a.cosx 1) (ITA) Se P(x) é um polinômio do 5º grau que satisfaz as condições 1 = P(1) = P(2) = P(3) = P(4) = P(5) e P(6) = 0, então temos:

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "a.cosx 1) (ITA) Se P(x) é um polinômio do 5º grau que satisfaz as condições 1 = P(1) = P(2) = P(3) = P(4) = P(5) e P(6) = 0, então temos:"

Transcrição

1 ) (ITA) Se P(x) é um poliômio do 5º gru que stisfz s codições = P() = P() = P() = P(4) = P(5) e P(6) = 0, etão temos: ) P(0) = 4 b) P(0) = c) P(0) = 9 d) P(0) = N.D.A. ) (UFC) Sej P(x) um poliômio de gru, com coeficietes reis. Sbedo que P( + i ) = - 4i, ode i = -, clcule P( - i ). ) (ITA) No desevolvimeto de (x - bx + c + ) 5 obtémse um poliômio p(x) cujos coeficietes somm. Se 0 e - são rízes de p(x), etão som + b + c é igul ) - b) - c) d) 4 4) (Uicmp) Determie o quociete e o resto d divisão de x 00 + x + por x -. 5) (UNICAMP) Sej f(x) = x + -x x + 0 um poliômio de gru tl que 0 e j IR pr qulquer j etre 0 e. Sej g(x) = x - + ( - )-x x + o poliômio de gru - em que os coeficietes,,..., são os mesmos empregdos defiição de f(x). ) Supodo que =, mostre que x f ( x ) f ( x) g =,pr todo x, IR, 0. b) Supodo que = e que =, determie expressão do poliômio f(x), sbedo que f() = g() = f(-) = 0. 6) (UFSCr) Em relção P(x), um poliômio de terceiro gru, sbe-se que P(-) =, P(0) =, P() = e P() = 7. ) Determie equção reduzid d ret que pss pelo poto em que o gráfico d fução poliomil P(x) cruz o eixo y, sbedo que ess ret tem coeficiete gulr umericmete igul à som dos coeficietes de P(x). b) Determie P(x). 7) (Fuvest) Cosidere um poliômio ão ulo p(x) tl que (p(x)) = x.p(x) = x.p(x ) pr todo x rel. ) qul é o gru de p(x)? b) Determie p(x). 8) (Fuvest) Sbedo-se que p(x) é um poliômio, é um costte rel e p(x) = x - x + x + idetidde em x, determie: ) O vlor d costte. Justifique b) s rízes d equção p(x) = 0..cosx x é um 9) (Fuvest) Um poliômio P(x) = x + x + bx + c stisfz s seguites codições: P() = 0; P(-x) + P(x) = 0, qulquer que sej x rel. Qul o vlor de P()? ) b) c) 4 d) 5 6 0) (Fuvest) Ddo o poliômio complexo p(z) = z + (+i) expresse, form + bi, com e b reis: p i ) b) s rízes do poliômio ) (Fuvest) O poliômio P é tl que P(x) + x.p(-x) = x + pr todo x rel. ) Determie P(0), P() e P(). b) Demostre que o gru de P é. ) (Uifesp) A divisão de um poliômio p(x) por um poliômio k(x) tem q(x) = x + x + 5 como quociete e r(x) = x + x + 7 como resto. Sbedo-se que o resto d divisão de k(x) por x é, o resto d divisão de p(x) por x é ) 0. b). c) 7. d) ) (UFC) O coeficiete de x o poliômio p(x) = (x - ) (x + ) 5 é: ) 0 b) 50 c) 00 d) ) (Vuesp) Cosidere o poliômio p(x) = x - mx + m x - m, em que mr. Sbedo-se que i é riz de p (x), determie: ) os vlores que m pode ssumir; b) detre os vlores de m ecotrdos em (), o vlor de m tl que o resto d divisão de p(x) por (x ) sej 5.

2 5) (UNIUBE) O resto r(x) d divisão de p(x) = x 00 por q(x) = x - é igul ) x b) x c) -x - d) x 999-6) (IBMEC) Sej P(x) um poliômio de coeficietes reis com P( i) = + i. Logo, P( + i) é igul : ) i b) + i c) + i d) i 7) (Fuvest) Ddo o poliômio p(x) = x.(x ) (x - 4), o gráfico d fução y = p(x ) é melor represetdo por: 9) (ITA) A divisão de um poliômio f(x) por (x - )(x - ) tem resto x +. Se os restos ds divisões de f(x) por x - e x - são, respectivmete, os úmeros e b, etão + b vle: ) b) 5 c) d) 0 0) (Fuvest) Sej p(x) um poliômio divisível por x. Dividido p(x) por x obtemos quociete q(x) e resto r=0. O resto d divisão de q(x) por x é: ) 5 b) c) 0 d) 5 ) (FUVEST) O poliômio p(x) = x + x + bx, em que e b são úmeros reis, tem restos e 4 qudo dividido por x e x -, respectivmete. Assim, o vlor de é ) - 6 b) - 7 c) - 8 d) ) (UNIFESP) Se x x x = x + b x verddeir pr todo x rel, x, x, etão o vlor de.b é ) 4. b). c). d). 6. é 8) (Fuvest) P(x) é um poliômio de gru e tl que P() = e P() =. Sejm D(x) = (x ) (x ) e Q(x) o quociete d divisão de P(x) por D(x). ) Determie o resto d divisão de P(x) por D(x). b) Sbedo que o termo idepedete de P(x) é igul 8, determie o termo idepedete de Q(x). ) (VUNESP) Sej x um úmero rel positivo. O volume de um prlelepípedo reto-retâgulo é ddo, em fução de x, pelo poliômio x + 7x + 4x + 8. Se um rest do prlelepípedo mede x+, áre d fce perpediculr ess rest pode ser express por: ) x 6x + 8. b) x + 4x + 8. c) x + 7x + 8. d) x 7x + 8. x + 6x + 8.

3 4) (UFC) Os úmeros reis, b, c e d são tis que, pr todo x rel, tem-se x + bx + cx + d = (x + x )(x 4) (x + )(x 5x + ). Desse modo, o vlor de b + d é: ) b) 0 c) 4 d) 6 0 5) (Vuesp) Se, b, c são úmeros reis tis que x + b(x + ) + c(x + ) = (x + ) pr todo x rel, etão o vlor de - b + c é ) -5. b) -. c). d). 7. 6) (Mck) Cosiderdo o resto r(x) e o quociete Q(x) d divisão cim, se r(4) = 0, Q() vle x 4 + 5x -x+4 x -4 r(x) Q(x) ) b) - c) -5 d) -4 8) (Vuesp) Cosidere o poliômio p(x) = x + bx + cx + d, ode b, c e d são costtes reis. A derivd de p(x) é, por defiição, o poliômio p (x) = x + bx + c. Se p () = 0, p (-) = 4 e o resto d divisão de p(x) por x - é, etão o poliômio p(x) é: ) x - x + x +. b) x - x - x +. c) x - x - x -. d) x - x - x + 4. x - x - x +. 9) (UFV) Éder e Vdo, luos de 7ª série, bricm de modificr poliômios com um Regr de Três Pssos (RP). No º psso, pgm o termo idepedete; o ª psso, multiplicm cd moômio pelo seu gru; e, o º psso, subtrem o gru de cd moômio. Pel plicção d RP o poliômio p(x ) = (x +)(x - ) obtém-se o poliômio: ) 4x -5 b) x + c) 4x + 5 d) 4x + x - 5 0) (Mck) Cosidere o poliômio P(x), do segudo gru, tl que P(x) - P(x + ) = x, qulquer que sej x rel. Sbedo que P(0) = 0, ssile, detre s ltertivs, o melor esboço gráfico de y = P(x). ) 7) (UFPB) Cosiderdo s proposições sobre poliômios, ssile com V (s) verddeir(s) e com F, (s) fls(s). ( )Sejm f (x) e g (x) poliômios ão-ulos tis que f ()=g ()=0. Se r (x) é o resto d divisão de f (x) por g (x), etão r ()=0. f ( x ) x x ( )O poliômio tem um riz iteir. ( )Se f (x) e g (x) são poliômios de gru, etão o gru do produto f (x) g (x) é 9. A seqüêci corret é: ) VFF b) FVF c) FFV d) VVF VFV f) FVV b) c) d)

