Diogo Pinheiro Fernandes Pedrosa

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Diogo Pinheiro Fernandes Pedrosa"

Transcrição

1 Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção 1 Introdução O conceito de integrl está ligdo o problem de determinr áre de um figur pln qulquer. A definição d áre de um figur pln é feit proximndo figur por polígonos cujs áres podem ser clculdos pelos métodos de Geometri Elementr. Considerndo definição d áre d figur delimitd por um função f(x), pelo eixo ds bscisss x e por dus rets x = e x = b, como ilustrdo pel figur 1. f(x) b x Figur 1: Definição d áre delimitd por um função f(x), por um intervlo [, b] e pelo eixo dos x. Dividindo este intervlo [, b] em n subintervlos iguis de comprimento x = b n onde = < x 1 < x <... < x n = b são os pontos dess divisão. Em cd um desses intervlos, definem-se os pontos ξ 1 no primeiro, ξ no segundo intervlo, e ssim sucessivmente té ξ n, no último intervlo. Dess form, é possível definir um série de retângulos de bse x e ltur f(ξ 1 ), f(ξ ),..., f(ξ n ) (ver figur ). A som ds áres dos retângulos é: S n = n f(ξ i ) x i=1

2 Métodos Computcionis em Engenhri (DCA00) f(x) x 1 x x x n 1 x n x Figur : Retângulos definidos nos subintervlos de [ =, x n = b]. Not-se que este vlor S n é, proximdmente, o vlor d áre delimitd por f(x) e x, no intervlo [, b]. Se quntidde de subintervlos cresce tendendo o infinito, então obtém-se o conceito d integrl: S n = lim n n f(ξ i ) x = i=1 f(x) dx que é chmd de Integrl de Riemnn. O seu resultdo é um vlor numérico. Embor hj um conjunto de regrs pr clculr chmd função primitiv F (x), ou sej: F (x) = f(x) dx em determindos csos, est função primitiv não é conhecid, ou su obtenção não é trivil. Além disso, em situções prátics nem sempre se tem form nlític d função ser integrd, f(x), ms é disponibilizd um tbel de pontos que descreve o comportmento d função. Assim, pr clculr o vlor d integrl de f(x) considerndo estes csos prticulres, torn-se necessário utilizção de métodos numéricos. A solução numéric de um integrl é chmd de qudrtur. Há dois métodos bstnte empregdos pr clculr qudrtur de um função: 1. As fórmuls de Newton-Cotes, que empregm vlores de f(x), onde os vlores de x são igulmente espçdos; Regr dos Trpézios; Regrs de Simpson.. A fórmul d qudrtur gussin que utiliz pontos diferentemente espçdos. Este curso bordrá principlmente s fórmuls de Newton-Cotes. Fórmuls de Newton-Cotes Ns fórmuls de Newton-Cotes idéi básic é substituição d função f(x) por um polinômio que proxime rzovelmente no intervlo [, b] em pontos igulmente

3 Métodos Computcionis em Engenhri (DCA00) espçdos. Assim, o problem fic resolvido pel integrção de um polinômio, o que é mis simples de fzer. Considerndo prtição do intervlo [, b] em subintervlos de comprimento h = (b )/n, obtém-se n bscisss x i, i = 0, 1,,..., n, sendo =, x n = b e x i+1 = x i + h. As fórmuls fechds de Newton-Cotes são do tipo: xn f(x) dx = f(x) dx n = A 0 f( )+A 1 f(x 1 )+A f(x )+...+A n f(x n ) = A i f(x i ) onde A i são coeficientes determindos de cordo com o gru do polinômio interpoldor..1 Regr dos Trpézios N Regr dos Trpézios utilizm-se pens dus bscisss seprds por um distânci h. Assim, utiliz-se um polinômio interpoldor de primeiro gru. Utilizndo fórmul de Lgrnge pr expressr o polinômio P 1 (x) que interpol f(x) em e x 1 tem-se: onde: f(x) = b 0 p 0 (x) + b 1 p 1 (x) p 0 (x) = x x 1 p 1 (x) = x b 0 = f() x 1 b 1 = f(x 1) x 1 Como tem-se pens dois pontos, = e x 1 = b. Então x 1 = h. Assim: f(x) = f() h (x x 1) + x 1 h (x ) Integrndo, no intervlo [, x 1 ], mbos os ldos dest proximção então obtém-se fórmul gerl pr Regr dos Trpézios: f(x) dx = h [f() + f(x 1 )] Esse resultdo corresponde à áre do trpézio de ltur h = x 1 e bses f( ) e f(x 1 ), como ilustrdo n figur. É possível notr que, se o intervlo de integrção é grnde, fórmul dos Trpézios fornece resultdos que pouco tem ver com o vlor d integrl ext. Pr diminuir este erro é preciso subdividir o intervlo de integrção e plicr regr dos Trpézios repetids vezes, pr cd pr subseqüente de pontos. Chmndo x i os pontos de divisão de [, b], tl que x i+1 x i = h, sendo i = 0, 1,,..., n 1, tem-se: n 1 f(x) dx = i=0 ou, de um form mis simplificd: xn xi+1 x 1 f(x) dx = n 1 i=0 h [f(x i) + f(x i+1 )] f(x) dx = h [f() + f(x 1 ) + f(x ) f(x n 1 ) + f(x n )] cuj interpretção geométric está ilustrd n figur 4. i=0

4 Métodos Computcionis em Engenhri (DCA00) 4 f(x) x 1 x Figur : Interpretção gráfic d Regr dos Trpézios. f(x) x 1 x x x n 1 x n x Figur 4: Interpretção gráfic d Regr dos Trpézios repetid. Exemplo 1 Sej I = 1 0 ex dx, clculr um proximção pr I utilizndo 10 subintervlos e regr dos Trpézios repetid. Pr 10 subintervlos tem-se um psso h igul : h = b n Dess form, como x i+1 = x i + h, então: = = 0.1 = 0.0 x 1 = 0.1 x = 0.. x 9 = 0.9 x 10 = 1.0 Assim: I = 0.1 [ e 0 + e e e e 1] =

