1 ÁLGEBRA MATRICIAL 1.1 TIPOS ESPECIAIS DE MATRIZES. Teorema. Sejam A uma matriz k x m e B uma matriz m x n. Então (AB) T = B T A T

Tamanho: px
Começar a partir da página:

Download "1 ÁLGEBRA MATRICIAL 1.1 TIPOS ESPECIAIS DE MATRIZES. Teorema. Sejam A uma matriz k x m e B uma matriz m x n. Então (AB) T = B T A T"

Transcrição

1 ÁLGEBRA MATRICIAL Teorem Sejm A um mtriz k x m e B um mtriz m x n Então (AB) T = B T A T Demonstrção Pr isso precismos d definição de mtriz trnspost Definição Mtriz trnspost (AB) T = (AB) ji i j = A jh B hi h ( = A T ) ( h j B T ) ih h = h ( B T ) ( ih A T ) h j Portnto, = ( B T A T ) i j (AB) T = B T A T TIPOS ESPECIAIS DE MATRIZES Problems especiis utilizm tipos especiis de mtrizes Nest seção descreveremos lgums importntes clsses de mtrizes k x n que surgem n nálise econômic Mtriz qudrd: k = n, número de linhs igul o número de coluns Mtriz colun: n = Mtriz linh: k = Mtriz digonl: k = n, i j i j = 0 Mtriz tringulr superior: i j ( = 0 se ) i > j (gerlmente qudrd) n qul cd entrd b bixo d digonl principl é 0 0 d 0 Mtriz tringulr inferior: i j = 0 se i < j c d Mtriz simétric: A T = A, i j = ji i, j Esss mtrizes são necessrimente qudrds Mtriz idempotente: Um mtriz qudrd B tl que BB = B Mtriz de permutção: Um mtriz qudrd de entrds 0 e, n qul cd linh e 0 cd colun contêm extmente Ex: 0 Mtriz não-singulr: Um mtriz qudrd cujo posto é igul o número de linhs (coluns)

2 MATRIZES ELEMENTARES Recorde que s três operções elementres sobre linhs são utilizds pr trzer um mtriz à form esclond por linhs: permutção de linhs, som de um múltiplo de um linh um outr linh, e 3 multiplicção de um linh por um esclr não-nulo Esss operções podem ser efetuds em um mtriz A pel multiplicção à esquerd por certs mtrizes especiis denominds mtrizes elementres Por exemplo, o seguinte teorem ilustr como permutr s linhs i e j de um dd mtriz A Teorem Forme mtriz de permutção E i j pel permut d i-ésim com j-ésim linh d mtriz identidde I Então, multiplicção à esquerd de um mtriz A por E i j tem efeito de permutr i-ésim com j-ésim linh de A Demonstrção Pr verificr isso, denotremos por e hk um entrd qulquer de E i j : e i j = e ji = 0 e ii = e j j = 0 e hh = se h i, j e kk = 0 cso contrário O elemento n linh k e colun n de E i j A é e km mn = m jn in kn k = i k = j k i, j () por () Portnto, E i j A é simplismente A com s linhs i e j trocds entre si Exemplo Suponh um mtriz A de tmnho 3 x 3, temos: E (5)A = = E i j (r) é som r vezes linh i pel linh j d mtriz I E 3 (5)A = = Definição As Mtrizes E i j, E i j (r) e E i (r), que form obtids executndo s operções elementres sobre linhs n mtriz identidde, são denominds mtrizes elementres Teorem Sej E um mtriz elementr n x n obitid executndo-se um dd operção elementr sobre linhs n mtriz identidde n x n Se A é um mtriz n x n qulquer, então EA é mtriz obtid executndo quel mesm operção elementr sobre linhs em A Teorem Dd qulquer mtriz A de tmnho k x n, existem mtrizes elementres E, E,E m tis que o produto mtricil E m E m A = U, onde U está em form esclond (reduzid) por linhs

3 3 ÁLGEBRA DE MATRIZES QUADRADAS Usmos notção M n pr clsse de mtrizes qudrds do tipo n x n Definição Sej A um mtriz em M n Um mtriz B em M n é um invers pr A se AB = BA = I Se existir mtriz B, dizemos que A é invertível Teorem Um mtriz A de tmnho n x n pode ter, no máximo, um únic invers Demonstrção Suponh que B e C sejm inverss de A Então, C = CI = C(AB) = (CA)B = IB = B Definição Sej A um mtriz de tmnho k x n, mtriz B de tmnho n x k é um invers à direit de A se AB = I A Mtriz C de tmnho n x k é um invers à esquerd de A se CA = I Lem Se um mtriz A tem um invers à direit B e um invers à esquerd C, então A é invertível e B = C = A A Prov é nálog do teorem 85 Teorem Se um mtriz A de tmnho n x n é invertível, então A é não-singulr e únic solução do sistem de equções lineres Ax = b é x = A b Demonstrção Desejmos mostrr que se A é invertivel, então podemos resolver qulquer sistem de equções do tipo Ax = b Multiplique cd ldo deste sistem por A pr resolver em x como segue: Ax = b A (Ax) = A b (A A)x = A b Ix = A b x = A b Teorem Se um mtriz A de tmnho n x n é não-singulr, então A é invertivel Demonstrção Suponh que A é não-singulr Denotmos e i i-ésim colun de I Sendo A não-singulr equção AX = e i tem um únic solução X = c i Sej C mtriz cujs n coluns são s respectivs soluções c,,c n Como multiplicmos cd linh de A pel j-ésim colun de C pr obter j-ésim colun de AC, podemos escrever AC = A[c,,c n ] 3

