Á R E A, S O M A D E R I E M A N N E A I N T E G R A L D E F I N I D A

Tamanho: px
Começar a partir da página:

Download "Á R E A, S O M A D E R I E M A N N E A I N T E G R A L D E F I N I D A"

Transcrição

1 Á R E A, S O M A D E R I E M A N N E A I N T E G R A L D E F I N I D A Prof. Beito Frzão Pires - hors. áre A oção de áre de um polígoo ou região poligol) é um coceito bem cohecido. Começmos defiido áre do retâgulo de bse b e ltur h como sedo o produto b h. Dest defiição result que áre de um triâgulo de bse b e ltur h é b h. Mis gerlmete, áre de um polígoo qulquer é som ds áres dos triâgulos que o compõem. Aqui usmos o fto de que todo polígoo é trigulrizável, isto é, pode ser decomposto como uião de um úmero fiito de triâgulos com iteriores disjutos. A região ão-poligol mis simples é quel obtid substituido-se hipoteus de um triâgulo retâgulo por um prábol, coforme mostr Figur.). Est região, deotd por R, é descrit por: { R =, y) }, y. y = y = y = ) b) c) Figur : Clculdo áre de um região ão-poligol Vmos clculr áre A de R usdo um processo de proimção sucessiv. Divid o itervlo [, ] em itervlos de mesmo comprimeto: [ I =, ] [, I =, ] [, I =, ], I = [, ] [ ], I =,.

2 ) i Pr cd i, cosidere o retâgulo de bse I i e ltur, coforme mostr Figur.b). A áre d região cobert pelos cico retâgulos é: ) + ) + ) + ) A. ) ) i Alogmete, pr cd i, cosidere o retâgulo de bse I i e ltur, coforme mostr Figur.c). A áre d região cobert pelos cico retâgulos é: De ) e ) segue que ) + ) + ) + ) ) A ). ) A. ) Se o lugr de itervlos, dividirmos o itervlo [, ] em itervlos, vmos obter um epressão do tipo: Usdo idetidde ) ) A + + ). com k = e k =, obtemos Assim, Fzedo, obtemos k = kk + )k + ), 6 ) ) A + ) + ). 6 6 Portto, áre d região R é A =. ) ) A + ) + ). 6 6 A. Note que primeir estimtiv escolhemos o vlor fução o etremo esquerdo i = i do itervlo I i = [ i, i ] como ltur. N segud estimtiv, escolhemos o vlor d fução o etremo direito i = i do itervlo I i como ltur. Em gerl, se escolhêssemos o vlor d fução um poto qulquer c i do itervlo I i irímos obter seguite estimtiv pr som ds áres dos retâgulos ver Figur ): A = lim c + c + + c ). Ests soms são chmds Soms de Riem d fução f) = e tmbém covergem pr áre d região R.

3 y = c c c c c Figur : Usdo os potos médios dos itervlos como potos mostris. itegrl defiid Vmos geerlizr o cálculo feito teriormete pr estimr áre d região compreedid etre o gráfico de um fução cotíu f, defiid o itervlo [, b], e o eio, coforme esboçdo Figur. Est região é descrit pel equção R = {, f)), b, y f)}. Primeiro, vmos cosiderr um coleção de + potos = < < < < = b que dividem o itervlo [, b] em itervlos de comprimeto b : I = [, ], I = [, ],..., I = [, b]. Em cd itervlo I i, escolh um poto c i, isto é, i c i i pr todo i. A som ds áres dos retâgulos R i que têm bse I i e ltur fc i ) é i= fc i ) b, coforme mostr Figur.b). Est som é chmd Som de Riem d fução f. Qudo fução f é cotíu, s soms de Riem d fução f covergem pr um mesmo vlor, chmdo itegrl defiid de f o itervlo [, b]. Defiição.. Sej f : [, b] R um fução cotíu. A itegrl defiid d fução f sobre o itervlo [, b] é o úmero f) d = lim i= fc i ) b.

4 y = f) y = f) b b ) b) Figur : A itegrl defiid com c i = i i )/. Os úmeros e b são os limites ou etremos de itegrção, fução f) é o itegrdo e é vriável de itegrção. Note que itegrl de um fução ãoegtiv f sobre um itervlo [, b] forece áre delimitd pelo gráfico de f, pelo eio e pels rets = e = b, coforme mostr Figur.). Se pr todo i, escolhermos c i = i, temos um Som de Riem à esquerd e se c i = i pr todo i, etão temos um Som de Riem à direit. As soms de Riem de um fução f covergem pr o mesmo vlor, idepedetemete d escolh dos c i s. Assim, temos o seguite resultdo. Teorem.. Sej f : [, b] R um fução cotíu, etão f) d = lim i= f i ) b = lim i= f i ) b.. estimdo itegrl defiid O próimo resultdo permite estimr itegrl de um fução cotíu e crescete f trvés de um tbel de vlores eperimetis d fução f: f ) f ) f ) Tbel : Ddos mostris ou eperimetis d fução f

5 Teorem.. Sejm f : [, b] R um fução cotíu e crescete e = < < < < = b um coleção de + potos do itervlo [, b]. Etão f i ) i i ) i= f) d f i ) i i ). i= Observção.. No Teorem.., os potos ão precism ser igulmete espçdos. Se este for o cso, etão podemos trocr i i por b )/. Eemplo.. Um crro umet grdtivmete su velocidde os primeiros segudos de fuciometo, coforme mostr Tbel. Sbedo que o crro prtiu d posição iicil = m, dê um estimtiv pr posição fil do veículo. t s) vt) Km/h) 8 6 Tbel : Velociddes de um crro os primeiros segudos Resolução. O deslocmeto = do veículo etre os isttes e s é ddo por: = Pelo Teorem.., /6 vt) dt, logo = + /6 vt) dt. ), m i= vt i ) /6 /6 vt) dt i= vt i ) /6 68, m. Portto, de ), obtemos que o istte t =, posição do veículo stisfz 6, m 8, m. Atulizdo em 9 de Agosto de 6.

