CODIFICAÇÃO DE CANAL PARA SISTEMAS DE COMUNICAÇÃO DIGITAL

Tamanho: px
Começar a partir da página:

Download "CODIFICAÇÃO DE CANAL PARA SISTEMAS DE COMUNICAÇÃO DIGITAL"

Transcrição

1 Grupo (Group), G CODIFICAÇÃO DE CANAL PARA SISTEMAS DE COMUNICAÇÃO DIGITAL INTRODUÇÃO À ÁLGEBRA Evelio M. G. Ferádez Sistem lgébrico com um operção e seu iverso. cojuto de elemetos e xioms G1 à G4. G1) Fechmeto,, b G ( + b) G. G2) Associtiv,, b, c G ( + b) + c = + ( b + c). G3) Elemeto idetidde (eutro): 0 ou 1 (depede d operção). Se operção = som, G + 0 = 0 + = Se operção = produto, G 1 = 1 =. G4) Iverso. Se operção = som, G ( ) G / + ( ) = ( ) + = 0 elemeto eutro dição Se operção = produto, G ( ) G / ( ) = ( ) = 1 elemeto eutro multiplicção Grupo belio (comuttivo) Pr grupo sob dição (som),, b G + b = b + Pr grupo sob multiplicção (produto),, b G b = b Exemplos e Cotr-exemplos Exemplos e Cotr-exemplos Especifique se são grupos os seguites cojutos (operção som e produto). ) Coj. N o reis b) Coj. N o reis exceto zero c) Coj. N o iteiros (positivos e zero) d) Coj. N o iteiros (egtivos e zero) e) Coj. N o iteiros (eg., pos. e zero) Verifique se é grupo álgebr biári (Boole) sob s seguites operções booles: ) Operção OR b) Operção AND c) Operção OR-EXCLUSIVO ou Módulo 2 1

2 Exemplos e Cotr-exemplos Verifique se costituem grupos os seguites cojutos sob operção som módulo 2: ) S 1 = {0000, 1111} b) S 2 = {000, 011, 101, 110} c) S 3 = {000, 011, 101, 110, 111} d) S 4 = {000, 001, 100, 101} Ael (Rig), R Sistem lgébrico com 2 operções e operção ivers d dição. Cojuto de elemetos e xioms R1 R4. R1) R = Grupo belio sob dição ( iverso dição). R2) Fechmeto,, b R b R R3) Associtiv,, b, c R ( bc ) = ( b )c ( ) ( ) c b + c = b + c R4) Distributiv, b + c = b + Ael comuttivo (belio),, b R b = b Propriedde de el:, b R 0 = 0 = 0 ( b) = ( ) b = ( b) Exemplos e Cotr-exemplos Corpo (Field), F Sistem lgébrico com 2 operções e seus iversos. Verifique se são éis os seguites cojutos: - {N o reis} i} - {iteiros} - {Poliômios em um vriável com coeficietes iteiros} Axioms: F1) Ael comuttivo (A, +,.) F2) Elemeto idetidde 1 pr operção. (produto). F3) Iverso multiplictivo, A, 0; / = 1 0 = elemeto eutro operção +. 1 = elemeto eutro operção. 2

3 Exemplos e Cotr-exemplos DEF: -upl sobre F. Operções com -upls cojuto ordedo de elemetos de F. Verifique se são corpos os seguites cojutos: ) {N o reis} b) {N o iteiros} c) S1 = {0, 1} e operções módulo 2 d) S2 = {0, 1, 2} e operções módulo 3 EX: (, 2, K, ) F, i = 1,2, 1 i K, DEF: Adição de -upls: (, K, ) + ( b, b, K, b ) = ( + b, + b,, + b ) 1, K Adição sobre F DEF: Multiplicção de um esclr ( F) por um -upl: c F c (, K, ) = ( c, c,, c ) 1, K Produto sobre F DEF: Multiplicção de -upls: (, K, ) ( b, b, K, b ) = ( b, b,, b ) 1, K Produto sobre F Espços Vetoriis Um cojuto V de elemetos é um espço vetoril sobre um corpo F se stisfzer xioms V1-V5 (elemeto de V: v = ( v, v2,, v ) V 1 K ). V1) Grupo belio sob dição (elemeto idetidde dição vetor todo zero 0). V2) Fechmeto: v V e c F cv V (produto por um esclr). V3) Distributiv 1: ( u, v) V e esclr c F c( u + v) = cu + cv V4) Distributiv 2: v V e ( c, d ) F ( c + d ) v = c v + d v V5) Associtiv: ( c d ) F ( cd ) v c( dv) v V e, =. Álgebr Lier Associtiv Um cojuto A de elemetos é um álgebr lier ssocitiv sobre um corpo F se stisfzer xioms A1 à A4: A1) Espço vetoril sobre F. A2) ( u, v) A ( u v) A A3) Associtiv, ( u, v w) A ( u v) w = u ( v w), A4) Bilier, ( c, d ) F e ( u, v w) A u ( c v + d w) = c u v + d u w, OBS: ( c v + d w) u = c v u + d w u 3

4 Subespços Vetoriis Subespços Vetoriis: Exemplos DEF: S subespço de V. Todo subcojuto de um espço vetoril que stisfzer os xioms de espço vetoril. OBS: Pr verificção de subespço vetoril: Verificr proprieddes de fechmeto dição e multiplicção por esclr. EX1: Sej V: cojuto ds -upls sobre GF(2), = 3. S1 = {000, 010, 100} = subespço de V? S2 = {000, 010, 100, 110} = subespço de V? EX2: Sej V = {cojuto ds -upls sobre GF(3), = 2} S1 = {02, 00} = sub V? S2 = {02, 00, 01} = sub V? Combições Lieres de k Vetores Combições Lieres de k Vetores Sejm ( v, v, v ) V u = v + v + K+ v F 1 2 K, k Teorem 2.5 (Peterso & Weldo, Cp. 2) O cojuto S de tods s combições lieres de um cojuto {v 1, v 2,..., v k} V é um subespço de V, i.e., S V. EXEMPLO: Sej V = {-upls, = 3} O cojuto de tods s combições lieres de {010, 110} é subespço de V? k k i Vetores liermete depedetes (LD). O cojuto { v, v2,, vk } V 1 K é LD { c, c2,, } em todos 1 K c k iguis zero tl que c 1 v 1 + c 2 v 2 + L + c k v k = 0. Cojuto de vetores liermete idepedetes (LI): Todo cojuto de vetores que ão for LD. 4

