Definição: uma permutação do conjunto de inteiros {1, 2,..., n} é um rearranjo destes inteiros em alguma ordem sem omissões ou repetições.

Save this PDF as:

Tamanho: px
Começar a partir da página:

Download "Definição: uma permutação do conjunto de inteiros {1, 2,..., n} é um rearranjo destes inteiros em alguma ordem sem omissões ou repetições."

Transcrição

1 DETERMINANTES INTRODUÇÃO Funções determinnte, são funções reis de um vriável mtricil, o que signific que ssocim um número rel (X) um mtriz qudrd X Sus plicções envolvem crcterizção de mtriz invertível, sber se um sistem dmite ou não solução, obter fórmuls pr o volume de certos sólidos poliédricos Determinnte é um número rel que se ssoci um mtriz qudrd clculdo pel somtóri de todos os produtos possíveis dos n elementos de um mtriz qudrd, de mneir que em cd prcel formd por um produto não h dois elementos pertencentes um mesm linh e/ou colun PERMUTAÇÕES Definição: um permutção do conunto de inteiros {,,, n} é um rerrno destes inteiros em lgum ordem sem omissões ou repetições Exemplo : Existem seis permutções possíveis pr os elementos do conunto {,, 3}, sber: (,, 3) ; (,, 3) ; (3,, ) ; (, 3, ) ; (, 3, ) ; (3,, ) Pr um conunto com elementos há permutções possíveis Pois pr primeir escolh, temos possibiliddes, pr segund posição 3 possibiliddes, n terceir possibiliddes e n qurt pens um Multiplicndo s possibiliddes temos: 3 = Em gerl, existem n(n - )(n - ) = n! permutções distints do conunto {,,, n} Vmos denotr por (,,, n) um permutção rbitrári do conunto {,,, n} Aqui, é o primeiro inteiro n permutção, o segundo, e ssim por dinte Ocorre um inversão num permutção sempre que um inteiro mior precede um menor O número totl de inversões que pode ocorrer num permutção pode ser obtido como segue: () encontre o número de inteiros que são menores que e que estão depois de n permutção; () encontre o número de inteiros que são menores que e que estão depois de n permutção Continue este processo pr 3,, n- A som destes números será o número totl de inversões n permutção Exemplo : A permutção (6,,3,,5,) do conunto {,, 3,, 5, 6} tem 8 inversões: o 6 ntes do, do 3, do, do 5 e do ; o 3 ntes do ; o ntes do ; o 5 ntes do Um permutção é chmd pr se o número totl de inversões é um inteiro pr e é chmd ímpr se o número totl de inversões é ímpr Exemplo 3: Pr s permutções do exemplo, temos seguinte clssificção: (,, 3) pr (,, 3) ímpr (3,, ) pr (, 3, ) ímpr (, 3, ) pr (3,, ) ímpr

2 3 Determinntes um mtriz n x n Definimos o determinnte de A e denotmos det(a) ou simplesmente A por: det( A ) A ( ) n n Onde o somtório é tomdo sobre tods s permutções,,, n do conunto {,,,n} O sinl do termo correspondente à permutção,,, n é + se el for pr e se for ímpr Definição: Se A i Se A é um mtriz de ordem, então tem pens um permutção e nenhum inversão, sendo, portnto, pr Logo det(a) = termos Se A é um mtriz de ordem, então pr obter o det(a), escrevemos os e, e preenchemos os espços vzios com os elementos do conunto de permutções{(),()} Como é um permutção pr, o termo tem sinl +; como o termo é um permutção ímpr, o termo tem o sinl - Portnto, det(a) = - Podemos, tmbém, obter o det(a) relizndo o produto dos elementos d digonl principl d mtriz menos o produto dos elementos d digonl secundári Observe: Secundári Principl A = - De modo nálogo podemos clculr o determinnte de um mtriz de ordem 3 3 Se A 3 então pr clculr det(a), escrevemos os seis termos 3 3 3, 3, 3, 3, 3, 3 Usndo tods s permutções dos elementos do conunto {,, 3} e colocndo o sinl correspondente, + pr um permutção pr e pr um permutção ímpr, obtemos Podemos, tmbém, obter o det(a) d seguinte mneir: repit s dus primeirs coluns de A, some os produtos dos elementos com s flechs direcionds pr direit e subtri os produtos dos elementos com s flechs direcionds pr esquerd Os procedimentos práticos cim descritos não vlem pr mtrizes de ordem n

3 Exemplo : Vmos clculr o determinnte pelo método prático ds mtrizes bixo: 3 A 5 3 det( A ) = (-) = 5 3 B det( B ) 3 = = Aplicr definição pr clculr determinntes de ordens superiores 3 pode ser extremmente trblhoso e requerer um esforço computcionl muito grnde Um determinnte de ordem resolvido diretmente envolveri! = produtos com sinl e um determinnte de ordem envolveri! = 3688 produtos com sinl Mesmo os computdores mis rápidos, que relizm um trilhão de multiplicções por segundo, demorrim cerc de 5 nos pr clculr um determinnte de ordem 5 pel definição O que nos interess, portnto, é desenvolver proprieddes dos determinntes que simplifiquem seu cálculo Proprieddes: Se A um mtriz qudrd i) Se A tem um linh ou um colun de zeros, então det(a) = 3 Exemplo 5: Se A det(a) = - = 3 O determinnte de A é ii) det(a) = det(a T ) Exemplo 6: Se A mtriz do Exemplo Vmos clculr o determinnte d mtriz trnspost de A: det(a T ) = 3 5 = (-) = = det(a) iii) Se A é um mtriz tringulr (superior, inferior ou digonl) de tmnho n x n, então det(a) é o produto ds entrds n digonl principl d mtriz Exemplo 7: Se 3 A Usndo propriedde clculmos: 7 5 det(a) = 3(-)5 = -3