4 ) (Fuvest) Sejm R e R os restos ds divisões de um poliômio P(x) por x- e por x+, respectivmete. Nesss codições, se R(x) é o resto d divisão de P(x) por x - etão R(0) é igul : ) R - R R R R R b) c) R + R d) R.R R R ) (Fuvest) Dividido-se um poliômio p(x) por (x-), obtém-se um resto que, dividido por (x-), dá resto. Ace p(). ) (Fuvest) O gru dos poliômios f, g e é. O úmero turl pode ser o gru do poliômio ão ulo f(g+) se e somete se: ) = 6 b) = 9 c) 0 6 d) 9 6 4) (Mck) Um poliômio p(x) tem resto A, qudo dividido por (x - A), e resto B, qudo dividido por (x - B), sedo A e B úmeros reis. Se o poliômio p(x) é divisível por (x - A).(x - B), etão: ) A = B = 0 b) A = B = c) A = e B = - d) A = 0 e B = A = e B = 0 5) (UFPA) Cosidere o poliômio P(x) = x + x + mx +, com m, R. Sbedo-se que P(x) + é divisível por x + e P(x)- é divisível por x-, determie os vlores de m e. 6) (Vuesp) Se m é riz do poliômio rel p(x) = x 6 (m+)x 5 +, determie o resto d divisão de p(x) por x. 7) (Uitu) Sbe-se que, e são rízes de um poliômio do terceiro gru P(x) e que P(0) =. logo, P(0) vle: ) 48. b) 4. c) -84. d) ) (UEL) O poliômio p tem gru 4+ e o poliômio q tem gru -, sedo iteiro e positivo. O gru do poliômio p.q é sempre: ) igul o máximo divisor comum etre 4+ e -. b) igul 7+. c) iferior 7+. d) igul ++. iferior ++. 9) (Mck) O poliômio P(x) = x +x +bx+c é divisível por x -x+ e por x -x+. Etão som dos úmeros reis, b e c é: ) b) - c) d) - zero 40) (Mck) O resto d divisão de um poliômio P(x) por x é 4; deste modo, o resto d divisão de (x -x).p(x) por x é: ) - b) - c) d) 4 4) (ITA) A divisão de um poliômio P(x) por x -x result o quociete 6x +5x+ e resto 7x. O resto d divisão de P(x) por x+ é igul : ) b) c) d) 4 5 4) (FGV) Sbe-se que o poliômio f = x 4 -x -x +x+ é divisível por x -. Um outro divisor de f é o poliômio: ) x - 4 b) x + c) (x + ) d) (x - ) (x - ) x 5 b 4x x x 4) (UFC) Se expressão,ode e b são costtes, é verddeir pr todo úmero rel x, etão o vlor de +b é: ) - b) - c) d) 4

5 44) (Mck) Cosiderdo s divisões de poliômios ddos, podemos firmr que o resto d divisão de P(x) por x - 8 x + é: P(x) x - 4 Q(x) Q(x) x - 6 Q (x) ) x + b) x + c) x + d) x - x + ) o vlor de c; b) o poliômio p(x). 50) (Mck) Se o poliômio p(x) = x 5 + 4x 4 + x +, IR, é divisível por x -, etão ) b) c) d) 0 6 é: 45) (UEL) O poliômio x x 4x + 4 é divisível por ) x- e x+ b) x- e x+5 c) x- e x+4 d) x- e x+ x+5 e x- 46) (Cesgrrio) O resto d divisão do poliômio P(x)=(x +) pelo poliômio D(x)=(x-) é igul : ) b) 4 c) x- d) 4x- 8x-4 47) (Ftec) O poliômio p = x + x - 7x -, R, é divisível por (x - ). Se o poliômio q = x + x + bx + é um cubo perfeito, etão o vlor de b é ) 6 b) 4 c) d) 48) (PUC-PR) Ddo o poliômio x 4 + x - mx - x +, determir m e pr que o mesmo sej divisível por x - x -. A som m + é igul : ) 6 b) 7 c) 0 d) ) (Vuesp) Ao dividirmos um poliômio p(x) por (x - c), obtemos quociete q(x) = x - x + x - e resto p(c) =. Sbedo-se que p() =, determie 5

6 ) Altertiv: D Note que, se todos os restos ds divisões por (x-), (x-), (x-), (x-4) e (x-5) são, etão P(x) - é divisível por (x- )(x-)(x-)(x-4)(x-5). Assim, P(x) - = (x-)(x-)(x-)(x-4)(x-5). Como P(6) = 0, temos - = , ou sej, temos = - 0. Dí, P(x) = - 0 (x-)(x-)(x-)(x-4)(x-5) + e portto, fzedo x = 0, temos P(0) =. Gbrito b) f(x) = x -x -x + 6) ) y = x + = = g b) P(x) = x + x x + x x + ) P(-i) = +4i Resolução: Sej P(x) = x + --x x + o, 0. Temos: P( i) o o 7) Se (p(x)) = x.p(x) etão ou p(x) = 0 ou p(x) = x. Como p(x) é ão ulo, etão p(x) = x p(x) = x ou p(x) = -x. E mbos tmbém verificm codição (p(x)) = x.p(x ). ) gru = b) p(x) = x ou p(x) = -x 8) ) = 0, cosiderdo-se que os moômios precism ser d form.x com rel e iteiro, pr qulquer x. b) rízes: 0, e... ( i) o P( i) 4i 4i.... ) Altertiv: A (supodo-se coeficietes reis pr o poliômio. Cso cotrário, ão á solução corret.) 4) ) R(x) = x + b) Q(x) = x 98 + x 96 + x x + 5) ) Pr =, temos f(x) = x + x + 0 e g(x) = x +. Assim, f ( x ) f ( x) = ( x ) ( x ) 0 ( x x 0) = 0 x x x 0 x x o 9) Altertiv: E 0) ) 4i b) -+i e -i ) ) P(0) =, P() = e P() =. b) Como o gru de x + é, e o gru de x.p(-x) > gru de P(x), etão o gru de x.p(-x) é. Como o gru de x é, o gru de P(-x) é - =. Assim, o gru de P(x) é. ) Altertiv: C ) Altertiv: E (x+) 5 = x x x. +0.x. + 5.x = x x x.+70.x + 405x.+ 4. Dí o termo de gru em (x-)(x+) 5 será 70x - 90x = 80x. Portto, o coeficiete do termo de gru deste poliômio é 80. 4) ) m= ou m=- b) m= 5) Altertiv: B 6) Altertiv: D 7) Altertiv: A Se p(x) = x.(x ) (x 4) etão p (x) = p(x ) = (x ).(x- - ) ((x-) 4) = (x ).(x ).(x 4x) = x(x ).(x ).(x 4), ou sej, p (x) têm rízes em x=0, x= (riz dupl), x= e x=4..( x ) = As úics ltertivs possíveis são () e (b). Como p () =.( ).( ).( 4) = 6 etão o gráfico de p (x) é positivo pr 0<x< e ltertiv corret é () 6

7 8) ) R(x) = - x + b) 5 50) Altertiv: B 9) Altertiv: A 0) Altertiv: A ) Altertiv: A ) Altertiv: C ) Altertiv: E 4) Altertiv: D 5) Altertiv: E 6) Altertiv: C 7) Altertiv: A 8) Altertiv: B 9) Altertiv: A 0) Altertiv: B ) Altertiv: E ) p() = ) Altertiv: E 4) Altertiv: A 5) m = e = 8 6) Resto = 0 7) Altertiv: C 8) Altertiv: B 9) Altertiv: D 40) Sem ltertiv. O resto = 4) Altertiv: E 4) Altertiv: C 4) Altertiv: C 44) Altertiv: C 45) Altertiv: C 46) Altertiv: E 47) Altertiv: A 48) Altertiv: E 49) ) c = b) p(x) = x 4-8x + 5x + x + 5 7