5 Gerdor de um Espço Vetoril Dimesão de um Espço Vetoril Um cojuto de vetores ger um espço vetoril V se qulquer v V é um combição lier dos vetores deste cojuto. Teorem 2.6 (Peterso & Weldo). Se um cojuto de m vetores, (v 1, v 2,..., v m), ger o espço vetoril V e V cotém um cojuto de k vetores LI, (u 1, u 2,..., u k) etão m k. Teorem 2.7 (Peterso & Weldo). Se dois cojutos de vetores LI germ o mesmo espço vetoril V, eles possuem o mesmo úmero de vetores. Dim(V) = úmero de vetores LI que germ V. DEF: Bse de um espço vetoril V de dimesão k. É um cojuto de k vetores LI que germ V. Teorem 2.8 (Peterso & Weldo). Se Dim(V) = k qulquer cojuto de k vetores LI em V é um bse pr V. EXEMPLOS 1) Liste 4 cojutos de vetores LI que formm um bse pr V 3. 2) Liste 4 cojutos de vetores LD que germ V 3. 3) Liste todos os cojutos de vetores que formm um bse pr S 1 = {000, 110, 010, 100} Produto Esclr Mtrizes DEF: Produto esclr (ou itero) de dois vetores (-upls). ( 1, 2, K, ) ( b1, b2, K, b ) = 1b1 + 2b2 + L+ b = c F. Proprieddes de o produto esclr: u v = v u w ( u + v) = w u + w v M = M m M m2 L L M L 1 2 M m DEF: Vetores ortogois: u v = 0 u v Teorem 2.13 (Peterso & Weldo). O cojuto de tods s -upls ortogois um subespço S1 de -upls form um subespço S2 de -upls. S2 é chmdo de espço ulo de S1 (e vice-vers teorem 2.16). S1 ortogol S2: S1 S2 ou S2 ortogol S1: S2 S1. Teorem 2.14 (Peterso & Weldo). Se um vetor é ortogol todo vetor de um cojuto que ger S1, ele pertece o espço ulo de S1. M = [ ij], i = 1, 2,..., m; j = 1, 2,..., Lih de M = -upl ou vetor de dígitos F, vetor lih. Colu de M = m-upl ou vetor de m dígitos F, vetor colu. DEF: Espço ds lihs de M: é o cojuto de tods s combições lieres dos vetores lihs ssocidos à M. OBS: É um subespço vetoril do espço vetoril ds -upls sobre o corpo F de esclres. RANK (lihs) = Dim[espço ds lihs]. OBS: Idem pr espço ds colus. 5

6 Operções sobre s Lihs Form Côic Esclod Teorem 2.10 (P & W). Operções elemetres sobre s lihs de M ão lterm seu espço ds lihs. OBS: Operções elemetres sobre s lihs: - Permutção. - Multiplicção por um esclr c F, c 0. - Adição de um múltiplo de um lih um outr. OBS: Iverso de um operção elemetr é tmbém um operção lier d mesm espécie. DEF: Form côic esclod (echelo coicl form). Crcterístics: 1) Líder de lih ão zero é o elemeto 1. 2) A colu do líder tem todos os outros elemetos iguis 0. 3) O líder de um lih está à direit do líder ds lihs teriores. 4) Tods s lihs que têm somete zeros estão bixo bi ds lihs lih ão zero. Proprieddes ds mtrizes form côic esclod - As lihs ão zero são L.I. - Dim(espço ds lihs) = o de lihs ão zero d mtriz esclod. - Um úico espço de lihs um úic mtriz esclod. Espço Nulo de um Mtriz É o espço ulo do espço ds lihs d mtriz. Proprieddes do espço ulo: Um vetor v (-upl) está o espço ulo de um mtriz M, se e somete se: T v M = 0[1 m ] ode: M T = mtriz [ m], trspost de M; v = v1, v2,, [ 1 ] ( K v ). Teorem 2.15 (P & W): Se V 2 V 1 e Dim(V 1) = k Dim(V 2) = k ode, = Dim(V); V = espço vetoril de -upls. 6

Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1

Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1 Mtrizes e Sistems de equções lieres D.I.C. Medes s mtrizes são um ferrmet básic formulção de problems de mtemátic e de outrs áres. Podem ser usds: resolução de sistems de equções lieres; resolução de sistems

Leia mais

Z = {, 3, 2, 1,0,1,2,3, }

Z = {, 3, 2, 1,0,1,2,3, } Pricípios Aritméticos O cojuto dos úmeros Iteiros (Z) Em Z estão defiids operções + e. tis que Z = {, 3,, 1,0,1,,3, } A) + y = y + (propriedde comuttiv d dição) B) ( + y) + z = + (y + z) (propriedde ssocitiv

Leia mais

Redes elétricas Circuitos que contém resistências e geradores de energia podem ser analisados usando sistemas de equações lineares;

Redes elétricas Circuitos que contém resistências e geradores de energia podem ser analisados usando sistemas de equações lineares; Álger Lier Mtrizes e vetores Sistems lieres Espços vetoriis Bse e dimesão Trsformções lieres Mtriz de um trsformção lier Aplicções d Álger Lier: Redes elétrics Circuitos que cotém resistêcis e gerdores

Leia mais

Espaços Vetoriais. Profª Cristiane Guedes. Bibliografia: Algebra Linear Boldrini/Costa/Figueiredo/Wetzler

Espaços Vetoriais. Profª Cristiane Guedes. Bibliografia: Algebra Linear Boldrini/Costa/Figueiredo/Wetzler Espços Vetoriis Profª Cristie Gedes iliogrfi: Alger Lier oldrii/cost/figeiredo/wetzler Itrodção Ddo m poto P(,,z o espço, temos m etor ssocido esse poto: OP (,, z pode ser escrito d segite form: z z V

Leia mais

Objetivo: Conceituar espaço vetorial; Realizar mudança de base; Conhecer e calcular transformações Lineares

Objetivo: Conceituar espaço vetorial; Realizar mudança de base; Conhecer e calcular transformações Lineares Alger Lier oldrii/cost/figeiredo/wetzler Ojetio: Coceitr espço etoril; Relizr mdç de se; Cohecer e clclr trsformções Lieres Itrodção Defiição de Espço Vetoril Sespço Comição Lier Represetção dos etores

Leia mais

Módulo 01. Matrizes. [Poole 134 a 178]