4 iv) Se um mtriz B é obtid de um mtriz A trocndo-se dus linhs (ou coluns) de A, então det(b) = -det(a) 3 Exemplo 8: Se A Temos que det(a) = 6 Vmos permutr segund linh com primeir linh, obtendo mtriz B B 3 Clculndo o novo determinnte encontrmos det(b) = -6 = -det(a) v) Se dus linhs (ou coluns) de A são iguis, então det(a) = Exemplo 9: Vmos clculr o determinnte d mtriz A primeir e terceir coluns são iguis Vmos clculr o det(a) det( A ) 6 = - = 6 Observe que vi) Se B é mtriz resultnte d multiplicção de um linh (ou colun) de A por um esclr k, então det(b) = kdet(a) Exemplo : Se A mtriz do exemplo Vmos multiplicr primeir linh de A por 3, originndo mtriz B O determinnte de B é: 6 9 B = 3 (- 36) = 66 = 3 = 3det(A) vii) Se B é mtriz que result qundo um múltiplo de um linh de A é somdo um outr linh ou qundo um múltiplo de um colun de A é somdo um outr colun, então det(b) = det(a) Exemplo : Se A mtriz do exemplo 8 Vmos multiplicr primeir linh por e somr com terceir linh, obtendo mtriz B O determinnte de B é: 3 B = 8 + = 6 = det(a) viii) O determinnte de um produto de mtrizes é igul o produto de seus determinntes, isto é, det(ab) = det(a)det(b)

5 Exemplo : Sem A 3 e B 5 det(a) = 6 = - det (B) = 8 5 = 3 det(a)det(b) = (-)3 = -6 9 AB det( AB ) = 8 3 = -6 = det(a)det(b) 6 9 ix) Se A é invertível, então det(a) Exemplo 3: Se A mtriz do exemplo Como det(a), então A é invertível Usndo o método prático pr clculr invers de um mtriz de ordem, vmos determinr A - : A Expnsão em Coftores Vmos desenvolver um método pr clculr o determinnte de um mtriz n x n, que reduz o problem o cálculo de determinntes de mtrizes de ordem n Podemos então repetir o processo pr esss mtrizes (n ) x (n ) té obter mtrizes x Definição: Se A = [i] um mtriz n x n Se Mi submtriz (n )x(n ) de A obtid eliminndo-se i-ésim linh e -ésim colun de A O determinnte det(mi) é chmdo determinnte menor de i O coftor Ai de i é definido por i A i ) det( M ) ( i O determinnte de um mtriz A, n x n, pode ser clculdo pel expnsão do coftor com respeito qulquer linh ou colun A expnsão com respeito à i-ésim linh, usndo os coftores Ai é dd por i Ai i Ai A A expnsão do coftor com respeito À -ésim colun é dd por A A in n in A n O sinl positivo ou negtivo no coftor depende d posição de i n mtriz O ftor (-) i + determin o seguinte pdrão de sinis:

6 5 Exemplo : Se A Vmos clculr o det(a) usndo o coftor com respeito à terceir linh d mtriz 3 3 A A A ( ) det A ( ) det A ( A ) 5 5 ( ) ( )

Aula 6: Determinantes

Aula 6: Determinantes Aul 6: Determinntes GAN-Álg iner- G 8 Prof An Mri uz F do Amrl Determinntes Relembrndo Vimos que: Se A é x e det(a) então existe A - ; Se existe A - então o sistem liner Axb tem solução únic (x A - b)

Leia mais

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Determinantes

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Determinantes Universidde Federl de Pelots Vetores e Álgebr Liner Prof : Msc. Merhy Heli Rodrigues Determinntes Determinntes Definição: Determinnte é um número ssocido um mtriz qudrd.. Determinnte de primeir ordem Dd

Leia mais

Então, det(a) = 1x3 1x2 = 3 2 = 1. Determinante de uma matriz 3 x 3 Regra de Sarrus (Pierre Frédéric Sarrus) Definimos det(a) =

Então, det(a) = 1x3 1x2 = 3 2 = 1. Determinante de uma matriz 3 x 3 Regra de Sarrus (Pierre Frédéric Sarrus) Definimos det(a) = Determinnte de um mtriz Sej um mtriz qudrd de ordem. Definimos det - E.: Sej mtriz Então, det Determinnte de um mtriz Regr de Srrus Pierre Frédéric Srrus Sej um mtriz qudrd de ordem. Definimos det Regr

Leia mais

Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Luiz Fernando Satolo

Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Luiz Fernando Satolo Mtemátic pr Economists LES Auls 5 e Mtrizes Ching Cpítulos e 5 Luiz Fernndo Stolo Mtrizes Usos em economi ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Álgebr Mtricil Conceitos Básicos

Leia mais

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON PROFJWPS@GMAIL.COM MATRIZES Definição e Notção... 11 21 m1 12... 22 m2............ 1n.. 2n. mn Chmmos de Mtriz todo conjunto de vlores, dispostos

Leia mais

Matrizes. Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Márcia A.F. Dias de Moraes. Matrizes Conceitos Básicos

Matrizes. Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Márcia A.F. Dias de Moraes. Matrizes Conceitos Básicos Mtemátic pr Economists LES uls e Mtrizes Ching Cpítulos e Usos em economi Mtrizes ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Márci.F. Dis de Mores Álgebr Mtricil Conceitos Básicos

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES DETERMINANTES

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES DETERMINANTES Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - APES DETERMINANTES Prof Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr iêncis

Leia mais

DETERMINANTES. Notação: det A = a 11. Exemplos: 1) Sendo A =, então det A = DETERMINANTE DE MATRIZES DE ORDEM 2

DETERMINANTES. Notação: det A = a 11. Exemplos: 1) Sendo A =, então det A = DETERMINANTE DE MATRIZES DE ORDEM 2 DETERMINANTES A tod mtriz qudrd ssoci-se um número, denomindo determinnte d mtriz, que é obtido por meio de operções entre os elementos d mtriz. Su plicção pode ser verificd, por exemplo, no cálculo d

Leia mais

6. ÁLGEBRA LINEAR MATRIZES

6. ÁLGEBRA LINEAR MATRIZES MATRIZES. ÁLGEBRA LINEAR Definição Digonl Principl Mtriz Unidde Mtriz Trnspost Iguldde entre Mtrizes Mtriz Nul Um mtriz m n um tbel de números reis dispostos em m linhs e n coluns. Sempre que m for igul

Leia mais

TÓPICOS. Determinantes de 1ª e 2ª ordem. Submatriz. Menor. Cofactor. Expansão em cofactores. Determinante de ordem n. Propriedades dos determinantes.