Exercícios de Matemática Polinômios

Exercícios de Matemática Polinômios Exercícios de Matemática Poliômios ) (ITA-977) Se P(x) é um poliômio do 5º grau que satisfaz as codições = P() = P() = P(3) = P(4) = P(5) e P(6) = 0, etão temos: a) P(0) = 4 b) P(0) = 3 c) P(0) = 9 d)

Leia mais

Visite : e) ) (UFC) O coeficiente de x 3) 5 é: a) 30 b) 50 c) 100 d) 120 e) 180

Visite :  e) ) (UFC) O coeficiente de x 3) 5 é: a) 30 b) 50 c) 100 d) 120 e) 180 ) (ITA) Se P(x) é um polinômio do 5º grau que satisfaz as condições = P() = P() = P(3) = P(4) = P(5) e P(6) = 0, então temos: a) P(0) = 4 b) P(0) = 3 c) P(0) = 9 d) P(0) = e) N.D.A. ) (UFC) Seja P(x) um

Leia mais

Quando o polinômio divisor é da forma x + a, devemos substituir no polinômio P(x), x por a, visto que: x + a = x ( a).

Quando o polinômio divisor é da forma x + a, devemos substituir no polinômio P(x), x por a, visto que: x + a = x ( a). POLINÔMIOS II. TEOREMA DE D ALEMBERT O resto d divisão de um poliômio P(x) por x é igul P(). m m Sej, com efeito, P x x x..., um poliômio de x, ordedo segudo s potecis m m decrescetes de x. Desigemos o

Leia mais

Matemática Fascículo 03 Álvaro Zimmermann Aranha

Matemática Fascículo 03 Álvaro Zimmermann Aranha Mtemátic Fscículo 03 Álvro Zimmerm Arh Ídice Progressão Aritmétic e Geométric Resumo Teórico... Exercícios...3 Dics...4 Resoluções...5 Progressão Aritmétic e Geométric Resumo teórico Progressão Aritmétic

Leia mais

B ) 2 = ( x + y ) 2 ( 31 + 8 15 + 31 8 ( 31 + 8 15 ) 2 + 2( 31 + 8 15 )( 31 8 MÓDULO 17. Radiciações e Equações

B ) 2 = ( x + y ) 2 ( 31 + 8 15 + 31 8 ( 31 + 8 15 ) 2 + 2( 31 + 8 15 )( 31 8 MÓDULO 17. Radiciações e Equações Ciêncis d Nturez, Mtemátic e sus Tecnologis MATEMÁTICA. Mostre que Rdicições e Equções + 8 5 + 8 + 8 5 + 8 ( + 8 5 + 8 5 é múltiplo de 4. 5 = x, com x > 0 5 ) = x ( + 8 5 ) + ( + 8 5 )( 8 + ( 8 5 ) = x

Leia mais

Alternativa A. Alternativa B. igual a: (A) an. n 1. (B) an. (C) an. (D) an. n 1. (E) an. n 1. Alternativa E

Alternativa A. Alternativa B. igual a: (A) an. n 1. (B) an. (C) an. (D) an. n 1. (E) an. n 1. Alternativa E R é o cojuto dos úeros reis. A c deot o cojuto copleetr de A R e R. A T é triz trspost d triz A. (, b) represet o pr ordedo. [,b] { R; b}, ],b[ { R; < < b} [,b[ { R; < b}, ],b] { R; < b}.(ita - ) Se R

Leia mais

Unidade 8 - Polinômios

Unidade 8 - Polinômios Uidde 8 - Poliômios Situção problem Gru de um poliômio Vlor umérico de um poliômio Iguldde de poliômio Poliômio ulo Operções com poliômios Situção problem Em determids épocs do o, lgums ciddes brsileirs

Leia mais

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 2 RADICIAÇÃO

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 2 RADICIAÇÃO INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA Professores: Griel Brião / Mrcello Amdeo Aluo(: Turm: ESTUDO DOS RADICAIS LISTA RADICIAÇÃO Deomi-se riz de ídice de um úmero rel, o úmero rel tl que

Leia mais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA Equções Epoeciis... Fução Epoecil..4 Logritmos: Proprieddes 6 Fução Logrítmic. Equções Logrítmics...5 Iequções Epoeciis e Logrítmics.8 Equções Epoeciis 0. (ITA/74)

Leia mais

PROGRESSÃO GEOMÉTRICA

PROGRESSÃO GEOMÉTRICA Professor Muricio Lutz PROGREÃO GEOMÉTRICA DEFINIÇÃO Progressão geométric (P.G.) é um seüêci de úmeros ão ulos em ue cd termo posterior, prtir do segudo, é igul o terior multiplicdo por um úmero fixo,

Leia mais

Resolução: P(i) = 2. (i) 4 (i) 3 3(i) 2 + (i) + 5 = 2 + i + 3 + i + 5 = 10 + 2i. Resolução: Resolução:

Resolução: P(i) = 2. (i) 4 (i) 3 3(i) 2 + (i) + 5 = 2 + i + 3 + i + 5 = 10 + 2i. Resolução: Resolução: EXERCÍCIOS 01. Calcule o valor numérico de P(x) = 2x 4 x 3 3x 2 + x + 5 para x = i. P(i) = 2. (i) 4 (i) 3 3(i) 2 + (i) + 5 = 2 + i + 3 + i + 5 = 10 + 2i 02. Dado o polinômio P(x) = x 3 + kx 2 2x + 5, determine

Leia mais

QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA.

QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. 006 PROVA CONHECIMENTOS ESPECÍFICOS MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetrl do Vestibulr Uificdo Trigoometri

Leia mais

TEORIA DAS MATRIZES Professor Judson Santos

TEORIA DAS MATRIZES Professor Judson Santos TEORIA DAS I - DEFINIÇÃO Deomimos mtriz rel do tipo m (lei: m por ) tod tbel formd por m. úmeros reis dispostos em m lihs e colus. Exemplos: é um mtriz rel. 5 - é um mtriz rel. 8 II - MATRIZ QUADRADA.

Leia mais

6.1: Séries de potências e a sua convergência

6.1: Séries de potências e a sua convergência 6 SÉRIES DE FUNÇÕES 6: Séries de potêcis e su covergêci Deiição : Um série de potêcis de orm é um série d ( ) ( ) ( ) ( ) () Um série de potêcis de é sempre covergete pr De cto, qudo, otemos série uméric,

Leia mais

MATEMÁTICA POLINÔMIOS

MATEMÁTICA POLINÔMIOS MATEMÁTICA POLINÔMIOS 1. F.I.Anápolis-GO Seja o polinômio P(x) = x 3 + ax 2 ax + a. O valor de P(1) P(0) é: a) 1 b) a c) 2a d) 2 e) 1 2a 1 2. UFMS Considere o polinômio p(x) = x 3 + mx 20, onde m é um

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA VICE-REITORIA DE ENSINO DE GRADUAÇÃO E CORPO DISCENTE COORDENAÇÃO DE EDUCAÇÃO A DISTÂNCIA MATEMÁTICA FINANCEIRA Rio de Jeiro / 007 TODOS OS DIREITOS RESERVADOS À UNIVERSIDADE CASTELO BRANCO UNIDADE I PROGRESSÕES

Leia mais

MÓDULO IV. EP.02) Determine o valor de: a) 5 3 = b) 3 4 = c) ( 4) 2 = d) 4 2 = EP.03) Determine o valor de: a) 2 3 = b) 5 2 = c) ( 3) 4 = d) 3 4 =