Módulo 01. Matrizes. [Poole 134 a 178] ódulo Note em, leitur destes potmetos ão dispes de modo lgum leitur tet d iliogrfi pricipl d cdeir hm-se à teção pr importâci do trlho pessol relizr pelo luo resolvedo os prolems presetdos iliogrfi, sem

Leia mais

; determine a matriz inversa A -1

; determine a matriz inversa A -1 - REVISÃO MATEMÁTICA Neste cpítulo recordrão-se lgus coceitos de Álger Lier e Aálise Mtemátic que serão ecessários pr o estudo d teori do Método Simple - Mtrizes Iversíveis Defiição Um mtriz A de ordem

Leia mais

TÉCNICAS DE CODIFICAÇÃO DE SINAIS

TÉCNICAS DE CODIFICAÇÃO DE SINAIS TÉCNICAS DE CODIFICAÇÃO DE SINAIS CÓDIGOS CÍCICOS Eelio M. G. Ferádez - Códios Cíclicos: Defiição Um códio de bloco lier é um códio cíclico se cd deslocmeto cíclico ds plrs-códio é tmbém um plr-códio.

Leia mais

Álgebra Linear e Geometria Analítica. Espaços Vectoriais

Álgebra Linear e Geometria Analítica. Espaços Vectoriais Álgebr Liner e Geometri Anlític Espços Vectoriis O que é preciso pr ter um espço vectoril? Um conjunto não vzio V Um operção de dição definid nesse conjunto Um produto de um número rel por um elemento

Leia mais

1. Matrizes; 2. Determinantes; 3. Sistemas Lineares; 4.Espaços vetoriais; 5. Subespaços Vetoriais; 6. Subespaços Geradores; 7.

1. Matrizes; 2. Determinantes; 3. Sistemas Lineares; 4.Espaços vetoriais; 5. Subespaços Vetoriais; 6. Subespaços Geradores; 7. UTOR: Luiz Herique M d Silv Grdudo em Mtemátic e hbilitdo em Físic pelo UNIFEB Especilist em Educção Mtemátic pel Fculdde São Luís Mestre em Mtemátic pel Uesp (SJRP) IBILCE PROFMT (SBM) /CPES Mtrizes;

Leia mais

Revisão de Álgebra Matricial

Revisão de Álgebra Matricial evisão de Álgebr Mtricil Prof. Ptrici Mri ortolo Fote: OLDINI, C. e WETZLE, F.; Álgebr Lier. ª. ed. São Pulo. Editor Hrbr, 986 Álgebr Mtricil D Mtemátic do º. Gru: y ( y ( De( : y Em ( : ( Em ( : y y 8

Leia mais

Capítulo 4. Matrizes e Sistemas de Equações Lineares

Capítulo 4. Matrizes e Sistemas de Equações Lineares ------------- Resumos ds uls teórics ------------------Cp 4------------------------------ Cpítulo 4. Mtrizes e Sistems de Equções Lineres Conceitos Geris sobre Mtrizes Definição Sejm m e n dois inteiros,

Leia mais

Resolução de sistemas lineares SME 0200 Cálculo Numérico I

Resolução de sistemas lineares SME 0200 Cálculo Numérico I Resolução de sistems lieres SME Cálculo Numérico I Docete: Prof. Dr. Mrcos Areles Estgiário PAE: Pedro Muri [reles@icmc.usp.br, muri@icmc.usp.br] Itrodução Sistems lieres são de grde importâci pr descrição

Leia mais

Matrizes. Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Márcia A.F. Dias de Moraes. Matrizes Conceitos Básicos

Matrizes. Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Márcia A.F. Dias de Moraes. Matrizes Conceitos Básicos Mtemátic pr Economists LES uls e Mtrizes Ching Cpítulos e Usos em economi Mtrizes ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Márci.F. Dis de Mores Álgebr Mtricil Conceitos Básicos

Leia mais

EXAME NACIONAL DE SELEÇÃO 2010

EXAME NACIONAL DE SELEÇÃO 2010 EXAME NACIONAL DE SELEÇÃO 00 PROVA DE MATEMÁTICA o Di: 0/0/009 - QUINTA FEIRA HORÁRIO: 8h às 0h 5m (horário de Brsíli) EXAME NACIONAL DE SELEÇÃO 00 PROVA DE MATEMÁTICA º Di: 0/0 - QUINTA-FEIRA (Mhã) HORÁRIO:

Leia mais

y vetores do R 2. Então:

y vetores do R 2. Então: ESPAÇOS VETORIAIS Espços Vetoriis Estdremos o coceito de espço etoril, qe é m cojto mido de certs operções, gozm de proprieddes ligds áris plicções mtemátics, s ciêcis bem como egehri Sej V m cojto ão

Leia mais

Universidade Federal Fluminense ICEx Volta Redonda Métodos Quantitativos Aplicados I Professora: Marina Sequeiros

Universidade Federal Fluminense ICEx Volta Redonda Métodos Quantitativos Aplicados I Professora: Marina Sequeiros Uiversidde Federl Flumiese ICE Volt Redod Métodos Qutittivos Aplicdos I Professor: Mri Sequeiros. Poliômios Defiição: Um poliômio ou fução poliomil P, vriável, é tod epressão do tipo: P)=... 0, ode IN,

Leia mais

Quando o polinômio divisor é da forma x + a, devemos substituir no polinômio P(x), x por a, visto que: x + a = x ( a).

Quando o polinômio divisor é da forma x + a, devemos substituir no polinômio P(x), x por a, visto que: x + a = x ( a). POLINÔMIOS II. TEOREMA DE D ALEMBERT O resto d divisão de um poliômio P(x) por x é igul P(). m m Sej, com efeito, P x x x..., um poliômio de x, ordedo segudo s potecis m m decrescetes de x. Desigemos o

Leia mais

1 INTRODUÇÃO À ÁLGEBRA EM CAMPOS DE GALOIS GF(2 m )

1 INTRODUÇÃO À ÁLGEBRA EM CAMPOS DE GALOIS GF(2 m ) INTRODUÇÃO À ÁLGEBRA EM CAMPOS DE GALOIS GF m.. INTRODUÇÃO O propósito deste texto é presentr conceitução básic d álgebr em Cmpos de Glois. A bordgem usd pr presentção deste ssunto é descritiv e com vários

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOS DE U Geometri líti e Álger ier Mtrizes e Determites Professor: uiz Ferdo Nues, Dr 8/Sem_ Geometri líti e Álger ier ii Ídie Mtrizes e Determites Mtrizes Determites e Mtriz Ivers 8 Referêis iliográfis

Leia mais

Prof. Ms. Aldo Vieira Aluno:

