Resoluções dos exercícios propostos

Tamanho: px
Começar a partir da página:

Download "Resoluções dos exercícios propostos"

Transcrição

1 os fundmentos d físic 1 Unidde D Cpítulo 11 Os princípios d Dinâmic 1 P.230 prtícul está em MRU, pois resultnte ds forçs que gem nel é nul. P.231 O objeto, livre d ção de forç, prossegue por inérci em MRU com velocidde v. Logo, firmção corret é c. P.232 É o princípio d inérci (primeir lei de Newton): um corpo livre d ção de forçs tende mnter constnte su velocidde vetoril. P.233 ) R m m/s 2 b) R m m m/s 2 P.234 R m 2,0 0,20 10 m/s 2 2 N 2 N 4 N R 2 N 2 N P km/h 20 m/s ) v v 0 αt 20 0 α 40 α 0,50 m/s 2 α 0,50 m/s 2 R m R ,50 R N b) v 2 v 2 0 2α s ,50 s s 400 m P.236 v 2 v 2 0 2α s α 20 α 10 m/s 2 α 10 m/s 2 R m R 1, R 1, N P.237 ) P err mg err 4,9 m 9,8 m 0,50 kg b) P Lu mg Lu 0,80 0,50 g Lu g Lu 1,6 m/s 2

2 os fundmentos d físic 1 Unidde D Cpítulo 11 Os princípios d Dinâmic 2 P.238 ) firmção está errd, pois forç está plicd n mes e ge n pesso que plicou forç n mes. Desse modo, e não se equilibrm, por estrem plicds em corpos distintos. b) err tri o corpo com forç-peso P e o corpo tri err com forç P. P P err P.239 ) R m Corpo : f m Corpo : f m f f (m m ) 10 (6 4) 1 m/s 2 b) De, temos: f 4 1 f 4 N c) R m R 6 1 R 6 N R m R 4 1 R 4 N P.240 ) R m pr o sistem C: (m m m C ) 20 (5 2 3) 2 m/s 2 20 N C b) Pr o corpo C: R m C f f 2 6 N f 2 C c) Pr o corpo : R m f 1 f 2 m f f 1 10 N f 1 f 2

3 os fundmentos d físic 1 Unidde D Cpítulo 11 Os princípios d Dinâmic 3 P.241 R m Corpo : m Corpo : m 4 N (m m ) 4 (5 3) 0,5 m/s 2 Em : 5 0,5 2,5 N P.242 Equção fundmentl d Dinâmic: loco : m m/s 2 locos ( ): (m m ) N 10 kg 5 kg P.243 Ns dus situções, os blocos dquirem mesm celerção. N 1 situção, pr o bloco de mss 2 kg, temos: 2. N segund situção, pr o bloco de mss 4 kg, temos: 4. Logo, trção é menor n 1 situção. Portnto, devemos puxr o conjunto pelo corpo de mior mss (o que ocorre n 1 situção). P.244 ) R m Corpo : m Corpo : P m P (m m ) 3 10 (2 3) 6 m/s 2 P b) Em : N

4 os fundmentos d físic 1 Unidde D Cpítulo 11 Os princípios d Dinâmic 4 P.245 ) R m Corpo : P 1 m Corpo : 1 2 m Corpo C: 2 P C m C P P C (m m m C ) ( ) 2,5 m/s C P 200 N P C 100 N b) De : , N c) De : , N P.246 ) Isolndo o conjunto, o peso de C (P C m C g 10 N) determin n mss totl (m m m C 5 kg) celerção tl que: P C (m m m C ) m/s 2 b) intensidde d forç que exerce em é mesm que exerce em. Dí, isolndo : ( ) m N P Observção: Se isolássemos, terímos de clculr tmbém trção no fio.

5 os fundmentos d físic 1 Unidde D Cpítulo 11 Os princípios d Dinâmic 5 P.247 ) R m Corpo : P 1 m Corpo : 1 P m 2 P P (m m ) (3 1) m/s 2 b) De : N P 10 N N poli: N P 30 N P.248 () mg N () 2 mg N m P mg m P mg P.249 ) P N b) P m N P c) P m N P.250 ) P m mg m m (g ) 70 (10 3) 910 N é o peso prente. celerção d grvidde prente no interior do elevdor é g p g P

6 os fundmentos d físic 1 Unidde D Cpítulo 11 Os princípios d Dinâmic 6 b) Nesse cso: 0 e P 700 N c) P m mg m m(g ) 70 (10 1) 630 N P Nesse cso, celerção d grvidde prente no interior do elevdor é: g p g d) Sendo g, vem: P mg P P 0 celerção d grvidde prente é nul: g g p 0 P.251 ) Equção fundmentl d Dinâmic: loco : P m loco : P m zendo, temos: P P (m m ) m g m g (m m ) P P g b) Substituindo em ou, vem: 0 Logo, nenhum bloco exerce forç sobre o outro. P.252 Ns três situções proposts, temos s forçs gindo no corpo: 14 N 1 ) v O corpo sobe em movimento celerdo. 10 N 10 N 2 ) v 0 O corpo sobe em MRU. 10 N

7 os fundmentos d físic 1 Unidde D Cpítulo 11 Os princípios d Dinâmic 7 3 ) 6 N v O corpo sobe em movimento retrddo. 10 N P.253 ) P t P sen θ mg sen 37 0,5 10 0,6 3 N b) g sen θ 10 0,6 6 m/s 2 P.254 Cálculo d celerção do bloco: s t ,1 m/s 2 Equção fundmentl d Dinâmic: P t m P sen 30 m mg sen 30 m t 0 0 v 0 0 t 10 s P t v 5 m , ,1 25 N P.255 P t P sen 30 P t 20 0,5 P t 10 N R m Corpo : P t m Corpo : P m P P t (m m ) (2 2) P t P 20 N 2,5 m/s 2

8 os fundmentos d físic 1 Unidde D Cpítulo 11 Os princípios d Dinâmic 8 P.256 Por inérci o corpo tende permnecer em repouso e, com retird rápid do ppel, ele ci verticlmente. P.257 ) R m Corpo : m Corpo : P m P (m m ) 400 (10 40) 8,0 m/s 2 P 400 N De : 10 8,0 80 N b) s 1 2 t 2 0, ,0 t2 t 0,3 s P.258 ) R m P cix m , N 0,5 m/s 2 P cix N b) P emp N ' P emp.