TÓPICOS. Determinantes de 1ª e 2ª ordem. Submatriz. Menor. Cofactor. Expansão em cofactores. Determinante de ordem n. Propriedades dos determinantes. Note bem: leitur destes pontmentos não dispens de modo lgum leitur tent d bibliogrfi principl d cdeir Chm-se tenção pr importânci do trblho pessol relizr pelo luno resolvendo os problems presentdos n bibliogrfi,

Leia mais

1 ÁLGEBRA MATRICIAL 1.1 TIPOS ESPECIAIS DE MATRIZES. Teorema. Sejam A uma matriz k x m e B uma matriz m x n. Então (AB) T = B T A T

1 ÁLGEBRA MATRICIAL 1.1 TIPOS ESPECIAIS DE MATRIZES. Teorema. Sejam A uma matriz k x m e B uma matriz m x n. Então (AB) T = B T A T ÁLGEBRA MATRICIAL Teorem Sejm A um mtriz k x m e B um mtriz m x n Então (AB) T = B T A T Demonstrção Pr isso precismos d definição de mtriz trnspost Definição Mtriz trnspost (AB) T = (AB) ji i j = A jh

Leia mais

Exercícios. setor Aula 25

Exercícios. setor Aula 25 setor 08 080409 080409-SP Aul 5 PROGRESSÃO ARITMÉTICA. Determinr o número de múltiplos de 7 que estão compreendidos entre 00 e 000. r 7 00 7 PA 05 30 4 n 994 00 98 98 + 7 05 n + (n ) r 994 05 + (n ) 7

Leia mais

Linhas 1 2 Colunas 1 2. (*) Linhas 1 2 (**) Colunas 2 1.

Linhas 1 2 Colunas 1 2. (*) Linhas 1 2 (**) Colunas 2 1. Resumos ds uls teórics -------------------- Cp 5 -------------------------------------- Cpítulo 5 Determinntes Definição Consideremos mtriz do tipo x A Formemos todos os produtos de pres de elementos de

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c.

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c. EQUAÇÃO DO GRAU Você já estudou em série nterior s equções do 1 gru, o gru de um equção é ddo pelo mior expoente d vriável, vej lguns exemplos: x + = 3 equção do 1 gru já que o expoente do x é 1 5x 8 =

Leia mais

Prof. Ms. Aldo Vieira Aluno:

Prof. Ms. Aldo Vieira Aluno: Prof. Ms. Aldo Vieir Aluno: Fich 1 Chmmos de mtriz, tod tbel numéric com m linhs e n coluns. Neste cso, dizemos que mtriz é do tipo m x n (onde lemos m por n ) ou que su ordem é m x n. Devemos representr

Leia mais

Conceito Representação Propriedades Desenvolvimento de Laplace Matriz Adjunta e Matriz Inversa

Conceito Representação Propriedades Desenvolvimento de Laplace Matriz Adjunta e Matriz Inversa Algebr Liner Boldrini/Cost/Figueiredo/Wetzler Objetivo: Clculr determinntes pelo desenvolvimento de Lplce Inverter Mtrizes Conceito Representção Proprieddes Desenvolvimento de Lplce Mtriz Adjunt e Mtriz

Leia mais

Formas Quadráticas. FUNÇÕES QUADRÁTICAS: denominação de uma função especial, definida genericamente por: 1 2 n ij i j i,j 1.

Formas Quadráticas. FUNÇÕES QUADRÁTICAS: denominação de uma função especial, definida genericamente por: 1 2 n ij i j i,j 1. Forms Qudrátics FUNÇÕES QUADRÁTICAS: denominção de um função especil, definid genericmente por: Q x,x,...,x x x x... x x x x x... x 1 n 11 1 1 1 1n 1 n 3 3 nn n ou Qx,x,...,x 1 n ij i j i,j1 i j n x x

Leia mais

UNITAU APOSTILA DETERMINANTES PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: Bibliografia: Curso de Matemática Volume Único

UNITAU APOSTILA DETERMINANTES PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: Bibliografia: Curso de Matemática Volume Único ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA DETERMINANTES PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: Bibliogrfi: Curso de Mtemátic Volume Único Autores: Binchini&Pccol Ed. Modern Mtemátic

Leia mais

MATEMÁTICA PARA REFLETIR! EXERCÍCIOS EXERCÍCIOS COMPLEMENTARES OPERAÇÕES COM MATRIZES PARA REFLETIR!...437

MATEMÁTICA PARA REFLETIR! EXERCÍCIOS EXERCÍCIOS COMPLEMENTARES OPERAÇÕES COM MATRIZES PARA REFLETIR!...437 ÍNICE MATEMÁTICA... PARA REFLETIR!... EXERCÍCIOS... EXERCÍCIOS COMPLEMENTARES... OPERAÇÕES COM MATRIZES... PARA REFLETIR!...7 EXERCÍCIOS E APLICAÇÃO...8 EXERCÍCIOS COMPLEMENTARES...8...9 PARA REFLETIR!...

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - CAPES MATRIZES Prof. Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr Ciêncis Sociis

Leia mais

, onde i é a linha e j é a coluna que o elemento ocupa na matriz.

, onde i é a linha e j é a coluna que o elemento ocupa na matriz. SÉRE: 2 AULA - MATRZES NOTA: FEVERERO Jneiro/Fevereiro 6 1 O PERÍODO PROF A ALESSANDRA MATTOS Muits vezes pr designr com clrez certs situções, é necessário um grupo ordendo de número de linhs(i) e coluns

Leia mais

Estatística e Matrizes

Estatística e Matrizes Esttístic e Mtrizes Introdução à Análise Multivrid Análise multivrid: De um modo gerl, refere-se todos os métodos esttísticos que simultnemente nlism múltipls medids sobre cd indivíduo ou objeto sob investigção.

