EXAME NACIONAL DE SELEÇÃO 2010

Tamanho: px
Começar a partir da página:

Download "EXAME NACIONAL DE SELEÇÃO 2010"

Transcrição

1 EXAME NACIONAL DE SELEÇÃO 00 PROVA DE MATEMÁTICA o Di: 0/0/009 - QUINTA FEIRA HORÁRIO: 8h às 0h 5m (horário de Brsíli)

2

3 EXAME NACIONAL DE SELEÇÃO 00 PROVA DE MATEMÁTICA º Di: 0/0 - QUINTA-FEIRA (Mhã) HORÁRIO: 8h às 0h 5m Istruções. Este CADERNO é costituído de quize questões objetivs.. Cso o CADERNO estej icompleto ou teh qulquer defeito, o() cdidto() deverá solicitr o fiscl de sl mis próimo que o substitu. 3. Ns questões do tipo A, recomed-se ão mrcr o cso: cd item cuj respost divirj do gbrito oficil crretrá perd de poto, em que é o úmero de ites d questão que perteç o item, coforme cost o Mul do Cdidto. 4. Durte s provs, o() cdidto() ão deverá levtr-se ou comuicr-se com outros(s) cdidtos(s). 5. A durção d prov é de dus hors e quize miutos, já icluído o tempo destido à idetificção que será feit o decorrer ds provs e o preechimeto d FOLHA DE RESPOSTAS. 6. Durte relizção ds provs ão é permitid utilizção de clculdor ou qulquer mteril de cosult. 7. A desobediêci qulquer um ds recomedções costtes s presetes Istruções e FOLHA DE RESPOSTAS poderá implicr ulção ds provs do() cdidto(). 8. Só será permitid síd de cdidtos, levdo o Cdero de Provs, somete prtir de hor e 5 miutos pós o iício d prov e ehum folh pode ser destcd.

4 EXAME NACIONAL DE SELEÇÃO 00 PROVA DE MATEMÁTICA º Di: 0/0 - QUINTA-FEIRA (Mhã) HORÁRIO: 8h às 0h 5m Aged 05/0/009 Divulgção dos gbritos ds provs objetivs, o edereço: /0/009 Recursos idetificdos pelo utor serão ceitos prtir do di 05 té às 0h do di 06/0 do correte o. Não serão ceitos recursos for do pdrão presetdo o mul do cdidto. 05//009 Etreg do resultdo d prte objetiv do Eme os Cetros. 06//009 Divulgção do resultdo pel Iteret, o site cim citdo. OBSERVAÇÕES Em ehum hipótese ANPEC iformrá resultdo por telefoe. É proibid reprodução totl ou prcil deste mteril, por qulquer meio ou processo, sem utorizção epress d ANPEC. Ns questões de 5 (ão umérics) mrque, de cordo com o comdo de cd um dels: ites VERDADEIROS colu V; ites FALSOS colu F; ou deie respost em BRANCO. Cso respost sej uméric, mrque o dígito DECIMAL colu D e o dígito d UNIDADE colu U, ou deie respost EM BRANCO. Ateção: o lgrismo ds DEZENAS deve ser obrigtorimete mrcdo, mesmo que sej igul ZERO. 4 Eme Nciol ANPEC 00: º Di

5 QUESTÃO 0 Cosidere os cojutos A= { IR / 3 = } ; B= { IR/3 > 0} ; C= { IR /< < } e D= { IR / 4 9}. Julgue s firmtivs: O A é um itervlo berto; Se X A e X B, etão X é um cojuto uitário; (A C); 3 A = D; 4 * {(, ) / IN } B C. Eme Nciol ANPEC 00: º Di 5

6 QUESTÃO 0 Sej f : R R difereciável e homogêe de gru 4, tl que f(,)=. Julgue os ites bio: O A som ds derivds prciis de f o poto (,) é igul 3; Em um poto crítico ( ) de f temos que ( y ) 0 0, y 0 f ;, 0 0 = As derivds prciis de primeir ordem de f são tmbém fuções homogêes de gru 4; f 3 As idetiddes f poto (, R ; 4 se ( ) y (, yf (, yf y yy (, = 3 f (, = 3 f (, são válids pr todo (, p =, y 0 0 e o grdiete de f em p são ortogois, etão f(p)=0. y 6 Eme Nciol ANPEC 00: º Di

7 QUESTÃO 03 Sejm f : IR IR e g :[ 5, 5] IR fuções tis que f ( ) = l e * g( ) = 5. Julgue s firmtivs: O e f ( ) d = ; e f ( 7) d = c, em que c é um costte rbitrári; 7 A áre delimitd pelo gráfico de g, o eio e s rets verticis = - e = é 7/3; d 3 = ; 4 Se h ( ) d > 0, etão h ( ) 0, pr todo [, b]. b Eme Nciol ANPEC 00: º Di 7

8 QUESTÃO 04 Julgue s firmtivs: O Sej f Etão : IR 3 IR, tl que f (, y, z) = (,0,0) pr todo 3 f (, y, z) = pr todo (, y, z) IR ; ( IR 3, y, z). c t f f Se f (, t) = e se( c), etão (, t) = (, t) t pr todo rel c; Se 3 Se 4 f y = cost f (, e dt, etão z = f (, = l y, f (, = e t = e e y cos 3 3, = 5 y é homogêe de gru. y ( ; dz dt t = e, etão = 0, pr t=0; 8 Eme Nciol ANPEC 00: º Di

9 QUESTÃO 05 Sejm f : IR IR defiid por f (, = y, g : IR IR defiid por g (, = y e h IR 3 3 : IR defiid por h (, = y y. Julgue s firmtivs: O g possui poto de máimo bsoluto em IR ; Os potos críticos de f restrição {(, IR / g(, = } são, e, ; g é um fução cove em IR ; 3 A mtriz hessi de h é egtiv defiid em (-,); 4 A equção h (, = 0 defie implicitmete y como fução de em toro do poto (, ), e y '( ) =. Eme Nciol ANPEC 00: º Di 9

10 QUESTÃO 06 Cosidere s fuções defiids por 3 f ( ) = e g ( ) = Julgue s firmtivs: O g tige máimo reltivo em = e míimo reltivo em = 4; g é crescete em [, 4]; lim f ( ) = ; 3 f tem ssítots verticis: = e = -; 4 f tem um poto crítico que é poto de máimo globl, pois f () < 0. 0 Eme Nciol ANPEC 00: º Di