9 os fundmentos d físic 1 Unidde D Cpítulo 11 Os princípios d Dinâmic 9 P.259 O peso de C, cuj intensidde é (m m C ) g (4 1) 10 N 50 N, determin no conjunto C celerção, que é dd por: 50 (5 4 1) 5 m/s 2 indicção d blnç é norml que exerce em C. Isolndo pr determinção dess norml ( está descendo com celerção do conjunto): P m N 4 kg P Observção: Se isolássemos C, terímos de clculr tmbém trção no fio. P.260 ) PD (blde 1 blde 2) P 2 P 1 M otl (M 2 M)g (M 1 M) g (M 1 M 2 2M ) ( M2 M1) g M M 2M 1 2 Sej m mss de rei trnsferid do blde de mss M 1 pr o blde de mss M 2. s msss dos bldes com rei pssm ser M 2 M m e M 1 M m. M 2 + M M 1 + M P 2 P 1 celerção de cd blde pss ser, tl que: (M 2 M m)g (M 1 M m)g (M 1 M 2 2M) ' ( M2 M1 2 m) g M M 2M 1 2 Dividindo por, vem: ' M2 M1 2m M M 2 1 f M M 2 m( M M ) f ( M2 M1) ( f1) 2 m( M2 M1)( f1) m 2 b) O mior vlor possível de f ocorre qundo tod mss de rei do blde M 1 é trnsferid o blde M 2, isto é, m M. Portnto: 1 M ( M2 M1)( fmáx. 1) 2 f máx. 2M M M 2 1 1

10 os fundmentos d físic 1 Unidde D Cpítulo 11 Os princípios d Dinâmic 10 P.261 1) indicção d blnç é norml que o homem exerce nel. Isolndo o homem nos dois csos indicdos (sobe e desce com mesm celerção): (I) (1) 720 N (II) (2) 456 N M 60 kg M 60 kg P 60 g P 60 g Obtemos, ssim, o sistem: (I) g 60 (II) 60g Resolvendo esse sistem, temos: 2,2 m/s 2 e g 9,8 m/s 2 2) Velocidde constnte 0 P 60 9,8 P 588 N 3) emos 0, qued livre, pois no homem só tu o peso P. P.262 forç Q plicd o eixo d poli idel se divide em Q 2 em cd prte do fio. Só existem celerções (pr ) e (pr ) qundo Q 2 for mior que cd peso (P e P ), erguendo desse modo os corpos. ) Q 400 N Q N P P N 200 N 0 0 P 400 N P 240 N () 200 N () 40 N Nesse cso, os blocos e ficm poidos.

11 os fundmentos d físic 1 Unidde D Cpítulo 11 Os princípios d Dinâmic 11 b) Q 720 N Q N P 0 Ms existe. 360 N 360 N P 400 N P 240 N () 40 N permnece no poio enqunto sobe com celerção, dd por: m/s 2 c) Q N Q N Os blocos e sobem com celerções e, tis que: loco : m/s 2 loco : m/s 2 P.263 ) plicndo equção fundmentl d Dinâmic pr o conjunto de corpos ( ), temos: (M M ) b) (y) θ (x) P θ (y) θ (x) P Cunh : (x) M Cunh : (y) M g ' N N( x) N( y) N M M g N c) tg θ N( x ) N( y ) tg θ M M g

12 os fundmentos d físic 1 Unidde D Cpítulo 11 Os princípios d Dinâmic 12 P.264 Isolndo o homem e o elevdor, é intensidde d interção homem/elevdor. Homem m Elevdor M P h mg P e Mg Homem: Elevdor: mg m Mg M 2 (m M) g (m M) (m M) ( g ) 2 P.265 ção do plno inclindo no corpo ção d prede verticl no corpo Pr o corpo permnecer em repouso em relção o crrinho, ele deve ter mesm celerção do crrinho em relção o solo, que é um referencil inercil. Em x, x : sen 30 m Em y, y 0: cos 30 P y P N cos 30 x em : sen 30 cos 30 P m 05, , 87 9 N P 40 N 30 30

13 os fundmentos d físic 1 Unidde D Cpítulo 11 Os princípios d Dinâmic 13 P.266 Como m 1 e m 2 estão em repouso em relção M, m 1 decorre que o conjunto está com mesm celerção em relção o solo (referencil inercil): (M m 1 m 2 ) 30 M m 2 Isolndo m 1 : m 1 m 1 Isolndo m 2 : Em x: sen θ m 2 Em y: cos θ m 2 g Substituindo em : m 1 sen θ m 2 sen θ m m ,8 5 m 2 y θ θ P 2 m 2 g x cos θ 0,6 e tg θ 4 3 Dividindo membro membro e : g tg θ 4 3 g Substituindo em : g 40g N

Física. , penetra numa lâmina de vidro. e sua velocidade é reduzida para v vidro = 3

Física. , penetra numa lâmina de vidro. e sua velocidade é reduzida para v vidro = 3 Questão 6 Um torre de ço, usd pr trnsmissão de televisão, tem ltur de 50 m qundo tempertur mbiente é de 40 0 C. Considere que o ço dilt-se, linermente, em médi, n proporção de /00.000, pr cd vrição de

Leia mais

ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO

ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO Físic Gerl I EF, ESI, MAT, FQ, Q, BQ, OCE, EAm Protocolos ds Auls Prátics 003 / 004 ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO. Resumo Corpos de diferentes forms deslocm-se, sem deslizr, o longo de um

Leia mais

MATEMÁTICA 1ª QUESTÃO. x é. O valor do limite. lim x B) 1 E) 1 2ª QUESTÃO. O valor do limite. lim A) 0 B) 1 C) 2 D) 3 E) 4

MATEMÁTICA 1ª QUESTÃO. x é. O valor do limite. lim x B) 1 E) 1 2ª QUESTÃO. O valor do limite. lim A) 0 B) 1 C) 2 D) 3 E) 4 MATEMÁTICA ª QUESTÃO O vlor do limite lim x 0 x x é A) B) C) D) 0 E) ª QUESTÃO O vlor do limite x 4 lim x x x é A) 0 B) C) D) E) 4 ª QUESTÃO Um equção d ret tngente o gráfico d função f ( x) x x no ponto

Leia mais

Resolução: T = F atd. m M = 0,40 70 (kg) M = 28 kg. 4 E.R. Uma caixa de peso 10 kgf acha-se em repouso sobre uma. Resolução:

Resolução: T = F atd. m M = 0,40 70 (kg) M = 28 kg. 4 E.R. Uma caixa de peso 10 kgf acha-se em repouso sobre uma. Resolução: Tópico 2 trito entre sólidos 147 Tópico 2 1 (GV-S) O sistem indicdo está em repouso devido à forç de trito entre o bloco de mss de 10 k e o plno horizontl de poio. Os f ios e s polis são ideis e dot-se