5 Métodos Computcionis em Engenhri (DCA00) 5. Primeir Regr de Simpson Est primeir regr é obtid proximndo-se função f(x) por um polinômio interpoldor de segundo gru. Pr isto, serão necessário pontos ( =, x 1 e x = b) igulmente espçdos. onde os termos p i (x) são: e os termos b i são: f(x) = b 0 p 0 (x) + b 1 p 1 (x) + b p (x) p 0 (x) = (x x 1 )(x x ) p 1 (x) = (x )(x x ) p (x) = (x )(x x 1 ) f( ) b 0 = ( x 1 )( x ) f(x 1 ) b 1 = (x 1 )(x 1 x ) f(x ) b = (x )(x x 1 ) Dess form, tem-se que fórmul gerl pr Primeir Regr de Simpson é obtid trvés de: x f(x) dx = b 0 x p 0 (x) dx + b 1 x p 1 (x) dx + b x p (x) dx Resolvendo ests integris e, depois, substituindo x 1 = +h e x = +h, fórmul gerl fic igul : f(x) dx = h [f() + 4f(x 1 ) + f(x )] cuj interpretção signific que os pontos, x 1 e x são interpoldos pelo polinômio de Lgrnge de segundo gru. Exemplo Sej f(x) um função conhecid pens nos pontos tbeldos seguir. Utilizndo primeir regr de Simpson, encontrr um proximção pr 4 f(x) dx. i x i f(x i ) Como, neste cso, o espçmento h é igul 1, então: 4 f(x) dx = 1 [f(.0) + 4f(.0) + f(4.0)] 1 = [ ] = 86 D mesm form como foi relizdo com Regr dos Trpézios, deve-se subdividir o intervlo de integrção [, b] em n subintervlos iguis de mplitude h e, cd pr de

6 Métodos Computcionis em Engenhri (DCA00) 6 subintervlos, plicr Primeir Regr de Simpson. Um observção importnte é que o número de subintervlos deverá ser sempre pr. Assim, sendo h = (b )/n, os pontos serão =, x 1, x, x,..., x n = b. A proximção d integrl de um função ficrá: f(x) dx = h [f() + 4f(x 1 ) + f(x )] + h [f(x ) + 4f(x ) + f(x 4 )] h [f(x n ) + 4f(x n 1 ) + f(x n )] que de um mneir mis simplificd será: f(x) dx = h [f() + f(x n ) + (f(x ) + f(x 4 ) f(x n )) (f(x 1 ) + f(x ) f(x n 1 ))] Exemplo Adicionndo lguns pontos n tbel do exemplo, tem-se: Reclculr integrl 4 i x i f(x i ) Neste cso, o espçmento é h = 0.5. Assim: 4 f(x) dx utilizndo Primeir Regr de Simpson repetid. f(x) dx = 0.5 [f() + f(x 4 ) + f(x ) + 4 (f(x 1 ) + f(x ))] 0.5 = [ ( )] = 86. Segund Regr de Simpson De mneir nálog às nteriores, Segund Regr de Simpson é obtid proximndose função f(x) pelo polinômio interpoldor de terceiro gru. Dess form, trvés d metodologi de Lgrnge: onde os termos p i (x) são: f(x) = b 0 p 0 (x) + b 1 p 1 (x) + b p (x) + b p (x) p 0 (x) = (x x 1 )(x x )(x x ) p 1 (x) = (x )(x x )(x x ) p (x) = (x )(x x 1 )(x x ) p (x) = (x )(x x 1 )(x x )

7 Métodos Computcionis em Engenhri (DCA00) 7 e os termos b i são: Assim: f( ) b 0 = ( x 1 )( x )( x ) f(x 1 ) b 1 = (x 1 )(x 1 x )(x 1 x ) f(x ) b = (x )(x x 1 )(x x ) f(x ) b = (x )(x x 1 )(x x ) f(x) dx b = b 0 p 0 (x) dx + b 1 p 1 (x) dx + b p (x) dx + b p (x) dx (1) Como utiliz-se um polinômio de terceiro gru, então são necessários qutro pontos serem interpoldos: = x 1 = + h x = + h x = + h = b Fzendo integrção indicd pel proximção 1 e substituindo os termos ddos pels equções, então fic-se com seguinte fórmul gerl pr Segund Regr de Simpson: x =b = f(x) dx = h 8 [f() + f(x 1 ) + f(x ) + f(x )] Est segund regr tmbém é conhecid como Regr dos /8. Subdividindo o intervlo [, b] em n subintervlos, onde n deverá ser múltiplo de, tem-se seguinte fórmul pr plicção repetid: xn f(x) dx = h 8 [f() + f(x 1 ) + f(x ) + f(x )+ Exemplo 4 Clculr o vlor d integrl I = + f(x 4 ) + f(x 5 ) + f(x 6 ) f(x n ) + f(x n 1 ) + f(x n )] 4 1 ( ln x + ) e x + 1 dx plicndo regr dos /8 com e 9 subintervlos. Pr subintervlos, tem-se que h = 4 1 = 1. Assim: = 1 f(1) = x 1 = = f() =.884 x = + 1 = f() =.459 x = + 1 = 4 f(4) = ()

8 Métodos Computcionis em Engenhri (DCA00) 8 Portnto: I = 1 8 Pr 9 subintervlos, tem-se que: [ ] = h = = 9 = 1 Pode-se construir um tbel utilizndo este h e = = 1, resultndo em: i x i f(x i ) / / / / / / Aplicndo fórmul d segund regr de Simpson repetid, tem-se: I = h 8 [f() + f(x 1 ) + f(x ) + f(x ) + f(x 4 ) + f(x 5 ) + f(x 6 )+ + f(x 7 ) + f(x 8 ) + f(x 9 )] Por fim, substituindo os vlores correspondentes, o resultdo é I = Exercícios 1. Clculr os vlores ds integris seguir utilizndo Regr dos Trpézios. () 1 0 (b) cos x dx; x+1 1 dx; e x (c) 6 (x + ) dx.. Dd função y = f(x) trvés d tbel seguir, clculr o vlor de I = 0 f(x) dx utilizndo Regr dos Trpézios. i x i y i

