3. Admitindo SOLUÇÃO: dy para x 1 é: dx. dy 3t. t na expressão da derivada, resulta: Questão (10 pontos): Seja f uma função derivável e seja g x f x
|
|
- Lucas das Neves Botelho
- 3 Há anos
- Visualizações:
Transcrição
1 UIVERSIDADE FEDERAL DE ITAJUBÁ CALCULO e PROVA DE TRASFERÊCIA ITERA, EXTERA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR 9/6/ CADIDATO: CURSO PRETEDIDO: OBSERVAÇÕES: Prov sem cosult. A prov pode ser feit lápis. Proibido o uso de clculdors e similres. Durção: HORAS. Questão ( potos): Sej f um fução derivável e sej g f que f 8, pode-se firmr que o vlor de g é: ) b) c) d) e) Temos: g f. 6. Pr, result f g. Clculdo, obtemos: g f 8. g. g. Admitido Questão ( potos): Sedo t t 7t, etão o vlor de t d pr é: d ) b) c) 6 d) 6 e) 66 A fução dd está form prmétric. d d este cso, sbemos que: dt d d dt d t t 7 d t. t d d t t 7 Portto: Pr, temos: t Fzedo t t epressão d derivd, result: d d t t 7t d d d d 6
2 Questão ( potos): Clculdo o vlor d itegrl I d substituição de vriáveis coveiete, ecotrmos:, e usdo um ) b) 6 7 c) d) 8 e) 9 Podemos fzer: t t t t Diferecido, obtemos: d. t. t. dt d 6 t. t. dt Pr t Pr 8 t 8 I I I 6t. t. dt 6 t. dt 6 t t. t t t.. 6. t dt Clculdo, obtemos: 6 I Questão ( potos): Achr z f, ) f, l e l b) f, l e l c) f, l e l d) f, l e l e) f, l e l z se e e f, l e z Temos: f, d f, SOLUÇÃO e Clculdo: f, l e C Pr f, l e C l e e C C l Portto: f, l e l d
3 Questão ( potos): A áre itd pels curvs e vle: ) b) c) d) e) Devemos iicilmete fzer um esboço ds curvs evolvids pr loclizr áre ser clculd: Assim: A áre itd pels dus curvs será: S * d.. d. ret prábol. S d. Clculdo, obtemos filmete: S u. A. 6 Questão ( potos): Achr f, sbedo que f cos e 7. Temos: f f. Etão: f d f cos e 7. d.cos. d. e. d. d 7. d Clculdo: f.se. e.l 7 C
4 7 Questão ( potos): Ecotre os vlores de, b e c, de modo que fução defiid pel equção c b f teh Míimo Reltivo o poto, P e que seu gráfico coteh o poto, Q. Como fução possui Míimo Reltivo o poto, P, etão devemos ter f. Temos ) ( A b b f b f Como os potos, P e, Q pertecem à curv d fução, teremos: ) ( 6 ) ( C c b f B c b f Resolvedo o sistem formdo por ests três equções, obtemos: c b 8 Questão ( potos): Clcule o... Temos:... som dos termos de um Progressão Aritmétic (P.A.). Do termo gerl d P.A., sbemos que: r. o osso cso:.. termos. Sbemos tmbém que:. S Portto:. S Assim: Como se trt de um ite fudmetl, etão teremos:......
5 9 Questão ( potos): Sbe-se que ret r, tgete à curv de equção rctg pelo poto, P é perpediculr à ret s, que cotém o poto Q, equção d ret s. SOLUÇÃO. Ecotre f pelo poto Sbemos que ret tgete à curv P, é f.. o osso cso: f rctg f f f. Portto, ret r tem equção:. Como ret s é perpediculr à ret r etão devemos ter m.. Temos m r, portto. m s ms. ms. A ret s tem form r m s Assim: Questão ( potos): Achr z f, z se e e, l e z. z z d z SOLUÇÃO d Temos:. Resolvedo, obtemos: z e C Como z, l e l e l z l e l. C e, temos: Portto: C e e
6 UIVERSIDADE FEDERAL DE ITAJUBÁ FÍSICA PROVA DE TRASFERÊCIA ITERA, EXTERA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR 9/6/ CADIDATO: CURSO PRETEDIDO: OBSERVAÇÕES: Prov sem cosult. Proibido o uso de clculdors e similres. Durção: HORAS Questão ( potos): Um objeto putiforme é rremessdo pr cim e descreve um trjetóri verticl. Cosidere que resistêci do r poss ser desprezd em todo o movimeto. Qudo o objeto se ecotr o poto mis lto d trjetóri:. su velocidde é zero e su celerção é zero; b. su velocidde é diferete de zero e su celerção é zero; c. su velocidde é zero e su celerção é diferete de zero; d. su velocidde é diferete de zero e su celerção é diferete de zero; Altertiv (c). o poto mis lto d trjetóri o objeto está mometemete em repouso e, portto, su velocidde esse istte é zero. Su celerção, porém, é diferete de zero porque o logo do movimeto forç resultte sobre o objeto, que é seu peso, é diferete de zero. Questão ( potos): O gráfico bio mostr eergi potecil U() em fução d posição pr um corpo que descreve um movimeto hrmôico simples sob ção de um forç resturdor F. Qul é posição desse corpo qudo ess forç é ul?. = m; b. = m; c. = m; d. = m; Altertiv (c). Em um gráfico de eergi potecil versus posição, forç sobre o corpo em um poto é umericmete igul o vlor d iclição d tgete à curv quele poto. o gráfico em questão pode ser visto que iclição d tgete é zero qudo o corpo está posição = m.
