os jornis e revists é possível encontrr tbels informtivs. N Mtemátic chmremos ests

Leia mais

Alternativa A. Alternativa B. igual a: (A) an. n 1. (B) an. (C) an. (D) an. n 1. (E) an. n 1. Alternativa E

Alternativa A. Alternativa B. igual a: (A) an. n 1. (B) an. (C) an. (D) an. n 1. (E) an. n 1. Alternativa E R é o cojuto dos úeros reis. A c deot o cojuto copleetr de A R e R. A T é triz trspost d triz A. (, b) represet o pr ordedo. [,b] { R; b}, ],b[ { R; < < b} [,b[ { R; < b}, ],b] { R; < b}.(ita - ) Se R

Leia mais

ESTABILIDADE. Pólos Zeros Estabilidade

ESTABILIDADE. Pólos Zeros Estabilidade ESTABILIDADE Pólo Zero Etbilidde Itrodução Um crcterític importte pr um item de cotrole é que ele ej etável. Se um etrd fiit é plicd o item de cotrole, etão íd deverá er fiit e ão ifiit, ito é, umetr em

Leia mais

Matemática Fascículo 03 Álvaro Zimmermann Aranha

Matemática Fascículo 03 Álvaro Zimmermann Aranha Mtemátic Fscículo 03 Álvro Zimmerm Arh Ídice Progressão Aritmétic e Geométric Resumo Teórico... Exercícios...3 Dics...4 Resoluções...5 Progressão Aritmétic e Geométric Resumo teórico Progressão Aritmétic

Leia mais

a.cosx 1) (ITA) Se P(x) é um polinômio do 5º grau que satisfaz as condições 1 = P(1) = P(2) = P(3) = P(4) = P(5) e P(6) = 0, então temos:

a.cosx 1) (ITA) Se P(x) é um polinômio do 5º grau que satisfaz as condições 1 = P(1) = P(2) = P(3) = P(4) = P(5) e P(6) = 0, então temos: ) (ITA) Se P(x) é um poliômio do 5º gru que stisfz s codições = P() = P() = P() = P(4) = P(5) e P(6) = 0, etão temos: ) P(0) = 4 b) P(0) = c) P(0) = 9 d) P(0) = N.D.A. ) (UFC) Sej P(x) um poliômio de gru,

Leia mais

Matemática Régis Cortes FUNÇÃO DO 2 0 GRAU

Matemática Régis Cortes FUNÇÃO DO 2 0 GRAU FUNÇÃO DO 2 0 GRAU 1 Fórmul de Bháskr: x 2 x 2 4 2 Utilizndo fórmul de Bháskr, vmos resolver lguns exeríios: 1) 3x²-7x+2=0 =3, =-7 e =2 2 4 49 4.3.2 49 24 25 Sustituindo n fórmul: x 2 7 25 2.3 7 5 7 5

Leia mais

Tópicos Especiais de Álgebra Linear Tema # 2. Resolução de problema que conduzem a s.e.l. com única solução. Introdução à Resolução de Problemas

Tópicos Especiais de Álgebra Linear Tema # 2. Resolução de problema que conduzem a s.e.l. com única solução. Introdução à Resolução de Problemas Tópicos Especiis de Álgebr Liner Tem # 2. Resolução de problem que conduzem s.e.l. com únic solução Assunto: Resolução de problems que conduzem Sistem de Equções Lineres utilizndo invers d mtriz. Introdução

Leia mais

A potenciação indica multiplicações de fatores iguais. Por exemplo, o produto

A potenciação indica multiplicações de fatores iguais. Por exemplo, o produto POTENCIAÇÃO E RADICIAÇÃO POTENCIAÇÃO A potecição idic ultiplicções de ftores iguis. Por eeplo, o produto... pode ser idicdo for. Assi, o síolo, sedo u úero iteiro e u úero turl ior que, sigific o produto