VA L O R M É D I O D E U M A F U N Ç Ã O. Prof. Benito Frazão Pires

VA L O R M É D I O D E U M A F U N Ç Ã O. Prof. Benito Frazão Pires 3 VA L O R M É D I O D E U M A F U N Ç Ã O Prof. Beito Frzão Pires 3. médi ritmétic A médi ritmétic (ou simplesmete médi) de vlores y, y 2,..., y é defiid como sedo o úmero y = y + y 2 + + y. () A médi

Leia mais

CÁLCULO I. Exibir o cálculo de algumas integrais utilizando a denição.

CÁLCULO I. Exibir o cálculo de algumas integrais utilizando a denição. CÁLCULO I Prof Mrcos Diiz Prof Adré Almeid Prof Edilso Neri Prof Emerso Veig Prof Tigo Coelho Aul o : A Itegrl de Riem Objetivos d Aul Deir itegrl de Riem; Exibir o cálculo de lgums itegris utilizdo deição

Leia mais

Somas de Riemann e Integração Numérica. Cálculo 2 Prof. Aline Paliga

Somas de Riemann e Integração Numérica. Cálculo 2 Prof. Aline Paliga Soms de Riem e Itegrção Numéric Cálculo 2 Prof. Alie Plig Itrodução Problems de tgete e de velocidde Problems de áre e distâci Derivd Itegrl Defiid 1.1 Áres e distâcis 1.2 Itegrl Defiid 1.1 Áres e distâcis

Leia mais

Considere uma função contínua arbitrária f(x) definida em um intervalo fechado [a, b].

Considere uma função contínua arbitrária f(x) definida em um intervalo fechado [a, b]. Mtemátic II 9. Prof.: Luiz Gozg Dmsceo E-mils: dmsceo@yhoo.com.r dmsceo@uol.com.r dmsceo@hotmil.com http://www.dmsceo.ifo www.dmsceo.ifo dmsceo.ifo Itegris defiids Cosidere um fução cotíu ritrári f() defiid

Leia mais

Lista 5. Funções de Uma Variável. Antiderivadas e Integral. e 4x dx. 1 + x 2 dx. 3 x dx

Lista 5. Funções de Uma Variável. Antiderivadas e Integral. e 4x dx. 1 + x 2 dx. 3 x dx List 5 Fuções de Um Vriável Atiderivds e Itegrl O gráfico d fução f é presetdo bio. Idetifique o gráfico d tiderivd de f. i j k l m o p q e cos + e 5 + cos cos + se 7 + sec se Clcule s seguites tiderivds:

Leia mais

Métodos Numéricos Integração Numérica Regra dos Trapézio. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Integração Numérica Regra dos Trapézio. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numéricos Itegrção Numéric Regr dos Trpézio Professor Volmir Eugêio Wilhelm Professor Mri Klei Itegrção Defiid Itegrção Numéric Itegrção Numéric Itegrção Defiid Há dus situções em que é impossível

Leia mais

... Soma das áreas parciais sob a curva que fornece a área total sob a curva.

... Soma das áreas parciais sob a curva que fornece a área total sob a curva. CAPÍTULO 7 - INTEGRAL DEFINIDA OU DE RIEMANN 7.- Notção Sigm pr Soms A defiição forml d itegrl defiid evolve som de muitos termos, pr isso itroduzimos o coceito de somtório ( ). Eemplos: ( + ) + + + +

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Integração Numérica Regra dos Trapézio

TP062-Métodos Numéricos para Engenharia de Produção Integração Numérica Regra dos Trapézio TP6-Métodos Numéricos pr Egehri de Produção Itegrção Numéric Regr dos Trpézio Prof. Volmir Wilhelm Curiti, 5 Itegrção Defiid Itegrção Numéric Prof. Volmir - UFPR - TP6 Itegrção Numéric Itegrção Defiid

Leia mais

Resolução Numérica de Sistemas Lineares Parte II

Resolução Numérica de Sistemas Lineares Parte II Cálculo Numérico Resolução Numéric de Sistems Lieres Prte II Prof Jorge Cvlcti jorgecvlcti@uivsfedubr MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - wwwdscufcgedubr/~cum/ Sistems

Leia mais

As funções exponencial e logarítmica

As funções exponencial e logarítmica As fuções epoecil e logrítmic. Potêcis em Sej um úmero rel positivo, isto é, * +. Pr todo, potêci, de bse e epoete é defiid como o produto de ftores iguis o úmero rel :...... vezes Pr, estbelece-se 0,

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.4

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.4 FICHA de AVALIAÇÃO de MATEMÁTICA A 5º Teste º Ao de escolridde Versão4 Nome: Nº Turm: Professor: José Tioco /4/8 Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods

Leia mais

Artur Miguel Cruz. Escola Superior de Tecnologia Instituto Politécnico de Setúbal 2015/2016 1

Artur Miguel Cruz. Escola Superior de Tecnologia Instituto Politécnico de Setúbal 2015/2016 1 Itegrção Numéric Aálise Numéric Artur Miguel Cruz Escol Superior de Tecologi Istituto Politécico de Setúbl 015/016 1 1 versão 13 de Juho de 017 1 Itrodução Clculr itegris é muito mis difícil do que clculr

Leia mais

DESIGUALDADES Onofre Campos

DESIGUALDADES Onofre Campos OLIMPÍADA BRASILEIRA DE MATEMÁTICA NÍVEL II SEMANA OLÍMPICA Slvdor, 9 6 de jeiro de 00 DESIGUALDADES Oofre Cmpos oofrecmpos@olcomr Vmos estudr lgums desigulddes clássics, como s desigulddes etre s médis

Leia mais

Exemplo: As funções seno e cosseno são funções de período 2π.

Exemplo: As funções seno e cosseno são funções de período 2π. 4. Séries de Fourier 38 As séries de Fourier têm váris plicções, como por eemplo resolução de prolems de vlor de cotoro. 4.. Fuções periódics Defiição: Um fução f() é periódic se eistir um costte T> tl

Leia mais

0.2 Exercícios Objetivo. (c) (V)[ ](F)[ ] A segunda derivada de f é (4) x 0 2

0.2 Exercícios Objetivo. (c) (V)[ ](F)[ ] A segunda derivada de f é (4) x 0 2 A segud derivd de f é f() = { < 0 0 0 (4) Cálculo I List úmero 07 Logritmo e epoecil trcisio.prcio@gmil.com T. Prcio-Pereir Dep. de Computção lu@: Uiv. Estdul Vle do Acrú 3 de outubro de 00 pági d discipli

Leia mais

Integrais Duplos. Definição de integral duplo

Integrais Duplos. Definição de integral duplo Itegris uplos Recorde-se defiição de itegrl de Riem em : Um fução f :,, limitd em,, é itegrável à Riem em, se eiste e é fiito lim m j 0 j1 ft j j j1. ode P 0,, um qulquer prtição de, e t 1,,t um sequêci

Leia mais

Quando o polinômio divisor é da forma x + a, devemos substituir no polinômio P(x), x por a, visto que: x + a = x ( a).