Prof. Ms. Aldo Vieira Aluno: Prof. Ms. Aldo Vieir Aluno: Fich 1 Chmmos de mtriz, tod tbel numéric com m linhs e n coluns. Neste cso, dizemos que mtriz é do tipo m x n (onde lemos m por n ) ou que su ordem é m x n. Devemos representr

Leia mais

ANÁLISE NUMÉRICA. Sistemas Lineares (1) 5º P. ENG. DE Biomédica FUNORTE / Prof. Rodrigo Baleeiro Silva

ANÁLISE NUMÉRICA. Sistemas Lineares (1) 5º P. ENG. DE Biomédica FUNORTE / Prof. Rodrigo Baleeiro Silva NÁLISE NUMÉRIC Sistems Lieres () º P. ENG. DE Biomédic FUNORTE / Prof. Rodrigo Beeiro Siv Sistems Lieres Coceitos Fdmetis Mtriz (m ) Eemetos: ij ode i =...m e j =... m m m m Sistems Lieres Coceitos Fdmetis

Leia mais

( ) III) ESPAÇOS VETORIAIS REAIS. Definição: Denomina-se espaço vetorial sobre os Reais (R) ao conjunto não vazio. 1) Existe uma adição:

( ) III) ESPAÇOS VETORIAIS REAIS. Definição: Denomina-se espaço vetorial sobre os Reais (R) ao conjunto não vazio. 1) Existe uma adição: Elemetos de Álgebra Liear ESPAÇOS VETORIAIS REAIS III) ESPAÇOS VETORIAIS REAIS Defiição: Deomia-se espaço vetorial sobre os Reais (R) ao cojuto ão vazio + : V V V ) Existe uma adição: com as seguites propriedades:

Leia mais

SISTEMA DE EQUAÇÕES LINEARES

SISTEMA DE EQUAÇÕES LINEARES SISTEM DE EQUÇÕES LINERES Defiição Ddos os úmeros reis b com equção b ode são vriáveis ou icógits é deomid equção lier s vriáveis Os úmeros reis são deomidos coeficietes ds vriáveis respectivmete e b é

Leia mais

Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Luiz Fernando Satolo

Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Luiz Fernando Satolo Mtemátic pr Economists LES Auls 5 e Mtrizes Ching Cpítulos e 5 Luiz Fernndo Stolo Mtrizes Usos em economi ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Álgebr Mtricil Conceitos Básicos

Leia mais

Definição: Sejam dois números inteiros. Uma matriz real é uma tabela de números reais com m linhas e n colunas, distribuídos como abaixo:

Definição: Sejam dois números inteiros. Uma matriz real é uma tabela de números reais com m linhas e n colunas, distribuídos como abaixo: I MTRIZES Elemeos de Álgebr Lier - MTRIZES Prof Emíli / Edmé Defiição: Sem dois úmeros ieiros Um mriz rel é um bel de úmeros reis com m lihs e colus, disribuídos como bixo: ( ) i m m m m Cd elemeo d mriz

Leia mais

SISTEMAS LINEARES. Cristianeguedes.pro.br/cefet

SISTEMAS LINEARES. Cristianeguedes.pro.br/cefet SISTEMAS LINEARES Cristieguedes.pro.r/cefet Itrodução Notção B A X Mtricil Form. : m m m m m m m A es Mtri dos Coeficiet : X Mtri dsvriáveis : m B Termos Idepede tes : Número de soluções Ddo um sistem

Leia mais

AULAS 7 A 9 MÉDIAS LOGARITMO. Para n números reais positivos dados a 1, a 2,..., a n, temos as seguintes definições:

AULAS 7 A 9 MÉDIAS LOGARITMO.  Para n números reais positivos dados a 1, a 2,..., a n, temos as seguintes definições: 009 www.cursoglo.com.br Treimeto pr Olimpíds de Mtemátic N Í V E L AULAS 7 A 9 MÉDIAS Coceitos Relciodos Pr úmeros reis positivos ddos,,...,, temos s seguites defiições: Médi Aritmétic é eésim prte d som

Leia mais

Prof.: Denilson Paulo

Prof.: Denilson Paulo Álgebr Lier Prof.: Deilso Pulo Álgebr Lier - Prof A Pul AULA Dt: / / A MATRIZES Defiição: Cojuto de úmeros dispostos um form retgulr (ou qudrd). Eemplo: B 8 C 7,6,7 D E 5 A mtriz A é retgulr, ou sej, possui

Leia mais

MATRIZES. Exemplo: A tabela abaixo descreve as safras de milho, trigo, soja, arroz e feijão, em toneladas, durante os anos de 1991, 1992, 1993 e 1994.

MATRIZES. Exemplo: A tabela abaixo descreve as safras de milho, trigo, soja, arroz e feijão, em toneladas, durante os anos de 1991, 1992, 1993 e 1994. Professor Muricio Lut MTRIZES INTRODUÇÃO Qudo um prolem evolve um grde úmero de ddos (costtes ou vriáveis), disposição destes um tel retgulr de dupl etrd propici um visão mis glol do mesmo s tels ssim

Leia mais

Matrizes - revisão. No caso da multiplicação ser possível, é associativa e distributiva Não é, em geral, comutativa 2013/03/12 MN 1

Matrizes - revisão. No caso da multiplicação ser possível, é associativa e distributiva Não é, em geral, comutativa 2013/03/12 MN 1 Mtrizes - revisão No cso d multiplicção ser possível, é ssocitiv e distributiv A ( BC) ( AB) C A( B C) AB AC Não é, em gerl, comuttiv AB BA 03/03/ MN Mtrizes - revisão A divisão de mtrizes ão é um operção

Leia mais

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON PROFJWPS@GMAIL.COM MATRIZES Definição e Notção... 11 21 m1 12... 22 m2............ 1n.. 2n. mn Chmmos de Mtriz todo conjunto de vlores, dispostos

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MATA07 ÁLGEBRA LINEAR A PROFs.: Enaldo Vergasta,Glória Márcia. 2 a LISTA DE EXERCÍCIOS

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MATA07 ÁLGEBRA LINEAR A PROFs.: Enaldo Vergasta,Glória Márcia. 2 a LISTA DE EXERCÍCIOS UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MATA07 ÁLGEBRA LINEAR A PROFs: Enldo VergstGlóri Márci LISTA DE EXERCÍCIOS ) Verifique se são verddeirs ou flss s firmções bixo: ) Dois vetores

Leia mais

Matrizes e Vectores. Conceitos

Matrizes e Vectores. Conceitos Mtrizes e Vectores Coceitos Mtriz, Vector, Colu, Lih. Mtriz rigulr Iferior; Mtriz rigulr Superior; Mtriz Digol. Operções etre Mtrizes. Crcterístic de um mtriz; Crcterístic máxim de um mtriz. Mtriz Ivertível,

Leia mais

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Matrizes

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Matrizes Uiversidde Federl de Pelos Veores e Álgebr Lier Prof : Msc. Merhy Heli Rodrigues Mrizes. Mrizes. Defiição: Mriz m x é um bel de m. úmeros reis disposos em m lihs (fils horizois) e colus (fils vericis)..