Leia mais

SERVIÇO PÚBLICO FEDERAL Ministério da Educação

SERVIÇO PÚBLICO FEDERAL Ministério da Educação SERVIÇO PÚBLICO FEDERAL Ministério d Educção Universidde Federl do Rio Grnde Universidde Abert do Brsil Administrção Bchreldo Mtemátic pr Ciêncis Sociis Aplicds I Rodrigo Brbos Sores . Mtrizes:.. Introdução:

Leia mais

Matemática. Resolução das atividades complementares. M13 Determinantes. 1 (Unifor-CE) Sejam os determinantes A 5. 2 (UFRJ) Dada a matriz A 5 (a ij

Matemática. Resolução das atividades complementares. M13 Determinantes. 1 (Unifor-CE) Sejam os determinantes A 5. 2 (UFRJ) Dada a matriz A 5 (a ij Resolução ds tividdes complementres Mtemátic M Determinntes p. (Unifor-CE) Sejm os determinntes A, B e C. Nests condições, é verdde que AB C é igul : ) c) e) b) d) A?? A B?? B C?? C AB C ()? AB C, se i,

Leia mais

ALGEBRA LINEAR AUTOVALORES E AUTOVETORES. Prof. Ademilson

ALGEBRA LINEAR AUTOVALORES E AUTOVETORES. Prof. Ademilson LGEBR LINER UTOVLORES E UTOVETORES Prof. demilson utovlores e utovetores utovlores e utovetores são conceitos importntes de mtemátic, com plicções prátics em áres diversificds como mecânic quântic, processmento

Leia mais

MATRIZES. 1) (CEFET) Se A, B e C são matrizes do tipo 2x3, 3x1 e 1x4, respectivamente, então o produto A.B.C. (a) é matriz do tipo 4 x 2

MATRIZES. 1) (CEFET) Se A, B e C são matrizes do tipo 2x3, 3x1 e 1x4, respectivamente, então o produto A.B.C. (a) é matriz do tipo 4 x 2 MATRIZES ) (CEFET) Se A, B e C são mtrizes do tipo, e 4, respectivmente, então o produto A.B.C () é mtriz do tipo 4 () é mtriz do tipo 4 (c) é mtriz do tipo 4 (d) é mtriz do tipo 4 (e) não é definido )

Leia mais

Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A?

Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A? PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO ============================================================================================= Determinntes - O vlor

Leia mais

Capítulo 4. Matrizes e Sistemas de Equações Lineares

Capítulo 4. Matrizes e Sistemas de Equações Lineares ------------- Resumos ds uls teórics ------------------Cp 4------------------------------ Cpítulo 4. Mtrizes e Sistems de Equções Lineres Conceitos Geris sobre Mtrizes Definição Sejm m e n dois inteiros,

Leia mais

MATEMÁTICA II - Engenharias/Itatiba DETERMINANTES. A quantidade D = ps-rq é definida como sendo o determinante da matriz quadrada.

MATEMÁTICA II - Engenharias/Itatiba DETERMINANTES. A quantidade D = ps-rq é definida como sendo o determinante da matriz quadrada. MTEMÁTI II - Engenhris/Itti o Semestre de Prof. Murício Fri - Série de Eercícios DETERMINNTES. Determinnte de ordem onsidere o sistem liner. s incógnits são e. Multilicndo rimeir eução r s or s, segund

Leia mais

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES Prof. Erivelton Gerldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE

Leia mais

Definição 1 O determinante de uma matriz quadrada A de ordem 2 é por definição a aplicação. det

Definição 1 O determinante de uma matriz quadrada A de ordem 2 é por definição a aplicação. det 5 DETERMINANTES 5 Definição e Proprieddes Definição O erminnte de um mtriz qudrd A de ordem é por definição plicção ( ) : M IR IR A Eemplo : 5 A ( A ) ( ) ( ) 5 7 5 Definição O erminnte de um mtriz qudrd

Leia mais

TÓPICOS. Matriz. Matriz nula. Matriz quadrada: Diagonais principal e secundária. Traço. Matriz diagonal. Matriz escalar. Matriz identidade.

TÓPICOS. Matriz. Matriz nula. Matriz quadrada: Diagonais principal e secundária. Traço. Matriz diagonal. Matriz escalar. Matriz identidade. Note bem: leitur destes pontmentos não dispens de modo lgum leitur tent d bibliogrfi principl d cdeir TÓPICOS Mtriz. AULA Chm-se tenção pr importânci do trblho pessol relizr pelo luno resolvendo os problems

Leia mais

Sistems Lineres Form Gerl onde: ij ij coeficientes n n nn n n n n n n b... b... b...

Sistems Lineres Form Gerl onde: ij ij coeficientes n n nn n n n n n n b... b... b... Cálculo Numérico Módulo V Resolução Numéric de Sistems Lineres Prte I Profs.: Bruno Correi d Nóbreg Queiroz José Eustáquio Rngel de Queiroz Mrcelo Alves de Brros Sistems Lineres Form Gerl onde: ij ij coeficientes

Leia mais

Prof. Weber Campos Copyri'ght. Curso Agora eu Passo - Todos os direitos reservados ao autor.