MÓDULO IV. EP.02) Determine o valor de: a) 5 3 = b) 3 4 = c) ( 4) 2 = d) 4 2 = EP.03) Determine o valor de: a) 2 3 = b) 5 2 = c) ( 3) 4 = d) 3 4 = MÓDULO IV. Defiição POTENCIACÃO Qudo um úmero é multiplicdo por ele mesmo, dizemos que ele está elevdo o qudrdo, e escrevemos:. Se um úmero é multiplicdo por ele mesmo váris vezes, temos um potêci:.. (

Leia mais

EQUAÇÃO DO 2 GRAU ( ) Matemática. a, b são os coeficientes respectivamente de e x ; c é o termo independente. Exemplo: x é uma equação do 2 grau = 9

EQUAÇÃO DO 2 GRAU ( ) Matemática. a, b são os coeficientes respectivamente de e x ; c é o termo independente. Exemplo: x é uma equação do 2 grau = 9 EQUAÇÃO DO GRAU DEFINIÇÃO Ddos, b, c R com 0, chmmos equção do gru tod equção que pode ser colocd n form + bx + c, onde :, b são os coeficientes respectivmente de e x ; c é o termo independente x x x é

Leia mais

3. Admitindo SOLUÇÃO: dy para x 1 é: dx. dy 3t. t na expressão da derivada, resulta: Questão (10 pontos): Seja f uma função derivável e seja g x f x

3. Admitindo SOLUÇÃO: dy para x 1 é: dx. dy 3t. t na expressão da derivada, resulta: Questão (10 pontos): Seja f uma função derivável e seja g x f x UIVERSIDADE FEDERAL DE ITAJUBÁ CALCULO e PROVA DE TRASFERÊCIA ITERA, EXTERA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR 9/6/ CADIDATO: CURSO PRETEDIDO: OBSERVAÇÕES: Prov sem cosult. A prov pode ser feit

Leia mais

EXERCÍCIOS BÁSICOS DE MATEMÁTICA

EXERCÍCIOS BÁSICOS DE MATEMÁTICA . NÚMEROS INTEIROS Efetur: ) + ) 8 ) 0 8 ) + ) ) 00 ( ) ) ( ) ( ) 8) + 9) + 0) ( + ) ) 8 + 0 ) 0 ) ) ) ( ) ) 0 ( ) ) 0 8 8) 0 + 0 9) + 0) + ) ) ) 0 ) + 9 ) 9 + ) ) + 8 8) 9) 8 0000 09. NÚMEROS FRACIONÁRIOS

Leia mais

Matemática. Resolução das atividades complementares. M13 Determinantes. 1 (Unifor-CE) Sejam os determinantes A 5. 2 (UFRJ) Dada a matriz A 5 (a ij

Matemática. Resolução das atividades complementares. M13 Determinantes. 1 (Unifor-CE) Sejam os determinantes A 5. 2 (UFRJ) Dada a matriz A 5 (a ij Resolução ds tividdes complementres Mtemátic M Determinntes p. (Unifor-CE) Sejm os determinntes A, B e C. Nests condições, é verdde que AB C é igul : ) c) e) b) d) A?? A B?? B C?? C AB C ()? AB C, se i,

Leia mais

Este capítulo tem por objetivo apresentar métodos para resolver numericamente uma integral.

Este capítulo tem por objetivo apresentar métodos para resolver numericamente uma integral. Nots de ul de Métodos Numéricos. c Deprtmeto de Computção/ICEB/UFOP. Itegrção Numéric Mrcoe Jmilso Freits Souz, Deprtmeto de Computção, Istituto de Ciêcis Exts e Biológics, Uiversidde Federl de Ouro Preto,

Leia mais

COMENTÁRIO DA PROVA. I. Se a expansão decimal de x é infinita e periódica, então x é um número racional. é um número racional.

COMENTÁRIO DA PROVA. I. Se a expansão decimal de x é infinita e periódica, então x é um número racional. é um número racional. COMENTÁRIO DA PROVA Como já er esperdo, prov de Mtemátic presetou um bom úmero de questões com gru reltivmete lto de dificuldde, s quis crcterístic fudmetl foi mescl de dois ou mis tems em um mesm questão

Leia mais

Sendo o polinômio P(x), de grau quatro e divisível por Q(x) = x 3, o resto de sua divisão por D(x) = x 5 é

Sendo o polinômio P(x), de grau quatro e divisível por Q(x) = x 3, o resto de sua divisão por D(x) = x 5 é Questão 01) O polinômio p(x) = x 3 + x 2 3ax 4a é divisível pelo polinômio q(x) = x 2 x 4. Qual o valor de a? a) a = 2 b) a = 1 c) a = 0 d) a = 1 e) a = 2 TEXTO: 1 Para fazer um estudo sobre certo polinômio

Leia mais

SISTEMA DE EQUAÇÕES LINEARES

SISTEMA DE EQUAÇÕES LINEARES SISTEM DE EQUÇÕES LINERES Defiição Ddos os úmeros reis b com equção b ode são vriáveis ou icógits é deomid equção lier s vriáveis Os úmeros reis são deomidos coeficietes ds vriáveis respectivmete e b é

Leia mais

9 = 3 porque 3 2 = 9. 16 = 4 porque 4 2 = 16. -125 = - 5 porque (- 5) 3 = - 125. 81 = 3 porque 3 4 = 81. 32 = 2 porque 2 5 = 32 -32 = - 2

9 = 3 porque 3 2 = 9. 16 = 4 porque 4 2 = 16. -125 = - 5 porque (- 5) 3 = - 125. 81 = 3 porque 3 4 = 81. 32 = 2 porque 2 5 = 32 -32 = - 2 COLÉGIO PEDRO II Cpus Niterói Discipli: Mteátic Série: ª Professor: Grziele Souz Mózer Aluo (: Tur: Nº: RADICAIS º Triestre (Reforço) INTRODUÇÃO 9 porque 9 porque - - porque (- ) - 8 porque 8 porque De

Leia mais

Z = {, 3, 2, 1,0,1,2,3, }

Z = {, 3, 2, 1,0,1,2,3, } Pricípios Aritméticos O cojuto dos úmeros Iteiros (Z) Em Z estão defiids operções + e. tis que Z = {, 3,, 1,0,1,,3, } A) + y = y + (propriedde comuttiv d dição) B) ( + y) + z = + (y + z) (propriedde ssocitiv

Leia mais

Aula 7 Lista de Exercícios de Raízes de Equações Polinomiais

Aula 7 Lista de Exercícios de Raízes de Equações Polinomiais Aula 7 Lista de Exercícios de Raízes de Equações Polinomiais Parte 1 Exercícios do Livro A Matemática do Ensino Médio Volume 3. Autores: Elon Lages Lima, Paulo Cezar Pinto Carvalho, Eduardo Wagner, Augusto

Leia mais

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFEREÇA ( ( x( Coeficiete costte. ( ( x ( Coeficiete vriável (depedete do tempo. Aplicmos x( pr e cosidermos codição iicil ( ( ( M ( ( ( ( x( x( ( x(

Leia mais

1. (6,0 val.) Determine uma primitiva de cada uma das seguintes funções. (considere a mudança de variável u = tan 2

1. (6,0 val.) Determine uma primitiva de cada uma das seguintes funções. (considere a mudança de variável u = tan 2 Istituto Superior Técico Deprtmeto de Mtemátic Secção de Álgebr e Aálise o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBiom e MEFT o Sem. 00/ 5/J/0 - v. Durção: h30m RESOLUÇÃO. 6,0 vl. Determie um

Leia mais

FICHA DE TRABALHO N.º 3 MATEMÁTICA A - 10.º ANO RADICAIS E POTÊNCIAS DE EXPOENTE RACIONAL

FICHA DE TRABALHO N.º 3 MATEMÁTICA A - 10.º ANO RADICAIS E POTÊNCIAS DE EXPOENTE RACIONAL Rdicis e Potêcis de Expoete Rciol Site: http://recursos-pr-mtemtic.webode.pt/ FIH E TRLHO N.º MTEMÁTI - 0.º NO RIIS E POTÊNIS E EXPOENTE RIONL ohece Mtemátic e domirás o Mudo. Glileu Glilei GRUPO I ITENS

Leia mais

LISTA P1T3. Professores: David. Matemática. 2ª Série. n 1. = n!