7 Questão ( potos): Um prtícul de mss M descreve um movimeto circulr uiforme horizotl de rio R e setido horário cujo cetro é o poto O, como mostr figur o ldo. A respeito d forç resultte sobre ess prtícul é correto firmr que el:. tem direção e o setido do vetor ; b. tem direção e o setido do vetor b; c. tem direção e o setido do vetor c; d. tem direção e o setido do vetor d; Altertiv (). A celerção de um prtícul que descreve um movimeto circulr uiforme tem direção e o setido do vetor (celerção cetrípet). Portto forç resultte tem tmbém mesm direção e o mesmo setido. Questão ( potos): Um bloco desce um plo iclido com velocidde costte, como mostr figur o ldo. Se pudermos desprezr ção do r sobre esse movimeto, é trito sobre o bloco:. é ul; b. tem mesm mgitude que o peso do bloco; c. tem mesm mgitude que compoete do peso perpediculr o plo iclido; d. tem mesm mgitude que compoete do peso prlel o plo iclido; Altertiv (d). Se o bloco se move com velocidde costte o logo do plo iclido, forç resultte ess direção é ul. Como há somete dus forçs ess direção, forç de trito e compoete do peso prlel o plo iclido, mgitude desss dus forçs deve, ecessrimete, ser mesm. Questão ( potos): Cosidere gor que sobre o bloco d questão terior sej plicd um forç F prlel o plo iclido, de modo que o bloco gor sub o plo iclido com velocidde costte. Aid desprezdo o efeito do r sobre o movimeto, pode-se firmr que mgitude dess forç F:. é um qurto d mgitude d forç de trito; b. é metde d mgitude d forç de trito; c. é igul à mgitude d forç de trito; d. é o dobro d mgitude d forç de trito; Altertiv (d). Como o bloco se move com velocidde costte o logo do plo iclido, forç resultte ess direção é ul. A mgitude d forç F é, etão, igul à som ds mgitudes ds outrs dus forçs (trito e compoete do peso prlel o plo iclido). Como esss dus forçs são iguis, coforme discutido questão terior, mgitude d forç F será o dobro d mgitude d forç de trito.
8 6 Questão ( potos): Plutão é um plet-ão cujo rio médio vle, km. Seu stélite Crote tem um rio médio de 6, km. A distâci etre esses dois objetos, medid de cetro cetro, é de cerc de, km. Se esses dois corpos fossem esféricos e tivessem mesm desidde médi, clcule qul seri distâci etre o cetro de mss do sistem Plutão-Crote e o cetro de Plutão.
9 7 Questão ( potos): O bloco B d figur bio está em repouso sobre o bloco A e preso à prede por um fio ietesível. A forç horizotl F é plicd sobre o bloco A, que se desloc pr direit com velocidde costte. Tto o coeficiete de trito ciético etre o bloco A e mes quto o coeficiete de trito ciético etre os blocos é,. Sbedo que mss de B é, kg e mss de A é,6 kg, determie o módulo d forç F. Adote g = m/s. B A F
10 8 Questão ( potos): Um bol de futebol (mss = g) é solt prtir do repouso de um cert ltur em relção o solo. Imeditmete tes de tocr o solo, su velocidde é, m/s. Supodo que colisão com o solo sej perfeitmete elástic, determie mgitude, direção e o setido do impulso que o solo eerce sobre bol durte colisão.
11 9 Questão ( potos): Um pêdulo simples é costituído por um esfer de g pres um fio ietesível de, m de comprimeto, de mss desprezível, como mostr figur o ldo. Supoh que iicilmete mss estej em repouso e o âgulo sej, o. O pêdulo é etão solto e oscil livremete sem ehum tipo de trito. Clcule eergi ciétic d esfer qudo el pss pelo poto mis bio de su trjetóri. Adote g = m/s. Ddos: se,º =,87; cos,º =,996
12 Questão ( potos): A posição de um prtícul de, kg é dd o Sistem Iterciol de uiddes (SI) pelo vetor r (t) =, t i +, t j, que vri em fução do tempo t. ess epressão i e j são, respectivmete, os vetores uitários s direções e. Clcule o mometo gulr dess prtícul o istte t =, s.
PROGRAD / COSEAC ENGENHARIAS MECÂNICA E PRODUÇÃO VOLTA REDONDA - GABARITO
Prov de Cohecietos Especíicos QUESTÃO:, poto Deterie os vlores de e pr os quis ução dd sej cotíu e R. =,,, é cotíu e :.. li li li li. li li é cotíu e :.. li li li li Obteos Resolvedo equções θ e β: Respost:.