Prof. Weber Campos Copyri'ght. Curso Agora eu Passo - Todos os direitos reservados ao autor. AEP FISCAL Rciocínio Lógico - MATRIZES E DETERMINANTES - SISTEMAS LINEARES Prof. Weer Cmpos weercmpos@gmil.com Copyri'ght. Curso Agor eu Psso - Todos os direitos reservdos o utor. Rciocínio Lógico EXERCÍCIOS

Leia mais

Problemas e Algoritmos

Problemas e Algoritmos Problems e Algoritmos Em muitos domínios, há problems que pedem síd com proprieddes específics qundo são fornecids entrds válids. O primeiro psso é definir o problem usndo estruturs dequds (modelo), seguir

Leia mais

Aula 9. Sistemas de Equações Lineares Parte 2

Aula 9. Sistemas de Equações Lineares Parte 2 CÁLCULO NUMÉRICO Aul 9 Sistems de Equções Lineres Prte FATORAÇÃO LU Cálculo Numérico /6 FATORAÇÃO LU Um ftorção LU de um dd mtriz qudrd é dd por: onde L é tringulr inferior e U é tringulr superior. Eemplo:

Leia mais

Sebenta de Álgebra Linear e Geometria Analítica

Sebenta de Álgebra Linear e Geometria Analítica Sebent de Álgebr Liner e Geometri Anlític Pulo Jorge Afonso Alves Cpítulo 1 Mtrizes Objectivo Neste cpítulo vmos introduzir um novo conceito, o de mtriz; os diferentes tipos de mtrizes existentes; estudr

Leia mais

1. Sejam R e S duas relações entre os conjuntos não vazios E e F. Então mostre que

1. Sejam R e S duas relações entre os conjuntos não vazios E e F. Então mostre que 2 List de exercícios de Álgebr 1. Sejm R e S dus relções entre os conjuntos não vzios E e F. Então mostre que ) R 1 S 1 = (R S) 1, b) R 1 S 1 = (R S) 1. Solução: Pr primeir iguldde, temos que (, b) R 1

Leia mais

Recordando produtos notáveis

Recordando produtos notáveis Recordndo produtos notáveis A UUL AL A Desde ul 3 estmos usndo letrs pr representr números desconhecidos. Hoje você sbe, por exemplo, que solução d equção 2x + 3 = 19 é x = 8, ou sej, o número 8 é o único

Leia mais

ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS

ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS Equção Liner * Sej,,,...,, (números reis) e n (n ) 2 3 n x, x, x,..., x (números reis) 2 3 n Chm-se equção Liner sobre

Leia mais

Bhaskara e sua turma Cícero Thiago B. Magalh~aes

Bhaskara e sua turma Cícero Thiago B. Magalh~aes 1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como

Leia mais

Progressões Aritméticas

Progressões Aritméticas Segund Etp Progressões Aritmétics Definição São sequêncis numérics onde cd elemento, prtir do segundo, é obtido trvés d som de seu ntecessor com um constnte (rzão).,,,,,, 1 3 4 n 1 n 1 1º termo º termo

Leia mais

Lista 7.1 Formas Quadráticas; Conjunto Convexo; Função Convexa

Lista 7.1 Formas Quadráticas; Conjunto Convexo; Função Convexa Fculdde de Economi d Universidde Nov de isbo pontmentos Cálculo II ist 7.1 Forms Qudrátics; Conjunto Convexo; Função Convex 1. Form qudrátic de n vriáveis reis (Q): Polinómio de º gru de n vriáveis reis

Leia mais

MATRIZES E DETERMINANTES

MATRIZES E DETERMINANTES Professor: Cssio Kiechloski Mello Disciplin: Mtemátic luno: N Turm: Dt: MTRIZES E DETERMINNTES MTRIZES: Em quse todos os jornis e revists é possível encontrr tbels informtivs. N Mtemátic chmremos ests

Leia mais

Aula 10 Estabilidade

Aula 10 Estabilidade Aul 0 Estbilidde input S output O sistem é estável se respost à entrd impulso 0 qundo t Ou sej, se síd do sistem stisfz lim y(t) t = 0 qundo entrd r(t) = impulso input S output Equivlentemente, pode ser

Leia mais

Área entre curvas e a Integral definida

Área entre curvas e a Integral definida Universidde de Brsíli Deprtmento de Mtemátic Cálculo Áre entre curvs e Integrl definid Sej S região do plno delimitd pels curvs y = f(x) e y = g(x) e s rets verticis x = e x = b, onde f e g são funções

Leia mais

CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS. : Variáveis e parâmetros. : Conjuntos. : Pertence. : Não pertence. : Está contido. : Não está contido.

CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS. : Variáveis e parâmetros. : Conjuntos. : Pertence. : Não pertence. : Está contido. : Não está contido. CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS,,... A, B,... ~ > < : Vriáveis e prâmetros : Conjuntos : Pertence : Não pertence : Está contido : Não está contido : Contém : Não contém : Existe : Não existe : Existe

Leia mais

FUNÇÃO DO 2º GRAU OU QUADRÁTICA

FUNÇÃO DO 2º GRAU OU QUADRÁTICA FUNÇÃO DO º GRAU OU QUADRÁTICA - Definição É tod função do tipo f() = + + c, com *, e c. c y Eemplos,, c números e coeficient termo vr vr iável iável es independen reis indepemdem dependente de te ou te

Leia mais

Resolução Numérica de Sistemas Lineares Parte I

Resolução Numérica de Sistemas Lineares Parte I Cálculo Numérico Módulo V Resolução Numéric de Sistems ineres Prte I Profs.: Bruno Correi d Nóbreg Queiroz José Eustáquio Rngel de Queiroz Mrcelo Alves de Brros Sistems ineres Form Gerl... n n b... n n

Leia mais

Índice. Matrizes, Determinantes e Sistemas Lineares. Resumo Teórico...1 Exercícios...5 Dicas...6 Resoluções...7

Índice. Matrizes, Determinantes e Sistemas Lineares. Resumo Teórico...1 Exercícios...5 Dicas...6 Resoluções...7 Índice Mtrizes, Determinntes e Sistems Lineres Resumo Teórico...1 Exercícios...5 Dics...6 Resoluções...7 Mtrizes, Determinntes e Sistems Lineres Resumo Teórico Mtrizes Representção A=( ij )x3pode ser representd