11 QUESTÃO 07 Φ, fução rel defiid o qudrte A. Sej ( = y = {(, 0 e y 0} Julgue os ites bio: O A declividde d ret tgete à curv Φ(, = igul -; o poto (,) é O vlor bsoluto d declividde d ret tgete à curv Φ(, = poto (, / ) cresce à medid que umet; O vlor máimo do problem de otimizção m Φ ( codição 3y, é igul /4; A, o, sujeito 3 O vlor míimo do problem de otimizção codição Φ(, =, é igul /; mi 4 y, sujeito A 9 4 Pr cd c>0, sej V(c) solução do problem de otimizção A (, ( ) V( ) m Φ, sujeito codição 3y c. Etão V é derivável e V ' =. Eme Nciol ANPEC 00: º Di

12 QUESTÃO 08 Julgue s firmtivs: O Se u = e e e3, etão v =,, é um vetor uitário, 3 3 3,0,0 0,,0 e 0,0, ; prlelo u, em que e ( ), e ( ) e ( ) = = 3 = Sejm u = (,,0 ), v = (, y,3) e w = ( y,, ) perpediculr v e w. Etão = / ; Cosidere os potos P = ( ) e P (,,3), tis que u é,,0 = y. Se distâci de P P é igul à distâci de P o plo y, etão = e y = -; 3 Sej (,b) um poto iterseção d circuferêci de cetro (0,0) e rio com ret y =. Etão = / ; 4 Sej r ret tgete o gráfico de y = 3 5, o poto (,4). A equção d ret perpediculr r e que pss por (-,) é y =. Eme Nciol ANPEC 00: º Di

13 Eme Nciol ANPEC 00: º Di 3 QUESTÃO 09 Cosidere os sistems lieres bio e julgue s firmtivs: (I)= = = = z y k z y kz y (II)= = = = m m m m b b b K M K K O Se k 3, etão o sistem (I) tem solução úic; Se k = 0, o sistem homogêeo ssocido (I) tem ifiits soluções; Pr k=, mtriz dos coeficietes de (I) é um mtriz ortogol; 3 Se m >, (II) tem sempre solução; 4 Se 0... = = = = m b b b, etão o sistem (II) tem sempre solução.

14 QUESTÃO 0 Julgue s firmtivs: O 3 S = {(, y, IR /, y IR} é um subespço vetoril de 3 IR e dimesão de S é ; 3 {(,,3), (4,5,), (0,8,0)} é bse de IR ; Se u, v e w são vetores liermete idepedetes, etão vw, uw e uv são tmbém liermete idepedetes; 3 3 Se S é um subcojuto de IR formdo por vetores liermete depedetes, etão podemos firmr que S tem 4 elemetos ou mis; 4 Se o posto d mtriz é 3, etão. 4 Eme Nciol ANPEC 00: º Di

15 QUESTÃO Cosidere s mtrizes Julgue s firmtivs: b cosθ seθ A =, B = e C = b. seθ cosθ O Pr = e b =, etão t t (3A B ) = ; 4 4 Se - é utovlor de A, etão = 0 ; Pr b =, v = é um utovetor de B; 3 Se > -/, etão A é digolizável; 4 C é ivertível ão simétric. Eme Nciol ANPEC 00: º Di 5

16 QUESTÃO Cosidere s equções difereciis bio e julgue s firmtivs: (I) y '' 4y = 0 (II) y ' = ' 3y' 4y 4 (III) y ' y' y 0 ' = O (I), (II) e (III) são equções difereciis lieres de segud ordem; y 63 y (l 3) = ; 9 = e e é solução de (I), pr os vlores de cotoro y( 0) = 3 e A solução d homogêe ssocid (II) é y A e B são costtes rbitráris; y p = é solução prticulr de (II); 8 4 A equção crcterístic de (III) possui rízes distits. 3 4 h = Ae Be, em que 6 Eme Nciol ANPEC 00: º Di

17 QUESTÃO 3 Julgue s firmtivs: O Sej ( ) um sequêci de úmeros reis ão ulos, tl que N <, pr todo IN. Etão lim = 0; Se 0 e b 0, etão lim b = m{, b}; l diverge; =! 3 lim = 0; 4 = se 3 é covergete. Eme Nciol ANPEC 00: º Di 7

18 QUESTÃO 4 Sej um sequêci de úmeros positivos e S = { N } Julgue os ites bio: O Se = coverge, etão S é fiito; Se = coverge, etão = tmbém coverge; Se coverge, etão s séries = = covergem; 3 Se = e = coverge e R = lim / eiste, etão R ; 4 A série coverge somete qudo < <. =! / ( ) 8 Eme Nciol ANPEC 00: º Di

19 QUESTÃO 5 Cosidere o sistem de equções difereciis bio. ' = y y' = 3 y ' ''(0) Se (0) = 5 e y(0) =0, ecotre. Eme Nciol ANPEC 00: º Di 9

20 0 Eme Nciol ANPEC 00: º Di

21 Eme Nciol ANPEC 00: º Di

22 Eme Nciol ANPEC 00: º Di

23 Eme Nciol ANPEC 00: º Di 3

24 4 Eme Nciol ANPEC 00: º Di

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.4

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.4 FICHA de AVALIAÇÃO de MATEMÁTICA A 5º Teste º Ao de escolridde Versão4 Nome: Nº Turm: Professor: José Tioco /4/8 Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods

Leia mais

3. Admitindo SOLUÇÃO: dy para x 1 é: dx. dy 3t. t na expressão da derivada, resulta: Questão (10 pontos): Seja f uma função derivável e seja g x f x

3. Admitindo SOLUÇÃO: dy para x 1 é: dx. dy 3t. t na expressão da derivada, resulta: Questão (10 pontos): Seja f uma função derivável e seja g x f x UIVERSIDADE FEDERAL DE ITAJUBÁ CALCULO e PROVA DE TRASFERÊCIA ITERA, EXTERA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR 9/6/ CADIDATO: CURSO PRETEDIDO: OBSERVAÇÕES: Prov sem cosult. A prov pode ser feit

Leia mais

Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1

Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1 Mtrizes e Sistems de equções lieres D.I.C. Medes s mtrizes são um ferrmet básic formulção de problems de mtemátic e de outrs áres. Podem ser usds: resolução de sistems de equções lieres; resolução de sistems

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.1

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.1 FICHA de AVALIAÇÃO de MATEMÁTICA A 5º Teste º Ao de escolridde Versão Nome: Nº Turm: Proessor: José Tioco 3/4/8 Apresete o seu rciocíio de orm clr, idicdo todos os cálculos que tiver de eetur e tods s

Leia mais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA Equções Epoeciis... Fução Epoecil..4 Logritmos: Proprieddes 6 Fução Logrítmic. Equções Logrítmics...5 Iequções Epoeciis e Logrítmics.8 Equções Epoeciis 0. (ITA/74)

Leia mais

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFEREÇA ( ( x( Coeficiete costte. ( ( x ( Coeficiete vriável (depedete do tempo. Aplicmos x( pr e cosidermos codição iicil ( ( ( M ( ( ( ( x( x( ( x(