9 Métodos Computcionis em Engenhri (DCA00) 9. Resolver s integris seguir utilizndo Primeir Regr de Simpson, com n = 4. () π/ 0 sin (x + 1) cos(x ) dx; e (b) 1 ex dx. 4. Resolver s integris seguir utilizndo Primeir Regr de Simpson, com n = 6. () 1 x (x 1) dx; e (b). (x + x + x + 1) dx. 5. Dd função y = f(x), definid trvés d tbel seguir, clculr f(x) dx plicndo: () A primeir Regr de Simpson; e (b) A segund Regr de Simpson. i x i y i Determinr o vlor I pr n =, plicndo Regr dos Trpézios e segund Regr de Simpson. 1. ( I = x + x + x ) dx Referêncis 1 [1] Cálculo 1 Funções de um Vriável; Gerldo Ávil; Qurt edição; Livros Técnicos e Científicos Editor S.A.; [] Cálculo Numérico (com plicções); Leônids C. Brroso, Mgli M. A. Brroso, Frederico F. Cmpos, Márcio L. B. Crvlho, Mirim L. Mi; Editor Hrbr; Segund edição; [] Cálculo Numérico - Aspectos Teóricos e Computcionis; Márci A. G. Ruggiero, Ver L. R. Lopes; Mkron Books; Segund edição; 1996.

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli Introdução à Integrl Definid Aul 04 Mtemátic II Agronomi Prof. Dnilene Donin Berticelli Áre Desde os tempos mis ntigos os mtemáticos se preocupm com o prolem de determinr áre de um figur pln. O procedimento

Leia mais

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Integrção Numéric Métodos Numéricos e Esttísticos Prte I-Métodos Numéricos Integrção numéric Luís Morgdo Lic. Eng. Biomédic e Bioengenhri-009/010 Luís Morgdo Integrção numéric Integrção Numéric Recorrendo

Leia mais

Resumo com exercícios resolvidos do assunto: Aplicações da Integral

Resumo com exercícios resolvidos do assunto: Aplicações da Integral www.engenhrifcil.weely.com Resumo com exercícios resolvidos do ssunto: Aplicções d Integrl (I) (II) (III) Áre Volume de sólidos de Revolução Comprimento de Arco (I) Áre Dd um função positiv f(x), áre A

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? Cálculo II Prof. Adrin Cherri 1 INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região

Leia mais

dx f(x) dx p(x). dx p(x) + dx f (n) n! i=1 f(x i) l i (x) ), a aproximação seria então dada por f(x i ) l i (x) = i=1 i=1 C i f(x i ), i=1 C i =

dx f(x) dx p(x). dx p(x) + dx f (n) n! i=1 f(x i) l i (x) ), a aproximação seria então dada por f(x i ) l i (x) = i=1 i=1 C i f(x i ), i=1 C i = Cpítulo 7 Integrção numéric 71 Qudrtur por interpolção O método de qudrtur por interpolção consiste em utilizr um polinômio interpolnte p(x) pr proximr o integrndo f(x) no domínio de integrção [, b] Dess

Leia mais

Interpretação Geométrica. Área de um figura plana

Interpretação Geométrica. Área de um figura plana Integrl Definid Interpretção Geométric Áre de um figur pln Interpretção Geométric Áre de um figur pln Sej f(x) contínu e não negtiv em um intervlo [,]. Vmos clculr áre d região S. Interpretção Geométric

Leia mais

Quadratura por interpolação Fórmulas de Newton-Cotes Quadratura Gaussiana. Integração Numérica. Leonardo F. Guidi DMPA IM UFRGS.

Quadratura por interpolação Fórmulas de Newton-Cotes Quadratura Gaussiana. Integração Numérica. Leonardo F. Guidi DMPA IM UFRGS. Qudrtur por interpolção DMPA IM UFRGS Cálculo Numérico Índice Qudrtur por interpolção 1 Qudrtur por interpolção 2 Qudrturs simples Qudrturs composts 3 Qudrtur por interpolção Qudrtur por interpolção O

Leia mais

Área entre curvas e a Integral definida

Área entre curvas e a Integral definida Universidde de Brsíli Deprtmento de Mtemátic Cálculo Áre entre curvs e Integrl definid Sej S região do plno delimitd pels curvs y = f(x) e y = g(x) e s rets verticis x = e x = b, onde f e g são funções

Leia mais

Diferenciação Numérica

Diferenciação Numérica Cpítulo 6: Dierencição e Integrção Numéric Dierencição Numéric Em muits circunstâncis, torn-se diícil oter vlores de derivds de um unção: derivds que não são de ácil otenção; Eemplo clculr ª derivd: e

Leia mais

MTDI I /08 - Integral de nido 55. Integral de nido

MTDI I /08 - Integral de nido 55. Integral de nido MTDI I - 7/8 - Integrl de nido 55 Integrl de nido Sej f um função rel de vriável rel de nid e contínu num intervlo rel I [; b] e tl que f (x) ; 8x [; b]: Se dividirmos [; b] em n intervlos iguis, mplitude

Leia mais

CÁLCULO I. 1 Volume. Objetivos da Aula. Aula n o 25: Volume por Casca Cilíndrica e Volume por Discos

CÁLCULO I. 1 Volume. Objetivos da Aula. Aula n o 25: Volume por Casca Cilíndrica e Volume por Discos CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Aul n o 25: Volume por Csc Cilíndric e Volume por Discos Objetivos d Aul Clculr o volume de sólidos de revolução utilizndo técnic do volume por csc

Leia mais

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que:

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que: Cpítulo 8 Integris Imprópris 8. Introdução A eistênci d integrl definid f() d, onde f é contínu no intervlo fechdo [, b], é grntid pelo teorem fundmentl do cálculo. Entretnto, determinds plicções do Cálculo

Leia mais

RESUMO DE INTEGRAIS. d dx. NOTA MENTAL: Não esquecer a constante para integrais indefinidas. Fórmulas de Integração

RESUMO DE INTEGRAIS. d dx. NOTA MENTAL: Não esquecer a constante para integrais indefinidas. Fórmulas de Integração RESUMO DE INTEGRAIS INTEGRAL INDEFINIDA A rte de encontrr ntiderivds é chmd de integrção. Desse modo, o plicr integrl dos dois ldos d equção, encontrmos tl d ntiderivd: f (x) = d dx [F (x)] f (x)dx = F

Leia mais

Definição 1. (Volume do Cilindro) O volume V de um um cilindro reto é dado pelo produto: V = area da base altura.