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA VICE-REITORIA DE ENSINO DE GRADUAÇÃO E CORPO DISCENTE COORDENAÇÃO DE EDUCAÇÃO A DISTÂNCIA MATEMÁTICA FINANCEIRA Rio de Jeiro / 007 TODOS OS DIREITOS RESERVADOS À UNIVERSIDADE CASTELO BRANCO UNIDADE I PROGRESSÕES

Leia mais

CADERNO DE RESOLUÇÕES CONCURSO ITA 2010 MATEMÁTICA 17/DEZ/2009

CADERNO DE RESOLUÇÕES CONCURSO ITA 2010 MATEMÁTICA 17/DEZ/2009 CONCURSO ITA O ELITE CURITIBA prov mis porque tem qulidde seriedde e profissiolismo como lems Cofir ossos resultdos e comprove porque temos mis oferecer IME : Dos provdos de Curitib são ELITE sedo os melhores

Leia mais

PROGRESSÃO GEOMÉTRICA

PROGRESSÃO GEOMÉTRICA Professor Muricio Lutz PROGREÃO GEOMÉTRICA DEFINIÇÃO Progressão geométric (P.G.) é um seüêci de úmeros ão ulos em ue cd termo posterior, prtir do segudo, é igul o terior multiplicdo por um úmero fixo,

Leia mais

6.1: Séries de potências e a sua convergência

6.1: Séries de potências e a sua convergência 6 SÉRIES DE FUNÇÕES 6: Séries de potêcis e su covergêci Deiição : Um série de potêcis de orm é um série d ( ) ( ) ( ) ( ) () Um série de potêcis de é sempre covergete pr De cto, qudo, otemos série uméric,

Leia mais

Aula 10 Estabilidade

Aula 10 Estabilidade Aul 0 Estbilidde input S output O sistem é estável se respost à entrd impulso 0 qundo t Ou sej, se síd do sistem stisfz lim y(t) t = 0 qundo entrd r(t) = impulso input S output Equivlentemente, pode ser

Leia mais

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas Resolução ds tividdes complementres Mtemátic M Progressões Geométrics p. 7 Qul é o o termo d PG (...)? q q? ( ) Qul é rzão d PG (...)? q ( )? ( ) 8 q 8 q 8 8 Três números reis formm um PG de som e produto

Leia mais

Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação

Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação Resolução ds tividdes complementres Mtemátic M Equções Polinomiis p. 86 (PUC-SP) No universo C, equção 0 0 0 dmite: ) três rízes rcionis c) dus rízes irrcionis e) um únic riz positiv b) dus rízes não reis

Leia mais

5. Análise de Curto-Circuito ou Faltas. 5.3 Curto-Circuitos Assimétricos

5. Análise de Curto-Circuito ou Faltas. 5.3 Curto-Circuitos Assimétricos Sistems Elétricos de Potênci 5. Análise de Curto-Circuito ou Flts 5. Curto-Circuitos Assimétricos Proessor: Dr. Rphel Augusto de Souz Benedito E-mil:rphelbenedito@utpr.edu.br disponível em: http://pginpessol.utpr.edu.br/rphelbenedito

Leia mais

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 2 RADICIAÇÃO

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 2 RADICIAÇÃO INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA Professores: Griel Brião / Mrcello Amdeo Aluo(: Turm: ESTUDO DOS RADICAIS LISTA RADICIAÇÃO Deomi-se riz de ídice de um úmero rel, o úmero rel tl que

Leia mais

Unidade 8 - Polinômios

Unidade 8 - Polinômios Uidde 8 - Poliômios Situção problem Gru de um poliômio Vlor umérico de um poliômio Iguldde de poliômio Poliômio ulo Operções com poliômios Situção problem Em determids épocs do o, lgums ciddes brsileirs

Leia mais

Matemática I. Prof. Gerson Lachtermacher, Ph.D. Prof. Rodrigo Leone, D.Sc. Colaboração Prof. Walter Paulette. Elaborado por. Seção 2.