VA L O R M É D I O D E U M A F U N Ç Ã O. Prof. Benito Frazão Pires
3 VA L O R M É D I O D E U M A F U N Ç Ã O Prof. Beito Frzão Pires 3. médi ritmétic A médi ritmétic (ou simplesmete médi) de vlores y, y 2,..., y é defiid como sedo o úmero y = y + y 2 + + y. () A médi
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.4
FICHA de AVALIAÇÃO de MATEMÁTICA A 5º Teste º Ao de escolridde Versão4 Nome: Nº Turm: Professor: José Tioco /4/8 Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods
M M N. Logo: MN = DC = DP + PC DC = AB + AB DC = 2 AB S ABCD = (AB + DC). = (AB + 2 AB). = 3 AB S M N CD = Assim temos que: M'N'CD h
QUESTÃO Sejm i, r + si e + (r s) + (r + s)i ( > ) termos de um seqüêci. etermie, em fução de, os vlores de r e s que torm est seqüêci um progressão ritmétic, sbedo que r e s são úmeros reis e i. Sbemos
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 1
FICHA de AVALIAÇÃO de MATEMÁTICA A 4º Teste º Ao de escolridde Versão Nome: Nº Turm: Professor: José Tioco 09/0/08 Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 2
FICHA de AVALIAÇÃO de MATEMÁTICA A 4º Teste º Ao de escolridde Versão Nome: Nº Turm: Professor: José Tioco 09/0/08 Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods
SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA
SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFEREÇA ( ( x( Coeficiete costte. ( ( x ( Coeficiete vriável (depedete do tempo. Aplicmos x( pr e cosidermos codição iicil ( ( ( M ( ( ( ( x( x( ( x(
POTENCIAÇÃO. pcdamatematica. a 1. 5 f) ( 5) 5 h) ( 3) a. b (5,2).(10,3) (9,9) 26 a. a a. Definição. Ex: a) Seja a, n e n 2. Definimos: n vezes
Sej, e. Defiimos: E0: Clcule: d) e) Defiição.... vezes 0 f) ( ) g) h) 0 6 ( ) i) ( ) j) E0: Dos úmeros bio, o que está mis próimo de (,).(0,) é: (9,9) 0,6 6, 6, d) 6 e) 60 E0: O vlor de 0, (0,6) é: 0,06
Lista 5. Funções de Uma Variável. Antiderivadas e Integral. e 4x dx. 1 + x 2 dx. 3 x dx
List 5 Fuções de Um Vriável Atiderivds e Itegrl O gráfico d fução f é presetdo bio. Idetifique o gráfico d tiderivd de f. i j k l m o p q e cos + e 5 + cos cos + se 7 + sec se Clcule s seguites tiderivds:
SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA
SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFEREÇA Coeficiete costte. SISTEMAS LIT CARACTERIZADOS POR EQUAÇÕES A DIFEREÇA COM COEFICIETES COSTATES Sistems descritos por equções difereç com coeficiete
FÍSICA MODERNA I AULA 19
Uiversidde de São ulo Istituto de Físic FÍSIC MODRN I U 9 rof. Márci de lmeid Rizzutto elletro sl rizzutto@if.us.br o. Semestre de 0 Moitor: Gbriel M. de Souz Stos ági do curso: htt:discilis.sto.us.brcourseview.h?id=905
Á R E A, S O M A D E R I E M A N N E A I N T E G R A L D E F I N I D A
Á R E A, S O M A D E R I E M A N N E A I N T E G R A L D E F I N I D A Prof. Beito Frzão Pires - hors. áre A oção de áre de um polígoo ou região poligol) é um coceito bem cohecido. Começmos defiido áre
Novo Espaço Matemática A, 12.º ano Proposta de teste de avaliação [março 2019]
Propost de teste de vlição [mrço 09] Nome: Ao / Turm: N.º: Dt: - - Não é permitido o uso de corretor. Deves riscr quilo que pretedes que ão sej clssificdo. A prov iclui um formulário. As cotções dos ites
EXAME NACIONAL DE SELEÇÃO 2010
EXAME NACIONAL DE SELEÇÃO 00 PROVA DE MATEMÁTICA o Di: 0/0/009 - QUINTA FEIRA HORÁRIO: 8h às 0h 5m (horário de Brsíli) EXAME NACIONAL DE SELEÇÃO 00 PROVA DE MATEMÁTICA º Di: 0/0 - QUINTA-FEIRA (Mhã) HORÁRIO:
SIMULADO 03 AFA/EN E Modelo: AFA/ESPCEX 15/04/2017 SIMULADO EN (1ª FASE) AFA / EN / EFOMM GABARITO MATEMÁTICA. Questão 01. Questão 02.
F / EN / EFOMM SIMULDO 0 F/EN E Modelo: F/ESPCEX EN Códio: 055 5/0/07 SIMULDO EN (ª FSE) MTEMÁTIC GITO Questão 0 p v() p p 00 00 Pode-se observr que v ( ) é um fução do seudo ru ode o do vértice é 50 O
Somas de Riemann e Integração Numérica. Cálculo 2 Prof. Aline Paliga
Soms de Riem e Itegrção Numéric Cálculo 2 Prof. Alie Plig Itrodução Problems de tgete e de velocidde Problems de áre e distâci Derivd Itegrl Defiid 1.1 Áres e distâcis 1.2 Itegrl Defiid 1.1 Áres e distâcis
SISTEMAS LINEARES. Cristianeguedes.pro.br/cefet
SISTEMAS LINEARES Cristieguedes.pro.r/cefet Itrodução Notção B A X Mtricil Form. : m m m m m m m A es Mtri dos Coeficiet : X Mtri dsvriáveis : m B Termos Idepede tes : Número de soluções Ddo um sistem
Este capítulo tem por objetivo apresentar métodos para resolver numericamente uma integral.
Nots de ul de Métodos Numéricos. c Deprtmeto de Computção/ICEB/UFOP. Itegrção Numéric Mrcoe Jmilso Freits Souz, Deprtmeto de Computção, Istituto de Ciêcis Exts e Biológics, Uiversidde Federl de Ouro Preto,
1. (6,0 val.) Determine uma primitiva de cada uma das seguintes funções. (considere a mudança de variável u = tan 2
Istituto Superior Técico Deprtmeto de Mtemátic Secção de Álgebr e Aálise o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBiom e MEFT o Sem. 00/ 5/J/0 - v. Durção: h30m RESOLUÇÃO. 6,0 vl. Determie um
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.1
FICHA de AVALIAÇÃO de MATEMÁTICA A 5º Teste º Ao de escolridde Versão Nome: Nº Turm: Proessor: José Tioco 3/4/8 Apresete o seu rciocíio de orm clr, idicdo todos os cálculos que tiver de eetur e tods s
Quando o polinômio divisor é da forma x + a, devemos substituir no polinômio P(x), x por a, visto que: x + a = x ( a).