Quando o polinômio divisor é da forma x + a, devemos substituir no polinômio P(x), x por a, visto que: x + a = x ( a). POLINÔMIOS II. TEOREMA DE D ALEMBERT O resto d divisão de um poliômio P(x) por x é igul P(). m m Sej, com efeito, P x x x..., um poliômio de x, ordedo segudo s potecis m m decrescetes de x. Desigemos o

Leia mais

Função Logaritmo - Teoria

Função Logaritmo - Teoria Fução Logritmo - Teori Defiição: O ritmo de um úmero rel positivo, bse IR { } podemos escrever Resumido temos: +, é o úmero rel tl que, equivletemete E: 7 8 8 8 8 7 * { }, IR { } * +, IR + Usdo que fução

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.1

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.1 FICHA de AVALIAÇÃO de MATEMÁTICA A 5º Teste º Ao de escolridde Versão Nome: Nº Turm: Proessor: José Tioco 3/4/8 Apresete o seu rciocíio de orm clr, idicdo todos os cálculos que tiver de eetur e tods s

Leia mais

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE ASSUNTO: SOMAÇÃO E ÁRAS E INTEGRAIS DEFINIDAS. INTEGRAIS DEFINIDAS

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE ASSUNTO: SOMAÇÃO E ÁRAS E INTEGRAIS DEFINIDAS. INTEGRAIS DEFINIDAS FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ENGENHARIA DE PRODUÇÃO ASSUNTO: SOMAÇÃO E ÁRAS E INTEGRAIS DEFINIDAS. PROFESSOR: MARCOS AGUIAR CÁLCULO II INTEGRAIS DEFINIDAS. NOTAÇÃO DE SOMAÇÃO

Leia mais

Este capítulo tem por objetivo apresentar métodos para resolver numericamente uma integral.

Este capítulo tem por objetivo apresentar métodos para resolver numericamente uma integral. Nots de ul de Métodos Numéricos. c Deprtmeto de Computção/ICEB/UFOP. Itegrção Numéric Mrcoe Jmilso Freits Souz, Deprtmeto de Computção, Istituto de Ciêcis Exts e Biológics, Uiversidde Federl de Ouro Preto,

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A 0.º Ao Versão Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods s justificções ecessáris. Qudo, pr um resultdo, ão é pedid um proimção,

Leia mais

Transformada z. A transformada z é a TFTD da sequência r -n x[n] e a ROC é determinada pelo intervalo de valores de r para os quais.

Transformada z. A transformada z é a TFTD da sequência r -n x[n] e a ROC é determinada pelo intervalo de valores de r para os quais. Trsformd A TFTD de um sequêci é: Pr covergir série deve ser solutmete somável. Ifelimete muitos siis ão podem ser trtdos: A trsformd é um geerlição d TFTD que permite o trtmeto desses siis: Ζ Defiição:

Leia mais

Novo Espaço Matemática A, 12.º ano Proposta de teste de avaliação [março 2019]

Novo Espaço Matemática A, 12.º ano Proposta de teste de avaliação [março 2019] Propost de teste de vlição [mrço 09] Nome: Ao / Turm: N.º: Dt: - - Não é permitido o uso de corretor. Deves riscr quilo que pretedes que ão sej clssificdo. A prov iclui um formulário. As cotções dos ites

Leia mais

f(x + 2P ) = f ( (x + P ) + P ) = f(x + P ) = f(x)

f(x + 2P ) = f ( (x + P ) + P ) = f(x + P ) = f(x) Seção 17: Séries de Fourier Fuções Periódics Defiição Dizemos que um fução f : R R é periódic de período P, ou id, mis resumidmete, P periódic se f(x + P ) = f(x) pr todo x Note que só defiimos fução periódic

Leia mais

Notas de Aula de Cálculo Diferencial e Integral II

Notas de Aula de Cálculo Diferencial e Integral II Uiversidde Federl de Cmpi Grde Cetro de Ciêcis e Tecoologi Agroetr Nots de Aul de Cálculo Diferecil e Itegrl II Prof. Ms. Hllyso Gustvo G. de M. Lim Pombl - PB Coteúdo Métodos de Itegrção 3. Método ds

Leia mais

POTENCIAÇÃO. pcdamatematica. a 1. 5 f) ( 5) 5 h) ( 3) a. b (5,2).(10,3) (9,9) 26 a. a a. Definição. Ex: a) Seja a, n e n 2. Definimos: n vezes

POTENCIAÇÃO. pcdamatematica. a 1. 5 f) ( 5) 5 h) ( 3) a. b (5,2).(10,3) (9,9) 26 a. a a. Definição. Ex: a) Seja a, n e n 2. Definimos: n vezes Sej, e. Defiimos: E0: Clcule: d) e) Defiição.... vezes 0 f) ( ) g) h) 0 6 ( ) i) ( ) j) E0: Dos úmeros bio, o que está mis próimo de (,).(0,) é: (9,9) 0,6 6, 6, d) 6 e) 60 E0: O vlor de 0, (0,6) é: 0,06

Leia mais

,,,,,,,,, A Integral Definida como Limite de uma Soma. A Integral Definida como Limite de uma Soma

,,,,,,,,, A Integral Definida como Limite de uma Soma. A Integral Definida como Limite de uma Soma UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Exemplo : Utilize

Leia mais

3. Admitindo SOLUÇÃO: dy para x 1 é: dx. dy 3t. t na expressão da derivada, resulta: Questão (10 pontos): Seja f uma função derivável e seja g x f x

3. Admitindo SOLUÇÃO: dy para x 1 é: dx. dy 3t. t na expressão da derivada, resulta: Questão (10 pontos): Seja f uma função derivável e seja g x f x UIVERSIDADE FEDERAL DE ITAJUBÁ CALCULO e PROVA DE TRASFERÊCIA ITERA, EXTERA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR 9/6/ CADIDATO: CURSO PRETEDIDO: OBSERVAÇÕES: Prov sem cosult. A prov pode ser feit