Leia mais

Física Fascículo 02 Eliana S. de Souza Braga

Física Fascículo 02 Eliana S. de Souza Braga ísic scículo 0 Elin S. de Souz r Índice Dinâmic Resumo eórico...1 Exercícios... Gbrito...4 Dinâmic Resumo eórico s 3 leis de ewton: 1. lei ou princípio d Inérci: res = 0 = 0 v = 0 v é constnte. lei ou

Leia mais

DECivil Secção de Mecânica Estrutural e Estruturas MECÂNICA I ENUNCIADOS DE PROBLEMAS

DECivil Secção de Mecânica Estrutural e Estruturas MECÂNICA I ENUNCIADOS DE PROBLEMAS Eivil Secção de Mecânic Estruturl e Estruturs MEÂNI I ENUNIOS E ROLEMS Fevereiro de 2010 ÍTULO 3 ROLEM 3.1 onsidere plc em form de L, que fz prte d fundção em ensoleirmento gerl de um edifício, e que está

Leia mais

Física A Semiextensivo V. 2

Física A Semiextensivo V. 2 GRIO Físic Semiextensio V. Exercícios 01) Menino em relção o trilho: V = 3 + 3 = 6 m/s Menino em relção o trilho: V = 3 3 = 0 04) subi 0) E R,0 m/s elocie o rio elocie o brco esci R = 16 = = 16 + R = +

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 6 FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA. O gráfico de brrs bixo exibe distribuição d idde de um grupo de pessos. ) Mostre que, nesse grupo,

Leia mais

III. , F 2. e F 3 IV. 3 (ESPCEX-SP mod.) Com base no sistema de forças coplanares. a) F 1. = 0. c) F 2 + F 3. + F 2 e) F 2.

III. , F 2. e F 3 IV. 3 (ESPCEX-SP mod.) Com base no sistema de forças coplanares. a) F 1. = 0. c) F 2 + F 3. + F 2 e) F 2. ópico 1 Os princípios d Dinâmic 99 rte II DINÂMIC ópico 1 III. 1 E.R. Um prtícul está sujeit à ção de três forçs, 1, e 3, cuj resultnte é nul. Sbendo que 1 e são perpendiculres entre si e que sus intensiddes

Leia mais

m 2 m 1 V o d) 7 m/s 2 e) 8 m/s 2 m 1

m 2 m 1 V o d) 7 m/s 2 e) 8 m/s 2 m 1 Prof Questão 1 Um homem em um lnch deve sir do ponto A o ponto B, que se encontr n mrgem opost do rio. A distânci BC é igul = 30 m. A lrgur do rio AC é igul b = 40 m. Com que velocidde mínim u, reltiv

Leia mais

CES - Lafaiete Engenharia Elétrica

CES - Lafaiete Engenharia Elétrica CES - Lfiete Engenhri Elétric Revisão: Acelerção etc - Prof.: Aloísio Elói 01) (MACK-SP) Um pssgeiro de um ônibus, que se move pr direit em MRU, observ chuv trvés d jnel. Não há ventos e s gots de chuv

Leia mais

ESTÁTICA DO SISTEMA DE SÓLIDOS.

ESTÁTICA DO SISTEMA DE SÓLIDOS. Definições. Forçs Interns. Forçs Externs. ESTÁTIC DO SISTEM DE SÓLIDOS. (Nóbreg, 1980) o sistem de sólidos denomin-se estrutur cuj finlidde é suportr ou trnsferir forçs. São quels em que ção e reção, pertencem

Leia mais

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução (9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se

Leia mais

Cinemática Dinâmica Onde estão as forças? Gravidade

Cinemática Dinâmica Onde estão as forças? Gravidade Forç e Moviento I Cineátic: prte n ecânic que estud os ovientos, independenteente de sus cuss e d nturez dos corpos. Dinâic: prte n ecânic que estud o oviento dos corpos, levndo e cont s forçs que produzir

Leia mais

Bhaskara e sua turma Cícero Thiago B. Magalh~aes

Bhaskara e sua turma Cícero Thiago B. Magalh~aes 1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como

Leia mais

1 a Lista de exercícios Análise do estado de tensões

1 a Lista de exercícios Análise do estado de tensões 1 List de eercícios Análise do estdo de tensões 1) Pr o estdo de tensões ddo, determinr s tensões, norml e de cislhmento, eercids sobre fce oblíqu do triângulo sombredo do elemento. R: τ = 25,5 MP σ =

Leia mais

3.18 EXERCÍCIOS pg. 112

3.18 EXERCÍCIOS pg. 112 89 8 EXERCÍCIOS pg Investigue continuidde nos pontos indicdos sen, 0 em 0 0, 0 sen 0 0 0 Portnto não é contínu em 0 b em 0 0 0 0 0 0 0 0 0 0 0 0 0 Portnto é contínu em 0 8, em, c 8 Portnto, unção é contínu

Leia mais

Transporte de solvente através de membranas: estado estacionário

Transporte de solvente através de membranas: estado estacionário Trnsporte de solvente trvés de membrns: estdo estcionário Estudos experimentis mostrm que o fluxo de solvente (águ) em respost pressão hidráulic, em um meio homogêneo e poroso, é nálogo o fluxo difusivo

Leia mais

Vestibular UFRGS 2013 Resolução da Prova de Matemática

Vestibular UFRGS 2013 Resolução da Prova de Matemática Vestibulr UFRG 0 Resolução d Prov de Mtemátic 6. Alterntiv (C) 00 bilhões 00. ( 000 000 000) 00 000 000 000 0 7. Alterntiv (B) Qundo multiplicmos dois números com o lgrismo ds uniddes igul 4, o lgrismo

Leia mais

VETORES. Com as noções apresentadas, é possível, de maneira simplificada, conceituar-se o

VETORES. Com as noções apresentadas, é possível, de maneira simplificada, conceituar-se o VETORES INTRODUÇÃO No módulo nterior vimos que s grndezs físics podem ser esclres e vetoriis. Esclres são quels que ficm perfeitmente definids qundo expresss por um número e um significdo físico: mss (2

Leia mais

Aula 4 Movimento em duas e três dimensões. Física Geral I F -128

Aula 4 Movimento em duas e três dimensões. Física Geral I F -128 Aul 4 Moimento em dus e três dimensões Físic Gerl I F -18 F18 o Semestre de 1 1 Moimento em D e 3D Cinemátic em D e 3D Eemplos de moimentos D e 3D Acelerção constnte - celerção d gridde Moimento circulr