Leia mais

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFEREÇA Coeficiete costte. SISTEMAS LIT CARACTERIZADOS POR EQUAÇÕES A DIFEREÇA COM COEFICIETES COSTATES Sistems descritos por equções difereç com coeficiete

Leia mais

Novo Espaço Matemática A, 12.º ano Proposta de teste de avaliação [março 2019]

Novo Espaço Matemática A, 12.º ano Proposta de teste de avaliação [março 2019] Propost de teste de vlição [mrço 09] Nome: Ao / Turm: N.º: Dt: - - Não é permitido o uso de corretor. Deves riscr quilo que pretedes que ão sej clssificdo. A prov iclui um formulário. As cotções dos ites

Leia mais

CODIFICAÇÃO DE CANAL PARA SISTEMAS DE COMUNICAÇÃO DIGITAL

CODIFICAÇÃO DE CANAL PARA SISTEMAS DE COMUNICAÇÃO DIGITAL Grupo (Group), G CODIFICAÇÃO DE CANAL PARA SISTEMAS DE COMUNICAÇÃO DIGITAL INTRODUÇÃO À ÁLGEBRA Evelio M. G. Ferádez - 2011 Sistem lgébrico com um operção e seu iverso. cojuto de elemetos e xioms G1 à

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A 4º Teste º Ao de escolridde Versão Nome: Nº Turm: Professor: José Tioco 09/0/08 Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods

Leia mais

POTENCIAÇÃO. pcdamatematica. a 1. 5 f) ( 5) 5 h) ( 3) a. b (5,2).(10,3) (9,9) 26 a. a a. Definição. Ex: a) Seja a, n e n 2. Definimos: n vezes

POTENCIAÇÃO. pcdamatematica. a 1. 5 f) ( 5) 5 h) ( 3) a. b (5,2).(10,3) (9,9) 26 a. a a. Definição. Ex: a) Seja a, n e n 2. Definimos: n vezes Sej, e. Defiimos: E0: Clcule: d) e) Defiição.... vezes 0 f) ( ) g) h) 0 6 ( ) i) ( ) j) E0: Dos úmeros bio, o que está mis próimo de (,).(0,) é: (9,9) 0,6 6, 6, d) 6 e) 60 E0: O vlor de 0, (0,6) é: 0,06

Leia mais

UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS - CCE DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS - CCE DEPARTAMENTO DE MATEMÁTICA UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS - CCE DEPARTAMENTO DE MATEMÁTICA Cmpus Uiversitário - Viços, MG 657- Telefoe: () 899-9 E-mil: dm@ufv.br 6ª LISTA DE MAT 4 /II SÉRIES NUMÉRICAS.

Leia mais

M M N. Logo: MN = DC = DP + PC DC = AB + AB DC = 2 AB S ABCD = (AB + DC). = (AB + 2 AB). = 3 AB S M N CD = Assim temos que: M'N'CD h

M M N. Logo: MN = DC = DP + PC DC = AB + AB DC = 2 AB S ABCD = (AB + DC). = (AB + 2 AB). = 3 AB S M N CD = Assim temos que: M'N'CD h QUESTÃO Sejm i, r + si e + (r s) + (r + s)i ( > ) termos de um seqüêci. etermie, em fução de, os vlores de r e s que torm est seqüêci um progressão ritmétic, sbedo que r e s são úmeros reis e i. Sbemos

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 4º Teste º Ao de escolridde Versão Nome: Nº Turm: Professor: José Tioco 09/0/08 Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods

Leia mais

SISTEMA DE EQUAÇÕES LINEARES

SISTEMA DE EQUAÇÕES LINEARES SISTEM DE EQUÇÕES LINERES Defiição Ddos os úmeros reis b com equção b ode são vriáveis ou icógits é deomid equção lier s vriáveis Os úmeros reis são deomidos coeficietes ds vriáveis respectivmete e b é

Leia mais

AULAS 7 A 9 MÉDIAS LOGARITMO. Para n números reais positivos dados a 1, a 2,..., a n, temos as seguintes definições:

AULAS 7 A 9 MÉDIAS LOGARITMO.  Para n números reais positivos dados a 1, a 2,..., a n, temos as seguintes definições: 009 www.cursoglo.com.br Treimeto pr Olimpíds de Mtemátic N Í V E L AULAS 7 A 9 MÉDIAS Coceitos Relciodos Pr úmeros reis positivos ddos,,...,, temos s seguites defiições: Médi Aritmétic é eésim prte d som

Leia mais

Capítulo 5.1: Revisão de Série de Potência

Capítulo 5.1: Revisão de Série de Potência Cpítulo 5.: Revisão de Série de Potêci Ecotrr solução gerl de um equção diferecil lier depede de determir um cojuto fudmetl ds soluções d equção homogêe. Já cohecemos um procedimeto pr costruir soluções

Leia mais

Integrais Duplos. Definição de integral duplo

Integrais Duplos. Definição de integral duplo Itegris uplos Recorde-se defiição de itegrl de Riem em : Um fução f :,, limitd em,, é itegrável à Riem em, se eiste e é fiito lim m j 0 j1 ft j j j1. ode P 0,, um qulquer prtição de, e t 1,,t um sequêci

Leia mais

Função Logaritmo - Teoria

Função Logaritmo - Teoria Fução Logritmo - Teori Defiição: O ritmo de um úmero rel positivo, bse IR { } podemos escrever Resumido temos: +, é o úmero rel tl que, equivletemete E: 7 8 8 8 8 7 * { }, IR { } * +, IR + Usdo que fução

Leia mais

PESQUISA OPERACIONAL Método Simplex. Professor Volmir Wilhelm Professora Mariana Kleina

PESQUISA OPERACIONAL Método Simplex. Professor Volmir Wilhelm Professora Mariana Kleina PESQUISA OPERACIONAL Método Simple Professor Volmir Wilhelm Professor Mri Klei Limitções d progrmção lier m (mi) s. Z c c... m, m,...,... c... c 0... c m b b m. Coeficietes costtes. Divisibilidde 3. Proporciolidde

Leia mais

SISTEMAS LINEARES. Cristianeguedes.pro.br/cefet

SISTEMAS LINEARES. Cristianeguedes.pro.br/cefet SISTEMAS LINEARES Cristieguedes.pro.r/cefet Itrodução Notção B A X Mtricil Form. : m m m m m m m A es Mtri dos Coeficiet : X Mtri dsvriáveis : m B Termos Idepede tes : Número de soluções Ddo um sistem

Leia mais

QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA.

QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. 006 PROVA CONHECIMENTOS ESPECÍFICOS MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetrl do Vestibulr Uificdo GABARITO

Leia mais

QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA.

QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. 006 PROVA CONHECIMENTOS ESPECÍFICOS MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetrl do Vestibulr Uificdo GABARITO

Leia mais

Quando o polinômio divisor é da forma x + a, devemos substituir no polinômio P(x), x por a, visto que: x + a = x ( a).

Quando o polinômio divisor é da forma x + a, devemos substituir no polinômio P(x), x por a, visto que: x + a = x ( a). POLINÔMIOS II. TEOREMA DE D ALEMBERT O resto d divisão de um poliômio P(x) por x é igul P(). m m Sej, com efeito, P x x x..., um poliômio de x, ordedo segudo s potecis m m decrescetes de x. Desigemos o

Leia mais

Transformada z. A transformada z é a TFTD da sequência r -n x[n] e a ROC é determinada pelo intervalo de valores de r para os quais.

Transformada z. A transformada z é a TFTD da sequência r -n x[n] e a ROC é determinada pelo intervalo de valores de r para os quais. Trsformd A TFTD de um sequêci é: Pr covergir série deve ser solutmete somável. Ifelimete muitos siis ão podem ser trtdos: A trsformd é um geerlição d TFTD que permite o trtmeto desses siis: Ζ Defiição:

Leia mais

Considere uma função contínua arbitrária f(x) definida em um intervalo fechado [a, b].

Considere uma função contínua arbitrária f(x) definida em um intervalo fechado [a, b]. Mtemátic II 9. Prof.: Luiz Gozg Dmsceo E-mils: dmsceo@yhoo.com.r dmsceo@uol.com.r dmsceo@hotmil.com http://www.dmsceo.ifo www.dmsceo.ifo dmsceo.ifo Itegris defiids Cosidere um fução cotíu ritrári f() defiid

Leia mais

QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA.

QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. 006 PROVA CONHECIMENTOS ESPECÍFICOS MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetrl do Vestibulr Uificdo Trigoometri

Leia mais

Resolução de sistemas lineares SME 0200 Cálculo Numérico I

Resolução de sistemas lineares SME 0200 Cálculo Numérico I Resolução de sistems lieres SME Cálculo Numérico I Docete: Prof. Dr. Mrcos Areles Estgiário PAE: Pedro Muri [reles@icmc.usp.br, muri@icmc.usp.br] Itrodução Sistems lieres são de grde importâci pr descrição

Leia mais

4º Teste de Avaliação de MATEMÁTICA A 12º ano

4º Teste de Avaliação de MATEMÁTICA A 12º ano º (0 / 4) Nº Nome 4º Teste de Avlição de MATEMÁTICA A º o 4 Fevereiro 04 durção 90 mi. Pro. Josué Bptist Clssiicção:, O Pro.:, Grupo I Os sete ites deste rupo são de escolh múltipl. Em cd um deles, são

Leia mais

séries de termos positivos e a n b n, n (div.) (conv.)

séries de termos positivos e a n b n, n (div.) (conv.) Teorem.9 Sej e b i) (div.) ii) b º Critério de Comprção séries de termos positivos e b, N b (div.) (cov.) (cov.) Estude turez d série = sbedo que,! Ν! Teorem.0 º Critério de Comprção Sejm 0, b > 0 e lim

Leia mais

Á R E A, S O M A D E R I E M A N N E A I N T E G R A L D E F I N I D A

Á R E A, S O M A D E R I E M A N N E A I N T E G R A L D E F I N I D A Á R E A, S O M A D E R I E M A N N E A I N T E G R A L D E F I N I D A Prof. Beito Frzão Pires - hors. áre A oção de áre de um polígoo ou região poligol) é um coceito bem cohecido. Começmos defiido áre

Leia mais

QUESTÕES DE 01 A 09. Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas.

QUESTÕES DE 01 A 09. Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas. PROVA DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - SETEMBRO DE ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ PROFESSORA MARIA ANTÔNIA C GOUVEIA QUESTÕES DE A 9 Assile

Leia mais

Universidade Federal Fluminense ICEx Volta Redonda Métodos Quantitativos Aplicados I Professora: Marina Sequeiros

Universidade Federal Fluminense ICEx Volta Redonda Métodos Quantitativos Aplicados I Professora: Marina Sequeiros Uiversidde Federl Flumiese ICE Volt Redod Métodos Qutittivos Aplicdos I Professor: Mri Sequeiros. Poliômios Defiição: Um poliômio ou fução poliomil P, vriável, é tod epressão do tipo: P)=... 0, ode IN,

Leia mais

3 SISTEMAS DE EQUAÇÕES LINEARES

3 SISTEMAS DE EQUAÇÕES LINEARES . Itrodução SISTEAS DE EQUAÇÕES INEARES A solução de sistems lieres é um ferrmet mtemátic muito importte egehri. Normlmete os prolems ão-lieres são soluciodos por ferrmets lieres. As fotes mis comus de

Leia mais

PROPRIEDADES DAS POTÊNCIAS

PROPRIEDADES DAS POTÊNCIAS EXPONENCIAIS REVISÃO DE POTÊNCIAS Represetos por, potêci de bse rel e epoete iteiro. Defiios potêci os csos bio: 0) Gráfico d fução f( ) 0 Crescete I ]0, [.....,, ftores 0, se 0 PROPRIEDADES DAS POTÊNCIAS

Leia mais

3. Seja C o conjunto dos números complexos. Defina a soma em C por

3. Seja C o conjunto dos números complexos. Defina a soma em C por Eercícios Espaços vetoriais. Cosidere os vetores = (8 ) e = ( -) em. (a) Ecotre o comprimeto de cada vetor. (b) Seja = +. Determie o comprimeto de. Qual a relação etre seu comprimeto e a soma dos comprimetos

Leia mais

VA L O R M É D I O D E U M A F U N Ç Ã O. Prof. Benito Frazão Pires

VA L O R M É D I O D E U M A F U N Ç Ã O. Prof. Benito Frazão Pires 3 VA L O R M É D I O D E U M A F U N Ç Ã O Prof. Beito Frzão Pires 3. médi ritmétic A médi ritmétic (ou simplesmete médi) de vlores y, y 2,..., y é defiid como sedo o úmero y = y + y 2 + + y. () A médi

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prov QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA 1 Cofir os cmpos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, coforme o que cost etiquet fixd

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prov QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA 1 Cofir os cmpos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, coforme o que cost etiquet fixd

Leia mais

Cálculo Diferencial e Integral 1

Cálculo Diferencial e Integral 1 NOTAS DE AULA Cálculo Dierecil e Itegrl Limites Proessor: Luiz Ferdo Nues, Dr. 8/Sem_ Cálculo ii Ídice Limites.... Noção ituitiv de ite.... Deiição orml de ite.... Proprieddes dos ites.... Limites lteris...