LISTA P1T3. Professores: David. Matemática. 2ª Série. n 1. = n! Mtemátic Professores: Dvid 2ª Série LISTA P1T3 FORMULÁRIO C, p! = p!( p)!! = p p!( p)!! α! β! δ! Tp+ 1 =.. b p P P α, β, δ = A, p PROBABILIDADES =!! = ( p)! p p 1. (PUC-SP 2010) Um luo prestou vestibulr

Leia mais

MATEMÁTICA BÁSICA. a c ad bc. b d bd EXERCÍCIOS DE AULA. 01) Calcule o valor de x em: FRAÇÕES

MATEMÁTICA BÁSICA. a c ad bc. b d bd EXERCÍCIOS DE AULA. 01) Calcule o valor de x em: FRAÇÕES MATEMÁTICA BÁSICA FRAÇÕES EXERCÍCIOS DE AULA ) Clcule o vlor de x em: A som e sutrção de frções são efetuds prtir d oteção do míimo múltiplo comum dos deomidores. É difícil respoder de imedito o resultdo

Leia mais

Vamos supor um quadrado com este, divididos em 9 quadradinhos iguais.

Vamos supor um quadrado com este, divididos em 9 quadradinhos iguais. Rdicição O que é, fil, riz qudrd de um úmero? Vmos supor um qudrdo com este, divididos em 9 qudrdihos iguis. Pegdo cd qudrdiho como uidde de áre, podemos dizer que áre do qudrdo é 9 qudrdihos, ou sej,

Leia mais

Curso Mentor. Radicais ( ) www.cursomentor.wordpress.com. Definição. Expoente Fracionário. Extração da Raiz Quadrada. Por definição temos que:

Curso Mentor. Radicais ( ) www.cursomentor.wordpress.com. Definição. Expoente Fracionário. Extração da Raiz Quadrada. Por definição temos que: Curso Metor www.cursometor.wordpress.com Defiição Por defiição temos que: Radicais a b b a, N, Observação : Se é par devemos ter que a é positivo. Observação : Por defiição temos:. 0 0 Observação : Chamamos

Leia mais

Matrizes e Vectores. Conceitos

Matrizes e Vectores. Conceitos Mtrizes e Vectores Coceitos Mtriz, Vector, Colu, Lih. Mtriz rigulr Iferior; Mtriz rigulr Superior; Mtriz Digol. Operções etre Mtrizes. Crcterístic de um mtriz; Crcterístic máxim de um mtriz. Mtriz Ivertível,

Leia mais

Fatoração e Produtos Notáveis

Fatoração e Produtos Notáveis Ftorção e Produtos Notáveis 1. (G1 - cftmg 014) Simplificndo epressão 1 4 6 4 5 4 16 48 obtém-se ). b) 4 +. c). d) 4 +.. (G1 - ifce 014) O vlor d epressão: b b ) b. b) b. c) b. d) 4b. e) 6b. é. (Upf 014)

Leia mais

GGE RESPONDE VESTIBULAR ITA 2009 (MATEMÁTICA)

GGE RESPONDE VESTIBULAR ITA 2009 (MATEMÁTICA) MATEMÁTICA - //8 GGE RESPONDE VESTIBULAR ITA (MATEMÁTICA) Notções N {,,,...} i : uidde imgiári: i - R: cojuto dos úmeros reis z :Módulo do úmero z C C: cojuto dos úmeros compleos Rez :prte rel do úmero

Leia mais

UNICAMP - 2004. 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

UNICAMP - 2004. 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR UNICAMP - 004 ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Em uma sala há uma lâmpada, uma televisão [TV] e um aparelho de ar codicioado [AC]. O cosumo da lâmpada equivale

Leia mais

Álgebra. Polinômios.

Álgebra. Polinômios. Polinômios 1) Diga qual é o grau dos polinômios a seguir: a) p(x) = x³ + x - 1 b) p(x) = x c) p(x) = x 7 - x² + 1 d) p(x) = 4 ) Discuta o grau dos polinômios em função de k R: a) p(x) = (k + 1)x² + x +

Leia mais

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada MATEMÁTICA b Sbe-se que o qudrdo de um número nturl k é mior do que o seu triplo e que o quíntuplo desse número k é mior do que o seu qudrdo. Dess form, k k vle: ) 0 b) c) 6 d) 0 e) 8 k k k < 0 ou k >

Leia mais

Projeto Jovem Nota 10 Polinômios Lista A Professor Marco Costa

Projeto Jovem Nota 10 Polinômios Lista A Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Ufv 2000) Sabendo-se que o número complexo z=1+i é raiz do polinômio p(x)=2x +2x +x+a,calcule o valor de a. 2. (Ita 2003) Sejam a, b, c e d constantes reais. Sabendo que a divisão

Leia mais

Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1

Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1 Mtrizes e Sistems de equções lieres D.I.C. Medes s mtrizes são um ferrmet básic formulção de problems de mtemátic e de outrs áres. Podem ser usds: resolução de sistems de equções lieres; resolução de sistems

Leia mais

é: y y x y 31 2 d) 18 e) O algarismo das unidades de é igual a: a) 1 b) 3 c) 5 d) 7 e) 9

é: y y x y 31 2 d) 18 e) O algarismo das unidades de é igual a: a) 1 b) 3 c) 5 d) 7 e) 9 0. Dentre s firmtivs bio, ssinle quel que NÃO é verddeir pr todo nturl n: - n = b - n- = - n+ n n c d - n = -- n e - n- = -- n 07. O lgrismo ds uniddes de 00. 7 00. 00 é igul : b c d 7 e 0. O vlor de 6

Leia mais

é: 31 2 d) 18 e) 512 y y x y

é: 31 2 d) 18 e) 512 y y x y 0. Dentre s firmtivs bio, ssinle quel que NÃO é verddeir pr todo nturl n: ) -) n = b) -) n- = -) n+ n n c) ) ) d) -) n = --) n e) -) n- = --) n 07. O lgrismo ds uniddes de 00. 7 00. 00 é igul : ) b) c)

Leia mais

1. Breve Revisão de Operações em

1. Breve Revisão de Operações em Breve Revisão de Operções em Est seção cotém um reve resumo de lgums operções e proprieddes dos úmeros reis, s quis serão muito utilizds o desevolvimeto do Cálculo Como se trt de um rápid revisão, escolhemos

Leia mais

POLINÔMIOS EQUAÇÕES POLINOMIAIS

POLINÔMIOS EQUAÇÕES POLINOMIAIS POLINÔMIOS EQUAÇÕES POLINOMIAIS 1. DEFINIÇÃO. VALOR NUMÉRICO. POLINÔMIOS IDÊNTICOS 4. DIVISÃO DE POLINÔMIOS 4.1. MÉTODO DA CHAVE 4.. BRIOT-RUFFINI DIVISÕES SUCESSIVAS 5. TEOREMA DO RESTO 6. DIVISIBILIDADE

Leia mais

o quociente C representa a quantidade de A por unidade de B. Exemplo Se um objecto custar 2, então 10 objectos custam 20. Neste caso temos 20 :10 2.

o quociente C representa a quantidade de A por unidade de B. Exemplo Se um objecto custar 2, então 10 objectos custam 20. Neste caso temos 20 :10 2. Mtemátic I - Gestão ESTG/IPB Resolução. (i).0 : r 0.000.0 00.0 00 0 0.0 00 0 00.000 00 000.008 90 0.000.000 00 000 008 90.00 00 00 00 9 Dividedo = Divisor x Quociete + Resto.0 = x.008 + 0.000. Num divisão

Leia mais

MATEMÁTICA BÁSICA 8 EQUAÇÃO DO 2º GRAU

MATEMÁTICA BÁSICA 8 EQUAÇÃO DO 2º GRAU MATEMÁTICA BÁSICA 8 EQUAÇÃO DO 2º GRAU Sbemos, de uls nteriores, que podemos resolver problems usndo equções. A resolução de problems pelo médtodo lgébrico consiste em lgums etps que vmso recordr. - Representr

Leia mais

Exercícios de Matemática Equações de Terceiro Grau

Exercícios de Matemática Equações de Terceiro Grau Exercícios de Matemática Equações de Terceiro Grau 1. (Unesp 89) Com elementos obtidos a partir do gráfico adiante, determine aproximadamente as raízes das equações a) f(x) = 0 b) f(x) -2x = 0 6. (Uel

Leia mais

2. (Ita 2002) Com base no gráfico da função polinomial y = f(x) esboçado a seguir, responda qual é o resto da divisão de f(x) por (x - 1/2) (x 1).