Leia mais

Matrizes e Determinantes

Matrizes e Determinantes Págin de - // - : PROFESSOR: EQUIPE DE MTEMÁTIC NCO DE QUESTÕES - MTEMÁTIC - ª SÉRIE - ENSINO MÉDIO - PRTE =============================================================================================

Leia mais

FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x

FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x FUNÇÕES ) Se f() = 6, então f ( 5) f ( 5) é igul () (b) (c) 3 (d) 4 (e) 5 ) (UNIFOR) O gráfico bio 0 () não represent um função. (b) represent um função bijetor. (c) represent um função não injetor. (d)

Leia mais

Resolução Numérica de Sistemas Lineares Parte I

Resolução Numérica de Sistemas Lineares Parte I Cálculo Numérico Resolução Numéric de Sistems ineres Prte I Prof. Jorge Cvlcnti jorge.cvlcnti@univsf.edu.br MATERIA ADAPTADO DOS SIDES DA DISCIPINA CÁCUO NUMÉRICO DA UFCG - www.dsc.ufcg.edu.br/~cnum/ Sistems

Leia mais

Uso da linguagem R para análise de dados em ecologia

Uso da linguagem R para análise de dados em ecologia Uso d lingugem R pr nálise de ddos em ecologi Objetivo d ul Demonstrr função ed.shpe() e Apresentr noções básics de álgebr liner e mostrr como el se relcion à nálise de ddos. EDA Shpe Função presentd no

Leia mais

Revisão Vetores e Matrizes

Revisão Vetores e Matrizes Revisão Vetores e trizes Vetores Vetores no R n R n {(x,..., x n ) tl que x,..., x n R} com s definições usuis de dição e multilicção Adição (x,..., x n ) (y,..., y n ) (x y,..., x n y n ) Vetores ultilicção

Leia mais

2) Observe a matriz seguinte e responda:

2) Observe a matriz seguinte e responda: PROF. GILBERTO SANTOS JR MATRIZES, DETERMINANTES E SISTEMAS LINEARES I-MATRIZES. INTRODUÇÃO Muits vezes, pr designr com clrez certs situções é necessário um grupo ordendo de números que se presentm dispostos

Leia mais

IFRN Campus Natal/Central. Prof. Tibério Alves, D. Sc. FIC Métodos matemáticos para físicos e engenheiros - Aula 02.

IFRN Campus Natal/Central. Prof. Tibério Alves, D. Sc. FIC Métodos matemáticos para físicos e engenheiros - Aula 02. IFRN Cmpus Ntl/Centrl Prof. Tibério Alves, D. Sc. FIC Métodos mtemáticos pr físicos e engenheiros - Aul 0 Séries de Fourier 3 de gosto de 08 Resumo Neste ul, vmos estudr o conceito de conjunto completo

Leia mais

CCI-22. Eliminação de Gauss, Gauss-Jordan, Decomposição LU, Gauss-Jacobi, Gauss-Seidel

CCI-22. Eliminação de Gauss, Gauss-Jordan, Decomposição LU, Gauss-Jacobi, Gauss-Seidel CCI- ) Rízes de Sistems Lineres Eliminção de Guss, Guss-Jordn, Decomposição LU, Guss-Jcobi, Guss-Seidel CCI- Introdução Métodos diretos Regr de Crmer Eliminção de Guss Guss-Jordn Resíduos e Condicionmento

Leia mais

Introdução ao estudo de equações diferenciais

Introdução ao estudo de equações diferenciais MTDI I - 2007/08 - Introdução o estudo de equções diferenciis 63 Introdução o estudo de equções diferenciis Existe um grnde vriedde de situções ns quis se desej determinr um quntidde vriável prtir de um

Leia mais

y 5z Grupo A 47. alternativa A O denominador da fração é D = 46. a) O sistema dado é determinado se, e somente se: b) Para m = 0, temos: = 2 x y

y 5z Grupo A 47. alternativa A O denominador da fração é D = 46. a) O sistema dado é determinado se, e somente se: b) Para m = 0, temos: = 2 x y Grupo A 4. lterntiv A O denomindor d frção é D = 4 7 = ( 0 ) = 4. 46. ) O sistem ddo é determindo se, e somente se: m 0 m 9m 0 9 m b) Pr m, temos: x + y = x = y x + y z = 7 y z = x y + z = 4 4y + z = x

Leia mais

(x, y) dy. (x, y) dy =

(x, y) dy. (x, y) dy = Seção 7 Função Gm A expressão n! = 1 3... n (1 está definid pens pr vlores inteiros positivos de n. Um primeir extensão é feit dizendo que! = 1. Ms queremos estender noção de ftoril inclusive pr vlores

Leia mais

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i Integrl Noção de Integrl. Integrl é o nálogo pr unções d noção de som. Ddos n números 1, 2,..., n, podemos tomr su som 1 + 2 +... + n = i. O integrl de = té = b dum unção contínu é um mneir de somr todos

Leia mais

Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA

Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA Trigonometri é o estudo dos triângulos, que contêm ângulos, clro. Conheç lgums regrs especiis pr ângulos e váris outrs funções, definições e trnslções importntes. Senos e cossenos são dus funções trigonométrics

Leia mais

n. 6 SISTEMAS LINEARES

n. 6 SISTEMAS LINEARES n. 6 SISTEMAS LINEARES Sistem liner homogêneo Qundo os termos independentes de tods s equções são nulos. Todo sistem liner homogêneo dmite pelo menos solução trivil, que é solução identicmente nul. Assim,

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Universidde Estdul do Sudoeste d Bhi Deprtmento de Estudos Básicos e Instrumentis 3 Vetores Físic I Prof. Roberto Cludino Ferreir 1 ÍNDICE 1. Grndez Vetoril; 2. O que é um vetor; 3. Representção de um

Leia mais

1 Assinale a alternativa verdadeira: a) < <

1 Assinale a alternativa verdadeira: a) < < MATEMÁTICA Assinle lterntiv verddeir: ) 6 < 7 6 < 6 b) 7 6 < 6 < 6 c) 7 6 < 6 < 6 d) 6 < 6 < 7 6 e) 6 < 7 6 < 6 Pr * {} temos: ) *, * + e + * + ) + > + + > ) Ds equções (I) e (II) result 7 6 < ( 6 )