Leia mais

; determine a matriz inversa A -1

; determine a matriz inversa A -1 - REVISÃO MATEMÁTICA Neste cpítulo recordrão-se lgus coceitos de Álger Lier e Aálise Mtemátic que serão ecessários pr o estudo d teori do Método Simple - Mtrizes Iversíveis Defiição Um mtriz A de ordem

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prov QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA 1 Cofir os cmpos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, coforme o que cost etiquet fixd

Leia mais

Método de Eliminação de Gauss. Método de Eliminação de Gauss

Método de Eliminação de Gauss. Método de Eliminação de Gauss Método de Elimição de Guss idei básic deste método é trsormr o sistem b um sistem equivlete b, ode é um mtriz trigulr superior, eectudo trsormções elemetres sobre s lihs do sistem ddo. Cosidere-se o sistem

Leia mais

... Soma das áreas parciais sob a curva que fornece a área total sob a curva.

... Soma das áreas parciais sob a curva que fornece a área total sob a curva. CAPÍTULO 7 - INTEGRAL DEFINIDA OU DE RIEMANN 7.- Notção Sigm pr Soms A defiição forml d itegrl defiid evolve som de muitos termos, pr isso itroduzimos o coceito de somtório ( ). Eemplos: ( + ) + + + +

Leia mais

SOLUÇÕES DE EDO LINEARES DE 2 A ORDEM NA FORMA INFINITA

SOLUÇÕES DE EDO LINEARES DE 2 A ORDEM NA FORMA INFINITA SOLUÇÕES DE EDO LINEARES DE A ORDEM NA FORMA INFINITA Coforme foi visto é muito simples se obter solução gerl de um EDO lier de ordem coeficietes costtes y by cy em termos ds fuções lgébrics e trscedetes

Leia mais

A ( ) 9 5 B ( ) D(A,r) = 06. Considere o sistema de equações x y z x x = 8 Caso 1: x. π, é 2 + III.

A ( ) 9 5 B ( ) D(A,r) = 06. Considere o sistema de equações x y z x x = 8 Caso 1: x. π, é 2 + III. Sejm X e Y dois cojutos fiitos com X Y e X Y Cosidere s seguites firmções: I Eiste um ijeção f :X Y II Eiste um fução ijetor g : Y X III O úmero de fuções ijetors f : X Y é igul o úmero de fuções sorejetors

Leia mais

SISTEMAS LINEARES. Sendo x e y, respectivamente, o número de pontos que cada jogador marcou, temos uma equação com duas incógnitas:

SISTEMAS LINEARES. Sendo x e y, respectivamente, o número de pontos que cada jogador marcou, temos uma equação com duas incógnitas: SISTEMAS LINEARES Do grego system ( Sy sigific juto e st, permecer, sistem, em mtemátic,é o cojuto de equções que devem ser resolvids juts,ou sej, os resultdos devem stisfzêlos simultemete. Já há muito

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA PRIMEIRO SEMESTRE DE 2015 13 de Fevereiro de 2015 Prte I Álgebr Liner 1 Questão: Sejm

Leia mais

Unidade 2 Progressão Geométrica

Unidade 2 Progressão Geométrica Uidde Progressão Geométric Seuêci e defiição de PG Fórmul do termo gerl Fução expoecil e PG Juros compostos e PG Iterpolção geométric Som dos termos de um PG Seuêci e defiição de PG Imgie ue você tem dus

Leia mais

Aula 9 Limite de Funções

Aula 9 Limite de Funções Alise Mtemátic I Aul 9 Limite de Fuções Ao cdémico 017 Tem 1. Cálculo Dierecil Noção ituitiv e deiição de ite. Eemplos de ites. Limites lteris. Proprieddes. Bibliogri Básic Autor Título Editoril Dt Stewrt,

Leia mais

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5,

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5, - Limite. - Conceito Intuitivo de Limite Considere função f definid pel guinte epressão: f - - Podemos obrvr que função está definid pr todos os vlores de eceto pr. Pr, tnto o numerdor qunto o denomindor

Leia mais

é: y y x y 31 2 d) 18 e) O algarismo das unidades de é igual a: a) 1 b) 3 c) 5 d) 7 e) 9

é: y y x y 31 2 d) 18 e) O algarismo das unidades de é igual a: a) 1 b) 3 c) 5 d) 7 e) 9 0. Dentre s firmtivs bio, ssinle quel que NÃO é verddeir pr todo nturl n: - n = b - n- = - n+ n n c d - n = -- n e - n- = -- n 07. O lgrismo ds uniddes de 00. 7 00. 00 é igul : b c d 7 e 0. O vlor de 6

Leia mais

é: 31 2 d) 18 e) 512 y y x y

é: 31 2 d) 18 e) 512 y y x y 0. Dentre s firmtivs bio, ssinle quel que NÃO é verddeir pr todo nturl n: ) -) n = b) -) n- = -) n+ n n c) ) ) d) -) n = --) n e) -) n- = --) n 07. O lgrismo ds uniddes de 00. 7 00. 00 é igul : ) b) c)

Leia mais

MATEMÁTICA BÁSICA. a c ad bc. b d bd EXERCÍCIOS DE AULA. 01) Calcule o valor de x em: FRAÇÕES

MATEMÁTICA BÁSICA. a c ad bc. b d bd EXERCÍCIOS DE AULA. 01) Calcule o valor de x em: FRAÇÕES MATEMÁTICA BÁSICA FRAÇÕES EXERCÍCIOS DE AULA ) Clcule o vlor de x em: A som e sutrção de frções são efetuds prtir d oteção do míimo múltiplo comum dos deomidores. É difícil respoder de imedito o resultdo

Leia mais

PARTE 1: INTEGRAIS IMEDIATAS. Propriedades da integral indefinida: Ex)Encontre as seguintes integrais:

PARTE 1: INTEGRAIS IMEDIATAS. Propriedades da integral indefinida: Ex)Encontre as seguintes integrais: Deprtmeto de Mtemátic, Físic, Químic e Egehri de Alimetos Projeto Clcule! Prof s : Rosimr Fchi Pelá Vd Domigos Vieir Cdero Itegris e Aplicções PARTE : INTEGRAIS IMEDIATAS Defiimos: f ( ) d F( ) k k IR

Leia mais

Resolução Numérica de Sistemas Lineares Parte II

Resolução Numérica de Sistemas Lineares Parte II Cálculo Numérico Resolução Numéric de Sistems Lieres Prte II Prof Jorge Cvlcti jorgecvlcti@uivsfedubr MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - wwwdscufcgedubr/~cum/ Sistems

Leia mais

Alternativa A. Alternativa B. igual a: (A) an. n 1. (B) an. (C) an. (D) an. n 1. (E) an. n 1. Alternativa E

Alternativa A. Alternativa B. igual a: (A) an. n 1. (B) an. (C) an. (D) an. n 1. (E) an. n 1. Alternativa E R é o cojuto dos úeros reis. A c deot o cojuto copleetr de A R e R. A T é triz trspost d triz A. (, b) represet o pr ordedo. [,b] { R; b}, ],b[ { R; < < b} [,b[ { R; < b}, ],b] { R; < b}.(ita - ) Se R

Leia mais

As funções exponencial e logarítmica

As funções exponencial e logarítmica As fuções epoecil e logrítmic. Potêcis em Sej um úmero rel positivo, isto é, * +. Pr todo, potêci, de bse e epoete é defiid como o produto de ftores iguis o úmero rel :...... vezes Pr, estbelece-se 0,

Leia mais

Exemplo: As funções seno e cosseno são funções de período 2π.