2. (Ita 2002) Com base no gráfico da função polinomial y = f(x) esboçado a seguir, responda qual é o resto da divisão de f(x) por (x - 1/2) (x 1). 1 Projeto Jovem Nota 10 Polinômios Lista B Professor Marco Costa 1. (Fuvest 2002) As raízes do polinômio p(x) = x - 3x + m, onde m é um número real, estão em progressão aritmética. Determine a) o valor

Leia mais

Vestibular Comentado - UVA/2011.1

Vestibular Comentado - UVA/2011.1 estiulr Comentdo - UA/0. Conecimentos Específicos MATEMÁTICA Comentários: Profs. Dewne, Mrcos Aurélio, Elino Bezerr. 0. Sejm A e B conjuntos. Dds s sentençs ( I ) A ( A B ) = A ( II ) A = A, somente qundo

Leia mais

(UCSAL) Sejam os números reais x e y tais que 12 - x + (4 + y)i = y + xi. O conjugado do número complexo z = x + yi é:

(UCSAL) Sejam os números reais x e y tais que 12 - x + (4 + y)i = y + xi. O conjugado do número complexo z = x + yi é: APOSTILAS (ENEM) VOLUME COMPLETO Exame Nacional de Ensino Médio (ENEM) 4 VOLUMES APOSTILAS IMPRESSAS E DIGITAIS Questão 1 (UCSAL) Sejam os números reais x e y tais que 12 - x + (4 + y)i = y + xi. O conjugado

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA LOGARITMOS PROF. CARLINHOS NOME: N O :

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA LOGARITMOS PROF. CARLINHOS NOME: N O : ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA LOGARITMOS PROF. CARLINHOS NOME: N O : 1 DEFINIÇÃO LOGARITMOS = os(rzão) + rithmos(números) Sejm e números reis positivos diferentes de zero e 1. Chm-se ritmo

Leia mais

Matemática Prof.: Joaquim Rodrigues 1 ESTUDO DOS POLINÔMIOS. nulo.

Matemática Prof.: Joaquim Rodrigues 1 ESTUDO DOS POLINÔMIOS. nulo. Matemática Prof.: Joaquim Rodrigues ESTUDO DOS POLINÔMIOS Questão 0 Dê o grau de P em cada caso: a) P() = 7 + b) P () = + + 7 c) P () = + d) P () = + e) P () = 0 f) P () = 0 Questão 0 Dado o poliômio P()

Leia mais

Gabarito CN Solução: 1ª Solução: 2ª Solução:

Gabarito CN Solução: 1ª Solução: 2ª Solução: ) Sejm P e 5 9 Q 5 9 Qul é o resto de (A) (B) (C) 5 (D) (E) 5 P? Q GABARITO: B 6 8 0 5 9 P 5 9 6 8 0 5 9 Q 5 9 P Q P Q Dí, ) Sbendo que ABC é um triângulo retângulo de hipotenus BC =, qul é o vlor máximo

Leia mais

SISTEMAS LINEARES. Sendo x e y, respectivamente, o número de pontos que cada jogador marcou, temos uma equação com duas incógnitas:

SISTEMAS LINEARES. Sendo x e y, respectivamente, o número de pontos que cada jogador marcou, temos uma equação com duas incógnitas: SISTEMAS LINEARES Do grego system ( Sy sigific juto e st, permecer, sistem, em mtemátic,é o cojuto de equções que devem ser resolvids juts,ou sej, os resultdos devem stisfzêlos simultemete. Já há muito

Leia mais

GABARITO: QUESTÃO PARA SER ANULADA, POIS NÃO HÁ NENHUMA OPÇÃO COM ESSA RESPOSTA.

GABARITO: QUESTÃO PARA SER ANULADA, POIS NÃO HÁ NENHUMA OPÇÃO COM ESSA RESPOSTA. PROVA AMARELA Nº 0 PROVA VERDE Nº 09 Sej x um número rel tl que x + X 9. Um possível vlor de x X é. Sendo ssim, som dos lgrismos será: ) ) c) d) e) x 9 + MMC x + 9x x 9x + 0 x x 9 x x+ MMC x + 9x x 9x

Leia mais

NÃO existe raiz real de um número negativo se o índice do radical for par.

NÃO existe raiz real de um número negativo se o índice do radical for par. 1 RADICIAÇÃO A rdicição é operção invers d potencição. Sbemos que: ) b) Sendo e b números reis positivos e n um número inteiro mior que 1, temos, por definição: sinl do rdicl n índice Qundo o índice é,

Leia mais

LOGARITMOS DEFINIÇÃO. log b. log 2 2. log61 0. loga. logam N logam. log N N. log. f ( x) log a. log FUNÇÃO LOGARITMICA

LOGARITMOS DEFINIÇÃO. log b. log 2 2. log61 0. loga. logam N logam. log N N. log. f ( x) log a. log FUNÇÃO LOGARITMICA LOGARITMOS DEFIIÇÃO log 0,, 0 FUÇÃO LOGARITMICA f ( ) log Eelos. Esoce o gráfico d fução 0,, 0 y log Eelos: log 8 ois 8 log log6 0 ois 0 ois 6 CODIÇÃO DE EXISTÊCIA 0 log eiste 0, EXEMPLO: Deterie os vlores

Leia mais

Matemática C Extensivo V. 6

Matemática C Extensivo V. 6 Mtemátic C Etesivo V 6 Eercícios ) D ) D ) C O vlor uitário do isumo é represetdo por y Portto pelo produto ds mtrizes A e B temos o seguite sistem: 5 5 9 y 5 5y 5y 9 5y 5 Portto: y 4 y 4 As médis uis

Leia mais

2. Resolução Numérica de Equações Não-Lineares

2. Resolução Numérica de Equações Não-Lineares . Resolução Numéric de Equções Não-Lieres. Itrodução Neste cpítulo será visto lgoritmos itertivos pr ecotrr rízes de fuções ão-lieres. Nos métodos itertivos, s soluções ecotrds ão são ets, ms estrão detro

Leia mais

0,01. Qual a resposta correta à pergunta de Chiquinho, considerandose os valores atribuídos às variáveis pelo professor?

0,01. Qual a resposta correta à pergunta de Chiquinho, considerandose os valores atribuídos às variáveis pelo professor? GABARIO Questão: Chiquiho ergutou o rofessor qul o vlor umérico d eressão + y+ z. Este resodeu-lhe com cert iroi: como queres sber o vlor umérico de um eressão, sem tribuir vlores às vriáveis? Agor, eu

Leia mais

No que segue, apresentamos uma definição formal para a exponenciação. Se a 0, por definição coloca-se a a a, a a a a e assim por diante. Ou.