Leia mais

Universidade Federal Fluminense ICEx Volta Redonda Métodos Quantitativos Aplicados I Professora: Marina Sequeiros

Universidade Federal Fluminense ICEx Volta Redonda Métodos Quantitativos Aplicados I Professora: Marina Sequeiros Uiversidde Federl Flumiese ICE Volt Redod Métodos Qutittivos Aplicdos I Professor: Mri Sequeiros. Poliômios Defiição: Um poliômio ou fução poliomil P, vriável, é tod epressão do tipo: P)=... 0, ode IN,

Leia mais

M M N. Logo: MN = DC = DP + PC DC = AB + AB DC = 2 AB S ABCD = (AB + DC). = (AB + 2 AB). = 3 AB S M N CD = Assim temos que: M'N'CD h

M M N. Logo: MN = DC = DP + PC DC = AB + AB DC = 2 AB S ABCD = (AB + DC). = (AB + 2 AB). = 3 AB S M N CD = Assim temos que: M'N'CD h QUESTÃO Sejm i, r + si e + (r s) + (r + s)i ( > ) termos de um seqüêci. etermie, em fução de, os vlores de r e s que torm est seqüêci um progressão ritmétic, sbedo que r e s são úmeros reis e i. Sbemos

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire Uiversidde Slvdor UNIFACS Cursos de Egehri Métodos Mtemáticos Aplicdos / Cálculo Avçdo / Cálculo IV Prof: Ilk Rebouçs Freire Série de Fourier Texto : Itrodução. Algus Pré-requisitos No curso de Cálculo

Leia mais

(fg) (x + T ) = f (x + T ) g (x + T ) = f (x) g (x) = (fg) (x). = lim. f (t) dt independe de a. f(s)ds. f(s)ds =

(fg) (x + T ) = f (x + T ) g (x + T ) = f (x) g (x) = (fg) (x). = lim. f (t) dt independe de a. f(s)ds. f(s)ds = LISTA DE EXERCÍCIOS - TÓPICOS DE MATEMÁTICA APLICADA (MAP 33 PROF: PEDRO T P LOPES WWWIMEUSPBR/ PPLOPES/TMA Os eercícios seguir form seleciodos dos livros dos utores G Folld (F, Djiro Figueiredo (D e E

Leia mais

1. (6,0 val.) Determine uma primitiva de cada uma das seguintes funções. (considere a mudança de variável u = tan 2

1. (6,0 val.) Determine uma primitiva de cada uma das seguintes funções. (considere a mudança de variável u = tan 2 Istituto Superior Técico Deprtmeto de Mtemátic Secção de Álgebr e Aálise o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBiom e MEFT o Sem. 00/ 5/J/0 - v. Durção: h30m RESOLUÇÃO. 6,0 vl. Determie um

Leia mais

Cálculo Diferencial e Integral 1

Cálculo Diferencial e Integral 1 NOTAS DE AULA Cálculo Dierecil e Itegrl Limites Proessor: Luiz Ferdo Nues, Dr. 8/Sem_ Cálculo ii Ídice Limites.... Noção ituitiv de ite.... Deiição orml de ite.... Proprieddes dos ites.... Limites lteris...

Leia mais

UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS - CCE DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS - CCE DEPARTAMENTO DE MATEMÁTICA UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS - CCE DEPARTAMENTO DE MATEMÁTICA Cmpus Uiversitário - Viços, MG 657- Telefoe: () 899-9 E-mil: dm@ufv.br 6ª LISTA DE MAT 4 /II SÉRIES NUMÉRICAS.

Leia mais

Capítulo 5.1: Revisão de Série de Potência

Capítulo 5.1: Revisão de Série de Potência Cpítulo 5.: Revisão de Série de Potêci Ecotrr solução gerl de um equção diferecil lier depede de determir um cojuto fudmetl ds soluções d equção homogêe. Já cohecemos um procedimeto pr costruir soluções

Leia mais

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFEREÇA ( ( x( Coeficiete costte. ( ( x ( Coeficiete vriável (depedete do tempo. Aplicmos x( pr e cosidermos codição iicil ( ( ( M ( ( ( ( x( x( ( x(

Leia mais

Aula de Medidas Dinâmicas I.B De Paula

Aula de Medidas Dinâmicas I.B De Paula Aul de Medids Diâmics I.B De Pul A medição é um operção, ou cojuto de operções, destids determir o vlor de um grdez físic. O seu resultdo, comphdo d uidde coveiete, costitui medid d grdez. O objetivo dest

Leia mais

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFEREÇA Coeficiete costte. SISTEMAS LIT CARACTERIZADOS POR EQUAÇÕES A DIFEREÇA COM COEFICIETES COSTATES Sistems descritos por equções difereç com coeficiete

Leia mais

Métodos Numéricos Interpolação Métodos de Newton. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Interpolação Métodos de Newton. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numéricos Métodos de Newto Professor Volmir Eugêio Wilhelm Professor Mri Klei Poliomil Revisão No eemplo só se cohece fução pr 5 vlores de - ós de iterpolção Desej-se cohecer o vlor d fução em

Leia mais

SÉRIES DE FOURIER Prof. Me. Ayrton Barboni

SÉRIES DE FOURIER Prof. Me. Ayrton Barboni SUMÁRIO SÉRIES DE FOURIER Prof. Me. Arto Brboi. INTRODUÇÃO.... SÉRIES DE FOURIER..... Fuções Periódics..... Fuções secciolmete difereciáveis..... Fuções de rcos múltiplos..... Coeficietes de Fourier...