POLINÔMIOS II. TEOREMA DE D ALEMBERT O resto d divisão de um poliômio P(x) por x é igul P(). m m Sej, com efeito, P x x x..., um poliômio de x, ordedo segudo s potecis m m decrescetes de x. Desigemos o
FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais
FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA Equções Epoeciis... Fução Epoecil..4 Logritmos: Proprieddes 6 Fução Logrítmic. Equções Logrítmics...5 Iequções Epoeciis e Logrítmics.8 Equções Epoeciis 0. (ITA/74)
QUESTÕES DE 01 A 09. Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas.
PROVA DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - SETEMBRO DE ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ PROFESSORA MARIA ANTÔNIA C GOUVEIA QUESTÕES DE A 9 Assile
Capítulo 5.1: Revisão de Série de Potência
Cpítulo 5.: Revisão de Série de Potêci Ecotrr solução gerl de um equção diferecil lier depede de determir um cojuto fudmetl ds soluções d equção homogêe. Já cohecemos um procedimeto pr costruir soluções
DESIGUALDADES Onofre Campos
OLIMPÍADA BRASILEIRA DE MATEMÁTICA NÍVEL II SEMANA OLÍMPICA Slvdor, 9 6 de jeiro de 00 DESIGUALDADES Oofre Cmpos oofrecmpos@olcomr Vmos estudr lgums desigulddes clássics, como s desigulddes etre s médis
Aula de Medidas Dinâmicas I.B De Paula
Aul de Medids Diâmics I.B De Pul A medição é um operção, ou cojuto de operções, destids determir o vlor de um grdez físic. O seu resultdo, comphdo d uidde coveiete, costitui medid d grdez. O objetivo dest
Integrais Duplos. Definição de integral duplo
Itegris uplos Recorde-se defiição de itegrl de Riem em : Um fução f :,, limitd em,, é itegrável à Riem em, se eiste e é fiito lim m j 0 j1 ft j j j1. ode P 0,, um qulquer prtição de, e t 1,,t um sequêci
0,01. Qual a resposta correta à pergunta de Chiquinho, considerandose os valores atribuídos às variáveis pelo professor?
GABARIO Questão: Chiquiho ergutou o rofessor qul o vlor umérico d eressão + y+ z. Este resodeu-lhe com cert iroi: como queres sber o vlor umérico de um eressão, sem tribuir vlores às vriáveis? Agor, eu
AULAS 7 A 9 MÉDIAS LOGARITMO. Para n números reais positivos dados a 1, a 2,..., a n, temos as seguintes definições:
009 www.cursoglo.com.br Treimeto pr Olimpíds de Mtemátic N Í V E L AULAS 7 A 9 MÉDIAS Coceitos Relciodos Pr úmeros reis positivos ddos,,...,, temos s seguites defiições: Médi Aritmétic é eésim prte d som
Considere uma função contínua arbitrária f(x) definida em um intervalo fechado [a, b].
Mtemátic II 9. Prof.: Luiz Gozg Dmsceo E-mils: dmsceo@yhoo.com.r dmsceo@uol.com.r dmsceo@hotmil.com http://www.dmsceo.ifo www.dmsceo.ifo dmsceo.ifo Itegris defiids Cosidere um fução cotíu ritrári f() defiid
uma função real SOLUÇÃO 20 Temos f(x)
Priipis otções o ojuto de todos os úmeros reis [,b] = { : b} ],b[ = { : < < b} (,b) pr ordedo gof fução omposto de g e f - mtri ivers d mtri T mtri trspost d mtri det () determite d mtri s uestões de ão
RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 13/03/10
RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: /0/0 PROFESSOR: CARIBÉ Num cert comuidde, 0% ds pessos estvm desempregds. Foi feit um cmph, que durou 6 meses, pr tetr iserir ests pessos
Transformada z. A transformada z é a TFTD da sequência r -n x[n] e a ROC é determinada pelo intervalo de valores de r para os quais.
Trsformd A TFTD de um sequêci é: Pr covergir série deve ser solutmete somável. Ifelimete muitos siis ão podem ser trtdos: A trsformd é um geerlição d TFTD que permite o trtmeto desses siis: Ζ Defiição:
SISTEMA DE EQUAÇÕES LINEARES
SISTEM DE EQUÇÕES LINERES Defiição Ddos os úmeros reis b com equção b ode são vriáveis ou icógits é deomid equção lier s vriáveis Os úmeros reis são deomidos coeficietes ds vriáveis respectivmete e b é
FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE ASSUNTO: SOMAÇÃO E ÁRAS E INTEGRAIS DEFINIDAS. INTEGRAIS DEFINIDAS
FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ENGENHARIA DE PRODUÇÃO ASSUNTO: SOMAÇÃO E ÁRAS E INTEGRAIS DEFINIDAS. PROFESSOR: MARCOS AGUIAR CÁLCULO II INTEGRAIS DEFINIDAS. NOTAÇÃO DE SOMAÇÃO
Aula de solução de problemas: cinemática em 1 e 2 dimensões
Aul de solução de problems: cinemátic em 1 e dimensões Crlos Mciel O. Bstos, Edurdo R. Azevedo FCM 01 - Físic Gerl pr Químicos 1. Velocidde instntâne 1 A posição de um corpo oscil pendurdo por um mol é
Exemplo: As funções seno e cosseno são funções de período 2π.