Leia mais

Capítulo V ESPAÇOS EUCLIDIANOS

Capítulo V ESPAÇOS EUCLIDIANOS Cpítlo V EPAÇO EUCLIDIANO Cpítlo V Espços Eclidios Cpítlo V Prodto Esclr em Espços Vectoriis Chm-se prodto esclr o espço ectoril E m plicção E E R qe todo o pr rel ( ) de ectores de E ssoci m úmero rel

Leia mais

3. Seja C o conjunto dos números complexos. Defina a soma em C por

3. Seja C o conjunto dos números complexos. Defina a soma em C por Eercícios Espaços vetoriais. Cosidere os vetores = (8 ) e = ( -) em. (a) Ecotre o comprimeto de cada vetor. (b) Seja = +. Determie o comprimeto de. Qual a relação etre seu comprimeto e a soma dos comprimetos

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA PRIMEIRO SEMESTRE DE 2015 13 de Fevereiro de 2015 Prte I Álgebr Liner 1 Questão: Sejm

Leia mais

Sistemas de Equações Lineares Métodos Directos. Computação 2º Semestre 2016/2017

Sistemas de Equações Lineares Métodos Directos. Computação 2º Semestre 2016/2017 Sistems de Equções Lieres Métodos Directos Computção º Semestre 06/07 Sistems de Equções Muitos pricípios fudmetis em problems de ciêci e egehri podem ser epressos em termos de equções: vriável depedete

Leia mais

1. Revisão Matemática

1. Revisão Matemática Se x é um elemeto do cojuto Notação S: x S Especificação de um cojuto : S = xx satisfaz propriedadep Uião de dois cojutos S e T : S T Itersecção de dois cojutos S e T : S T existe ; para todo f : A B sigifica

Leia mais

Uso da linguagem R para análise de dados em ecologia

Uso da linguagem R para análise de dados em ecologia Uso d lingugem R pr nálise de ddos em ecologi Objetivo d ul Demonstrr função ed.shpe() e Apresentr noções básics de álgebr liner e mostrr como el se relcion à nálise de ddos. EDA Shpe Função presentd no

Leia mais

3 SISTEMAS DE EQUAÇÕES LINEARES

3 SISTEMAS DE EQUAÇÕES LINEARES . Itrodução SISTEAS DE EQUAÇÕES INEARES A solução de sistems lieres é um ferrmet mtemátic muito importte egehri. Normlmete os prolems ão-lieres são soluciodos por ferrmets lieres. As fotes mis comus de

Leia mais

Matemática C Extensivo V. 6

Matemática C Extensivo V. 6 Mtemátic C Etesivo V 6 Eercícios ) D ) D ) C O vlor uitário do isumo é represetdo por y Portto pelo produto ds mtrizes A e B temos o seguite sistem: 5 5 9 y 5 5y 5y 9 5y 5 Portto: y 4 y 4 As médis uis

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOTS E U Geometri lític e Álger ier Sistems de Equções ieres Professor: ui Ferdo Nues, r Geometri lític e Álger ier ii Ídice Sistems de Equções ieres efiições Geris Iterpretção Geométric de Sistems de

Leia mais

1- Resolução de Sistemas Lineares.

1- Resolução de Sistemas Lineares. MÉTODOS NUMÉRICOS PR EQUÇÕES DIFERENCIIS PRCIIS 1- Resolução de Sistemas Lieares. 1.1- Matrizes e Vetores. 1.2- Resolução de Sistemas Lieares de Equações lgébricas por Métodos Exatos (Diretos). 1.3- Resolução

Leia mais

Método de Eliminação de Gauss. Método de Eliminação de Gauss

Método de Eliminação de Gauss. Método de Eliminação de Gauss Método de Elimição de Guss idei básic deste método é trsormr o sistem b um sistem equivlete b, ode é um mtriz trigulr superior, eectudo trsormções elemetres sobre s lihs do sistem ddo. Cosidere-se o sistem

Leia mais

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Determinantes

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Determinantes Universidde Federl de Pelots Vetores e Álgebr Liner Prof : Msc. Merhy Heli Rodrigues Determinntes Determinntes Definição: Determinnte é um número ssocido um mtriz qudrd.. Determinnte de primeir ordem Dd

Leia mais

SERVIÇO PÚBLICO FEDERAL Ministério da Educação

SERVIÇO PÚBLICO FEDERAL Ministério da Educação SERVIÇO PÚBLICO FEDERAL Ministério d Educção Universidde Federl do Rio Grnde Universidde Abert do Brsil Administrção Bchreldo Mtemátic pr Ciêncis Sociis Aplicds I Rodrigo Brbos Sores . Mtrizes:.. Introdução:

Leia mais

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFEREÇA ( ( x( Coeficiete costte. ( ( x ( Coeficiete vriável (depedete do tempo. Aplicmos x( pr e cosidermos codição iicil ( ( ( M ( ( ( ( x( x( ( x(

Leia mais

o quociente C representa a quantidade de A por unidade de B. Exemplo Se um objecto custar 2, então 10 objectos custam 20. Neste caso temos 20 :10 2.

o quociente C representa a quantidade de A por unidade de B. Exemplo Se um objecto custar 2, então 10 objectos custam 20. Neste caso temos 20 :10 2. Mtemátic I - Gestão ESTG/IPB Resolução. (i).0 : r 0.000.0 00.0 00 0 0.0 00 0 00.000 00 000.008 90 0.000.000 00 000 008 90.00 00 00 00 9 Dividedo = Divisor x Quociete + Resto.0 = x.008 + 0.000. Num divisão

Leia mais

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFEREÇA Coeficiete costte. SISTEMAS LIT CARACTERIZADOS POR EQUAÇÕES A DIFEREÇA COM COEFICIETES COSTATES Sistems descritos por equções difereç com coeficiete