Leia mais

PARTE 1: INTEGRAIS IMEDIATAS. Propriedades da integral indefinida: Ex)Encontre as seguintes integrais:

PARTE 1: INTEGRAIS IMEDIATAS. Propriedades da integral indefinida: Ex)Encontre as seguintes integrais: Deprtmeto de Mtemátic, Físic, Químic e Egehri de Alimetos Projeto Clcule! Prof s : Rosimr Fchi Pelá Vd Domigos Vieir Cdero Itegris e Aplicções PARTE : INTEGRAIS IMEDIATAS Defiimos: f ( ) d F( ) k k IR

Leia mais

n i i Adotando o polinômio interpolador de Lagrange para representar p n (x):

n i i Adotando o polinômio interpolador de Lagrange para representar p n (x): EQE-58 MÉTODOS UMÉRICOS EM EGEHARIA QUÍMICA PROFS. EVARISTO E ARGIMIRO Cpítulo 6 Itegrção uméric Vimos os cpítulos e que etre os motivos pr o uso de poliômios proimção de fuções está fcilidde de cálculos

Leia mais

1 Integral Indefinida

1 Integral Indefinida Itegrl Idefiid. Método d Sustituição (ou Mudç de Vriável) pr Itegrção As fórmuls de primitivção ão mostrm omo lulr s itegris Idefiids do tipo 5x + 7 Ms lgums vezes, é possível determir itegrl de um dd

Leia mais

21.2 A notação de somatório: uma abreviação para somas

21.2 A notação de somatório: uma abreviação para somas Cpítulo Itrodução à Itegrl: Cálculo de Áres e Itegris Defiids. Itrodução Os dois coceitos pricipis do cálculo são desevolvidos prtir de idéis geométrics reltivs curvs. A derivd provém d costrução ds tgetes

Leia mais

PROPRIEDADES DAS POTÊNCIAS

PROPRIEDADES DAS POTÊNCIAS EXPONENCIAIS REVISÃO DE POTÊNCIAS Represetos por, potêci de bse rel e epoete iteiro. Defiios potêci os csos bio: 0) Gráfico d fução f( ) 0 Crescete I ]0, [.....,, ftores 0, se 0 PROPRIEDADES DAS POTÊNCIAS

Leia mais

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i Integrl Noção de Integrl. Integrl é o nálogo pr unções d noção de som. Ddos n números 1, 2,..., n, podemos tomr su som 1 + 2 +... + n = i. O integrl de = té = b dum unção contínu é um mneir de somr todos

Leia mais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA Equções Epoeciis... Fução Epoecil..4 Logritmos: Proprieddes 6 Fução Logrítmic. Equções Logrítmics...5 Iequções Epoeciis e Logrítmics.8 Equções Epoeciis 0. (ITA/74)

Leia mais

Aula 9 Limite de Funções

Aula 9 Limite de Funções Alise Mtemátic I Aul 9 Limite de Fuções Ao cdémico 017 Tem 1. Cálculo Dierecil Noção ituitiv e deiição de ite. Eemplos de ites. Limites lteris. Proprieddes. Bibliogri Básic Autor Título Editoril Dt Stewrt,

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A. TESTE Nº 4 Grupo I

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A. TESTE Nº 4 Grupo I ESOLA SEUNDÁRIA OM º ILO D. DINIS º ANO DE ESOLARIDADE DE MATEMÁTIA A TESTE Nº Grupo I As seis questões deste grupo são de escolh múltipl. Pr cd um dels são idicds qutro ltertivs, ds quis só um está correct.

Leia mais

Métodos Numéricos Interpolação Métodos de Lagrange. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Interpolação Métodos de Lagrange. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numéricos Métodos de grge Professor Volmir Eugêio Wilhelm Professor Mri Klei Cosiste em determir um fução g() que descreve de form proimd o comportmeto de outr fução f() que ão se cohece. São cohecidos

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Interpolação Métodos de Lagrange

TP062-Métodos Numéricos para Engenharia de Produção Interpolação Métodos de Lagrange TP6-Métodos Numéricos pr Egehri de Produção Iterpolção Métodos de grge Prof. Volmir Wilhelm Curitib, 5 Iterpolção Cosiste em determir um fução g() que descreve de form proimd o comportmeto de outr fução

Leia mais

3 Integral Indefinida

3 Integral Indefinida 3 Itegrl Idefiid 3. Método d Sustituição (ou Mudç de Vriável) pr Itegrção As fórmuls de primitivção ão mostrm omo lulr s itegris Idefiids do tipo 5x + 7 Ms lgums vezes, é possível determir itegrl de um

Leia mais

2. Resolução Numérica de Equações Não-Lineares

2. Resolução Numérica de Equações Não-Lineares . Resolução Numéric de Equções Não-Lieres. Itrodução Neste cpítulo será visto lgoritmos itertivos pr ecotrr rízes de fuções ão-lieres. Nos métodos itertivos, s soluções ecotrds ão são ets, ms estrão detro

Leia mais

AULAS 7 A 9 MÉDIAS LOGARITMO. Para n números reais positivos dados a 1, a 2,..., a n, temos as seguintes definições:

AULAS 7 A 9 MÉDIAS LOGARITMO.  Para n números reais positivos dados a 1, a 2,..., a n, temos as seguintes definições: 009 www.cursoglo.com.br Treimeto pr Olimpíds de Mtemátic N Í V E L AULAS 7 A 9 MÉDIAS Coceitos Relciodos Pr úmeros reis positivos ddos,,...,, temos s seguites defiições: Médi Aritmétic é eésim prte d som

Leia mais

FUNÇÃO EXPONENCIAL. P potência. Se na potência a n a e n Q, temos: 1- Um número, não-nulo elevado a 0 (zero) é igual a 1 (um).

FUNÇÃO EXPONENCIAL. P potência. Se na potência a n a e n Q, temos: 1- Um número, não-nulo elevado a 0 (zero) é igual a 1 (um). FUNÇÃO EXPONENCIAL - Iicilmete, pr estudr fução epoecil e, coseqüetemete, s equções epoeciis, devemos rever os coceitos sore Potecição. - POTENCIAÇÃO Oserve o produto io.... = 6 Este produto pode ser revido

Leia mais

Fundamentos de Matemática I CÁLCULO INTEGRAL. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

Fundamentos de Matemática I CÁLCULO INTEGRAL. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques 6 ÁLULO INTEGRAL Gil d ost Mrques Fudmetos de Mtemátic I 6. Itrodução 6. álculo de Áres 6. O cálculo de um áre por meio de um processo limite 6.4 Som de Riem 6.5 Atiderivds 6.6 O Teorem Fudmetl do álculo

Leia mais

QUESTÕES DE 01 A 09. Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas.