Leia mais

Reta vertical é uma reta paralela ao eixo das ordenadas, é do tipo: Reta vertical é uma reta paralela ao eixo das ordenadas, é do tipo:

Reta vertical é uma reta paralela ao eixo das ordenadas, é do tipo: Reta vertical é uma reta paralela ao eixo das ordenadas, é do tipo: mta0 geometri nlític Referencil crtesino no plno Referencil Oxy o.n. (ortonormdo) é um referencil no plno em que os eixos são perpendiculres (referencil ortogonl) s uniddes de comprimento em cd um dos

Leia mais

UNITAU APOSTILA DETERMINANTES PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: Bibliografia: Curso de Matemática Volume Único

UNITAU APOSTILA DETERMINANTES PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: Bibliografia: Curso de Matemática Volume Único ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA DETERMINANTES PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: Bibliogrfi: Curso de Mtemátic Volume Único Autores: Binchini&Pccol Ed. Modern Mtemátic

Leia mais

PRESSÕES LATERAIS DE TERRA

PRESSÕES LATERAIS DE TERRA Estdo de equilíbrio plástico de Rnkine Pressões lteris de terr (empuxos de terr) f(deslocmentos e deformções d mss de solo) f(pressões plicds) problem indetermindo. É necessário estudr o solo no estdo

Leia mais

UNITAU APOSTILA. SUCESSÃO, PA e PG PROF. CARLINHOS

UNITAU APOSTILA. SUCESSÃO, PA e PG PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA SUCESSÃO, PA e PG PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: blog.portlpositivo.com.br/cpitcr 1 SUCESSÃO OU SEQUENCIA NUMÉRICA Sucessão ou seqüênci

Leia mais

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada MATEMÁTICA b Sbe-se que o qudrdo de um número nturl k é mior do que o seu triplo e que o quíntuplo desse número k é mior do que o seu qudrdo. Dess form, k k vle: ) 0 b) c) 6 d) 0 e) 8 k k k < 0 ou k >

Leia mais

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos 3. Cálculo integrl em IR 3.. Integrl Indefinido 3... Definição, Proprieddes e Exemplos A noção de integrl indefinido prece ssocid à de derivd de um função como se pode verificr prtir d su definição: Definição

Leia mais

IME MATEMÁTICA. Questão 01. Calcule o número natural n que torna o determinante abaixo igual a 5. Resolução:

IME MATEMÁTICA. Questão 01. Calcule o número natural n que torna o determinante abaixo igual a 5. Resolução: IME MATEMÁTICA A mtemátic é o lfbeto com que Deus escreveu o mundo Glileu Glilei Questão Clcule o número nturl n que torn o determinnte bixo igul 5. log (n ) log (n + ) log (n ) log (n ) Adicionndo s três

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

UNIVERSIDADE CATÓLICA DE GOIÁS. DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 2201) Prof.

UNIVERSIDADE CATÓLICA DE GOIÁS. DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 2201) Prof. 1 UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplin: FÍSICA GERAL E EXPERIMENTAL I (MAF 1) Prof. EDSON VAZ NOTA DE AULA I (Cpítulos 1,,3 e 4) CAPÍTULO I MEDIDAS NOTAÇÃO CIENTÍFICA

Leia mais

Capítulo III INTEGRAIS DE LINHA

Capítulo III INTEGRAIS DE LINHA pítulo III INTEGRIS DE LINH pítulo III Integris de Linh pítulo III O conceito de integrl de linh é um generlizção simples e nturl do conceito de integrl definido: f ( x) dx Neste último, integr-se o longo

Leia mais

Física. Resolução das atividades complementares. F4 Vetores: conceitos e definições. 1 Observe os vetores das figuras:

Física. Resolução das atividades complementares. F4 Vetores: conceitos e definições. 1 Observe os vetores das figuras: Resolução ds tiiddes copleentres Físic F4 Vetores: conceitos e definições p. 8 1 Obsere os etores ds figurs: 45 c 45 b d Se 5 10 c, b 5 9 c, c 5 1 c e d 5 8 c, clcule o ódulo do etor R e cd cso: ) R 5

Leia mais

- Operações com vetores:

- Operações com vetores: TEXTO DE EVISÃO 0 - VETOES Cro Aluno(): Este texto de revisão deve ser estuddo ntes de pssr pr o cp. 03 do do Hllid. 1- Vetores: As grndezs vetoriis são quels que envolvem os conceitos de direção e sentido

Leia mais

CPV conquista 70% das vagas do ibmec (junho/2007)

CPV conquista 70% das vagas do ibmec (junho/2007) conquist 70% ds vgs do ibmec (junho/007) IBME 08/Junho /008 NÁLISE QUNTITTIV E LÓGI DISURSIV 0. Num lv-rápido de crros trblhm três funcionários. tbel bio mostr qunto tempo cd um deles lev sozinho pr lvr

Leia mais

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida. 9 ENSINO 9-º no Mtemátic FUNDMENTL tividdes complementres Este mteril é um complemento d obr Mtemátic 9 Pr Viver Juntos. Reprodução permitid somente pr uso escolr. Vend proibid. Smuel Csl Cpítulo 6 Rzões

Leia mais

Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação

Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação Resolução ds tividdes complementres Mtemátic M Equções Polinomiis p. 86 (PUC-SP) No universo C, equção 0 0 0 dmite: ) três rízes rcionis c) dus rízes irrcionis e) um únic riz positiv b) dus rízes não reis

Leia mais

Questão 1: (Valor 2,0) Determine o domínio de determinação e os pontos de descontinuidade da 1. lim

Questão 1: (Valor 2,0) Determine o domínio de determinação e os pontos de descontinuidade da 1. lim Escol de Engenhri Industril e etlúrgic de olt edond Pro Gustvo Benitez Alvrez Nome do Aluno (letr orm): Prov Escrit Nº 0/006 Não rsure est olh, pois cálculos relizdos nest, não serão considerdos Use olh

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte B

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte B Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl 5 CPES FUNÇÕES Prte B Prof. ntônio Murício Medeiros lves Profª Denise Mri Vrell Mrtinez UNIDDE FUNÇÕES PRTE B. FUNÇÂO

Leia mais

Física I - Avaliação Normal 2009/ de Janeiro de 2010

Física I - Avaliação Normal 2009/ de Janeiro de 2010 Físic I - Avlição Norml 2009/2010-26 de Jneiro de 2010 Número Nome N 1. prte deste exme seleccione, pr cd questão, respost que entender como correct, indicndo letr correspondentengrelhixo. Cdquestãocorrectmente