Definição 1. (Volume do Cilindro) O volume V de um um cilindro reto é dado pelo produto: V = area da base altura. Cálculo I Aul 2 - Cálculo de Volumes Dt: 29/6/25 Objetivos d Aul: Clculr volumes de sólidos por seções trnsversis Plvrs-chves: Seções Trnsversis - Volumes Volume de um Cilindro Nosso objetivo nest unidde

Leia mais

1 Fórmulas de Newton-Cotes

1 Fórmulas de Newton-Cotes As nots de ul que se seguem são um compilção dos textos relciondos n bibliogrfi e não têm intenção de substitui o livro-texto, nem qulquer outr bibliogrfi. Integrção Numéric Exemplos de problems: ) Como

Leia mais

Objetivo A = 2. A razão desse sucesso consiste em usar somas de Riemann, que determinam

Objetivo A = 2. A razão desse sucesso consiste em usar somas de Riemann, que determinam Aplicções de integris Volumes Aul 28 Aplicções de integris Volumes Objetivo Conhecer s plicções de integris no cálculo de diversos tipos de volumes de sólidos, especificmente os chmdos método ds seções

Leia mais

(x, y) dy. (x, y) dy =

(x, y) dy. (x, y) dy = Seção 7 Função Gm A expressão n! = 1 3... n (1 está definid pens pr vlores inteiros positivos de n. Um primeir extensão é feit dizendo que! = 1. Ms queremos estender noção de ftoril inclusive pr vlores

Leia mais

Comprimento de arco. Universidade de Brasília Departamento de Matemática

Comprimento de arco. Universidade de Brasília Departamento de Matemática Universidde de Brsíli Deprtmento de Mtemátic Cálculo Comprimento de rco Considerefunçãof(x) = (2/3) x 3 definidnointervlo[,],cujográficoestáilustrdo bixo. Neste texto vmos desenvolver um técnic pr clculr

Leia mais

Aula 29 Aplicações de integrais Áreas e comprimentos

Aula 29 Aplicações de integrais Áreas e comprimentos Aplicções de integris Áres e comprimentos MÓDULO - AULA 9 Aul 9 Aplicções de integris Áres e comprimentos Objetivo Conhecer s plicções de integris no cálculo d áre de um superfície de revolução e do comprimento

Leia mais

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5,

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5, - Limite. - Conceito Intuitivo de Limite Considere função f definid pel guinte epressão: f - - Podemos obrvr que função está definid pr todos os vlores de eceto pr. Pr, tnto o numerdor qunto o denomindor

Leia mais

Como calcular a área e o perímetro de uma elipse?

Como calcular a área e o perímetro de uma elipse? Como clculr áre e o perímetro de um elipse? Josiel Pereir d Silv Resumo Muitos professores de Mtemátic reltm que miori dos livros didáticos de Mtemátic utilizdos no Ensino Médio não bordm o conceito de

Leia mais

Volumes de Sólidos de Revolução. Volumes de Sólidos de Revolução. 1.O método do disco 2.O método da arruela 3.Aplicação

Volumes de Sólidos de Revolução. Volumes de Sólidos de Revolução. 1.O método do disco 2.O método da arruela 3.Aplicação UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Volumes de Sólidos

Leia mais

CÁLCULO I. Apresentar a técnica de integração por substituição; Utilizar técnicas apresentadas no cálculo integral.

CÁLCULO I. Apresentar a técnica de integração por substituição; Utilizar técnicas apresentadas no cálculo integral. CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Auls n o 8: Técnics de Integrção I - Método d Substituição Objetivos d Aul Apresentr técnic de integrção por substituição; Utilizr técnics presentds

Leia mais

Análise numérica para solução de integrais não elementares

Análise numérica para solução de integrais não elementares UNIVERSIDADE ESTADUAL DA PARAIBA CAMPUS CAMPINA GRANDE CENTRO DE CIÊNCIAS E TECNOLOGIA ESPECIALIZACAO EM MATEMÁTICA PURA E APLICADA Análise numéric pr solução de integris não elementres por BALDOINO SONILDO

Leia mais

A integral de Riemann e Aplicações Aula 28

A integral de Riemann e Aplicações Aula 28 A integrl de Riemnn - Continução Aplicções d Integrl A integrl de Riemnn e Aplicções Aul 28 Alexndre Nolsco de Crvlho Universidde de São Pulo São Crlos SP, Brzil 16 de Mio de 2014 Primeiro Semestre de

Leia mais

Teorema Fundamental do Cálculo - Parte 2

Teorema Fundamental do Cálculo - Parte 2 Universidde de Brsíli Deprtmento de Mtemátic Cálculo Teorem Fundmentl do Cálculo - Prte 2 No teto nterior vimos que, se F é um primitiv de f em [,b], então f()d = F(b) F(). Isto reduz o problem de resolver

Leia mais

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c.

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c. EQUAÇÃO DO GRAU Você já estudou em série nterior s equções do 1 gru, o gru de um equção é ddo pelo mior expoente d vriável, vej lguns exemplos: x + = 3 equção do 1 gru já que o expoente do x é 1 5x 8 =

Leia mais

Integrais impróprias - continuação Aula 36

Integrais impróprias - continuação Aula 36 Integris imprópris - continução Aul 36 Alexndre Nolsco de Crvlho Universidde de São Pulo São Crlos SP, Brzil 06 de Junho de 204 Primeiro Semestre de 204 Turm 20406 - Engenhri Mecânic Alexndre Nolsco de

Leia mais

Introdução ao estudo de equações diferenciais

Introdução ao estudo de equações diferenciais MTDI I - 2007/08 - Introdução o estudo de equções diferenciis 63 Introdução o estudo de equções diferenciis Existe um grnde vriedde de situções ns quis se desej determinr um quntidde vriável prtir de um