QUESTÕES DE 01 A 09. Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas. PROVA DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - SETEMBRO DE ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ PROFESSORA MARIA ANTÔNIA C GOUVEIA QUESTÕES DE A 9 Assile

Leia mais

INTERPOLAÇÃO POLINOMIAL

INTERPOLAÇÃO POLINOMIAL 98 INTERPOLAÇÃO POLINOMIAL Iterpolr um ução () cosiste em proimr ess ução por outr ução g() escolid etre um clsse de uções deiid priori e que stisç lgums proprieddes A ução g() é etão usd em substituição

Leia mais

0,01. Qual a resposta correta à pergunta de Chiquinho, considerandose os valores atribuídos às variáveis pelo professor?

0,01. Qual a resposta correta à pergunta de Chiquinho, considerandose os valores atribuídos às variáveis pelo professor? GABARIO Questão: Chiquiho ergutou o rofessor qul o vlor umérico d eressão + y+ z. Este resodeu-lhe com cert iroi: como queres sber o vlor umérico de um eressão, sem tribuir vlores às vriáveis? Agor, eu

Leia mais

Unidade 2 Progressão Geométrica

Unidade 2 Progressão Geométrica Uidde Progressão Geométric Seuêci e defiição de PG Fórmul do termo gerl Fução expoecil e PG Juros compostos e PG Iterpolção geométric Som dos termos de um PG Seuêci e defiição de PG Imgie ue você tem dus

Leia mais

FÍSICA MODERNA I AULA 19

FÍSICA MODERNA I AULA 19 Uiversidde de São ulo Istituto de Físic FÍSIC MODRN I U 9 rof. Márci de lmeid Rizzutto elletro sl rizzutto@if.us.br o. Semestre de 0 Moitor: Gbriel M. de Souz Stos ági do curso: htt:discilis.sto.us.brcourseview.h?id=905

Leia mais

SISTEMAS LINEARES. Cristianeguedes.pro.br/cefet

SISTEMAS LINEARES. Cristianeguedes.pro.br/cefet SISTEMAS LINEARES Cristieguedes.pro.r/cefet Itrodução Notção B A X Mtricil Form. : m m m m m m m A es Mtri dos Coeficiet : X Mtri dsvriáveis : m B Termos Idepede tes : Número de soluções Ddo um sistem

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A 4º Teste º Ao de escolridde Versão Nome: Nº Turm: Professor: José Tioco 09/0/08 Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods

Leia mais

( ) E( X) = µ (desconhecido) V( X) = σ 2 (conhecido) ( ) se X ~ N µ,σ 2 ( ) se X qq e n grande

( ) E( X) = µ (desconhecido) V( X) = σ 2 (conhecido) ( ) se X ~ N µ,σ 2 ( ) se X qq e n grande A Pires, IST, Outubro de 000 Cpítulo 7 - Estimção por itervlos 7. Itervlos de cofiç Pr lém dum estimtiv potul de um prâmetro é, em muits situções, importte dispôr de lgum form de itervlo que idique cofiç

Leia mais

BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL

BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL Itrodução Biômio de Newto: O iômio de Newto desevolvido elo célere Isc Newto serve r o cálculo de um úmero iomil do tio ( ) Se for, fic simles é es decorr que ()²

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 4º Teste º Ao de escolridde Versão Nome: Nº Turm: Professor: José Tioco 09/0/08 Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods

Leia mais

Prova: DESAFIO. I. Traduzindo para a linguagem simbólica, temos a seguinte equação na incógnita x, com x > 0: 45 4x = x x 3 4x = 0 x 4 4x 2 45 = 0

Prova: DESAFIO. I. Traduzindo para a linguagem simbólica, temos a seguinte equação na incógnita x, com x > 0: 45 4x = x x 3 4x = 0 x 4 4x 2 45 = 0 Colégio Nome: N.º: Edereço: Dt: Telefoe: E-mil: Discipli: MATEMÁTICA Prov: DESAFIO PARA QUEM CURSARÁ A ạ SÉRIE DO ENSINO MÉDIO EM 09 QUESTÃO 6 A difereç etre o cubo de um úmero rel positivo e o seu quádruplo,

Leia mais

Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1

Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1 Mtrizes e Sistems de equções lieres D.I.C. Medes s mtrizes são um ferrmet básic formulção de problems de mtemátic e de outrs áres. Podem ser usds: resolução de sistems de equções lieres; resolução de sistems

Leia mais

PESQUISA OPERACIONAL Método Simplex. Professor Volmir Wilhelm Professora Mariana Kleina

PESQUISA OPERACIONAL Método Simplex. Professor Volmir Wilhelm Professora Mariana Kleina PESQUISA OPERACIONAL Método Simple Professor Volmir Wilhelm Professor Mri Klei Limitções d progrmção lier m (mi) s. Z c c... m, m,...,... c... c 0... c m b b m. Coeficietes costtes. Divisibilidde 3. Proporciolidde

Leia mais

1.6- MÉTODOS ITERATIVOS DE SOLUÇÃO DE SISTEMAS LINEARES PRÉ-REQUISITOS PARA MÉTODOS ITERATIVOS

1.6- MÉTODOS ITERATIVOS DE SOLUÇÃO DE SISTEMAS LINEARES PRÉ-REQUISITOS PARA MÉTODOS ITERATIVOS .6- MÉTODOS ITRATIVOS D SOLUÇÃO D SISTMAS LINARS PRÉ-RQUISITOS PARA MÉTODOS ITRATIVOS.6.- NORMAS D VTORS Defção.6.- Chm-se orm de um vetor,, qulquer fução defd um espço vetorl, com vlores em R, stsfzedo

Leia mais

MÉTODO DA SUBSTITUIÇÃO OU MUDANÇA DE VARIÁVEL PARA INTEGRAÇÃO. As fórmulas de primitivação não mostram como calcular as integrais Indefinidas do tipo

MÉTODO DA SUBSTITUIÇÃO OU MUDANÇA DE VARIÁVEL PARA INTEGRAÇÃO. As fórmulas de primitivação não mostram como calcular as integrais Indefinidas do tipo MÉTODO DA SUBSTITUIÇÃO OU MUDANÇA DE VARIÁVEL PARA INTEGRAÇÃO As fórmuls de primitivção ão mostrm omo lulr s itegris Idefiids do tipo 5x + 7 ou os(4x) Ms lgums vezes, é possível determir itegrl de um dd

Leia mais

Z = {, 3, 2, 1,0,1,2,3, }

Z = {, 3, 2, 1,0,1,2,3, } Pricípios Aritméticos O cojuto dos úmeros Iteiros (Z) Em Z estão defiids operções + e. tis que Z = {, 3,, 1,0,1,,3, } A) + y = y + (propriedde comuttiv d dição) B) ( + y) + z = + (y + z) (propriedde ssocitiv

Leia mais

Neste capítulo usaremos polinômios interpoladores de primeiro e segundo grau, que substituirão uma função de difícil solução por um polinômio.