Matemática I. Prof. Gerson Lachtermacher, Ph.D. Prof. Rodrigo Leone, D.Sc. Colaboração Prof. Walter Paulette. Elaborado por. Seção 2. Mtemátic I Elordo por Prof. Gerson Lchtermcher, Ph.D. Prof. Rodrigo Leone, D.Sc. Seção Colorção Prof. Wlter Pulette Versão 009-1 ADM 01004 Mtemátic I Prof. d Disciplin Luiz Gonzg Dmsceno, M. Sc. Seção

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA LOGARITMOS PROF. CARLINHOS NOME: N O :

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA LOGARITMOS PROF. CARLINHOS NOME: N O : ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA LOGARITMOS PROF. CARLINHOS NOME: N O : 1 DEFINIÇÃO LOGARITMOS = os(rzão) + rithmos(números) Sejm e números reis positivos diferentes de zero e 1. Chm-se ritmo

Leia mais

RESOLUÇÃO E IMPLEMENTAÇÃO DE SISTEMAS LINEARES DETERMINADOS ATRAVÉS DOS MÉTODOS DIRETOS

RESOLUÇÃO E IMPLEMENTAÇÃO DE SISTEMAS LINEARES DETERMINADOS ATRAVÉS DOS MÉTODOS DIRETOS RESOUÇÃO E IMPEMENTAÇÃO DE SISTEMAS INEARES DETERMINADOS ATRAVÉS DOS MÉTODOS DIRETOS Slete Mri Chlu Bdeir Simoe Mri Chlu Bdeir Bezerr 2 RESUMO: Este trlho preset o resultdo de um pesquis relizd os últimos

Leia mais

COMENTÁRIO DA PROVA. I. Se a expansão decimal de x é infinita e periódica, então x é um número racional. é um número racional.

COMENTÁRIO DA PROVA. I. Se a expansão decimal de x é infinita e periódica, então x é um número racional. é um número racional. COMENTÁRIO DA PROVA Como já er esperdo, prov de Mtemátic presetou um bom úmero de questões com gru reltivmete lto de dificuldde, s quis crcterístic fudmetl foi mescl de dois ou mis tems em um mesm questão

Leia mais

x n NOTA Tipo de Avaliação: Material de Apoio Disciplina: Matemática Turma: Aulão + Professor (a): Jefferson Cruz Data: 24/05/2014 DICAS do Jeff

x n NOTA Tipo de Avaliação: Material de Apoio Disciplina: Matemática Turma: Aulão + Professor (a): Jefferson Cruz Data: 24/05/2014 DICAS do Jeff NOTA Tipo de Avlição: Mteril de Apoio Disciplin: Mtemátic Turm: Aulão + Professor (): Jefferson Cruz Dt: 24/05/2014 DICAS do Jeff Olhr s lterntivs ntes de resolver s questões, principlmente em questões

Leia mais

Lista 7.1 Formas Quadráticas; Conjunto Convexo; Função Convexa

Lista 7.1 Formas Quadráticas; Conjunto Convexo; Função Convexa Fculdde de Economi d Universidde Nov de isbo pontmentos Cálculo II ist 7.1 Forms Qudrátics; Conjunto Convexo; Função Convex 1. Form qudrátic de n vriáveis reis (Q): Polinómio de º gru de n vriáveis reis

Leia mais

PROVA DE MATEMÁTICA - TURMAS DO

PROVA DE MATEMÁTICA - TURMAS DO PROVA DE MATEMÁTICA - TURMAS DO o ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - MARÇO DE 0. ELABORAÇÃO: PROFESSORES ADRIANO CARIBÉ E WALTER PORTO. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão 0. (UDESC SC)

Leia mais

Prof. Jomar. matriz A. A mxn ou m A n

Prof. Jomar. matriz A. A mxn ou m A n MATRIZES Prof. Jomr 1. Introdução Em mtemátic, é comum lidr com ddos relciondos dus informções. Por isso, os mtemáticos crirm s sus própris tbels, que receberm o nome de mtrizes. N verdde, s mtrizes podem

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prov QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA 1 Cofir os cmpos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, coforme o que cost etiquet fixd

Leia mais

GGE RESPONDE VESTIBULAR ITA 2009 (MATEMÁTICA)

GGE RESPONDE VESTIBULAR ITA 2009 (MATEMÁTICA) MATEMÁTICA - //8 GGE RESPONDE VESTIBULAR ITA (MATEMÁTICA) Notções N {,,,...} i : uidde imgiári: i - R: cojuto dos úmeros reis z :Módulo do úmero z C C: cojuto dos úmeros compleos Rez :prte rel do úmero

Leia mais

Desigualdades - Parte II. n (a1 b 1 +a 2 b a n b n ) 2.