Leia mais

UNIFEB- Fevereiro 2016

UNIFEB- Fevereiro 2016 Mtemátic plicd Computção utor: Prof Me Luiz Herique Moris d Silv - Defiição e eemplos - Operções com Mtrizes MTRIZES DETERMINNTES Defiição, Proprieddes de plicção - Resolução de determites de ordem (Teorem

Leia mais

ALGUMAS CONSIDERAÇÕES TEORICAS 1. Sistema de equações Lineares

ALGUMAS CONSIDERAÇÕES TEORICAS 1. Sistema de equações Lineares LGUMS CONSIDERÇÕES TEORICS. Siste de equções Lieres De fo gerl, podeos dier que u siste de equções lieres ou siste lier é u cojuto coposto por dus ou is equções lieres. U siste lier pode ser represetdo

Leia mais

Universidade Fernando Pessoa Departamento de Ciência e Tecnologia. Apontamentos ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Maria Alzira Pimenta Dinis

Universidade Fernando Pessoa Departamento de Ciência e Tecnologia. Apontamentos ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Maria Alzira Pimenta Dinis Uiversidde Ferdo Pesso Deprteto de Ciêci e ecologi potetos de ÁLGER LINER E GEOMERI NLÍIC Mri lir Piet Diis 99 Ídice Ídice Pág. Cpítulo I Mtries e Sistes de Equções Lieres. Mtries. dição de Mtries e Multiplicção

Leia mais

Álgebra Linear e Geometria Analítica

Álgebra Linear e Geometria Analítica Álger iner e Geometri nlti º Folh de poio o estudo Sumário: ü Operções lgris om mtrizes: dição de mtrizes multiplição de um eslr por um mtriz e multiplição de mtrizes. ü Crtersti de um mtriz. Eerios resolvidos.

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT - ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA LISTA DE EXERCÍCIOS ) Sejm A, B e C mtries inversíveis de mesm ordem, encontre epressão d mtri X,

Leia mais

M M N. Logo: MN = DC = DP + PC DC = AB + AB DC = 2 AB S ABCD = (AB + DC). = (AB + 2 AB). = 3 AB S M N CD = Assim temos que: M'N'CD h

M M N. Logo: MN = DC = DP + PC DC = AB + AB DC = 2 AB S ABCD = (AB + DC). = (AB + 2 AB). = 3 AB S M N CD = Assim temos que: M'N'CD h QUESTÃO Sejm i, r + si e + (r s) + (r + s)i ( > ) termos de um seqüêci. etermie, em fução de, os vlores de r e s que torm est seqüêci um progressão ritmétic, sbedo que r e s são úmeros reis e i. Sbemos

Leia mais

CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS. : Variáveis e parâmetros. : Conjuntos. : Pertence. : Não pertence. : Está contido. : Não está contido.

CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS. : Variáveis e parâmetros. : Conjuntos. : Pertence. : Não pertence. : Está contido. : Não está contido. CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS,,... A, B,... ~ > < : Vriáveis e prâmetros : Conjuntos : Pertence : Não pertence : Está contido : Não está contido : Contém : Não contém : Existe : Não existe : Existe

Leia mais

Grandezas escalares e grandezas vetoriais. São grandezas que ficam completamente definidas por um valor numérico, com ou sem unidades.

Grandezas escalares e grandezas vetoriais. São grandezas que ficam completamente definidas por um valor numérico, com ou sem unidades. Sumário Unidde I MECÂNICA 1- Mecânic d prtícul Cinemátic e dinâmic d prtícul em movimentos mis do que um dimensão Operções com vetores. Grndezs esclres e grndezs vetoriis Grndezs Esclres: São grndezs que

Leia mais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA Equções Epoeciis... Fução Epoecil..4 Logritmos: Proprieddes 6 Fução Logrítmic. Equções Logrítmics...5 Iequções Epoeciis e Logrítmics.8 Equções Epoeciis 0. (ITA/74)

Leia mais

Resolução Numérica de Sistemas Lineares Parte II

Resolução Numérica de Sistemas Lineares Parte II Cálculo Numérico Resolução Numéric de Sistems Lieres Prte II Prof Jorge Cvlcti jorgecvlcti@uivsfedubr MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - wwwdscufcgedubr/~cum/ Sistems

Leia mais

, onde i é a linha e j é a coluna que o elemento ocupa na matriz.

, onde i é a linha e j é a coluna que o elemento ocupa na matriz. SÉRE: 2 AULA - MATRZES NOTA: FEVERERO Jneiro/Fevereiro 6 1 O PERÍODO PROF A ALESSANDRA MATTOS Muits vezes pr designr com clrez certs situções, é necessário um grupo ordendo de número de linhs(i) e coluns

Leia mais

ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS

ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS Equção Liner * Sej,,,...,, (números reis) e n (n ) 2 3 n x, x, x,..., x (números reis) 2 3 n Chm-se equção Liner sobre

Leia mais

MÓDULO IV. EP.02) Determine o valor de: a) 5 3 = b) 3 4 = c) ( 4) 2 = d) 4 2 = EP.03) Determine o valor de: a) 2 3 = b) 5 2 = c) ( 3) 4 = d) 3 4 =

MÓDULO IV. EP.02) Determine o valor de: a) 5 3 = b) 3 4 = c) ( 4) 2 = d) 4 2 = EP.03) Determine o valor de: a) 2 3 = b) 5 2 = c) ( 3) 4 = d) 3 4 = MÓDULO IV. Defiição POTENCIACÃO Qudo um úmero é multiplicdo por ele mesmo, dizemos que ele está elevdo o qudrdo, e escrevemos:. Se um úmero é multiplicdo por ele mesmo váris vezes, temos um potêci:.. (

Leia mais

QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA.

QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. 006 PROVA CONHECIMENTOS ESPECÍFICOS MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetrl do Vestibulr Uificdo GABARITO

Leia mais

AULA 1 - Conjuntos numéricos: propriedades, operações e representações.

AULA 1 - Conjuntos numéricos: propriedades, operações e representações. AULA - Cojutos uméricos: proprieddes, operções e represetções.. Cojutos: Proprieddes e operções Defiição Símbolo / Notção Exemplo Vzio = Pertiêci Iclusão ou Subcojuto Uião Itersecção (pertece) (ão pertece)

Leia mais

Aula 9 Limite de Funções

Aula 9 Limite de Funções Alise Mtemátic I Aul 9 Limite de Fuções Ao cdémico 017 Tem 1. Cálculo Dierecil Noção ituitiv e deiição de ite. Eemplos de ites. Limites lteris. Proprieddes. Bibliogri Básic Autor Título Editoril Dt Stewrt,

Leia mais

Vale ressaltar que um programa foi desenvolvido em MatLab para solucionar os sistemas de equações propostos.