Neste capítulo usaremos polinômios interpoladores de primeiro e segundo grau, que substituirão uma função de difícil solução por um polinômio. CAPÍULO INEGRAÇÃO NUMÉRICA. INRODUÇÃO Neste cpítulo usremos polômos terpoldores de prmero e segudo gru, que substturão um ução de dícl solução por um polômo. Sej :, b um ução cotíu em, b. A tegrl ded I

Leia mais

SOLUÇÕES DE EDO LINEARES DE 2 A ORDEM NA FORMA INFINITA

SOLUÇÕES DE EDO LINEARES DE 2 A ORDEM NA FORMA INFINITA SOLUÇÕES DE EDO LINEARES DE A ORDEM NA FORMA INFINITA Coforme foi visto é muito simples se obter solução gerl de um EDO lier de ordem coeficietes costtes y by cy em termos ds fuções lgébrics e trscedetes

Leia mais

Olimpíada Brasileira de Matemática X semana olímpica 21 a 28 de janeiro de Eduardo Poço. Integrais discretas Níveis III e U

Olimpíada Brasileira de Matemática X semana olímpica 21 a 28 de janeiro de Eduardo Poço. Integrais discretas Níveis III e U Olipíd Brsileir de Mteátic X se olípic 8 de jeiro de 007 Edurdo Poço Itegris discrets Níveis III e U Itegrl discret: dizeos que F é itegrl discret de F F f f se e soete se:, pr iteiro pricípio D es for,

Leia mais

EXAME NACIONAL DE SELEÇÃO 2010

EXAME NACIONAL DE SELEÇÃO 2010 EXAME NACIONAL DE SELEÇÃO 00 PROVA DE MATEMÁTICA o Di: 0/0/009 - QUINTA FEIRA HORÁRIO: 8h às 0h 5m (horário de Brsíli) EXAME NACIONAL DE SELEÇÃO 00 PROVA DE MATEMÁTICA º Di: 0/0 - QUINTA-FEIRA (Mhã) HORÁRIO:

Leia mais

séries de termos positivos e a n b n, n (div.) (conv.)

séries de termos positivos e a n b n, n (div.) (conv.) Teorem.9 Sej e b i) (div.) ii) b º Critério de Comprção séries de termos positivos e b, N b (div.) (cov.) (cov.) Estude turez d série = sbedo que,! Ν! Teorem.0 º Critério de Comprção Sejm 0, b > 0 e lim

Leia mais

A Integral Definida. e discutimos detalhadamente as suas propriedades básicas. 7 CEDERJ

A Integral Definida. e discutimos detalhadamente as suas propriedades básicas. 7 CEDERJ Módulo A Itegrl Defiid O pricipl objetivo deste módulo é o estudo d itegrl defiid de fuções reis defiids em itervlos fechdos e itdos, com êfse o cso em que s fuções cosiderds são cotíus. O resultdo cetrl

Leia mais

MÉTODO NUMÉRICO FACULDADE DE ENGENHARIA QUÍMICA DE LORENA PROF OSWALDO COBRA.

MÉTODO NUMÉRICO FACULDADE DE ENGENHARIA QUÍMICA DE LORENA PROF OSWALDO COBRA. MÉTODO NUMÉRICO FACULDADE DE ENGENHARIA QUÍMICA DE LORENA PROF OSWALDO COBRA oswldocobr@debsfequilbr oswldoluizguimr@itelefoiccombr INTERPOLAÇÃO Vmos supor que possuímos seguite tbel de ddos: X,5, 4,5

Leia mais

Sequências Numéricas Progressão Aritmética. Prof.: Joni Fusinato

Sequências Numéricas Progressão Aritmética. Prof.: Joni Fusinato Sequêcis Numérics Progressão Aritmétic Prof.: Joi Fusito joi.fusito@ifsc.edu.br jfusito@gmil.com Sequêci de Fibocci Leordo Fibocci (1170 150) foi um mtemático itlio. Ficou cohecido pel descobert d sequêci

Leia mais

Cálculo de Volumes por Cascas Cilíndricas. Cálculo de Volumes por Cascas Cilíndricas

Cálculo de Volumes por Cascas Cilíndricas. Cálculo de Volumes por Cascas Cilíndricas UNIERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Cálculo de olumes por

Leia mais

MÉTODOS ITERATIVOS PARA RESOLUÇÃO DE SISTEMAS

MÉTODOS ITERATIVOS PARA RESOLUÇÃO DE SISTEMAS MÉTODO ITRATIVO PARA ROLUÇÃO D ITMA ) NORMA D UMA MATRIZ: ej A=[ ij ] um mtriz de ordem m: Norm lih: A má i m j ij Norm colu: A má jm i ij emplos: I) A 0 A A má má ; 0 má{4 ; } 4 0 ; má{; 5} 5 Os.: por

Leia mais

CAMPUS DE GUARATINGUETÁ. Computação e Cálculo Numérico: Elementos de Cálculo Numérico Prof. G.J. de Sena - Depto. de Matemática Rev.

CAMPUS DE GUARATINGUETÁ. Computação e Cálculo Numérico: Elementos de Cálculo Numérico Prof. G.J. de Sena - Depto. de Matemática Rev. uesp CAMUS DE GUARATINGUETÁ Computção e Cálculo Numérico: Elemetos de Cálculo Numérico ro. G.J. de Se - Depto. de Mtemátic Rev. 7 CAÍTUO 4 INTEROAÇÃO 4. INTRODUÇÃO Cosidere seguite tbel relciodo clor especíico

Leia mais

AVALIAÇÃO TRIMESTRE. DISCIPLINA Matemática ALUNO(A) GABARITO

AVALIAÇÃO TRIMESTRE. DISCIPLINA Matemática ALUNO(A) GABARITO COORDENAÇÃO ENSINO MÉDIO AVALIAÇÃO - 0 TRIMESTRE NOTA UNIDADE(S): CAMBOINHAS PROFESSOR Equie DISCIPLINA Mtemátic SÉRIE/TURMA O /A E B DATA /0/00 NITERÓI SÃO GONÇALO X X ALUNO(A) GABARITO N IMPORTANTE:.