Desigualdades - Parte II. n (a1 b 1 +a 2 b a n b n ) 2. Polos Olímpicos de Treinmento Curso de Álgebr - Nível Prof. Mrcelo Mendes Aul 9 Desigulddes - Prte II A Desiguldde de Cuchy-Schwrz Sejm,,..., n,b,b,...,b n números reis. Então: + +...+ ) n b +b +...+b

Leia mais

UNIVERSIDADE FEDERAL DO CEARÁ DEPARTAMENTO DE ENGENHARIA AGRÍCOLA HIDRÁULICA APLICADA AD 0195 Prof.: Raimundo Nonato Távora Costa CONDUTOS LIVRES

UNIVERSIDADE FEDERAL DO CEARÁ DEPARTAMENTO DE ENGENHARIA AGRÍCOLA HIDRÁULICA APLICADA AD 0195 Prof.: Raimundo Nonato Távora Costa CONDUTOS LIVRES UNVERSDADE FEDERAL DO CEARÁ DEPARTAMENTO DE ENGENHARA AGRÍCOLA HDRÁULCA APLCADA AD 019 Prof.: Rimudo Noto Távor Cost CONDUTOS LVRES 01. Fudmetos: Os codutos livres e os codutos forçdos, embor tem potos

Leia mais

Matemática /09 - Integral de nido 68. Integral de nido

Matemática /09 - Integral de nido 68. Integral de nido Mtemátic - 8/9 - Integrl de nido 68 Introdução Integrl de nido Sej f um função rel de vriável rel de nid e contínu num intervlo rel I = [; b] e tl que f () ; 8 [; b]: Se dividirmos [; b] em n intervlos

Leia mais

NOTAS DE AULA - ÁLGEBRA LINEAR MATRIZES, DETERMINANTES E SISTEMAS DE EQUAÇOES LINEARES

NOTAS DE AULA - ÁLGEBRA LINEAR MATRIZES, DETERMINANTES E SISTEMAS DE EQUAÇOES LINEARES NOTS DE U - ÁGER INER TRIZES, DETERINNTES E SISTES DE EQUÇOES INERES ISE C C EITE SVDOR Profª Isel Crisi C eie Álger ier TRIZES Um mri é um grupmeo regulr de úmeros ri de ordem m por é um reâgulo de m

Leia mais

LISTA P1T3. Professores: David. Matemática. 2ª Série. n 1. = n!

LISTA P1T3. Professores: David. Matemática. 2ª Série. n 1. = n! Mtemátic Professores: Dvid 2ª Série LISTA P1T3 FORMULÁRIO C, p! = p!( p)!! = p p!( p)!! α! β! δ! Tp+ 1 =.. b p P P α, β, δ = A, p PROBABILIDADES =!! = ( p)! p p 1. (PUC-SP 2010) Um luo prestou vestibulr

Leia mais

4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem.

4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem. EFOMM 2010 1. Anlise s firmtivs bixo. I - Sej K o conjunto dos qudriláteros plnos, seus subconjuntos são: P = {x K / x possui ldos opostos prlelos}; L = {x K / x possui 4 ldos congruentes}; R = {x K /

Leia mais

Teoria VII - Tópicos de Informática

Teoria VII - Tópicos de Informática INSTITUTO DE CIÊNCIAS EXATAS E TECNOLOGIA ICET Cmpins Limeir Jundií Teori VII - Tópicos de Informátic 1 Fórmuls Especiis no Excel 2 Função Exponencil 3 Função Logrítmic Unip 2006 - Teori VII 1 1- FÓRMULAS

Leia mais

Cálculo Infinitesimal. Gabriela Chaves

Cálculo Infinitesimal. Gabriela Chaves Cálculo Infinitesiml Gbriel Chves versão de Agosto de ii Índice Índice iii Proprieddes básics dos números. Operções de dição e multiplicção...................................... Relção de ordem.................................................