No que segue, apresentamos uma definição formal para a exponenciação. Se a 0, por definição coloca-se a a a, a a a a e assim por diante. Ou. MAT Cálculo Diferecil e Itegrl I RESUMO DA AULA TEÓRICA 3 Livro do Stewrt: Seções.5 e.6. FUNÇÃO EXPONENCIAL: DEFINIÇÃO No ue segue, presetos u defiição forl pr epoecição uisuer R e., pr 2 3 Se, por defiição

Leia mais

Nº de infrações de 1 a 3 de 4 a 6 de 7 a 9 de 10 a 12 de 13 a 15 maior ou igual a 16

Nº de infrações de 1 a 3 de 4 a 6 de 7 a 9 de 10 a 12 de 13 a 15 maior ou igual a 16 MATEMÁTICA 77 Num bolão, sete migos gnhrm vinte e um milhões, sessent e três mil e qurent e dois reis. O prêmio foi dividido em sete prtes iguis. Logo, o que cd um recebeu, em reis, foi: ) 3.009.006,00

Leia mais

OPERAÇÕES ALGÉBRICAS

OPERAÇÕES ALGÉBRICAS MATEMÁTICA OPERAÇÕES ALGÉBRICAS 1. EXPRESSÕES ALGÉBRICAS Monômio ou Termo É expressão lgébric mis sintétic. É expressão formd por produtos e quocientes somente. 5x 4y 3x y x x 8 4x x 4 z Um monômio tem

Leia mais

CAPÍTULO VIII APROXIMAÇÃO POLINOMIAL DE FUNÇÕES

CAPÍTULO VIII APROXIMAÇÃO POLINOMIAL DE FUNÇÕES CAPÍTULO VIII APROXIMAÇÃO POLINOMIAL DE FUNÇÕES 1. Poliómios de Tylor Sej (x) um ução rel de vriável rel com domíio o cojuto A R e cosidere- -se um poto iterior do domíio. Supoh-se que ução dmite derivds

Leia mais

Progressões Geométricas. Progressões. Aritméticas. A razão é... somada multiplicada. Condição para 3 termos Termo geral. b) 20 c) 40 3.

Progressões Geométricas. Progressões. Aritméticas. A razão é... somada multiplicada. Condição para 3 termos Termo geral. b) 20 c) 40 3. Aritmétics Geométrics A rzão é... somd multiplicd Codição pr termos Termo gerl om dos termos p r p p p q q q q 0) (UNIFEP) e os primeiros qutro termos de um progressão ritmétic são, b, 5, d, o quociete

Leia mais

Unidade 2 Geometria: ângulos

Unidade 2 Geometria: ângulos Sugestões de tividdes Unidde 2 Geometri: ângulos 7 MTEMÁTIC 1 Mtemátic 1. Respond às questões: 5. Considere os ângulos indicdos ns rets ) Qul é medid do ângulo correspondente à metde de um ân- concorrentes.

Leia mais

4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem.

4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem. EFOMM 2010 1. Anlise s firmtivs bixo. I - Sej K o conjunto dos qudriláteros plnos, seus subconjuntos são: P = {x K / x possui ldos opostos prlelos}; L = {x K / x possui 4 ldos congruentes}; R = {x K /

Leia mais

Exercícios de Aprofundamento Mat Polinômios e Matrizes

Exercícios de Aprofundamento Mat Polinômios e Matrizes . (Unicamp 05) Considere a matriz A A e A é invertível, então a) a e b. b) a e b 0. c) a 0 e b 0. d) a 0 e b. a 0 A, b onde a e b são números reais. Se. (Espcex (Aman) 05) O polinômio q(x) x x deixa resto

Leia mais

Função Logaritmo - Teoria

Função Logaritmo - Teoria Fução Logritmo - Teori Defiição: O ritmo de um úmero rel positivo, bse IR { } podemos escrever Resumido temos: +, é o úmero rel tl que, equivletemete E: 7 8 8 8 8 7 * { }, IR { } * +, IR + Usdo que fução

Leia mais

Polinômios. 2) (ITA-1962) Se x³+px+q é divisível por x²+ax+b e x²+rx+s, demonstrar que:

Polinômios. 2) (ITA-1962) Se x³+px+q é divisível por x²+ax+b e x²+rx+s, demonstrar que: Material by: Caio Guimarães Polinômios A seguir, apresento uma lista de vários exercícios propostos (com gabarito) sobre polinômios. Os exercícios são para complementar a vídeo-aula a respeito de polinômios

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear Geometri Alític e Álgebr Lier 8. Sistems Lieres Muitos problems ds ciêcis turis e sociis, como tmbém ds egehris e ds ciêcis físics, trtm de equções que relciom dois cojutos de vriáveis. Um equção do tipo,

Leia mais

uma função real SOLUÇÃO 20 Temos f(x)

uma função real SOLUÇÃO 20 Temos f(x) Priipis otções o ojuto de todos os úmeros reis [,b] = { : b} ],b[ = { : < < b} (,b) pr ordedo gof fução omposto de g e f - mtri ivers d mtri T mtri trspost d mtri det () determite d mtri s uestões de ão

Leia mais

QUESTÕES DE 01 A 09. Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas.

QUESTÕES DE 01 A 09. Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas. PROVA DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - SETEMBRO DE ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ PROFESSORA MARIA ANTÔNIA C GOUVEIA QUESTÕES DE A 9 Assile

Leia mais

. Determine os valores de P(1) e P(22).

. Determine os valores de P(1) e P(22). Resolução das atividades complementares Matemática M Polinômios p. 68 Considere o polinômio P(x) x x. Determine os valores de P() e P(). x x P() 0; P() P(x) (x x)? x (x ) x x x P()? 0 P() ()? () () 8 Seja

Leia mais

Matemática Régis Cortes FUNÇÃO DO 2 0 GRAU

Matemática Régis Cortes FUNÇÃO DO 2 0 GRAU FUNÇÃO DO 2 0 GRAU 1 Fórmul de Bháskr: x 2 x 2 4 2 Utilizndo fórmul de Bháskr, vmos resolver lguns exeríios: 1) 3x²-7x+2=0 =3, =-7 e =2 2 4 49 4.3.2 49 24 25 Sustituindo n fórmul: x 2 7 25 2.3 7 5 7 5

Leia mais

Artur Miguel Cruz. Escola Superior de Tecnologia Instituto Politécnico de Setúbal 2015/2016 1

Artur Miguel Cruz. Escola Superior de Tecnologia Instituto Politécnico de Setúbal 2015/2016 1 Itegrção Numéric Aálise Numéric Artur Miguel Cruz Escol Superior de Tecologi Istituto Politécico de Setúbl 015/016 1 1 versão 13 de Juho de 017 1 Itrodução Clculr itegris é muito mis difícil do que clculr

Leia mais

POLINÔMIOS. x 2x 5x 6 por x 1 x 2. 10 seja x x 3

POLINÔMIOS. x 2x 5x 6 por x 1 x 2. 10 seja x x 3 POLINÔMIOS 1. (Ueg 01) A divisão do polinômio a) x b) x + c) x 6 d) x + 6 x x 5x 6 por x 1 x é igual a:. (Espcex (Aman) 01) Os polinômios A(x) e B(x) são tais que A x B x x x x 1. Sabendo-se que 1 é raiz

Leia mais

Apostila de Matemática 16 Polinômios

Apostila de Matemática 16 Polinômios Apostila de Matemática 16 Polinômios 1.0 Definições Expressão polinomial ou polinômio Expressão que obedece a esta forma: a n, a n-1, a n-2, a 2, a 1, a 0 Números complexos chamados de coeficientes. n

Leia mais

Bhaskara e sua turma Cícero Thiago B. Magalh~aes

Bhaskara e sua turma Cícero Thiago B. Magalh~aes 1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como

Leia mais

Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma:

Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma: EQUAÇÕES POLINOMIAIS. EQUAÇÃO POLINOMIAL OU ALGÉBRICA Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma: p(x) = a n x n + a n x n +a n x n +... + a x + a 0 = 0 onde

Leia mais

Integrais Imprópias Aula 35

Integrais Imprópias Aula 35 Frções Prciis - Continução e Integris Imprópis Aul 35 Alexndre Nolsco de Crvlho Universidde de São Pulo São Crlos SP, Brzil 05 de Junho de 203 Primeiro Semestre de 203 Turm 20304 - Engenhri de Computção

Leia mais

FUNÇÃO EXPONENCIAL. a 1 para todo a não nulo. a. a. a a. a 1. Chamamos de Função Exponencial a função definida por: f( x) 3 x. f( x) 1 1. 1 f 2.