Exemplo: As funções seno e cosseno são funções de período 2π. 4. Séries de Fourier 38 As séries de Fourier têm váris plicções, como por eemplo resolução de prolems de vlor de cotoro. 4.. Fuções periódics Defiição: Um fução f() é periódic se eistir um costte T> tl

Leia mais

Espaços Vetoriais. Profª Cristiane Guedes. Bibliografia: Algebra Linear Boldrini/Costa/Figueiredo/Wetzler

Espaços Vetoriais. Profª Cristiane Guedes. Bibliografia: Algebra Linear Boldrini/Costa/Figueiredo/Wetzler Espços Vetoriis Profª Cristie Gedes iliogrfi: Alger Lier oldrii/cost/figeiredo/wetzler Itrodção Ddo m poto P(,,z o espço, temos m etor ssocido esse poto: OP (,, z pode ser escrito d segite form: z z V

Leia mais

AULA 1 - Conjuntos numéricos: propriedades, operações e representações.

AULA 1 - Conjuntos numéricos: propriedades, operações e representações. AULA - Cojutos uméricos: proprieddes, operções e represetções.. Cojutos: Proprieddes e operções Defiição Símbolo / Notção Exemplo Vzio = Pertiêci Iclusão ou Subcojuto Uião Itersecção (pertece) (ão pertece)

Leia mais

o quociente C representa a quantidade de A por unidade de B. Exemplo Se um objecto custar 2, então 10 objectos custam 20. Neste caso temos 20 :10 2.

o quociente C representa a quantidade de A por unidade de B. Exemplo Se um objecto custar 2, então 10 objectos custam 20. Neste caso temos 20 :10 2. Mtemátic I - Gestão ESTG/IPB Resolução. (i).0 : r 0.000.0 00.0 00 0 0.0 00 0 00.000 00 000.008 90 0.000.000 00 000 008 90.00 00 00 00 9 Dividedo = Divisor x Quociete + Resto.0 = x.008 + 0.000. Num divisão

Leia mais

0.2 Exercícios Objetivo. (c) (V)[ ](F)[ ] A segunda derivada de f é (4) x 0 2

0.2 Exercícios Objetivo. (c) (V)[ ](F)[ ] A segunda derivada de f é (4) x 0 2 A segud derivd de f é f() = { < 0 0 0 (4) Cálculo I List úmero 07 Logritmo e epoecil trcisio.prcio@gmil.com T. Prcio-Pereir Dep. de Computção lu@: Uiv. Estdul Vle do Acrú 3 de outubro de 00 pági d discipli

Leia mais

Aula de Medidas Dinâmicas I.B De Paula

Aula de Medidas Dinâmicas I.B De Paula Aul de Medids Diâmics I.B De Pul A medição é um operção, ou cojuto de operções, destids determir o vlor de um grdez físic. O seu resultdo, comphdo d uidde coveiete, costitui medid d grdez. O objetivo dest

Leia mais

uma função real SOLUÇÃO 20 Temos f(x)

uma função real SOLUÇÃO 20 Temos f(x) Priipis otções o ojuto de todos os úmeros reis [,b] = { : b} ],b[ = { : < < b} (,b) pr ordedo gof fução omposto de g e f - mtri ivers d mtri T mtri trspost d mtri det () determite d mtri s uestões de ão

Leia mais

SÉRIES DE FOURIER Prof. Me. Ayrton Barboni

SÉRIES DE FOURIER Prof. Me. Ayrton Barboni SUMÁRIO SÉRIES DE FOURIER Prof. Me. Arto Brboi. INTRODUÇÃO.... SÉRIES DE FOURIER..... Fuções Periódics..... Fuções secciolmete difereciáveis..... Fuções de rcos múltiplos..... Coeficietes de Fourier...

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire Uiversidde Slvdor UNIFACS Cursos de Egehri Métodos Mtemáticos Aplicdos / Cálculo Avçdo / Cálculo IV Prof: Ilk Rebouçs Freire Série de Fourier Texto : Itrodução. Algus Pré-requisitos No curso de Cálculo

Leia mais

f(x + 2P ) = f ( (x + P ) + P ) = f(x + P ) = f(x)

f(x + 2P ) = f ( (x + P ) + P ) = f(x + P ) = f(x) Seção 17: Séries de Fourier Fuções Periódics Defiição Dizemos que um fução f : R R é periódic de período P, ou id, mis resumidmete, P periódic se f(x + P ) = f(x) pr todo x Note que só defiimos fução periódic

Leia mais

Somas de Riemann e Integração Numérica. Cálculo 2 Prof. Aline Paliga

Somas de Riemann e Integração Numérica. Cálculo 2 Prof. Aline Paliga Soms de Riem e Itegrção Numéric Cálculo 2 Prof. Alie Plig Itrodução Problems de tgete e de velocidde Problems de áre e distâci Derivd Itegrl Defiid 1.1 Áres e distâcis 1.2 Itegrl Defiid 1.1 Áres e distâcis

Leia mais

PROGRAD / COSEAC ENGENHARIAS MECÂNICA E PRODUÇÃO VOLTA REDONDA - GABARITO

PROGRAD / COSEAC ENGENHARIAS MECÂNICA E PRODUÇÃO VOLTA REDONDA - GABARITO Prov de Cohecietos Especíicos QUESTÃO:, poto Deterie os vlores de e pr os quis ução dd sej cotíu e R. =,,, é cotíu e :.. li li li li. li li é cotíu e :.. li li li li Obteos Resolvedo equções θ e β: Respost:.