Leia mais

CDI-II. Resumo das Aulas Teóricas (Semana 12) y x 2 + y, 2. x x 2 + y 2), F 1 y = F 2

CDI-II. Resumo das Aulas Teóricas (Semana 12) y x 2 + y, 2. x x 2 + y 2), F 1 y = F 2 Instituto Superior Técnico eprtmento de Mtemátic Secção de Álgebr e Análise Prof. Gbriel Pires CI-II Resumo ds Auls Teórics (Semn 12) 1 Teorem de Green no Plno O cmpo vectoril F : R 2 \ {(, )} R 2 definido

Leia mais

Função Modular. x, se x < 0. x, se x 0

Função Modular. x, se x < 0. x, se x 0 Módulo de um Número Rel Ddo um número rel, o módulo de é definido por:, se 0 = `, se < 0 Observção: O módulo de um número rel nunc é negtivo. Eemplo : = Eemplo : 0 = ( 0) = 0 Eemplo : 0 = 0 Geometricmente,

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA PRIMEIRO SEMESTRE DE 2015 13 de Fevereiro de 2015 Prte I Álgebr Liner 1 Questão: Sejm

Leia mais

Matemática D Extensivo V. 6

Matemática D Extensivo V. 6 Mtemátic D Extensivo V. 6 Exercícios 0) ) cm Por definição temos que digonl D vle: D = D = cm. b) 6 cm² A áre d lterl é dd pel som ds áres dos qutro ldos que compõe: =. ² =. ( cm)² = 6 cm² c) 96 cm² O

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT - ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA LISTA DE EXERCÍCIOS ) Sejm A, B e C mtries inversíveis de mesm ordem, encontre epressão d mtri X,

Leia mais

Somos o que repetidamente fazemos. A excelência portanto, não é um feito, mas um hábito. Aristóteles

Somos o que repetidamente fazemos. A excelência portanto, não é um feito, mas um hábito. Aristóteles c L I S T A DE E X E R C Í C I O S CÁLCULO INTEGRAL Prof. ADRIANO PEDREIRA CATTAI Somos o que repetidmente fzemos. A ecelênci portnto, não é um feito, ms um hábito. Aristóteles Integrl Definid e Cálculo

Leia mais

UNIVERSIDADE CATÓLICA DE GOIÁS

UNIVERSIDADE CATÓLICA DE GOIÁS 1 NOTA DE AULA 1 UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplin: FÍSICA GERAL E EXPERIMENTAL I (MAF 1) Coordendor: PROF. EDSON VAZ CAPÍTULOS: 1,, 3 e 4 OBS: Est not de ul

Leia mais

PROVA COM JUSTIFICATIVAS

PROVA COM JUSTIFICATIVAS FÍSICA 01. Um inseto de mss 1 g, vondo com velocidde de 3 cm/s, tem energi cinétic denotd por E inseto. Sbe-se ue o celerdor de prtículs LHC celerrá, prtir de 2009, prótons té um energi E LHC = 7 10 12

Leia mais

g = 10 m/s 2 m A = 10 kg Assinale a alternativa que indica a intensidade da força de atrito atuante no bloco B. a) 200N d) 50N b) 150N e) 10N c) 100N

g = 10 m/s 2 m A = 10 kg Assinale a alternativa que indica a intensidade da força de atrito atuante no bloco B. a) 200N d) 50N b) 150N e) 10N c) 100N www.cursonglo.com.br Treinmento pr limpíds de ísic 3 ª- s é r i e E M UL 1 TRIT iminênci de escorregmento N figur o ldo: : forç solicitnte M C C constnte E : trito estático 0 E μ E N E = M : trito estático

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidde Federl d Bhi Instituto de Mtemátic DISCIPLINA: MATA0 - CÁLCULO B UNIDADE II - LISTA DE EXERCÍCIOS Atulizd 008. Coordends Polres [1] Ddos os pontos P 1 (, 5π ), P (, 0 ), P ( 1, π ), P 4(, 15

Leia mais

Relembremos que o processo utilizado na definição das três integrais já vistas consistiu em:

Relembremos que o processo utilizado na definição das três integrais já vistas consistiu em: Universidde Slvdor UNIFAS ursos de Engenhri álculo IV Prof: Il Reouçs Freire álculo Vetoril Texto 4: Integris de Linh Até gor considermos três tipos de integris em coordends retngulres: s integris simples,

Leia mais

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS EQUAÇÕES E INEQUAÇÕES POLINOMIAIS Um dos grndes problems de mtemátic n ntiguidde er resolução de equções polinomiis. Encontrr um fórmul ou um método pr resolver tis equções er um grnde desfio. E ind hoje

Leia mais

Física Fascículo 05 Eliana S. de Souza Braga

Física Fascículo 05 Eliana S. de Souza Braga ísic scículo 05 Elin S. de Souz Brg Índice Moimentos circulres esumo Teórico...1 Exercícios... Gbrito...4 Moimentos circulres esumo Teórico Moimento circulr uniforme: Grndez Angulr grndez esclr rio ϕ ω

Leia mais

Nome: N.º: endereço: data: Telefone: PARA QUEM CURSA A 1 a SÉRIE DO ENSINO MÉDIO EM Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone:   PARA QUEM CURSA A 1 a SÉRIE DO ENSINO MÉDIO EM Disciplina: MaTeMÁTiCa Nome: N.º: endereço: dt: Telefone: E-mil: Colégio PARA QUEM CURSA A SÉRIE DO ENSINO MÉDIO EM 05 Disciplin: MTeMÁTiC Prov: desfio not: QUESTÃO 6 O Dr. Mni Aco not os números trvés de um código especil.