Leia mais

16.4. Cálculo Vetorial. Teorema de Green

16.4. Cálculo Vetorial. Teorema de Green ÁLULO VETORIAL álculo Vetoril pítulo 6 6.4 Teorem de Green Nest seção, prenderemos sore: O Teorem de Green pr váris regiões e su plicção no cálculo de integris de linh. INTROUÇÃO O Teorem de Green fornece

Leia mais

Bhaskara e sua turma Cícero Thiago B. Magalh~aes

Bhaskara e sua turma Cícero Thiago B. Magalh~aes 1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como

Leia mais

Integrais Imprópias Aula 35

Integrais Imprópias Aula 35 Frções Prciis - Continução e Integris Imprópis Aul 35 Alexndre Nolsco de Crvlho Universidde de São Pulo São Crlos SP, Brzil 05 de Junho de 203 Primeiro Semestre de 203 Turm 20304 - Engenhri de Computção

Leia mais

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução (9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se

Leia mais

Integração Numérica Grau de uma regra

Integração Numérica Grau de uma regra Integrção Numéric Gru de um regr Um regr diz-se de gru n se integrr sem erro todos os polinómios de gru n eexistir pelo menos um polinómio de gru n que não é integrdo exctmente. Exemplos: Regr do Trpézio

Leia mais

Sistems Lineres Form Gerl onde: ij ij coeficientes n n nn n n n n n n b... b... b...

Sistems Lineres Form Gerl onde: ij ij coeficientes n n nn n n n n n n b... b... b... Cálculo Numérico Módulo V Resolução Numéric de Sistems Lineres Prte I Profs.: Bruno Correi d Nóbreg Queiroz José Eustáquio Rngel de Queiroz Mrcelo Alves de Brros Sistems Lineres Form Gerl onde: ij ij coeficientes

Leia mais

Aula de solução de problemas: cinemática em 1 e 2 dimensões

Aula de solução de problemas: cinemática em 1 e 2 dimensões Aul de solução de problems: cinemátic em 1 e dimensões Crlos Mciel O. Bstos, Edurdo R. Azevedo FCM 01 - Físic Gerl pr Químicos 1. Velocidde instntâne 1 A posição de um corpo oscil pendurdo por um mol é

Leia mais

Capítulo Breve referência histórica Aproximação da primeira derivada

Capítulo Breve referência histórica Aproximação da primeira derivada Cpítulo 5 Derivção e integrção numéric 5.1 Breve referênci istóric As técnics de derivção e integrção numéric, d form como s iremos estudr neste cpítulo, têm mesm origem d interpolção. No entnto, temos

Leia mais

Relembremos que o processo utilizado na definição das três integrais já vistas consistiu em:

Relembremos que o processo utilizado na definição das três integrais já vistas consistiu em: Universidde Slvdor UNIFAS ursos de Engenhri álculo IV Prof: Il Reouçs Freire álculo Vetoril Texto 4: Integris de Linh Até gor considermos três tipos de integris em coordends retngulres: s integris simples,

Leia mais

Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017

Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017 Potencil Elétrico Evndro Bstos dos Sntos 14 de Mrço de 2017 1 Energi Potencil Elétric Vmos começr fzendo um nlogi mecânic. Pr um corpo cindo em um cmpo grvitcionl g, prtir de um ltur h i té um ltur h f,

Leia mais

3. CÁLCULO INTEGRAL EM IR

3. CÁLCULO INTEGRAL EM IR 3 CÁLCULO INTEGRAL EM IR A importâni do álulo integrl em IR reside ns sus inúmers plições em vários domínios d engenhri, ms tmém em ísi, em teori ds proiliddes, em eonomi, em gestão 3 Prtição de um intervlo

Leia mais

SÉRIES DE FOURIER. 1. Uma série trigonométrica e sua sequência das somas parciais (S N ) N são dadas por

SÉRIES DE FOURIER. 1. Uma série trigonométrica e sua sequência das somas parciais (S N ) N são dadas por SÉRIES DE FOURIER 1. Um série trigonométric e su sequênci ds soms prciis (S N ) N são dds por (1) c n e inx, n Z, c n C, x R ; S N = n= c n e inx. Tl série converge em x R se (S N (x)) N converge e, o

Leia mais

2.4 Integração de funções complexas e espaço

2.4 Integração de funções complexas e espaço 2.4 Integrção de funções complexs e espço L 1 (µ) Sej µ um medid no espço mensurável (, F). A teori de integrção pr funções complexs é um generlizção imedit d teori de integrção de funções não negtivs.

Leia mais

FUNÇÃO LOGARITMICA. Professora Laura. 1 Definição de Logaritmo

FUNÇÃO LOGARITMICA. Professora Laura. 1 Definição de Logaritmo 57 FUÇÃO LOGARITMICA Professor Lur 1 Definição de Logritmo Chm se logritmo de um número > 0 em relção um bse (0 < 1), o expoente que se deve elevr bse, fim de que potênci obtid sej igul. log, onde: > 0,

Leia mais

A integral definida. f (x)dx P(x) P(b) P(a)

A integral definida. f (x)dx P(x) P(b) P(a) A integrl definid Prof. Méricles Thdeu Moretti MTM/CFM/UFSC. - INTEGRAL DEFINIDA - CÁLCULO DE ÁREA Já vimos como clculr áre de um tipo em específico de região pr lgums funções no intervlo [, t]. O Segundo

Leia mais

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A.