Leia mais

Sistemas de Equações Lineares Métodos Directos. Computação 2º Semestre 2016/2017

Sistemas de Equações Lineares Métodos Directos. Computação 2º Semestre 2016/2017 Sistems de Equções Lieres Métodos Directos Computção º Semestre 06/07 Sistems de Equções Muitos pricípios fudmetis em problems de ciêci e egehri podem ser epressos em termos de equções: vriável depedete

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOTS E U Geometri lític e Álger ier Sistems de Equções ieres Professor: ui Ferdo Nues, r Geometri lític e Álger ier ii Ídice Sistems de Equções ieres efiições Geris Iterpretção Geométric de Sistems de

Leia mais

Métodos Numéricos Integração Numérica Regra dos Trapézio. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Integração Numérica Regra dos Trapézio. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numéricos Itegrção Numéric Regr dos Trpézio Professor Volmir Eugêio Wilhelm Professor Mri Klei Itegrção Defiid Itegrção Numéric Itegrção Numéric Itegrção Defiid Há dus situções em que é impossível

Leia mais

Métodos Numéricos Sistemas Lineares Métodos Diretos. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Sistemas Lineares Métodos Diretos. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numéricos Sistems Lieres Métodos Diretos Professor Volmir uêio Wilhelm Professor Mri Klei limição de Guss Decomposição LU Decomposição Cholesky Prtição d mtriz limição de Guss limição de Guss Motivção

Leia mais

Prova: DESAFIO. I. Traduzindo para a linguagem simbólica, temos a seguinte equação na incógnita x, com x > 0: 45 4x = x x 3 4x = 0 x 4 4x 2 45 = 0

Prova: DESAFIO. I. Traduzindo para a linguagem simbólica, temos a seguinte equação na incógnita x, com x > 0: 45 4x = x x 3 4x = 0 x 4 4x 2 45 = 0 Colégio Nome: N.º: Edereço: Dt: Telefoe: E-mil: Discipli: MATEMÁTICA Prov: DESAFIO PARA QUEM CURSARÁ A ạ SÉRIE DO ENSINO MÉDIO EM 09 QUESTÃO 6 A difereç etre o cubo de um úmero rel positivo e o seu quádruplo,

Leia mais

FUNÇÃO EXPONENCIAL. a 1 para todo a não nulo. a. a. a a. a 1. Chamamos de Função Exponencial a função definida por: f( x) 3 x. f( x) 1 1. 1 f 2.

FUNÇÃO EXPONENCIAL. a 1 para todo a não nulo. a. a. a a. a 1. Chamamos de Função Exponencial a função definida por: f( x) 3 x. f( x) 1 1. 1 f 2. 49 FUNÇÃO EXPONENCIAL Professor Lur. Potêcis e sus proprieddes Cosidere os úmeros ( 0, ), mr, N e, y, br Defiição: vezes por......, ( ), ou sej, potêci é igul o úmero multiplicdo Proprieddes 0 pr todo

Leia mais

BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL

BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL Itrodução Biômio de Newto: O iômio de Newto desevolvido elo célere Isc Newto serve r o cálculo de um úmero iomil do tio ( ) Se for, fic simles é es decorr que ()²

Leia mais

1. (6,0 val.) Determine uma primitiva de cada uma das seguintes funções. (considere a mudança de variável u = tan 2

1. (6,0 val.) Determine uma primitiva de cada uma das seguintes funções. (considere a mudança de variável u = tan 2 Istituto Superior Técico Deprtmeto de Mtemátic Secção de Álgebr e Aálise o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBiom e MEFT o Sem. 00/ 5/J/0 - v. Durção: h30m RESOLUÇÃO. 6,0 vl. Determie um

Leia mais

MÓDULO IV. EP.02) Determine o valor de: a) 5 3 = b) 3 4 = c) ( 4) 2 = d) 4 2 = EP.03) Determine o valor de: a) 2 3 = b) 5 2 = c) ( 3) 4 = d) 3 4 =

MÓDULO IV. EP.02) Determine o valor de: a) 5 3 = b) 3 4 = c) ( 4) 2 = d) 4 2 = EP.03) Determine o valor de: a) 2 3 = b) 5 2 = c) ( 3) 4 = d) 3 4 = MÓDULO IV. Defiição POTENCIACÃO Qudo um úmero é multiplicdo por ele mesmo, dizemos que ele está elevdo o qudrdo, e escrevemos:. Se um úmero é multiplicdo por ele mesmo váris vezes, temos um potêci:.. (

Leia mais

(fg) (x + T ) = f (x + T ) g (x + T ) = f (x) g (x) = (fg) (x). = lim. f (t) dt independe de a. f(s)ds. f(s)ds =

(fg) (x + T ) = f (x + T ) g (x + T ) = f (x) g (x) = (fg) (x). = lim. f (t) dt independe de a. f(s)ds. f(s)ds = LISTA DE EXERCÍCIOS - TÓPICOS DE MATEMÁTICA APLICADA (MAP 33 PROF: PEDRO T P LOPES WWWIMEUSPBR/ PPLOPES/TMA Os eercícios seguir form seleciodos dos livros dos utores G Folld (F, Djiro Figueiredo (D e E

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Integração Numérica Regra dos Trapézio

TP062-Métodos Numéricos para Engenharia de Produção Integração Numérica Regra dos Trapézio TP6-Métodos Numéricos pr Egehri de Produção Itegrção Numéric Regr dos Trpézio Prof. Volmir Wilhelm Curiti, 5 Itegrção Defiid Itegrção Numéric Prof. Volmir - UFPR - TP6 Itegrção Numéric Itegrção Defiid

Leia mais

Função potencial de velocidade. - Equipotenciais são rectas verticais Função de corrente

Função potencial de velocidade. - Equipotenciais são rectas verticais Função de corrente Aerodiâmic Potecil Complexo Exemplos de plicção W z com R W x + i y Fução potecil de velocidde φ ( x, y) x, φ costte x costte - Equipoteciis são rects verticis Fução de correte ψ ( x, y) y, ψ costte y

Leia mais

GGE RESPONDE ITA 2015 MATEMÁTICA 1 A RESOLUÇÃO DAS QUESTÕES NO SITE: 01. Considere as seguintes afirmações sobre números reais:

GGE RESPONDE ITA 2015 MATEMÁTICA 1 A RESOLUÇÃO DAS QUESTÕES NO SITE:  01. Considere as seguintes afirmações sobre números reais: 0. Cosidere s seguites firmções sobre úmeros reis: I. Se epsão deciml de é ifiit e periódic, etão é um úmero rciol. II. 0 ( III. l e (log )(log ) é úmero rciol. É (são) verddeir (s): ) eum b) pes II. c)

Leia mais

1. Revisão Matemática

1. Revisão Matemática Sequêcias de Escalares Uma sequêcia { } diz-se uma sequêcia de Cauchy se para qualquer (depedete de ε ) tal que : ε > 0 algum K m < ε para todo K e m K Uma sequêcia { } diz-se ser limitada superiormete

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I MEC & LEGM 1 o SEM. 2009/10 7 a FICHA DE EXERCÍCIOS