Vale ressaltar que um programa foi desenvolvido em MatLab para solucionar os sistemas de equações propostos. MSc Alexdre Estácio Féo Associção Educciol Dom Bosco - Fculdde de Egehri de Resede Cix Postl: 8.698/87 - CEP: 75-97 - Resede - RJ Brsil Professor e Doutordo de Egehri efeo@uifei.edu.br Resumo: Neste trblho

Leia mais

B é uma matriz 2 x2;

B é uma matriz 2 x2; MTRIZES e DETERMINNTES Defiição: Mriz m é um bel de m, úmeros reis disposos em m lihs (fils horizois) e colus (fils vericis) Eemplos: é um mriz ; B é um mriz ; Como podemos or os eemplos e respecivmee,

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear Geometri Alític e Álgebr Lier 8. Sistems Lieres Muitos problems ds ciêcis turis e sociis, como tmbém ds egehris e ds ciêcis físics, trtm de equções que relciom dois cojutos de vriáveis. Um equção do tipo,

Leia mais

QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA.

QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. 006 PROVA CONHECIMENTOS ESPECÍFICOS MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetrl do Vestibulr Uificdo GABARITO

Leia mais

Somatórios e Recorrências

Somatórios e Recorrências Somtórios e Recorrêcis Uiversidde Federl do Amzos Deprtmeto de Eletrôic e Computção Exemplo: MxMi () Problem: Ddo um vetor de iteiros A, ecotrr o mior e o meor elemetos de A O úmero de comprções etre elemetos

Leia mais

Função Logaritmo - Teoria

Função Logaritmo - Teoria Fução Logritmo - Teori Defiição: O ritmo de um úmero rel positivo, bse IR { } podemos escrever Resumido temos: +, é o úmero rel tl que, equivletemete E: 7 8 8 8 8 7 * { }, IR { } * +, IR + Usdo que fução

Leia mais

Universidade Federal Fluminense ICEx Volta Redonda Introdução a Matemática Superior Professora: Marina Sequeiros

Universidade Federal Fluminense ICEx Volta Redonda Introdução a Matemática Superior Professora: Marina Sequeiros 3. Poliômios Defiição: Um poliômio ou fução poliomial P, a variável x, é toda expressão do tipo: P(x)=a x + a x +... a x + ax + a0, ode IN, a i, i = 0,,..., são úmeros reais chamados coeficietes e as parcelas

Leia mais

séries de termos positivos e a n b n, n (div.) (conv.)

séries de termos positivos e a n b n, n (div.) (conv.) Teorem.9 Sej e b i) (div.) ii) b º Critério de Comprção séries de termos positivos e b, N b (div.) (cov.) (cov.) Estude turez d série = sbedo que,! Ν! Teorem.0 º Critério de Comprção Sejm 0, b > 0 e lim

Leia mais

Conceitos fundamentais. Prof. Emerson Passos

Conceitos fundamentais. Prof. Emerson Passos Cocetos fudmets Prof. Emerso Pssos 1. Espço dos vetores de estdo. Operdores leres. Represetção de vetores de estdo e operdores. 2. Observáves. Autovlores e utovetores de um observável. Medd Mecâc Quâtc.

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Universidde Estdul do Sudoeste d Bhi Deprtmento de Estudos Básicos e Instrumentis 3 Vetores Físic I Prof. Roberto Cludino Ferreir 1 ÍNDICE 1. Grndez Vetoril; 2. O que é um vetor; 3. Representção de um

Leia mais

TEORIA DE SISTEMAS LINEARES

TEORIA DE SISTEMAS LINEARES Ageda. Algebra Liear (Parte I). Ativadades IV Profa. Dra. Letícia Maria Bolzai Poehls /0/00 Potifícia Uiversidade Católica do Rio Grade do Sul PUCRS Faculdade de Egeharia FENG Programa de Pós-Graduação

Leia mais

2. COMBINAÇÃO LINEAR E DEPENDÊNCIA LINEAR DE VETORES

2. COMBINAÇÃO LINEAR E DEPENDÊNCIA LINEAR DE VETORES CAPITULO II COMBINAÇÃO LINEAR E DEPENDÊNCIA LINEAR DE VETORES Acreditamos que os coceitos de Combiação Liear (CL) e de Depedêcia Liear serão melhor etedidos se forem apresetados a partir de dois vetores

Leia mais

Álgebra Linear e Geometria Analítica D

Álgebra Linear e Geometria Analítica D 3 Deprtmento de Mtemáti Álgebr Liner e Geometri Anlíti D Segundo Teste 6 de Jneiro de 2 PREENCHA DE FORMA BEM LEGÍVEL Nome: Número de derno: Grelh de Resposts A B C D 2 3 4 5 Atenção Os primeiros 5 grupos

Leia mais

QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA.

QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. 006 PROVA CONHECIMENTOS ESPECÍFICOS MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetrl do Vestibulr Uificdo Trigoometri

Leia mais

SISTEMAS LINEARES. Sendo x e y, respectivamente, o número de pontos que cada jogador marcou, temos uma equação com duas incógnitas:

SISTEMAS LINEARES. Sendo x e y, respectivamente, o número de pontos que cada jogador marcou, temos uma equação com duas incógnitas: SISTEMAS LINEARES Do grego system ( Sy sigific juto e st, permecer, sistem, em mtemátic,é o cojuto de equções que devem ser resolvids juts,ou sej, os resultdos devem stisfzêlos simultemete. Já há muito

Leia mais

BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL

BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL Itrodução Biômio de Newto: O iômio de Newto desevolvido elo célere Isc Newto serve r o cálculo de um úmero iomil do tio ( ) Se for, fic simles é es decorr que ()²

Leia mais

8 AULA. Funções com Valores Vetoriais LIVRO. META Estudar funções de uma variável real a valores em R 3

8 AULA. Funções com Valores Vetoriais LIVRO. META Estudar funções de uma variável real a valores em R 3 1 LIVRO Funções com Vlores Vetoriis 8 AULA META Estudr funções de um vriável rel vlores em R 3 OBJETIVOS Estudr movimentos de prtículs no espço. PRÉ-REQUISITOS Ter compreendido os conceitos de funções

Leia mais

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES Prof. Erivelton Gerldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE

Leia mais

CAPÍTULO 9 OPERADORES DIAGONALIZÁVEIS

CAPÍTULO 9 OPERADORES DIAGONALIZÁVEIS INRODUÇÃO AO ESUDO DA ÁGERA INERAR i Frcisco d Cr Deprtmeto de Mtemátic Uesp/r CAÍUO 9 OERADORES DIAGONAIZÁVEIS No cpítlo 8 vi-se qe é possível determir mtri de m trsformção o de m operdor lier em relção

Leia mais

Curso de linguagem matemática Professor Renato Tião. 1. Resolver as seguintes equações algébricas: GV. Simplifique a expressão 2 GV.