Leia mais

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS EQUAÇÕES E INEQUAÇÕES POLINOMIAIS Um dos grndes problems de mtemátic n ntiguidde er resolução de equções polinomiis. Encontrr um fórmul ou um método pr resolver tis equções er um grnde desfio. E ind hoje

Leia mais

Rresumos das aulas teóricas Cap Capítulo 4. Matrizes e Sistemas de Equações Lineares

Rresumos das aulas teóricas Cap Capítulo 4. Matrizes e Sistemas de Equações Lineares Rresumos ds uls teórics ------------------ Cp ------------------------------ Cpítulo. Mtrizes e Sistems de Equções ineres Sistems de Equções ineres Definições Um sistem de m equções lineres n incógnits,

Leia mais

Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação

Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação Resolução ds tividdes complementres Mtemátic M Equções Polinomiis p. 86 (PUC-SP) No universo C, equção 0 0 0 dmite: ) três rízes rcionis c) dus rízes irrcionis e) um únic riz positiv b) dus rízes não reis

Leia mais

Os números racionais. Capítulo 3

Os números racionais. Capítulo 3 Cpítulo 3 Os números rcionis De modo informl, dizemos que o conjunto Q dos números rcionis é composto pels frções crids prtir de inteiros, desde que o denomindor não sej zero. Assim como fizemos nteriormente,

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas.

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas. CÁLCULO L1 NOTAS DA DÉCIMA SÉTIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nest ul, utilizremos o Teorem Fundmentl do Cálculo (TFC) pr o cálculo d áre entre dus curvs. 1. A áre entre dus curvs A

Leia mais

MESTRADO EM CONTROLADORIA E CONTABILIDADE Turma de Belo Horizonte MÉTODOS QUANTITATIVOS APLICADOS À CONTABILIDADE ÁLGEBRA MATRICIAL

MESTRADO EM CONTROLADORIA E CONTABILIDADE Turma de Belo Horizonte MÉTODOS QUANTITATIVOS APLICADOS À CONTABILIDADE ÁLGEBRA MATRICIAL MESTRADO EM CONTROLADORIA E CONTABILIDADE Turm de Belo Horizonte MÉTODOS QUANTITATIVOS APLICADOS À CONTABILIDADE Professor: L João Corrr Alun: Náli de Arújo Sntos ÁLGEBRA MATRICIAL Ojetivos do Aprendizdo

Leia mais

LISTA GERAL DE MATRIZES OPERAÇÕES E DETERMINANTES - GABARITO. b =

LISTA GERAL DE MATRIZES OPERAÇÕES E DETERMINANTES - GABARITO. b = LIS GERL DE MRIZES OPERÇÕES E DEERMINNES - GBRIO Dds s mtries [ ij ] tl que j ij i e [ ij ] B tl que ij j i, determine: c Solução Não é necessário construir tods s mtries Bst identificr os elementos indicdos

Leia mais

MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N*

MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N* MTRIZES DEFINIÇÃO: Mtriz é um tl d númros formd por m linhs n coluns. Dizmos qu ss mtriz tm ordm m n (lê-s: m por n), com m, n N* Grlmnt dispomos os lmntos d um mtriz ntr prêntss ou ntr colchts. m m m

Leia mais

Desigualdades - Parte II. n (a1 b 1 +a 2 b a n b n ) 2.

Desigualdades - Parte II. n (a1 b 1 +a 2 b a n b n ) 2. Polos Olímpicos de Treinmento Curso de Álgebr - Nível Prof. Mrcelo Mendes Aul 9 Desigulddes - Prte II A Desiguldde de Cuchy-Schwrz Sejm,,..., n,b,b,...,b n números reis. Então: + +...+ ) n b +b +...+b

Leia mais

Propriedades Matemáticas

Propriedades Matemáticas Proprieddes Mtemátics Guilherme Ferreir guifs2@hotmil.com Setembro, 2018 Sumário 1 Introdução 2 2 Potêncis 2 3 Rízes 3 4 Frções 4 5 Produtos Notáveis 4 6 Logritmos 5 6.1 Consequêncis direts d definição

Leia mais

XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO GABARITO NÍVEL 3 ) C 6) B ) C 6) D ) D ) C 7) B ) D 7) A ) D 3) C 8) B 3) A 8) D 3) D 4) A 9) B 4) C 9) D 4) E 5)

Leia mais

Disponível em: < Acesso em: 1 nov A seja igual ao oposto aditivo

Disponível em: <  Acesso em: 1 nov A seja igual ao oposto aditivo RESOLUÇÃO D VLIÇÃO DE MTEMÁTIC-TIPOCONSULTEC-UNIDDE I- -EM PROFESSOR MRI NTÔNI CONCEIÇÃO GOUVEI PESQUIS: PROFESSOR WLTER PORTO - (UNEB) Disponível em: cesso em: nov

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito

Leia mais

QUESTÃO 01. O lado x do retângulo que se vê na figura, excede em 3cm o lado y. O valor de y, em centímetros é igual a: 01) 1 02) 1,5 03) 2

QUESTÃO 01. O lado x do retângulo que se vê na figura, excede em 3cm o lado y. O valor de y, em centímetros é igual a: 01) 1 02) 1,5 03) 2 PROV ELBORD PR SER PLICD ÀS TURMS DO O NO DO ENSINO MÉDIO DO COLÉGIO NCHIET-B EM MIO DE. ELBORÇÃO: PROFESSORES OCTMR MRQUES E DRINO CRIBÉ. PROFESSOR MRI NTÔNI C. GOUVEI QUESTÃO. O ldo x do retângulo que

Leia mais

Matemática para CG. Soraia Raupp Musse

Matemática para CG. Soraia Raupp Musse Mtemátic pr CG Sori Rupp Musse Sumário Introdução Revisão Mtemátic Vetores Mtries Introdução Em CG, trlh-se com ojetos definidos em um mundo 3D Todos os ojetos têm form, posição e orientção Precismos de