Leia mais

Matemática Básica II - Trigonometria Nota 02 - Trigonometria no Triângulo

Matemática Básica II - Trigonometria Nota 02 - Trigonometria no Triângulo Mtemátic ásic II - Trigonometri Not 0 - Trigonometri no Triângulo Retângulo Márcio Nscimento d Silv Universidde Estdul Vle do crú - UV urso de Licencitur em Mtemátic mrcio@mtemticuv.org 18 de mrço de 014

Leia mais

Módulo 1: Conteúdo programático Equação da quantidade de Movimento

Módulo 1: Conteúdo programático Equação da quantidade de Movimento Módulo 1: Conteúdo pogmático Equção d quntidde de Movimento Bibliogfi: Bunetti, F. Mecânic dos Fluidos, São Pulo, Pentice Hll, 007. Equção d quntidde de movimento p o volume de contole com celeção line

Leia mais

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b]

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b] Interl Deinid Se é um unção de, então su interl deinid é um interl restrit à vlores em um intervlo especíico, dimos, O resultdo é um número que depende pens de e, e não de Vejmos deinição: Deinição: Sej

Leia mais

Progressões Aritméticas

Progressões Aritméticas Segund Etp Progressões Aritmétics Definição São sequêncis numérics onde cd elemento, prtir do segundo, é obtido trvés d som de seu ntecessor com um constnte (rzão).,,,,,, 1 3 4 n 1 n 1 1º termo º termo

Leia mais

FÍSICA. (R m γ ), para os corpos 1 e 2, temos: mg N 1 2 ma (I) mg + N 1 2. 2mg N 2 3 2ma N 2 3 2m(g a) a) 0,8 kg. d) 20 kg. i Q f 0 Q + sonda Q gases

FÍSICA. (R m γ ), para os corpos 1 e 2, temos: mg N 1 2 ma (I) mg + N 1 2. 2mg N 2 3 2ma N 2 3 2m(g a) a) 0,8 kg. d) 20 kg. i Q f 0 Q + sonda Q gases FÍSCA Cso necessário, utilize os seguintes ddos bixo: Constnte grvitcionl 6,67 x 0 m 3 s kg Acelerção d grvidde 9,8 m/s Mss d Terr 6,0 x 0 kg Velocidde d luz 3,0 x 0 8 m/s As questões de 0 5 não devem

Leia mais

Gabarito - Matemática Grupo G

Gabarito - Matemática Grupo G 1 QUESTÃO: (1,0 ponto) Avlidor Revisor Um resturnte cobr, no lmoço, té s 16 h, o preço fixo de R$ 1,00 por pesso. Após s 16h, esse vlor ci pr R$ 1,00. Em determindo di, 0 pessos lmoçrm no resturnte, sendo

Leia mais

Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos?

Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos? A UA UL LA 58 Clculndo volumes Pr pensr l Considere um cubo de rest : Pr construir um cubo cuj rest sej o dobro de, de quntos cubos de rest precisremos? l Pegue um cix de fósforos e um cix de sptos. Considerndo

Leia mais

4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem.

4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem. EFOMM 2010 1. Anlise s firmtivs bixo. I - Sej K o conjunto dos qudriláteros plnos, seus subconjuntos são: P = {x K / x possui ldos opostos prlelos}; L = {x K / x possui 4 ldos congruentes}; R = {x K /

Leia mais

Matemática /09 - Integral de nido 68. Integral de nido

Matemática /09 - Integral de nido 68. Integral de nido Mtemátic - 8/9 - Integrl de nido 68 Introdução Integrl de nido Sej f um função rel de vriável rel de nid e contínu num intervlo rel I = [; b] e tl que f () ; 8 [; b]: Se dividirmos [; b] em n intervlos

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática + = B =.. matrizes de M )

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática + = B =.. matrizes de M ) Se ( ij ) é um mtri, definid pel lei Universidde Federl de Viços Centro de Ciêncis Ets e ecnológics Deprtmento de Mtemátic LIS DE EXERCÍCIOS M 7 Prof Gem/ Prof Hugo/ Prof Mrgreth i j, se i j ij, clcule

Leia mais

Relações em triângulos retângulos semelhantes

Relações em triângulos retângulos semelhantes Observe figur o ldo. Um escd com seis degrus está poid em num muro de m de ltur. distânci entre dois degrus vizinhos é 40 cm. Logo o comprimento d escd é 80 m. distânci d bse d escd () à bse do muro ()

Leia mais

1 a Lista de Exercícios Carga Elétrica-Lei de Gauss

1 a Lista de Exercícios Carga Elétrica-Lei de Gauss 1 1 ist de Eercícios Crg Elétric-ei de Guss 1. Um crg de 3, 0µC está fstd 12, 0cm de um crg de 1, 5µC. Clcule o módulo d forç ue tu em cd crg. 2. ul deve ser distânci entre dus crgs pontuis 1 = 26, 0µC

Leia mais

2º. Teste de Introdução à Mecânica dos Sólidos Engenharia Mecânica 25/09/ Pontos. 3 m 2 m 4 m Viga Bi Apoiada com Balanço

2º. Teste de Introdução à Mecânica dos Sólidos Engenharia Mecânica 25/09/ Pontos. 3 m 2 m 4 m Viga Bi Apoiada com Balanço 2º. Teste de Introdução à Mecânic dos Sólidos Engenhri Mecânic 25/09/2008 25 Pontos 1ª. Questão: eterminr os digrms de esforços solicitntes d Vig i-poid com blnço bixo. 40kN 30 0 150 kn 60 kn/m 3 m 2 m

Leia mais

Física 1 Capítulo 3 2. Acelerado v aumenta com o tempo. Se progressivo ( v positivo ) a m positiva Se retrógrado ( v negativo ) a m negativa

Física 1 Capítulo 3 2. Acelerado v aumenta com o tempo. Se progressivo ( v positivo ) a m positiva Se retrógrado ( v negativo ) a m negativa Físic 1 - Cpítulo 3 Movimento Uniformemente Vrido (m.u.v.) Acelerção Esclr Médi v 1 v 2 Movimento Vrido: é o que tem vrições no vlor d velocidde. Uniddes de celerção: m/s 2 ; cm/s 2 ; km/h 2 1 2 Acelerção

Leia mais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais POTÊNCIAS A potênci de epoente n ( n nturl mior que ) do número, representd por n, é o produto de n ftores iguis. n =...... ( n ftores) é chmdo de bse n é chmdo de epoente Eemplos =... = 8 =... = PROPRIEDADES

Leia mais

Dinâmica dos Corpos Rígidos

Dinâmica dos Corpos Rígidos Sebent de Disciplin DR, Zuzn Dimitrovová, DE/T/UNL, 06 Dinâmic dos orpos Rígidos. Introdução dinâmic, lém d nálise do movimento tmbém nlis origem deste movimento, ou sej, identific s forçs que o provocm,

Leia mais

Um disco rígido de 300Gb foi dividido em quatro partições. O conselho directivo ficou. 24, os alunos ficaram com 3 8

Um disco rígido de 300Gb foi dividido em quatro partições. O conselho directivo ficou. 24, os alunos ficaram com 3 8 GUIÃO REVISÕES Simplificção de expressões Um disco rígido de 00Gb foi dividido em qutro prtições. O conselho directivo ficou com 1 4, os docentes ficrm com 1 4, os lunos ficrm com 8 e o restnte ficou pr

Leia mais

Prova de Substitutiva Física 1 FCM Assinale com um x a prova que deseja substituir

Prova de Substitutiva Física 1 FCM Assinale com um x a prova que deseja substituir Prov de Substitutiv Físic 1 FCM 0501 013 Nome do Aluno Número USP Assinle com um x prov que desej substituir P1 P P3 Vlor ds Questões 1ª. ) 0,5 b) 1,0 c) 0,5 d) 0,5 ª.,5 3ª. ) 1,5 b) 1,5 4ª. ) 1,5 b) 1,5

Leia mais

GABARITO. 2 Matemática A. 08. Correta. Note que f(x) é crescente, então quanto menor for o valor de x, menor será sua imagem f(x).