Curso de linguagem matemática Professor Renato Tião. 1. Resolver as seguintes equações algébricas: GV. Simplifique a expressão 2 GV. Curso de liguge teátic Professor Reto Tião. Resolver s seguites equções lgébrics: ) x + = b) x = c) x = d) x = e) x = f) x = g) x = ) x = i) x = j) = k) logx = l) logx= x GV. GV. Siplifique expressão 8

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - CAPES MATRIZES Prof. Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr Ciêncis Sociis

Leia mais

Exercícios. setor Aula 25

Exercícios. setor Aula 25 setor 08 080409 080409-SP Aul 5 PROGRESSÃO ARITMÉTICA. Determinr o número de múltiplos de 7 que estão compreendidos entre 00 e 000. r 7 00 7 PA 05 30 4 n 994 00 98 98 + 7 05 n + (n ) r 994 05 + (n ) 7

Leia mais

SISTEMAS DE EQUAÇÕES LINEARES

SISTEMAS DE EQUAÇÕES LINEARES SISTEMAS DE EQUAÇÕES LINEARES Um problem fudmetl que ormlmete é ecotrdo descrição mtemátic de feômeos físicos é o d solução simultâe de um cojuto de equções. Trduzido pr liuem mtemátic, tis feômeos pssm

Leia mais

1- SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES

1- SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES - SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES.- Métodos etos pr solução de sistems lieres Métodos pr solução de sistems de equções lieres são divididos priciplmete em dois grupos: ) Métodos Etos:

Leia mais

UNIDADE 1 REGRA DE TRÊS. Exercícios de Sala 1. Se 12Kg de um certo produto custa R$ 600,00, qual o preço de 25Kg do mesmo produto?

UNIDADE 1 REGRA DE TRÊS. Exercícios de Sala 1. Se 12Kg de um certo produto custa R$ 600,00, qual o preço de 25Kg do mesmo produto? Iclusão pr vid UNIDADE REGRA DE TRÊS GRANDEZAS DIRETAMENTE PROPORCIONAIS Dus grdezs são dits diretmete proporciois qudo o umeto um dels implic o umeto d outr mesm rzão. Eemplo: kg de limeto cust R$, kg

Leia mais

ALGEBRA LINEAR AUTOVALORES E AUTOVETORES. Prof. Ademilson

ALGEBRA LINEAR AUTOVALORES E AUTOVETORES. Prof. Ademilson LGEBR LINER UTOVLORES E UTOVETORES Prof. demilson utovlores e utovetores utovlores e utovetores são conceitos importntes de mtemátic, com plicções prátics em áres diversificds como mecânic quântic, processmento

Leia mais

Métodos Numéricos Sistemas Lineares Métodos Diretos. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Sistemas Lineares Métodos Diretos. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numéricos Sistems Lieres Métodos Diretos Professor Volmir uêio Wilhelm Professor Mri Klei limição de Guss Decomposição LU Decomposição Cholesky Prtição d mtriz limição de Guss limição de Guss Motivção

Leia mais

CORRELAÇÃO DE SINAIS DE TEMPO DISCRETO

CORRELAÇÃO DE SINAIS DE TEMPO DISCRETO CORRELAÇÃO DE SINAIS DE TEPO DISCRETO CORRELAÇÃO DE SINAIS DE TEPO DISCRETO Assemeh-se covoução. O objetivo de computr correção etre dois siis é pr medir o gru de simiridde etre ees. Correção de siis é

Leia mais

FUNÇÃO EXPONENCIAL. P potência. Se na potência a n a e n Q, temos: 1- Um número, não-nulo elevado a 0 (zero) é igual a 1 (um).

FUNÇÃO EXPONENCIAL. P potência. Se na potência a n a e n Q, temos: 1- Um número, não-nulo elevado a 0 (zero) é igual a 1 (um). FUNÇÃO EXPONENCIAL - Iicilmete, pr estudr fução epoecil e, coseqüetemete, s equções epoeciis, devemos rever os coceitos sore Potecição. - POTENCIAÇÃO Oserve o produto io.... = 6 Este produto pode ser revido

Leia mais

Vamos supor um quadrado com este, divididos em 9 quadradinhos iguais.

Vamos supor um quadrado com este, divididos em 9 quadradinhos iguais. Rdicição O que é, fil, riz qudrd de um úmero? Vmos supor um qudrdo com este, divididos em 9 qudrdihos iguis. Pegdo cd qudrdiho como uidde de áre, podemos dizer que áre do qudrdo é 9 qudrdihos, ou sej,

Leia mais

Integrais Duplos. Definição de integral duplo

Integrais Duplos. Definição de integral duplo Itegris uplos Recorde-se defiição de itegrl de Riem em : Um fução f :,, limitd em,, é itegrável à Riem em, se eiste e é fiito lim m j 0 j1 ft j j j1. ode P 0,, um qulquer prtição de, e t 1,,t um sequêci

Leia mais

Aula de Medidas Dinâmicas I.B De Paula

Aula de Medidas Dinâmicas I.B De Paula Aul de Medids Diâmics I.B De Pul A medição é um operção, ou cojuto de operções, destids determir o vlor de um grdez físic. O seu resultdo, comphdo d uidde coveiete, costitui medid d grdez. O objetivo dest

Leia mais

CODIFICAÇÃO DE CANAL PARA SISTEMAS DE COMUNICAÇÃO DIGITAL

CODIFICAÇÃO DE CANAL PARA SISTEMAS DE COMUNICAÇÃO DIGITAL CODIFICAÇÃO DE CANAL PARA SISTEMAS DE COMUNICAÇÃO DIGITAL CÓDIGOS CÍCLICOS Eelio M. G. Ferádez - Códios Cíclicos: Defiição Um códio de bloco liear é um códio cíclico se cada deslocameto cíclico das palaras-códio

Leia mais