CÁLCULO DIFERENCIAL E INTEGRAL I MEC & LEGM 1 o SEM. 2009/10 7 a FICHA DE EXERCÍCIOS Istituto Superior Técico Departameto de Matemática Secção de Álgebra e Aálise CÁLCULO DIFERENCIAL E INTEGRAL I MEC & LEGM 1 o SEM. 009/10 7 a FICHA DE EXERCÍCIOS I. Poliómio e Teorema de Taylor. 1) Determie

Leia mais

Matemática C Extensivo V. 6

Matemática C Extensivo V. 6 Mtemátic C Etesivo V 6 Eercícios ) D ) D ) C O vlor uitário do isumo é represetdo por y Portto pelo produto ds mtrizes A e B temos o seguite sistem: 5 5 9 y 5 5y 5y 9 5y 5 Portto: y 4 y 4 As médis uis

Leia mais

ALGEBRA LINEAR AUTOVALORES E AUTOVETORES. Prof. Ademilson

ALGEBRA LINEAR AUTOVALORES E AUTOVETORES. Prof. Ademilson LGEBR LINER UTOVLORES E UTOVETORES Prof. demilson utovlores e utovetores utovlores e utovetores são conceitos importntes de mtemátic, com plicções prátics em áres diversificds como mecânic quântic, processmento

Leia mais

AULA Subespaço, Base e Dimensão Subespaço.

AULA Subespaço, Base e Dimensão Subespaço. Note bem: a leitura destes apotametos ão dispesa de modo algum a leitura ateta da bibliografia pricipal da cadeira TÓPICOS Subespaço. ALA Chama-se a ateção para a importâcia do trabalho pessoal a realizar

Leia mais

5- Método de Elementos Finitos Aplicado às Equações Diferenciais Parciais.

5- Método de Elementos Finitos Aplicado às Equações Diferenciais Parciais. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS 5- Método de Elemetos Fiitos Aplicdo às Equções Difereciis Prciis. 5.1- Breve Itrodução Históric. 5.2- Solução de Equções Difereciis Ordiáris: Prolem

Leia mais

CÁLCULO DIFERENCIAL. Conceito de derivada. Interpretação geométrica

CÁLCULO DIFERENCIAL. Conceito de derivada. Interpretação geométrica CÁLCULO DIFERENCIAL Coceito de derivada Iterpretação geométrica A oção fudametal do Cálculo Diferecial a derivada parece ter sido pela primeira vez explicitada o século XVII, pelo matemático fracês Pierre

Leia mais

FUNÇÃO EXPONENCIAL. P potência. Se na potência a n a e n Q, temos: 1- Um número, não-nulo elevado a 0 (zero) é igual a 1 (um).

FUNÇÃO EXPONENCIAL. P potência. Se na potência a n a e n Q, temos: 1- Um número, não-nulo elevado a 0 (zero) é igual a 1 (um). FUNÇÃO EXPONENCIAL - Iicilmete, pr estudr fução epoecil e, coseqüetemete, s equções epoeciis, devemos rever os coceitos sore Potecição. - POTENCIAÇÃO Oserve o produto io.... = 6 Este produto pode ser revido

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 13/03/10

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 13/03/10 RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: /0/0 PROFESSOR: CARIBÉ Num cert comuidde, 0% ds pessos estvm desempregds. Foi feit um cmph, que durou 6 meses, pr tetr iserir ests pessos

Leia mais

Redes elétricas Circuitos que contém resistências e geradores de energia podem ser analisados usando sistemas de equações lineares;

Redes elétricas Circuitos que contém resistências e geradores de energia podem ser analisados usando sistemas de equações lineares; Álger Lier Mtrizes e vetores Sistems lieres Espços vetoriis Bse e dimesão Trsformções lieres Mtriz de um trsformção lier Aplicções d Álger Lier: Redes elétrics Circuitos que cotém resistêcis e gerdores

Leia mais

6/16/2011. Relações de Girard Relações entre raizes e coeficientes. a x. a 1. Considere-se as raízes i, i=1,2,...n, e P(x) na forma fatorada:

6/16/2011. Relações de Girard Relações entre raizes e coeficientes. a x. a 1. Considere-se as raízes i, i=1,2,...n, e P(x) na forma fatorada: 66 Numero de Rizes Reis Teorem de Bolzo Sej = um equção lgébric com coeficietes reis,b. Se b , etão eiste um úmero pr de rízes reis, ou ão eistem

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas.

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas. CÁLCULO L1 NOTAS DA DÉCIMA SÉTIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nest ul, utilizremos o Teorem Fundmentl do Cálculo (TFC) pr o cálculo d áre entre dus curvs. 1. A áre entre dus curvs A

Leia mais

FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x

FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x FUNÇÕES ) Se f() = 6, então f ( 5) f ( 5) é igul () (b) (c) 3 (d) 4 (e) 5 ) (UNIFOR) O gráfico bio 0 () não represent um função. (b) represent um função bijetor. (c) represent um função não injetor. (d)

Leia mais

Objetivo: Conceituar espaço vetorial; Realizar mudança de base; Conhecer e calcular transformações Lineares

Objetivo: Conceituar espaço vetorial; Realizar mudança de base; Conhecer e calcular transformações Lineares Alger Lier oldrii/cost/figeiredo/wetzler Ojetio: Coceitr espço etoril; Relizr mdç de se; Cohecer e clclr trsformções Lieres Itrodção Defiição de Espço Vetoril Sespço Comição Lier Represetção dos etores

Leia mais

DESIGUALDADES Onofre Campos

DESIGUALDADES Onofre Campos OLIMPÍADA BRASILEIRA DE MATEMÁTICA NÍVEL II SEMANA OLÍMPICA Slvdor, 9 6 de jeiro de 00 DESIGUALDADES Oofre Cmpos oofrecmpos@olcomr Vmos estudr lgums desigulddes clássics, como s desigulddes etre s médis

Leia mais

Métodos Matemáticos Aplicados a Processos Químicos e Bioquímicos. Capítulo III : Equações Diferenciais Ordinárias

Métodos Matemáticos Aplicados a Processos Químicos e Bioquímicos. Capítulo III : Equações Diferenciais Ordinárias J.L. de Medeiros & Oféli Q.F. rújo DISCILI Métodos Mtemáticos plicdos rocessos Químicos e Bioquímicos Cpítulo III : Equções Difereciis Ordiáris José Luiz de Medeiros e Oféli Q.F. rújo Egehri Químic FRJ

Leia mais

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i Integrl Noção de Integrl. Integrl é o nálogo pr unções d noção de som. Ddos n números 1, 2,..., n, podemos tomr su som 1 + 2 +... + n = i. O integrl de = té = b dum unção contínu é um mneir de somr todos

Leia mais