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS Prof. Bruno Fris Arquivo em nexo Conteúdo Progrmático Biliogrfi HALLIDAY,

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

Elementos de Análise - Lista 6 - Solução

Elementos de Análise - Lista 6 - Solução Elementos de Análise - List 6 - Solução 1. Pr cd f bixo considere F (x) = x f(t) dt. Pr quis vlores de x temos F (x) = f(x)? () f(x) = se x 1, f(x) = 1 se x > 1; F (x) = se x 1, F (x) = x 1 se x > 1. Portnto

Leia mais

MATEMÁTICA BÁSICA 8 EQUAÇÃO DO 2º GRAU

MATEMÁTICA BÁSICA 8 EQUAÇÃO DO 2º GRAU MATEMÁTICA BÁSICA 8 EQUAÇÃO DO 2º GRAU Sbemos, de uls nteriores, que podemos resolver problems usndo equções. A resolução de problems pelo médtodo lgébrico consiste em lgums etps que vmso recordr. - Representr

Leia mais

ÁLGEBRA LINEAR - 1. MATRIZES

ÁLGEBRA LINEAR - 1. MATRIZES ÁLGEBRA LINEAR - 1. MATRIZES 1. Conceios Básicos Definição: Chmmos de mriz um el de elemenos disposos em linhs e coluns. Por exemplo, o recolhermos os ddos populção, áre e disânci d cpil referenes à quros

Leia mais

1 INTRODUÇÃO À ÁLGEBRA EM CAMPOS DE GALOIS GF(2 m )

1 INTRODUÇÃO À ÁLGEBRA EM CAMPOS DE GALOIS GF(2 m ) INTRODUÇÃO À ÁLGEBRA EM CAMPOS DE GALOIS GF m.. INTRODUÇÃO O propósito deste texto é presentr conceitução básic d álgebr em Cmpos de Glois. A bordgem usd pr presentção deste ssunto é descritiv e com vários

Leia mais

Prezados Estudantes, Professores de Matemática e Diretores de Escola,

Prezados Estudantes, Professores de Matemática e Diretores de Escola, Prezdos Estudntes, Professores de Mtemátic e Diretores de Escol, Os Problems Semnis são um incentivo mis pr que os estudntes possm se divertir estudndo Mtemátic, o mesmo tempo em que se preprm pr s Competições

Leia mais

Unidimensional pois possui apenas uma única dimensão

Unidimensional pois possui apenas uma única dimensão Vetores e Mtrizes José Augusto Brnusks Deprtmento de Físic e Mtemátic FFCLRP-USP Sl 6 Bloco P Fone (6) 60-6 Nest ul veremos estruturs de ddos homogênes: vetores (ou rrys) e mtrizes Esss estruturs de ddos

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA PRIMEIRO SEMESTRE DE 2015 13 de Fevereiro de 2015 Prte I Álgebr Liner 1 Questão: Sejm

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática + = B =.. matrizes de M )

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática + = B =.. matrizes de M ) Se ( ij ) é um mtri, definid pel lei Universidde Federl de Viços Centro de Ciêncis Ets e ecnológics Deprtmento de Mtemátic LIS DE EXERCÍCIOS M 7 Prof Gem/ Prof Hugo/ Prof Mrgreth i j, se i j ij, clcule

Leia mais

Comprimento de arco. Universidade de Brasília Departamento de Matemática

Comprimento de arco. Universidade de Brasília Departamento de Matemática Universidde de Brsíli Deprtmento de Mtemátic Cálculo Comprimento de rco Considerefunçãof(x) = (2/3) x 3 definidnointervlo[,],cujográficoestáilustrdo bixo. Neste texto vmos desenvolver um técnic pr clculr

Leia mais

Análise Combinatória

Análise Combinatória Ftoril de um número: n!n.(n-1).(n-)...3..1 Análise Combintóri Definições especiis: 0!1 1!1 100! 101! 1) Clcule o vlor d expressão. 99! 100! 101! 100.99! 101.100.99! 100 101.100 100 10100 1000 99! 99! )

Leia mais

Função Modular. x, se x < 0. x, se x 0

Função Modular. x, se x < 0. x, se x 0 Módulo de um Número Rel Ddo um número rel, o módulo de é definido por:, se 0 = `, se < 0 Observção: O módulo de um número rel nunc é negtivo. Eemplo : = Eemplo : 0 = ( 0) = 0 Eemplo : 0 = 0 Geometricmente,

Leia mais

1. Conceito de logaritmo

1. Conceito de logaritmo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Logritmos Prof.: Rogério

Leia mais

Matemática C Extensivo V. 6

Matemática C Extensivo V. 6 Mtemátic C Etesivo V 6 Eercícios ) D ) D ) C O vlor uitário do isumo é represetdo por y Portto pelo produto ds mtrizes A e B temos o seguite sistem: 5 5 9 y 5 5y 5y 9 5y 5 Portto: y 4 y 4 As médis uis

Leia mais

MATRIZES. Neste caso, temos uma matriz de ordem 3x4 (lê-se três por quatro ), ou seja, 3 linhas e 4

MATRIZES. Neste caso, temos uma matriz de ordem 3x4 (lê-se três por quatro ), ou seja, 3 linhas e 4 A eori ds mrizes em cd vez mis plicções em áres como Economi, Engenhris, Memáic, Físic, enre ours. Vejmos um exemplo de mriz: A bel seguir represen s nos de rês lunos do primeiro semesre de um curso: Físic

Leia mais

Módulo e Equação Modular (valor absoluto)?

Módulo e Equação Modular (valor absoluto)? Mtemátic Básic Unidde 6 Função Modulr RANILDO LOES Slides disponíveis no nosso SITE: https://ueedgrtito.wordpress.com Módulo e Equção Modulr (vlor bsoluto)? - - - - R uniddes uniddes Definição, se, se

Leia mais