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amada Liz Pacífico Mafrim Perticarrari amada@fcav.uesp.br Ecotre a área da região que está sob a curva y = f x de a até b. S = x, y a x b, 0 y f x Isso sigifica que S, ilustrada

Leia mais

SIMULADO 03 AFA/EN E Modelo: AFA/ESPCEX 15/04/2017 SIMULADO EN (1ª FASE) AFA / EN / EFOMM GABARITO MATEMÁTICA. Questão 01. Questão 02.

SIMULADO 03 AFA/EN E Modelo: AFA/ESPCEX 15/04/2017 SIMULADO EN (1ª FASE) AFA / EN / EFOMM GABARITO MATEMÁTICA. Questão 01. Questão 02. F / EN / EFOMM SIMULDO 0 F/EN E Modelo: F/ESPCEX EN Códio: 055 5/0/07 SIMULDO EN (ª FSE) MTEMÁTIC GITO Questão 0 p v() p p 00 00 Pode-se observr que v ( ) é um fução do seudo ru ode o do vértice é 50 O

Leia mais

Métodos Numéricos Ajuste de Curva pelo Método dos Quadrados Mínimos-MQM. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Ajuste de Curva pelo Método dos Quadrados Mínimos-MQM. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numércos Ajuste de Curv pelo Método dos Qudrdos Mímos-MQM Professor Volmr Eugêo Wlhelm Professor Mr Kle Método dos Qudrdos Mímos Ajuste Ler Professor Volmr Eugêo Wlhelm Professor Mr Kle Método

Leia mais

Matemática C Extensivo V. 6

Matemática C Extensivo V. 6 Mtemátic C Etesivo V 6 Eercícios ) D ) D ) C O vlor uitário do isumo é represetdo por y Portto pelo produto ds mtrizes A e B temos o seguite sistem: 5 5 9 y 5 5y 5y 9 5y 5 Portto: y 4 y 4 As médis uis

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito

Leia mais

3 SISTEMAS DE EQUAÇÕES LINEARES

3 SISTEMAS DE EQUAÇÕES LINEARES . Itrodução SISTEAS DE EQUAÇÕES INEARES A solução de sistems lieres é um ferrmet mtemátic muito importte egehri. Normlmete os prolems ão-lieres são soluciodos por ferrmets lieres. As fotes mis comus de

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amada Liz Pacífico Mafrim Perticarrari amada@fcav.uesp.br O PROBLEMA DA ÁREA O PROBLEMA DA ÁREA Ecotre a área da região que está sob a curva y = f x de a até b. S = x, y a x b,

Leia mais

CÁLCULO I. 1 Funções denidas por uma integral

CÁLCULO I. 1 Funções denidas por uma integral CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Prof. Emerson Veig Prof. Tigo Coelho Aul n o 26: Teorem do Vlor Médio pr Integris. Teorem Fundmentl do Cálculo II. Funções dds por

Leia mais

6.1: Séries de potências e a sua convergência

6.1: Séries de potências e a sua convergência 6 SÉRIES DE FUNÇÕES 6: Séries de potêcis e su covergêci Deiição : Um série de potêcis de orm é um série d ( ) ( ) ( ) ( ) () Um série de potêcis de é sempre covergete pr De cto, qudo, otemos série uméric,

Leia mais

Uma figura plana bem conhecida e que não possui lados é o círculo. Como determinar o perímetro de um círculo?

Uma figura plana bem conhecida e que não possui lados é o círculo. Como determinar o perímetro de um círculo? erímetro A defiição de erímetro de um figur l muits vezes ode ser ecotrd do seguite modo: é som ds medids dos ldos d figur. Ms será que ess defiição é bo? or exemlo, um figur como que segue bixo ossui

Leia mais

10/09/2016 UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS DA TERRA DEPARTAMENTO DE GEOMÁTICA AJUSTAMENTO II GA110. Prof. Alvaro Muriel Lima Machado

10/09/2016 UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS DA TERRA DEPARTAMENTO DE GEOMÁTICA AJUSTAMENTO II GA110. Prof. Alvaro Muriel Lima Machado UNIVERSIDDE FEDERL DO PRNÁ SEOR DE IÊNIS D ERR DEPRMENO DE GEOMÁI JUSMENO II G Prof. lvro Muriel Lim Mchdo justmento de Observções Qundo s medids não são feits diretmente sobre s grndezs procurds, ms sim

Leia mais

Cálculo Numérico Resolução Numérica de Sistemas Lineares Parte II

Cálculo Numérico Resolução Numérica de Sistemas Lineares Parte II Cálculo Numérico Resolução Numéric de Sistems Lieres Prte II Prof: Reildo Hs Métodos Itertivos Motivção I Ocorrêci em lrg escl de sistems lieres em cálculos de Egehri e modelgem cietífic Eemplos: Simulções

Leia mais

GGE RESPONDE ITA 2015 MATEMÁTICA 1 A RESOLUÇÃO DAS QUESTÕES NO SITE: 01. Considere as seguintes afirmações sobre números reais:

GGE RESPONDE ITA 2015 MATEMÁTICA 1 A RESOLUÇÃO DAS QUESTÕES NO SITE:  01. Considere as seguintes afirmações sobre números reais: 0. Cosidere s seguites firmções sobre úmeros reis: I. Se epsão deciml de é ifiit e periódic, etão é um úmero rciol. II. 0 ( III. l e (log )(log ) é úmero rciol. É (são) verddeir (s): ) eum b) pes II. c)

Leia mais

PROGRAD / COSEAC ENGENHARIAS MECÂNICA E PRODUÇÃO VOLTA REDONDA - GABARITO

PROGRAD / COSEAC ENGENHARIAS MECÂNICA E PRODUÇÃO VOLTA REDONDA - GABARITO Prov de Cohecietos Especíicos QUESTÃO:, poto Deterie os vlores de e pr os quis ução dd sej cotíu e R. =,,, é cotíu e :.. li li li li. li li é cotíu e :.. li li li li Obteos Resolvedo equções θ e β: Respost:.

Leia mais