GABARITO. 2 Matemática A. 08. Correta. Note que f(x) é crescente, então quanto menor for o valor de x, menor será sua imagem f(x). Eensivo V. Eercícios ) D y = log ( + ) Pr = : y = log ( + ) y = log y = Noe que o gráfico pss pel origem. Porno, únic lerniv possível é D. ) M + = log B B M + = log B B M + = log + log B B Como M = log

Leia mais

Soluções do Capítulo 9 (Volume 2)

Soluções do Capítulo 9 (Volume 2) Soluções do pítulo 9 (Volume ) 1. onsidee s ests oposts e do tetedo. omo e, os pontos e estão, mbos, no plno medido de, que é pependicul. Logo, et é otogonl, po est contid em um plno pependicul.. Tomemos,

Leia mais

Capítulo 1 Introdução à Física

Capítulo 1 Introdução à Física Vetor Pré Vestiulr Comunitário Físic 1 Cpítulo 1 Introdução à Físic Antes de começrem com os conceitos práticos d Físic, é imprescindível pr os lunos de Pré-Vestiulr estrem certificdos de que dominm os

Leia mais

características dinâmicas dos instrumentos de medida

características dinâmicas dos instrumentos de medida crcterístics dinâmics dos instrumentos de medid Todos nós sbemos que os instrumentos de medid demorm um certo tempo pr tingirem o vlor d medid. sse tempo ocorre devido inércis, resitêncis e trsos necessários

Leia mais

1.14 Temas Diversos a Respeito dos Condutos Forçados

1.14 Temas Diversos a Respeito dos Condutos Forçados .4 Tems iersos Respeito dos Condutos Forçdos escrg ire Velocidde Máxim Aplicndo Bernoulli H P tm A g P tm B g V = 0 (níel de águ considerdo constnte) Tem-se ue: B g(h ) Exemplo : ul o olume diário ornecido

Leia mais

COLÉGIO MACHADO DE ASSIS. 1. Sejam A = { -1,1,2,3,} e B = {-3,-2,-1,0,1,2,3,4,5}. Para a função f: A-> B, definida por f(x) = 2x-1, determine:

COLÉGIO MACHADO DE ASSIS. 1. Sejam A = { -1,1,2,3,} e B = {-3,-2,-1,0,1,2,3,4,5}. Para a função f: A-> B, definida por f(x) = 2x-1, determine: COLÉGIO MACHADO DE ASSIS Disciplin: MATEMÁTICA Professor: TALI RETZLAFF Turm: 9 no A( ) B( ) Dt: / /14 Pupilo: 1. Sejm A = { -1,1,2,3,} e B = {-3,-2,-1,0,1,2,3,4,5}. Pr função f: A-> B, definid por f()

Leia mais

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON PROFJWPS@GMAIL.COM MATRIZES Definição e Notção... 11 21 m1 12... 22 m2............ 1n.. 2n. mn Chmmos de Mtriz todo conjunto de vlores, dispostos

Leia mais

CAPÍTULO 5 CINEMÁTICA DO MOVIMENTO PLANO DE CORPOS RÍGIDOS

CAPÍTULO 5 CINEMÁTICA DO MOVIMENTO PLANO DE CORPOS RÍGIDOS 4 CPÍTULO 5 CINEMÁTIC DO MOVIMENTO PLNO DE CORPOS RÍGIDOS O estudo d dinâmic do copo ígido pode se feito inicilmente tomndo plicções de engenhi onde o moimento é plno. Neste cpítulo mos nlis s equções

Leia mais

GABARITO / 6 TRU 003: Mecânica das Estruturas II T1000 e T2000 3a. Prova 17/11/2006

GABARITO / 6 TRU 003: Mecânica das Estruturas II T1000 e T2000 3a. Prova 17/11/2006 GRITO / TRU : ecânic ds struturs II T e T. Prov 7// ( ) ( Pontos). uestão: Sej treiç d figur, compost de brrs de mesm rigidez xi, e sujeit à crg vertic posiciond no nó centr inferior. Use o teorem de peyron

Leia mais

2ª Lei de Newton. Quando a partícula de massa m é actuada pela força a aceleração da partícula tem de satisfazer a equação

2ª Lei de Newton. Quando a partícula de massa m é actuada pela força a aceleração da partícula tem de satisfazer a equação ª Lei de Newton ª Lei de Newton: Se foç esultnte ctunte num ptícul é difeente de zeo, então ptícul teá um celeção popocionl à intensidde d foç esultnte n diecção dess esultnte. P um ptícul sujeit às foçs

Leia mais

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C.

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C. As grndezs A, B e C são tis que A é diretmente proporcionl B e inversmente proporcionl C. Qundo B = 00 e C = 4 tem-se A = 5. Qul será o vlor de A qundo tivermos B = 0 e C = 5? B AC Temos, pelo enuncido,

Leia mais

5. Análise de Curto-Circuito ou Faltas. 5.3 Curto-Circuitos Assimétricos

5. Análise de Curto-Circuito ou Faltas. 5.3 Curto-Circuitos Assimétricos Sistems Elétricos de Potênci 5. Análise de Curto-Circuito ou Flts 5. Curto-Circuitos Assimétricos Proessor: Dr. Rphel Augusto de Souz Benedito E-mil:rphelbenedito@utpr.edu.br disponível em: http://pginpessol.utpr.edu.br/rphelbenedito

Leia mais

Curso Básico de Fotogrametria Digital e Sistema LIDAR. Irineu da Silva EESC - USP

Curso Básico de Fotogrametria Digital e Sistema LIDAR. Irineu da Silva EESC - USP Curso Básico de Fotogrmetri Digitl e Sistem LIDAR Irineu d Silv EESC - USP Bses Fundmentis d Fotogrmetri Divisão d fotogrmetri: A fotogrmetri pode ser dividid em 4 áres: Fotogrmetri Geométric; Fotogrmetri