4. Séries de Fourier 38 As séries de Fourier têm váris plicções, como por eemplo resolução de prolems de vlor de cotoro. 4.. Fuções periódics Defiição: Um fução f() é periódic se eistir um costte T> tl
FUNÇÃO EXPONENCIAL. P potência. Se na potência a n a e n Q, temos: 1- Um número, não-nulo elevado a 0 (zero) é igual a 1 (um).
FUNÇÃO EXPONENCIAL - Iicilmete, pr estudr fução epoecil e, coseqüetemete, s equções epoeciis, devemos rever os coceitos sore Potecição. - POTENCIAÇÃO Oserve o produto io.... = 6 Este produto pode ser revido
LOGARÍTMOS 1- DEFINIÇÃO. log2 5
-(MACK) O vlor de o, é : 00 LOGARÍTMOS - DEFINIÇÃO ) -/ b)-/6 c) /6 d) / e) -(UFPA) O vlor do ( 5 5 ) é: ) b) - c) 0 d) e) 0,5 -( MACK) Se y= 5 :. ( 0,0),etão 00 y vle : 5 )5 b) c)7 d) e)6 - ( MACK) O
7 Solução aproximada Exemplo de solução aproximada. k critérios que o avaliador leva em consideração.
7 olução proximd Neste cpítulo é feit elborção de um ov formulção simplificd prtir de um estudo de Lel (008), demostrd por dus forms á cohecids de proximção do cálculo do vetor w de prioriddes retirds
Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire
Uiversidde Slvdor UNIFACS Cursos de Egehri Métodos Mtemáticos Aplicdos / Cálculo Avçdo / Cálculo IV Prof: Ilk Rebouçs Freire Série de Fourier Texto : Itrodução. Algus Pré-requisitos No curso de Cálculo
Olimpíada Brasileira de Matemática X semana olímpica 21 a 28 de janeiro de Eduardo Poço. Integrais discretas Níveis III e U
Olipíd Brsileir de Mteátic X se olípic 8 de jeiro de 007 Edurdo Poço Itegris discrets Níveis III e U Itegrl discret: dizeos que F é itegrl discret de F F f f se e soete se:, pr iteiro pricípio D es for,
CÁLCULO I. 1 Funções denidas por uma integral
CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Prof. Emerson Veig Prof. Tigo Coelho Aul n o 26: Teorem do Vlor Médio pr Integris. Teorem Fundmentl do Cálculo II. Funções dds por
(fg) (x + T ) = f (x + T ) g (x + T ) = f (x) g (x) = (fg) (x). = lim. f (t) dt independe de a. f(s)ds. f(s)ds =
LISTA DE EXERCÍCIOS - TÓPICOS DE MATEMÁTICA APLICADA (MAP 33 PROF: PEDRO T P LOPES WWWIMEUSPBR/ PPLOPES/TMA Os eercícios seguir form seleciodos dos livros dos utores G Folld (F, Djiro Figueiredo (D e E
No que segue, apresentamos uma definição formal para a exponenciação. Se a 0, por definição coloca-se a a a, a a a a e assim por diante. Ou.
MAT Cálculo Diferecil e Itegrl I RESUMO DA AULA TEÓRICA 3 Livro do Stewrt: Seções.5 e.6. FUNÇÃO EXPONENCIAL: DEFINIÇÃO No ue segue, presetos u defiição forl pr epoecição uisuer R e., pr 2 3 Se, por defiição
QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA.
006 PROVA CONHECIMENTOS ESPECÍFICOS MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetrl do Vestibulr Uificdo GABARITO
séries de termos positivos e a n b n, n (div.) (conv.)
Teorem.9 Sej e b i) (div.) ii) b º Critério de Comprção séries de termos positivos e b, N b (div.) (cov.) (cov.) Estude turez d série = sbedo que,! Ν! Teorem.0 º Critério de Comprção Sejm 0, b > 0 e lim
... Soma das áreas parciais sob a curva que fornece a área total sob a curva.
CAPÍTULO 7 - INTEGRAL DEFINIDA OU DE RIEMANN 7.- Notção Sigm pr Soms A defiição forml d itegrl defiid evolve som de muitos termos, pr isso itroduzimos o coceito de somtório ( ). Eemplos: ( + ) + + + +
UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS - CCE DEPARTAMENTO DE MATEMÁTICA
UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS - CCE DEPARTAMENTO DE MATEMÁTICA Cmpus Uiversitário - Viços, MG 657- Telefoe: () 899-9 E-mil: dm@ufv.br 6ª LISTA DE MAT 4 /II SÉRIES NUMÉRICAS.
Matemática C Extensivo V. 6
Mtemátic C Etesivo V 6 Eercícios ) D ) D ) C O vlor uitário do isumo é represetdo por y Portto pelo produto ds mtrizes A e B temos o seguite sistem: 5 5 9 y 5 5y 5y 9 5y 5 Portto: y 4 y 4 As médis uis
BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL
BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL Itrodução Biômio de Newto: O iômio de Newto desevolvido elo célere Isc Newto serve r o cálculo de um úmero iomil do tio ( ) Se for, fic simles é es decorr que ()²
Universidade Federal Fluminense ICEx Volta Redonda Métodos Quantitativos Aplicados I Professora: Marina Sequeiros
Uiversidde Federl Flumiese ICE Volt Redod Métodos Qutittivos Aplicdos I Professor: Mri Sequeiros. Poliômios Defiição: Um poliômio ou fução poliomil P, vriável, é tod epressão do tipo: P)=... 0, ode IN,
a.cosx 1) (ITA) Se P(x) é um polinômio do 5º grau que satisfaz as condições 1 = P(1) = P(2) = P(3) = P(4) = P(5) e P(6) = 0, então temos:
) (ITA) Se P(x) é um poliômio do 5º gru que stisfz s codições = P() = P() = P() = P(4) = P(5) e P(6) = 0, etão temos: ) P(0) = 4 b) P(0) = c) P(0) = 9 d) P(0) = N.D.A. ) (UFC) Sej P(x) um poliômio de gru,
0.2 Exercícios Objetivo. (c) (V)[ ](F)[ ] A segunda derivada de f é (4) x 0 2
A segud derivd de f é f() = { < 0 0 0 (4) Cálculo I List úmero 07 Logritmo e epoecil trcisio.prcio@gmil.com T. Prcio-Pereir Dep. de Computção lu@: Uiv. Estdul Vle do Acrú 3 de outubro de 00 pági d discipli
QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA.