Leia mais

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos 3. Cálculo integrl em IR 3.. Integrl Indefinido 3... Definição, Proprieddes e Exemplos A noção de integrl indefinido prece ssocid à de derivd de um função como se pode verificr prtir d su definição: Definição

Leia mais

CAP. 5 DETERMINANTES 5.1 DEFINIÇÕES DETERMINANTE DE ORDEM 2 EXEMPLO DETERMINANTE DE ORDEM 3

CAP. 5 DETERMINANTES 5.1 DEFINIÇÕES DETERMINANTE DE ORDEM 2 EXEMPLO DETERMINANTE DE ORDEM 3 DETERMINNTES CP. DETERMINNTES. DEFINIÇÕES DETERMINNTE DE ORDEM O ermte de um mtrz qudrd de ordem é por defção plcção: : M IK IK ( ) DETERMINNTES DETERMINNTE DE ORDEM O ermte de um mtrz qudrd de ordem é

Leia mais

Curso de linguagem matemática Professor Renato Tião. Operadores

Curso de linguagem matemática Professor Renato Tião. Operadores Operdores Curso de ligugem mtemátic Professor Reto Tião No uiverso dos úmeros reis, há sete operções ritmétics defiids, sedo que seis dels são idicds por síolos específicos: +,,,,,, e outr é idicd pel

Leia mais

EXERCÍCIOS BÁSICOS DE MATEMÁTICA

EXERCÍCIOS BÁSICOS DE MATEMÁTICA . NÚMEROS INTEIROS Efetur: ) + ) 8 ) 0 8 ) + ) ) 00 ( ) ) ( ) ( ) 8) + 9) + 0) ( + ) ) 8 + 0 ) 0 ) ) ) ( ) ) 0 ( ) ) 0 8 8) 0 + 0 9) + 0) + ) ) ) 0 ) + 9 ) 9 + ) ) + 8 8) 9) 8 0000 09. NÚMEROS FRACIONÁRIOS

Leia mais

Um disco rígido de 300Gb foi dividido em quatro partições. O conselho directivo ficou. 24, os alunos ficaram com 3 8

Um disco rígido de 300Gb foi dividido em quatro partições. O conselho directivo ficou. 24, os alunos ficaram com 3 8 GUIÃO REVISÕES Simplificção de expressões Um disco rígido de 00Gb foi dividido em qutro prtições. O conselho directivo ficou com 1 4, os docentes ficrm com 1 4, os lunos ficrm com 8 e o restnte ficou pr

Leia mais

Métodos Matemáticos Aplicados a Processos Químicos e Bioquímicos. Capítulo IV : Funções Ortogonais e Séries de Fourier

Métodos Matemáticos Aplicados a Processos Químicos e Bioquímicos. Capítulo IV : Funções Ortogonais e Séries de Fourier J.. de Medeiros & Oféli Q.F. Arújo DISCIPINA Métodos Mteáticos Aplicdos Processos Quíicos e Bioquíicos Cpítulo IV : Fuções Ortogois e Séries de Fourier José uiz de Medeiros e Oféli Q.F. Arújo Egehri Quíic

Leia mais

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (III ) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Ídice Itrodução Aplicação do cálculo matricial aos

Leia mais

Matemática. 2 log 2 + log 3 + log 5 log 5 ( ) 10 2 log 2 + log 3 + log. 10 log. 2 log 2 + log 3 + log 10 log 2 log 10 log 2.