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A. MÓDULO - AULA Aul Técnics de Integrção Substituição Trigonométric Objetivo Conhecer técnic de integrção chmd substituição trigonométric. Introdução Você prendeu, no Cálculo I, que integrl de um função

Leia mais

x = x 2 x 1 O acréscimo x é também chamado de diferencial de x e denotado por dx, isto é, dx = x.

x = x 2 x 1 O acréscimo x é também chamado de diferencial de x e denotado por dx, isto é, dx = x. Universidde Federl Fluminense Mtemátic II Professor Mri Emili Neves Crdoso Cpítulo Integrl. Diferenciis dy Anteriormente, foi considerdo um símolo pr derivd de y em relção à, ms em lguns prolems é útil

Leia mais

FUNC ~ OES REAIS DE VARI AVEL REAL

FUNC ~ OES REAIS DE VARI AVEL REAL FUNC ~ OES REAIS DE VARI AVEL REAL Clculo Integrl AMI ESTSetubl-DMAT 15 de Dezembro de 2012 AMI (ESTSetubl-DMAT) LIC ~AO 18 15 de Dezembro de 2012 1 / 14 Integrl de Riemnn Denic~o: Sej [, b] um intervlo

Leia mais

Capítulo III INTEGRAIS DE LINHA

Capítulo III INTEGRAIS DE LINHA pítulo III INTEGRIS DE LINH pítulo III Integris de Linh pítulo III O conceito de integrl de linh é um generlizção simples e nturl do conceito de integrl definido: f ( x) dx Neste último, integr-se o longo

Leia mais

Lista 5: Geometria Analítica

Lista 5: Geometria Analítica List 5: Geometri Anlític A. Rmos 8 de junho de 017 Resumo List em constnte tulizção. 1. Equção d elipse;. Equção d hiperból. 3. Estudo unificdo ds cônics não degenerds. Elipse Ddo dois pontos F 1 e F no

Leia mais

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES Prof. Erivelton Gerldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE

Leia mais

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS EQUAÇÕES E INEQUAÇÕES POLINOMIAIS Um dos grndes problems de mtemátic n ntiguidde er resolução de equções polinomiis. Encontrr um fórmul ou um método pr resolver tis equções er um grnde desfio. E ind hoje

Leia mais

Matemática para Economia Les 201

Matemática para Economia Les 201 Mtemátic pr Economi Les uls 8_9 Integris Márci znh Ferrz Dis de Mores _//6 Integris s operções inverss n mtemátic: dição e sutrção multiplicção e divisão potencição e rdicição operção invers d dierencição

Leia mais

Cálculo em Computadores 2006 Integrais e volumes 1. Cálculo em Computadores Integrais de funções de duas variáveis reais 4

Cálculo em Computadores 2006 Integrais e volumes 1. Cálculo em Computadores Integrais de funções de duas variáveis reais 4 Cálculo em Computdores 2006 Integris e volumes 1 Contents Cálculo em Computdores 2006 Integris de funções de dus vriáveis 1 Áres no plno 2 1.1 exercícios...............................................

Leia mais

8.1 Áreas Planas. 8.2 Comprimento de Curvas

8.1 Áreas Planas. 8.2 Comprimento de Curvas 8.1 Áres Plns Suponh que um cert região D do plno xy sej delimitd pelo eixo x, pels rets x = e x = b e pelo grá co de um função contínu e não negtiv y = f (x) ; x b, como mostr gur 8.1. A áre d região

Leia mais

Matemática /09 - Integral de nido 68. Integral de nido

Matemática /09 - Integral de nido 68. Integral de nido Mtemátic - 8/9 - Integrl de nido 68 Introdução Integrl de nido Sej f um função rel de vriável rel de nid e contínu num intervlo rel I = [; b] e tl que f () ; 8 [; b]: Se dividirmos [; b] em n intervlos

Leia mais

FLEXÃO E TENSÕES NORMAIS.

FLEXÃO E TENSÕES NORMAIS. LIST N3 FLEXÃO E TENSÕES NORMIS. Nos problems que se seguem, desprer o peso próprio (p.p.) d estrutur, menos qundo dito explicitmente o contrário. FÓRMUL GERL D FLEXÃO,: eixos centris principis M G N M

Leia mais

6.1 Derivação & Integração: regras básicas

6.1 Derivação & Integração: regras básicas 6. Derivção & Integrção: regrs básics REGRAS BÁSICAS DE DERIVAÇÃO. Regr d som:........................................ (u + k v) = u + k v ; k constnte. Regr do Produto:.....................................................

Leia mais

1 Distribuições Contínuas de Probabilidade

1 Distribuições Contínuas de Probabilidade Distribuições Contínus de Probbilidde São distribuições de vriáveis letóris contínus. Um vriável letóri contínu tom um numero infinito não numerável de vlores (intervlos de números reis), os quis podem

Leia mais

4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe

4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe 4 Teorem de Green Sej U um berto de R 2 e r : [, b] U um cminho seccionlmente, fechdo e simples, isto é, r não se uto-intersect, excepto ns extremiddes Sej região interior r([, b]) prte d dificuldde n

Leia mais

Objetivo. Integrais de funções vetoriais. Conhecer a integral de funções vetoriais; Aprender a calcular comprimentos de curvas parametrizadas;

Objetivo. Integrais de funções vetoriais. Conhecer a integral de funções vetoriais; Aprender a calcular comprimentos de curvas parametrizadas; Funções vetoriis Integris MÓDULO 3 - AULA 35 Aul 35 Funções vetoriis Integris Objetivo Conhecer integrl de funções vetoriis; Aprender clculr comprimentos de curvs prmetrizds; Aprender clculr áres de regiões

Leia mais

Função Modular. x, se x < 0. x, se x 0

Função Modular. x, se x < 0. x, se x 0 Módulo de um Número Rel Ddo um número rel, o módulo de é definido por:, se 0 = `, se < 0 Observção: O módulo de um número rel nunc é negtivo. Eemplo : = Eemplo : 0 = ( 0) = 0 Eemplo : 0 = 0 Geometricmente,

Leia mais

Integral imprópria em R n (n = 1, 2, 3)

Integral imprópria em R n (n = 1, 2, 3) Universidde Federl do Rio de Jneiro Instituto de Mtemátic Deprtmento de Métodos Mtemáticos Integrl Imprópri Integrl imprópri em R n (n =,, 3) Autores: Angel Cássi Bizutti e Ivo Fernndez Lopez Introdução

Leia mais

Aula 20 Hipérbole. Objetivos

Aula 20 Hipérbole. Objetivos MÓDULO 1 - AULA 20 Aul 20 Hipérbole Objetivos Descrever hipérbole como um lugr geométrico. Determinr su equção reduzid no sistem de coordends com origem no ponto médio entre os focos e eixo x como o eixo

Leia mais

1. Conceito de logaritmo

1. Conceito de logaritmo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Logritmos Prof.: Rogério

Leia mais

FÓRMULA DE TAYLOR USP MAT

FÓRMULA DE TAYLOR USP MAT FÓRMULA DE TAYLOR USP MAT 5 SEVERINO TOSCANO DO REGO MELO. Polinômios de Tylor A ret tngente o gráfico de um função f derivável em um ponto define função de primeiro gru que melhor proxim função em pontos