Leia mais

Cap. 1 - Carga Elétrica e Campo Elétrico

Cap. 1 - Carga Elétrica e Campo Elétrico Universidde Federl do Rio de Jneiro Instituto de Físic Físic III 2014/2 Cp. 1 - Crg Elétric e Cmpo Elétrico Prof. Elvis Sores A interção eletromgnétic entre prtículs crregds eletricmente é um ds interções

Leia mais

Unidade 2 Progressão Geométrica

Unidade 2 Progressão Geométrica Uidde Progressão Geométric Seuêci e defiição de PG Fórmul do termo gerl Fução expoecil e PG Juros compostos e PG Iterpolção geométric Som dos termos de um PG Seuêci e defiição de PG Imgie ue você tem dus

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I Associção de Professores de Mtemátic Contctos: Ru Dr. João Couto, n.º 27-A 1500-236 Lisbo Tel.: +351 21 716 36 90 / 21 711 03 77 Fx: +351 21 716 64 24 http://www.pm.pt emil: gerl@pm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

Matemática. Resolução das atividades complementares. M13 Determinantes. 1 (Unifor-CE) Sejam os determinantes A 5. 2 (UFRJ) Dada a matriz A 5 (a ij

Matemática. Resolução das atividades complementares. M13 Determinantes. 1 (Unifor-CE) Sejam os determinantes A 5. 2 (UFRJ) Dada a matriz A 5 (a ij Resolução ds tividdes complementres Mtemátic M Determinntes p. (Unifor-CE) Sejm os determinntes A, B e C. Nests condições, é verdde que AB C é igul : ) c) e) b) d) A?? A B?? B C?? C AB C ()? AB C, se i,

Leia mais

De Aristóteles a Galileu

De Aristóteles a Galileu ul 2 1 Introdução Há mis de 2000 nos trás, os cientists d Gréci ntig estm fmilirizdos com lgums ds idéis que estudmos hoje. inhm um bom entendimento de lgums proprieddes d luz, ms erm confusos sobre o

Leia mais

Colegio Naval ) O algoritmo acima foi utilizado para o cálculo do máximo divisor comum entre os números A e B. Logo A + B + C vale

Colegio Naval ) O algoritmo acima foi utilizado para o cálculo do máximo divisor comum entre os números A e B. Logo A + B + C vale Colegio Nvl 005 01) O lgoritmo cim foi utilizdo pr o cálculo do máximo divisor comum entre os números A e B. Logo A + B + C vle (A) 400 (B) 300 (C) 00 (D) 180 (E) 160 Resolvendo: Temos que E 40 C E C 40

Leia mais

Prof. A.F.Guimarães Física 3 Questões 9

Prof. A.F.Guimarães Física 3 Questões 9 Questão 1 Um fio retilíneo de rio R conduz um corrente constnte i; outro fio retilíneo de mesmo rio conduz um corrente contínu i cujo sentido é contrário o d corrente que flui no outro fio. Estime o módulo

Leia mais

Projecções Cotadas. Luís Miguel Cotrim Mateus, Assistente (2006)

Projecções Cotadas. Luís Miguel Cotrim Mateus, Assistente (2006) 1 Projecções Cotds Luís Miguel Cotrim Mteus, Assistente (2006) 2 Nestes pontmentos não se fz o desenvolvimento exustivo de tods s mtéris, focndo-se pens lguns items. Pelo indicdo, estes pontmentos não

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES DETERMINANTES

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES DETERMINANTES Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - APES DETERMINANTES Prof Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr iêncis

Leia mais

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc.

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc. Aul Métodos Esttísticos sticos de Apoio à Decisão Aul Mônic Brros, D.Sc. Vriáveis Aletóris Contínus e Discrets Função de Probbilidde Função Densidde Função de Distribuição Momentos de um vriável letóri

Leia mais

Duração da Prova: 120 minutos. Tolerância: 30 minutos Cotação: 200 PONTOS

Duração da Prova: 120 minutos. Tolerância: 30 minutos Cotação: 200 PONTOS PROVA NAIONAL ESRITA DE MATEMÁTIA Equip Responsável Pel Elorção e orreção d Prov: Prof. Doutor Sérgio Brreir Prof.ª Doutor onceição Mnso Prof.ª Doutor trin Lemos Durção d Prov: minutos. Tolerânci: 30 minutos

Leia mais

Lista de Problemas H2-2002/2. LISTA DE PROBLEMAS Leia atentamente as instruções relativas aos métodos a serem empregados para solucionar os problemas.

Lista de Problemas H2-2002/2. LISTA DE PROBLEMAS Leia atentamente as instruções relativas aos métodos a serem empregados para solucionar os problemas. List de Prolems H 0/ List sugerid de prolems do livro texto (Nilsson& Riedel, quint edição) 4.8, 4.9, 4., 4.1, 4.18, 4., 4.1, 4., 4.3, 4.3, 4.36, 4.38, 4.39, 4.40, 4.41, 4.4, 4.43, 4.44, 4.4, 4.6, 4.,

Leia mais

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial º semestre de Engenhri Civil/Mecânic Cálculo Prof Olg (º sem de 05) Função Eponencil Definição: É tod função f: R R d form =, com R >0 e. Eemplos: = ; = ( ) ; = 3 ; = e Gráfico: ) Construir o gráfico d

Leia mais

Matemática Aplicada. A Mostre que a combinação dos movimentos N e S, em qualquer ordem, é nula, isto é,

Matemática Aplicada. A Mostre que a combinação dos movimentos N e S, em qualquer ordem, é nula, isto é, Mtemátic Aplicd Considere, no espço crtesino idimensionl, os movimentos unitários N, S, L e O definidos seguir, onde (, ) R é um ponto qulquer: N(, ) (, ) S(, ) (, ) L(, ) (, ) O(, ) (, ) Considere ind

Leia mais

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática 1 NÚMEROS E OPERAÇÕES 1.1 Lingugem Mtemátic AULA 1 1 1.2 Conjuntos Numéricos Chm-se conjunto o grupmento num todo de objetos, bem definidos e discerníveis, de noss percepção ou de nosso entendimento, chmdos

Leia mais

Fatoração e Produtos Notáveis

Fatoração e Produtos Notáveis Ftorção e Produtos Notáveis 1. (G1 - cftmg 014) Simplificndo epressão 1 4 6 4 5 4 16 48 obtém-se ). b) 4 +. c). d) 4 +.. (G1 - ifce 014) O vlor d epressão: b b ) b. b) b. c) b. d) 4b. e) 6b. é. (Upf 014)

Leia mais