FUNÇÃO EXPONENCIAL. a 1 para todo a não nulo. a. a. a a. a 1. Chamamos de Função Exponencial a função definida por: f( x) 3 x. f( x) 1 1. 1 f 2. 49 FUNÇÃO EXPONENCIAL Professor Lur. Potêcis e sus proprieddes Cosidere os úmeros ( 0, ), mr, N e, y, br Defiição: vezes por......, ( ), ou sej, potêci é igul o úmero multiplicdo Proprieddes 0 pr todo

Leia mais

MATEMÁTICA II. 01. Uma função f, de R em R, tal. , então podemos afirmar que a, b e c são números reais, tais. que. D) c =

MATEMÁTICA II. 01. Uma função f, de R em R, tal. , então podemos afirmar que a, b e c são números reais, tais. que. D) c = MATEMÁTCA 0. Uma fução f, de R em R, tal que f(x 5) f(x), f( x) f(x),f( ). Seja 9 a f( ), b f( ) e c f() f( 7), etão podemos afirmar que a, b e c são úmeros reais, tais que A) a b c B) b a c C) c a b ab

Leia mais

Exercícios de Matemática Binômio de Newton

Exercícios de Matemática Binômio de Newton Exercícios de Mateática Biôio de Newto ) (ESPM-995) Ua lachoete especializada e hot dogs oferece ao freguês 0 tipos diferetes de olhos coo tepero adicioal, que pode ser usados à votade. O tipos de hot

Leia mais

Erivaldo. Polinômios

Erivaldo. Polinômios Erivaldo Polinômios Polinômio ou Função Polinomial Definição: P(x) = a o + a 1.x + a 2.x 2 + a 3.x 3 +... + a n.x n a o, a 1, a 2, a 3,..., a n : Números complexos Exemplos: 1) f(x) = x 2 + 3x 7 2) P(x)

Leia mais

Polinômios. 02) Se. (x 1), então. f(x) (x 2) (x 1) 5ax 2b, com a e b reais, é divisível por a b 1. 04) As raízes da equação

Polinômios. 02) Se. (x 1), então. f(x) (x 2) (x 1) 5ax 2b, com a e b reais, é divisível por a b 1. 04) As raízes da equação Polinômios 1. (Ufsc 015) Em relação à(s) proposição(ões) abaixo, é CORRETO afirmar ue: 01) Se o gráfico abaixo representa a função polinomial f, definida em por f(x) ax bx cx d, com a, b e c coeficientes

Leia mais

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c.

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c. EQUAÇÃO DO GRAU Você já estudou em série nterior s equções do 1 gru, o gru de um equção é ddo pelo mior expoente d vriável, vej lguns exemplos: x + = 3 equção do 1 gru já que o expoente do x é 1 5x 8 =

Leia mais

PROF. GILMAR AUGUSTO PROF. GILMAR AUGUSTO

PROF. GILMAR AUGUSTO PROF. GILMAR AUGUSTO MÚLTIPLOS E DIVISORES - (Of. Justiç Bttis e Adrdi). Ds firmtivs: - O úmero zero é o úico úmero pr que é primo; - O úmero ão é primo em composto; - Os úmeros que têm mis de dois divisores são chmdos úmeros

Leia mais

GGE RESPONDE ITA 2015 MATEMÁTICA 1 A RESOLUÇÃO DAS QUESTÕES NO SITE: 01. Considere as seguintes afirmações sobre números reais:

GGE RESPONDE ITA 2015 MATEMÁTICA 1 A RESOLUÇÃO DAS QUESTÕES NO SITE:  01. Considere as seguintes afirmações sobre números reais: 0. Cosidere s seguites firmções sobre úmeros reis: I. Se epsão deciml de é ifiit e periódic, etão é um úmero rciol. II. 0 ( III. l e (log )(log ) é úmero rciol. É (são) verddeir (s): ) eum b) pes II. c)

Leia mais

FUNÇÃO LOGARITMICA. Professora Laura. 1 Definição de Logaritmo

FUNÇÃO LOGARITMICA. Professora Laura. 1 Definição de Logaritmo 57 FUÇÃO LOGARITMICA Professor Lur 1 Definição de Logritmo Chm se logritmo de um número > 0 em relção um bse (0 < 1), o expoente que se deve elevr bse, fim de que potênci obtid sej igul. log, onde: > 0,

Leia mais

MATRIZES. Exemplo: A tabela abaixo descreve as safras de milho, trigo, soja, arroz e feijão, em toneladas, durante os anos de 1991, 1992, 1993 e 1994.

MATRIZES. Exemplo: A tabela abaixo descreve as safras de milho, trigo, soja, arroz e feijão, em toneladas, durante os anos de 1991, 1992, 1993 e 1994. Professor Muricio Lut MTRIZES INTRODUÇÃO Qudo um prolem evolve um grde úmero de ddos (costtes ou vriáveis), disposição destes um tel retgulr de dupl etrd propici um visão mis glol do mesmo s tels ssim

Leia mais

1 INTRODUÇÃO 3 PRODUTO 2 SOMA 4 DIVISÃO. 2.1 Diferença de polinômios. 4.1 Divisão Euclidiana. Matemática Polinômios

1 INTRODUÇÃO 3 PRODUTO 2 SOMA 4 DIVISÃO. 2.1 Diferença de polinômios. 4.1 Divisão Euclidiana. Matemática Polinômios Matemática Polinômios CAPÍTULO 02 OPERAÇÕES COM POLINÔMIOS 1 INTRODUÇÃO Como com qualquer outra função, podemos fazer operações de adição, subtração, multiplicação e divisão com polinômios. A soma e a

Leia mais

PROVA DE MATEMÁTICA - TURMAS DO

PROVA DE MATEMÁTICA - TURMAS DO PROVA DE MATEMÁTICA - TURMAS DO o ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - MARÇO DE 0. ELABORAÇÃO: PROFESSORES ADRIANO CARIBÉ E WALTER PORTO. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão 0. (UDESC SC)

Leia mais

POLINÔMIOS. Nível Básico

POLINÔMIOS. Nível Básico POLINÔMIOS Nível Básico. (Eear 07) Considere P(x) x bx cx, tal que P() e P() 6. Assim, os valores de b e c são, respectivamente, a) e b) e c) e d) e. (Epcar (Afa) 05) Considere o polinômio a) x 0 não é

Leia mais

Somas de Riemann e Integração Numérica. Cálculo 2 Prof. Aline Paliga

Somas de Riemann e Integração Numérica. Cálculo 2 Prof. Aline Paliga Soms de Riem e Itegrção Numéric Cálculo 2 Prof. Alie Plig Itrodução Problems de tgete e de velocidde Problems de áre e distâci Derivd Itegrl Defiid 1.1 Áres e distâcis 1.2 Itegrl Defiid 1.1 Áres e distâcis

Leia mais

CADERNO DE RESOLUÇÕES CONCURSO ITA 2010 MATEMÁTICA 17/DEZ/2009

CADERNO DE RESOLUÇÕES CONCURSO ITA 2010 MATEMÁTICA 17/DEZ/2009 CONCURSO ITA O ELITE CURITIBA prov mis porque tem qulidde seriedde e profissiolismo como lems Cofir ossos resultdos e comprove porque temos mis oferecer IME : Dos provdos de Curitib são ELITE sedo os melhores

Leia mais