006 PROVA CONHECIMENTOS ESPECÍFICOS MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetrl do Vestibulr Uificdo GABARITO
Cálculo Diferencial e Integral 1
NOTAS DE AULA Cálculo Dierecil e Itegrl Limites Proessor: Luiz Ferdo Nues, Dr. 8/Sem_ Cálculo ii Ídice Limites.... Noção ituitiv de ite.... Deiição orml de ite.... Proprieddes dos ites.... Limites lteris...
Unidade 2 Progressão Geométrica
Uidde Progressão Geométric Seuêci e defiição de PG Fórmul do termo gerl Fução expoecil e PG Juros compostos e PG Iterpolção geométric Som dos termos de um PG Seuêci e defiição de PG Imgie ue você tem dus
QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA.
006 PROVA CONHECIMENTOS ESPECÍFICOS MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetrl do Vestibulr Uificdo Trigoometri
SISTEMAS LINEARES. Sendo x e y, respectivamente, o número de pontos que cada jogador marcou, temos uma equação com duas incógnitas:
SISTEMAS LINEARES Do grego system ( Sy sigific juto e st, permecer, sistem, em mtemátic,é o cojuto de equções que devem ser resolvids juts,ou sej, os resultdos devem stisfzêlos simultemete. Já há muito
CÁLCULO I. Exibir o cálculo de algumas integrais utilizando a denição.
CÁLCULO I Prof Mrcos Diiz Prof Adré Almeid Prof Edilso Neri Prof Emerso Veig Prof Tigo Coelho Aul o : A Itegrl de Riem Objetivos d Aul Deir itegrl de Riem; Exibir o cálculo de lgums itegris utilizdo deição
Função potencial de velocidade. - Equipotenciais são rectas verticais Função de corrente
Aerodiâmic Potecil Complexo Exemplos de plicção W z com R W x + i y Fução potecil de velocidde φ ( x, y) x, φ costte x costte - Equipoteciis são rects verticis Fução de correte ψ ( x, y) y, ψ costte y
PROPRIEDADES DAS POTÊNCIAS
EXPONENCIAIS REVISÃO DE POTÊNCIAS Represetos por, potêci de bse rel e epoete iteiro. Defiios potêci os csos bio: 0) Gráfico d fução f( ) 0 Crescete I ]0, [.....,, ftores 0, se 0 PROPRIEDADES DAS POTÊNCIAS
Matemática Fascículo 03 Álvaro Zimmermann Aranha
Mtemátic Fscículo 03 Álvro Zimmerm Arh Ídice Progressão Aritmétic e Geométric Resumo Teórico... Exercícios...3 Dics...4 Resoluções...5 Progressão Aritmétic e Geométric Resumo teórico Progressão Aritmétic
Métodos Numéricos Integração Numérica Regra dos Trapézio. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina
Métodos Numéricos Itegrção Numéric Regr dos Trpézio Professor Volmir Eugêio Wilhelm Professor Mri Klei Itegrção Defiid Itegrção Numéric Itegrção Numéric Itegrção Defiid Há dus situções em que é impossível
As funções exponencial e logarítmica
As fuções epoecil e logrítmic. Potêcis em Sej um úmero rel positivo, isto é, * +. Pr todo, potêci, de bse e epoete é defiid como o produto de ftores iguis o úmero rel :...... vezes Pr, estbelece-se 0,
GGE RESPONDE ITA 2015 MATEMÁTICA 1 A RESOLUÇÃO DAS QUESTÕES NO SITE: 01. Considere as seguintes afirmações sobre números reais:
0. Cosidere s seguites firmções sobre úmeros reis: I. Se epsão deciml de é ifiit e periódic, etão é um úmero rciol. II. 0 ( III. l e (log )(log ) é úmero rciol. É (são) verddeir (s): ) eum b) pes II. c)
SOLUÇÕES DE EDO LINEARES DE 2 A ORDEM NA FORMA INFINITA
SOLUÇÕES DE EDO LINEARES DE A ORDEM NA FORMA INFINITA Coforme foi visto é muito simples se obter solução gerl de um EDO lier de ordem coeficietes costtes y by cy em termos ds fuções lgébrics e trscedetes
x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5,
- Limite. - Conceito Intuitivo de Limite Considere função f definid pel guinte epressão: f - - Podemos obrvr que função está definid pr todos os vlores de eceto pr. Pr, tnto o numerdor qunto o denomindor
MATEMÁTICA 1ª QUESTÃO. x é. O valor do limite. lim x B) 1 E) 1 2ª QUESTÃO. O valor do limite. lim A) 0 B) 1 C) 2 D) 3 E) 4
MATEMÁTICA ª QUESTÃO O vlor do limite lim x 0 x x é A) B) C) D) 0 E) ª QUESTÃO O vlor do limite x 4 lim x x x é A) 0 B) C) D) E) 4 ª QUESTÃO Um equção d ret tngente o gráfico d função f ( x) x x no ponto
CAPÍTULO VIII APROXIMAÇÃO POLINOMIAL DE FUNÇÕES
CAPÍTULO VIII APROXIMAÇÃO POLINOMIAL DE FUNÇÕES 1. Poliómios de Tylor Sej (x) um ução rel de vriável rel com domíio o cojuto A R e cosidere- -se um poto iterior do domíio. Supoh-se que ução dmite derivds
Universidade Federal de Rio de Janeiro
Universidde Federl de Rio de Jneiro Instituto de Mtemátic Deprtmento de Métodos Mtemáticos Prof. Jime E. Muñoz River river@im.ufrj.r ttp//www.im.ufrj.r/ river Grito d Primeir Prov de Cálculo I Rio de Jneiro
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A. TESTE Nº 4 Grupo I
ESOLA SEUNDÁRIA OM º ILO D. DINIS º ANO DE ESOLARIDADE DE MATEMÁTIA A TESTE Nº Grupo I As seis questões deste grupo são de escolh múltipl. Pr cd um dels são idicds qutro ltertivs, ds quis só um está correct.