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Universidde Estdul do Sudoeste d Bhi Deprtmento de Estudos Básicos e Instrumentis 3 Vetores Físic I Prof. Roberto Cludino Ferreir 1 ÍNDICE 1. Grndez Vetoril; 2. O que é um vetor; 3. Representção de um

Leia mais

Revisão de Polinômios

Revisão de Polinômios Cpítulo 1 Revisão de Polinômios Definição 1 Um polinômio p é um função com domínio e imgem em um conjunto C ou R ddo n form: p : C C x p(x) = 0 x n + 1 x n 1 +... + n 1 x + 0 O número inteiro n é dito

Leia mais

Teorema de Green no Plano

Teorema de Green no Plano Instituto Superior Técnico eprtmento de Mtemátic Secção de Álgebr e Análise Prof. Gbriel Pires Teorem de Green no Plno O teorem de Green permite relcionr o integrl de linh o longo de um curv fechd com

Leia mais

Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação

Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação Resolução ds tividdes complementres Mtemátic M Equções Polinomiis p. 86 (PUC-SP) No universo C, equção 0 0 0 dmite: ) três rízes rcionis c) dus rízes irrcionis e) um únic riz positiv b) dus rízes não reis

Leia mais

Derivação e Integração Numérica. 1.1 Aproximação da derivada por diferenças nitas. f (x 0 ) f(x 0) f(x 0 h) = y 1 y 0

Derivação e Integração Numérica. 1.1 Aproximação da derivada por diferenças nitas. f (x 0 ) f(x 0) f(x 0 h) = y 1 y 0 Derivção e Integrção Numéric 1 Derivção Numéric Ddo um conjunto de pontos (x i, y i ) ( ) n i=1, derivd dy pode ser clculd de váris forms N próxim dx i seção trblremos com diferençs nits, que é mis dequd

Leia mais

UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA

UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA UNVERSDDE DE SÃO PULO ESOL POLTÉN Deprtmento de Engenhri de Estruturs e Geotécnic URSO ÁSO DE RESSTÊN DOS TERS FSÍULO Nº 5 Flexão oblíqu H. ritto.010 1 FLEXÃO OLÍU 1) udro gerl d flexão F LEXÃO FLEXÃO

Leia mais

META: Introduzir o conceito de integração de funções de variáveis complexas.

META: Introduzir o conceito de integração de funções de variáveis complexas. Integrção omplex AULA 7 META: Introduzir o conceito de integrção de funções de vriáveis complexs. OBJETIVOS: Ao fim d ul os lunos deverão ser cpzes de: Definir integrl de um função complex. lculr integrl

Leia mais

NOTA DE AULA. Tópicos em Matemática

NOTA DE AULA. Tópicos em Matemática Universidde Tecnológic Federl do Prná Cmpus Curitib Prof. Lucine Deprtmento Acdêmico de Mtemátic NOTA DE AULA Tópicos em Mtemátic Fonte: http://eclculo.if.usp.br/ 1. CONJUNTOS NUMÉRICOS: 1.1 Números Nturis

Leia mais

A força não provém da capacidade física, e sim de uma vontade indomável. Mahatma Gandhi

A força não provém da capacidade física, e sim de uma vontade indomável. Mahatma Gandhi A forç não provém d cpcidde físic, e sim de um vontde indomável. Mhtm Gndhi Futuros militres, postos! É hor de meter o ggá! Este é o módulo 8 do curso de MATEMÁTICA d turm AFA-EN-EFOMM- EsPCE-EEAr. Nesse

Leia mais

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática 1 NÚMEROS E OPERAÇÕES 1.1 Lingugem Mtemátic AULA 1 1 1.2 Conjuntos Numéricos Chm-se conjunto o grupmento num todo de objetos, bem definidos e discerníveis, de noss percepção ou de nosso entendimento, chmdos

Leia mais

Integral indefinida ou integral imprópria

Integral indefinida ou integral imprópria Integrl indefinid ou integrl imprópri Prcino-Pereir, Trcisio 13 de julho de 217 preprints d Sobrl Mtemátic no. 217.4 Editor Trcisio Prcino-Pereir trcisio@member.ms.org Resumo Neste rtigo defendo idei que

Leia mais

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Determinantes

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Determinantes Universidde Federl de Pelots Vetores e Álgebr Liner Prof : Msc. Merhy Heli Rodrigues Determinntes Determinntes Definição: Determinnte é um número ssocido um mtriz qudrd.. Determinnte de primeir ordem Dd

Leia mais

CPV 82% de aprovação na ESPM em 2011

CPV 82% de aprovação na ESPM em 2011 CPV 8% de provção n ESPM em 0 Prov Resolvid ESPM Prov E 0/julho/0 MATEMÁTICA. Considerndo-se que x = 97, y = 907 e z =. xy, o vlor d expressão x + y z é: ) 679 b) 58 c) 7 d) 98 e) 77. Se três empds mis

Leia mais

equação paramêtrica/vetorial da curva: a lei γ(t) =... Dizemos que a curva é fechada se I = [a, b] e γ(a) = γ(b).

equação paramêtrica/vetorial da curva: a lei γ(t) =... Dizemos que a curva é fechada se I = [a, b] e γ(a) = γ(b). 1 Lembrete: curvs Definição Chmmos Curv em R n : um função contínu : I R n onde I R é intervlo. (link desenho curvs) Definimos: Trço d curv: imgem equção prmêtric/vetoril d curv: lei (t) =... Dizemos que

Leia mais

o Seu pé direito na medicina

o Seu pé direito na medicina o Seu pé direito n medicin UNIFESP //006 MATEMÁTIA 0 Entre os primeiros mil números inteiros positivos, quntos são divisíveis pelos números,, 4 e 5? 60 b) 0 c) 0 d) 6 e) 5 Se o número é divisível por,,