Matemática. 2 log 2 + log 3 + log 5 log 5 ( ) 10 2 log 2 + log 3 + log. 10 log. 2 log 2 + log 3 + log 10 log 2 log 10 log 2. Mtemátic Aotno-se os vlores log = 0,30 e log 3 = 0,48, riz equção x = 60 vle proximmente: ), b),8 c) 4 ),4 e),67 x = 60 log x = log 60 x. log = log (. 3. ) x = x = log + log 3 + log log 0 log + log 3 +

Leia mais

Método de Eliminação de Gauss

Método de Eliminação de Gauss étodo de Elmção de Guss A de ásc deste método é trsformr o sstem A um sstem equvlete A () (), ode A () é um mtrz trgulr superor, efectudo trsformções elemetres sore s lhs do sstem ddo. Cosdere-se o sstem

Leia mais

EQUAÇÃO DO 2 GRAU ( ) Matemática. a, b são os coeficientes respectivamente de e x ; c é o termo independente. Exemplo: x é uma equação do 2 grau = 9

EQUAÇÃO DO 2 GRAU ( ) Matemática. a, b são os coeficientes respectivamente de e x ; c é o termo independente. Exemplo: x é uma equação do 2 grau = 9 EQUAÇÃO DO GRAU DEFINIÇÃO Ddos, b, c R com 0, chmmos equção do gru tod equção que pode ser colocd n form + bx + c, onde :, b são os coeficientes respectivmente de e x ; c é o termo independente x x x é

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas Fudametos de Aálise Matemática Profª Aa Paula Sequêcia Ifiitas Defiição 1: Uma sequêcia umérica a 1, a 2, a 3,,a,é uma fução, defiida o cojuto dos úmeros aturais : f : f a Notação: O úmero é chamado de

Leia mais

Faculdade de Computação

Faculdade de Computação UNIVERIDADE FEDERAL DE UBERLÂNDIA Fculdde de Computção Disciplin : Teori d Computção Professor : ndr de Amo Revisão de Grmátics Livres do Contexto (1) 1. Fzer o exercicio 2.3 d págin 128 do livro texto

Leia mais

Programação Linear Introdução

Programação Linear Introdução Progrmção Liner Introdução Prof. Msc. Fernndo M. A. Nogueir EPD - Deprtmento de Engenhri de Produção FE - Fculdde de Engenhri UFJF - Universidde Federl de Juiz de For Progrmção Liner - Modelgem Progrmção

Leia mais

9 = 3 porque 3 2 = 9. 16 = 4 porque 4 2 = 16. -125 = - 5 porque (- 5) 3 = - 125. 81 = 3 porque 3 4 = 81. 32 = 2 porque 2 5 = 32 -32 = - 2

9 = 3 porque 3 2 = 9. 16 = 4 porque 4 2 = 16. -125 = - 5 porque (- 5) 3 = - 125. 81 = 3 porque 3 4 = 81. 32 = 2 porque 2 5 = 32 -32 = - 2 COLÉGIO PEDRO II Cpus Niterói Discipli: Mteátic Série: ª Professor: Grziele Souz Mózer Aluo (: Tur: Nº: RADICAIS º Triestre (Reforço) INTRODUÇÃO 9 porque 9 porque - - porque (- ) - 8 porque 8 porque De

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Fculdde de Enenhri, Arquiteturs e Urnismo FEAU Pro. Dr. Serio Pillin IPD/ Físic e Astronomi V Ajuste de curvs pelo método dos mínimos qudrdos Ojetivos: O ojetivo dest ul é presentr o método

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? Cálculo II Prof. Adrin Cherri 1 INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região

Leia mais

Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos?

Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos? A UA UL LA 58 Clculndo volumes Pr pensr l Considere um cubo de rest : Pr construir um cubo cuj rest sej o dobro de, de quntos cubos de rest precisremos? l Pegue um cix de fósforos e um cix de sptos. Considerndo

Leia mais

COLÉGIO NAVAL 2016 (1º dia)

COLÉGIO NAVAL 2016 (1º dia) COLÉGIO NAVAL 016 (1º di) MATEMÁTICA PROVA AMARELA Nº 01 PROVA ROSA Nº 0 ( 5 40) 01) Sej S som dos vlores inteiros que stisfzem inequção 10 1 0. Sendo ssim, pode-se firmr que + ) S é um número divisíel

Leia mais