Exercícios de Dinâmica - Mecânica para Engenharia. deslocamento/espaço angular: φ (phi) velocidade angular: ω (ômega) aceleração angular: α (alpha)
Movimento Circulr Grndezs Angulres deslocmento/espço ngulr: φ (phi) velocidde ngulr: ω (ômeg) celerção ngulr: α (lph) D definição de Rdinos, temos: Espço Angulr (φ) Chm-se espço ngulr o espço do rco formdo,
FUNÇÃO EXPONENCIAL. a 1 para todo a não nulo. a. a. a a. a 1. Chamamos de Função Exponencial a função definida por: f( x) 3 x. f( x) 1 1. 1 f 2.
49 FUNÇÃO EXPONENCIAL Professor Lur. Potêcis e sus proprieddes Cosidere os úmeros ( 0, ), mr, N e, y, br Defiição: vezes por......, ( ), ou sej, potêci é igul o úmero multiplicdo Proprieddes 0 pr todo
Notas de Aula de Cálculo Diferencial e Integral II
Uiversidde Federl de Cmpi Grde Cetro de Ciêcis e Tecoologi Agroetr Nots de Aul de Cálculo Diferecil e Itegrl II Prof. Ms. Hllyso Gustvo G. de M. Lim Pombl - PB Coteúdo Métodos de Itegrção 3. Método ds
n i i Adotando o polinômio interpolador de Lagrange para representar p n (x):
EQE-58 MÉTODOS UMÉRICOS EM EGEHARIA QUÍMICA PROFS. EVARISTO E ARGIMIRO Cpítulo 6 Itegrção uméric Vimos os cpítulos e que etre os motivos pr o uso de poliômios proimção de fuções está fcilidde de cálculos
Prova: DESAFIO. I. Traduzindo para a linguagem simbólica, temos a seguinte equação na incógnita x, com x > 0: 45 4x = x x 3 4x = 0 x 4 4x 2 45 = 0
Colégio Nome: N.º: Edereço: Dt: Telefoe: E-mil: Discipli: MATEMÁTICA Prov: DESAFIO PARA QUEM CURSARÁ A ạ SÉRIE DO ENSINO MÉDIO EM 09 QUESTÃO 6 A difereç etre o cubo de um úmero rel positivo e o seu quádruplo,
Revisão: Lei da Inércia 1ª Lei de Newton
3-9-16 Sumário Uidde I MECÂNICA 1- d prícul Moimeos sob ção de um forç resule cose - Segud lei de Newo (referecil fio e referecil ligdo à prícul). - As compoees d forç. - Trjeóri cosoe s orieções d forç
Resolução Numérica de Sistemas Lineares Parte II
Cálculo Numérico Resolução Numéric de Sistems Lieres Prte II Prof Jorge Cvlcti jorgecvlcti@uivsfedubr MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - wwwdscufcgedubr/~cum/ Sistems
GGE RESPONDE VESTIBULAR ITA 2009 (MATEMÁTICA)
MATEMÁTICA - //8 GGE RESPONDE VESTIBULAR ITA (MATEMÁTICA) Notções N {,,,...} i : uidde imgiári: i - R: cojuto dos úmeros reis z :Módulo do úmero z C C: cojuto dos úmeros compleos Rez :prte rel do úmero
Resoluções dos exercícios propostos
os fundmentos d físic 1 Unidde D Cpítulo 11 Os princípios d Dinâmic 1 P.230 prtícul está em MRU, pois resultnte ds forçs que gem nel é nul. P.231 O objeto, livre d ção de forç, prossegue por inérci em
f(x + 2P ) = f ( (x + P ) + P ) = f(x + P ) = f(x)
Seção 17: Séries de Fourier Fuções Periódics Defiição Dizemos que um fução f : R R é periódic de período P, ou id, mis resumidmete, P periódic se f(x + P ) = f(x) pr todo x Note que só defiimos fução periódic
UNIVERSIDADE FEDERAL DO CEARÁ DEPARTAMENTO DE ENGENHARIA AGRÍCOLA HIDRÁULICA APLICADA AD 0195 Prof.: Raimundo Nonato Távora Costa CONDUTOS LIVRES
UNVERSDADE FEDERAL DO CEARÁ DEPARTAMENTO DE ENGENHARA AGRÍCOLA HDRÁULCA APLCADA AD 019 Prof.: Rimudo Noto Távor Cost CONDUTOS LVRES 01. Fudmetos: Os codutos livres e os codutos forçdos, embor tem potos
Universidade Federal de Ouro Preto UFOP. Instituto de Ciências Exatas e Biológicas ICEB. Departamento de Computação DECOM
Progrmção de Computdores I BCC 701 01- List de Exercícios 01 Sequêci Simples e Prte A Exercício 01 Um P. A., Progressão Aritmétic, fic determid pel su rzão (r) e pelo seu primeiro termo ( 1 ). Escrev um
Comprimento de arco. Universidade de Brasília Departamento de Matemática
Universidde de Brsíli Deprtmento de Mtemátic Cálculo Comprimento de rco Considerefunçãof(x) = (2/3) x 3 definidnointervlo[,],cujográficoestáilustrdo bixo. Neste texto vmos desenvolver um técnic pr clculr
Cálculo de Volumes por Cascas Cilíndricas. Cálculo de Volumes por Cascas Cilíndricas
UNIERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Cálculo de olumes por
Aula 9 Limite de Funções
Alise Mtemátic I Aul 9 Limite de Fuções Ao cdémico 017 Tem 1. Cálculo Dierecil Noção ituitiv e deiição de ite. Eemplos de ites. Limites lteris. Proprieddes. Bibliogri Básic Autor Título Editoril Dt Stewrt,
2. Resolução Numérica de Equações Não-Lineares
. Resolução Numéric de Equções Não-Lieres. Itrodução Neste cpítulo será visto lgoritmos itertivos pr ecotrr rízes de fuções ão-lieres. Nos métodos itertivos, s soluções ecotrds ão são ets, ms estrão detro
Z = {, 3, 2, 1,0,1,2,3, }
Pricípios Aritméticos O cojuto dos úmeros Iteiros (Z) Em Z estão defiids operções + e. tis que Z = {, 3,, 1,0,1,,3, } A) + y = y + (propriedde comuttiv d dição) B) ( + y) + z = + (y + z) (propriedde ssocitiv
PARTE 1: INTEGRAIS IMEDIATAS. Propriedades da integral indefinida: Ex)Encontre as seguintes integrais:
Deprtmeto de Mtemátic, Físic, Químic e Egehri de Alimetos Projeto Clcule! Prof s : Rosimr Fchi Pelá Vd Domigos Vieir Cdero Itegris e Aplicções PARTE : INTEGRAIS IMEDIATAS Defiimos: f ( ) d F( ) k k IR
TP062-Métodos Numéricos para Engenharia de Produção Integração Numérica Regra dos Trapézio
TP6-Métodos Numéricos pr Egehri de Produção Itegrção Numéric Regr dos Trpézio Prof. Volmir Wilhelm Curiti, 5 Itegrção Defiid Itegrção Numéric Prof. Volmir - UFPR - TP6 Itegrção Numéric Itegrção Defiid
4º Teste de Avaliação de MATEMÁTICA A 12º ano
º (0 / 4) Nº Nome 4º Teste de Avlição de MATEMÁTICA A º o 4 Fevereiro 04 durção 90 mi. Pro. Josué Bptist Clssiicção:, O Pro.:, Grupo I Os sete ites deste rupo são de escolh múltipl. Em cd um deles, são
MATEMÁTICA BÁSICA. a c ad bc. b d bd EXERCÍCIOS DE AULA. 01) Calcule o valor de x em: FRAÇÕES
MATEMÁTICA BÁSICA FRAÇÕES EXERCÍCIOS DE AULA ) Clcule o vlor de x em: A som e sutrção de frções são efetuds prtir d oteção do míimo múltiplo comum dos deomidores. É difícil respoder de imedito o resultdo
FUNÇÃO LOGARITMICA. Professora Laura. 1 Definição de Logaritmo
57 FUÇÃO LOGARITMICA Professor Lur 1 Definição de Logritmo Chm se logritmo de um número > 0 em relção um bse (0 < 1), o expoente que se deve elevr bse, fim de que potênci obtid sej igul. log, onde: > 0,
RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 1. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA
RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 6 FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA QUESTÃO O gráfico bio eibe o lucro líquido (em milhres de reis) de três pequens empress A, B e
Lista 5: Geometria Analítica
List 5: Geometri Anlític A. Rmos 8 de junho de 017 Resumo List em constnte tulizção. 1. Equção d elipse;. Equção d hiperból. 3. Estudo unificdo ds cônics não degenerds. Elipse Ddo dois pontos F 1 e F no
Métodos Numéricos Sistemas Lineares Métodos Diretos. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina
Métodos Numéricos Sistems Lieres Métodos Diretos Professor Volmir uêio Wilhelm Professor Mri Klei limição de Guss Decomposição LU Decomposição Cholesky Prtição d mtriz limição de Guss limição de Guss Motivção
INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA.. b) a circunferência x y z
INSTITTO DE MATEMÁTICA DA FBA DEPARTAMENTO DE MATEMÁTICA A LISTA DE CÁLCLO IV SEMESTRE 00. (Função vetoril de um vriável, curv em R n. Integrl dupl e plicções) ) Determine um função vetoril F: I R R tl
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I 1. A função objetivo é o lucro e é dd por L(x, y) = 30x + 50y. Restrições: x 0
Artur Miguel Cruz. Escola Superior de Tecnologia Instituto Politécnico de Setúbal 2015/2016 1
Itegrção Numéric Aálise Numéric Artur Miguel Cruz Escol Superior de Tecologi Istituto Politécico de Setúbl 015/016 1 1 versão 13 de Juho de 017 1 Itrodução Clculr itegris é muito mis difícil do que clculr