Leia mais

Progressões Aritméticas

Progressões Aritméticas Segund Etp Progressões Aritmétics Definição São sequêncis numérics onde cd elemento, prtir do segundo, é obtido trvés d som de seu ntecessor com um constnte (rzão).,,,,,, 1 3 4 n 1 n 1 1º termo º termo

Leia mais

Módulo 02. Sistemas Lineares. [Poole 58 a 85]

Módulo 02. Sistemas Lineares. [Poole 58 a 85] Módulo Note em, leitur destes pontmentos não dispens de modo lgum leitur tent d iliogrfi principl d cdeir Chm-se à tenção pr importânci do trlho pessol relizr pelo luno resolvendo os prolems presentdos

Leia mais

9.2 Integração numérica via interpolação polinomial

9.2 Integração numérica via interpolação polinomial Cpítulo 9 Integrção Numéric 9. Introdução A integrção numéric é o processo computcionl cpz de produzir um vlor numérico pr integrl de um função sobre um determindo conjunto. El difere do processo de ntidiferencição,

Leia mais

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos 3. Cálculo integrl em IR 3.. Integrl Indefinido 3... Definição, Proprieddes e Exemplos A noção de integrl indefinido prece ssocid à de derivd de um função como se pode verificr prtir d su definição: Definição

Leia mais

1 x 5 (d) f = 1 + x 2 2 (f) f = tg 2 x x p 1 + x 2 (g) f = p x + sec 2 x (h) f = x 3p x. (c) f = 2 sen x. sen x p 1 + cos x. p x.

1 x 5 (d) f = 1 + x 2 2 (f) f = tg 2 x x p 1 + x 2 (g) f = p x + sec 2 x (h) f = x 3p x. (c) f = 2 sen x. sen x p 1 + cos x. p x. 6. Primitivs cd. 6. Em cd cso determine primitiv F (x) d função f (x), stisfzendo condição especi- () f (x) = 4p x; F () = f (x) = x + =x ; F () = (c) f (x) = (x + ) ; F () = 6. Determine função f que

Leia mais

ESTATÍSTICA APLICADA. 1 Introdução à Estatística. 1.1 Definição

ESTATÍSTICA APLICADA. 1 Introdução à Estatística. 1.1 Definição ESTATÍSTICA APLICADA 1 Introdução à Esttístic 1.1 Definição Esttístic é um áre do conhecimento que trduz ftos prtir de nálise de ddos numéricos. Surgiu d necessidde de mnipulr os ddos coletdos, com o objetivo

Leia mais

Elementos Finitos Isoparamétricos

Elementos Finitos Isoparamétricos Cpítulo 5 Elementos Finitos Isoprmétricos 5.1 Sistems de Referênci Globl e Locl Considere o elemento liner, ilustrdo n Figur 5.1, com nós i e j, cujs coordends são x i e x j em relção o sistem de referênci

Leia mais

INTERPOLAÇÃO POLINOMIAL E INTEGRAÇÃO NUMÉRICA. Equipe de Cálculo Numérico do MAP/IME/USP

INTERPOLAÇÃO POLINOMIAL E INTEGRAÇÃO NUMÉRICA. Equipe de Cálculo Numérico do MAP/IME/USP INTERPOLAÇÃO POLINOMIAL E INTEGRAÇÃO NUMÉRICA Equipe de Cálculo Numérico do MAP/IME/USP Nests nots desenvolveremos teori d prte finl do curso, escolendo lguns cminos lterntivos à referênci principl, que

Leia mais

A Lei das Malhas na Presença de Campos Magnéticos.

A Lei das Malhas na Presença de Campos Magnéticos. A Lei ds Mlhs n Presenç de mpos Mgnéticos. ) Revisão d lei de Ohm, de forç eletromotriz e de cpcitores Num condutor ôhmico n presenç de um cmpo elétrico e sem outrs forçs tundo sore os portdores de crg

Leia mais

Um disco rígido de 300Gb foi dividido em quatro partições. O conselho directivo ficou. 24, os alunos ficaram com 3 8

Um disco rígido de 300Gb foi dividido em quatro partições. O conselho directivo ficou. 24, os alunos ficaram com 3 8 GUIÃO REVISÕES Simplificção de expressões Um disco rígido de 00Gb foi dividido em qutro prtições. O conselho directivo ficou com 1 4, os docentes ficrm com 1 4, os lunos ficrm com 8 e o restnte ficou pr

Leia mais

Aula 10 Estabilidade

Aula 10 Estabilidade Aul 0 Estbilidde input S output O sistem é estável se respost à entrd impulso 0 qundo t Ou sej, se síd do sistem stisfz lim y(t) t = 0 qundo entrd r(t) = impulso input S output Equivlentemente, pode ser

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

Substituição Trigonométrica. Substituição Trigonométrica. Se a integral fosse. a substituição u = a 2 x 2 poderia ser eficaz, mas, como está,

Substituição Trigonométrica. Substituição Trigonométrica. Se a integral fosse. a substituição u = a 2 x 2 poderia ser eficaz, mas, como está, UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. Introdução Se integrl

Leia mais

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc.

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc. Aul Métodos Esttísticos sticos de Apoio à Decisão Aul Mônic Brros, D.Sc. Vriáveis Aletóris Contínus e Discrets Função de Probbilidde Função Densidde Função de Distribuição Momentos de um vriável letóri

Leia mais

Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática

Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Universidde Federl de Mins Geris Instituto de Ciêncis Exts Deprtmento de Mtemátic Aproximção Por Funções Polinomiis (Polinômios de Tylor) Wi Gerldo Moreir dos Sntos Belo Horizonte, Julho de 26 Em tudo

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - CAPES MATRIZES Prof. Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr Ciêncis Sociis

Leia mais

e dx dx e x + Integrais Impróprias Integrais Impróprias

e dx dx e x + Integrais Impróprias Integrais Impróprias UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. Integris imprópris

Leia mais

Aspectos do Teorema Fundamental do Cálculo

Aspectos do Teorema Fundamental do Cálculo Aspectos do Teorem Fundmentl do Cálculo Luis Aduto Medeiros Conferênci proferid n Fculdde de Mtemátic - UFPA (Belém Mrço de 2008) Então porque pint? Por nd. Procuro simplesmente reproduzir o que vejo W.

Leia mais