4 = [Ac,,Ac n ] = [e,,e n ] = I () Assim C é um invers direit de A Pr ver que A tmbém possui um invers esquerd, use o teorem 84 pr escrever EA = U, onde E é um produto de mtrizes elementres e U é form esclond reduzid por linhs de A Como A é não-singlr U não tem linh de zero e cd colun contém extmente, U = I Portnto, E é um invers esquerd de A Como A tem um invers à direit e um invers à esquerd, A é invertível Podemos ser mis eficientes glutinndo tods esss informções em um mtriz umentd gigntesc (A e,,e n ) = (A I) e executr eliminção de Guss-Jordn somente um únic vez em vez de n vezes Nesse processo, mtriz umentd se reduz ( I A ) Exemplo 84 b A = c d b 0 (A I) = c d 0 (3) Se = c = 0, A é singulr Vmos supor que 0 primeiro sommos c/ vezes linh à linh, pr obter form esclond por linhs b 0 0 c (4) Se 0, A é não-singulr se, e somente se, d bc 0 Multiplique primeir linh por / e segund linh por /(d bc) b 0 0 c Some b/ vezes linh d ( 0 d A = 0 c d bc b ) ( d ) b c (5) Teorem A mtriz rbitrári A de tmnho x dd por (3) é não-singulr ( e portnto invertível) se, e somente se, d bc 0 Su invers é mtriz (5) Teorem Pr qulquer mtriz qudrd A, são equivlentes s seguintes informções: () (b) A é invertível A tem um invers à direit 4

5 (c) A tem um invers à esquerd (d) O sistem Ax = b tem pelo menos um solução pr cd b (e) O sistem Ax = b tem no máximo um solução pr b ( f ) A é não-singulr (g) A tem posto máximo Demonstrção N seção 74 vimos equivlênci ds firmções d) g) Os enuncidos e s provs dos teorems 86 e 87 grntem que s firmções ) d) são equivlentes Teorem Sejm A e B mtrizes qudrds invertíveis Então, () (b) (c) (A ) = A (A T ) = (A ) T AB é invertível e (AB) = B A Teorem Se A é invertível: () (b) A m é invertível pr qulquer inteiro m e (A m ) = (A )A m Pr quisquer inteiros r e s, A r A s = A r+s, e (c) pr qulquer esclr r 0, ra é invertível e (ra) = (/r)a Teorem Qulquer mtriz pode ser escrit como um produto A = F,,F m U no qul s F i são mtrizes elementres e U está n form esclond reduzid por linhs Qundo A é nãosigunlr U = I e A = F,,F m Lem Sejm L e M dus mtrizes tringulres inferiores n x n Então o protudo mtricil LM é tringlr inferior Se L e M têm somente em sus digonis, então o mesmo ocorre com LM Demonstrção A (i, j) ésim entrd do produto LM é o produto d i ésim linh de L com j ésim colun de M Usndo hipótese que l ik = 0 pr k > i e m h j = 0 pr h < j, escrevemos esse produto como: (LM) i j = (l i,,l i,i,l ii,00) 0 0 m j j m j+, j Se i < j, cd um ds i possivelmente não-nulos entrds no começo d i èsim linh de L será multiplicd pels i entrds zero do começo d j ésim colun de M O resultdo é um entrd zero em LM Portnto LM é tringulr inferior A prtir de (6) (i,i) ésim entrd n digonl de LM é l ii = m ii = Teorem Sej A um mtriz rbitrári k x n suponh que não é necessário efetur permut de linhs pr reduzir A à su form esclond por linhs Então A pode ser escrit como um produto LU, onde L é um mtriz tringulr inferior k x k com entrds n digonl e U é um mtriz tringulr superior k x n 5 m n j (6)

6 4 DECOMPOSIÇÃO LU Vmos resolver o sistem Ax = b d form LUx = b Primeiro tome Ux = Z e LZ = b e então resolv UX = Z = L U x x x 3 = b 6 LZ = b UX = Z z z z 3 x x x 3 = = z z z 3 x x x 3 = = PRODUTO DE KRONECKER Sej A mx p e B nx q então PROPRIEDADES B B p B A B = m B m B mp B A 3 3 x3 0 I = 0 x I A = A I = () (A B) = A B () (A B)(C D) = AC BD 6

7 (3) A (B +C) = A B + A C (4) (A +C) A = B A +C A (5) A (B B) = (A B) B Implic que A e B são qudrds e não-singulres (5) e () implic que (A B)(A B ) = AA BB = I mm xi nn = I mnx mn 3 VETORIZAÇÃO DE MATRIZES Sej A mxn então V EC(A) = ( 6 Exemplo A 3 5 m m n mn ) V EC(A) =

Aula 6: Determinantes

Aula 6: Determinantes Aul 6: Determinntes GAN-Álg iner- G 8 Prof An Mri uz F do Amrl Determinntes Relembrndo Vimos que: Se A é x e det(a) então existe A - ; Se existe A - então o sistem liner Axb tem solução únic (x A - b)

Leia mais

Capítulo 4. Matrizes e Sistemas de Equações Lineares

Capítulo 4. Matrizes e Sistemas de Equações Lineares ------------- Resumos ds uls teórics ------------------Cp 4------------------------------ Cpítulo 4. Mtrizes e Sistems de Equções Lineres Conceitos Geris sobre Mtrizes Definição Sejm m e n dois inteiros,

Leia mais

Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Luiz Fernando Satolo

Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Luiz Fernando Satolo Mtemátic pr Economists LES Auls 5 e Mtrizes Ching Cpítulos e 5 Luiz Fernndo Stolo Mtrizes Usos em economi ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Álgebr Mtricil Conceitos Básicos

Leia mais

Matrizes. Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Márcia A.F. Dias de Moraes. Matrizes Conceitos Básicos

Matrizes. Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Márcia A.F. Dias de Moraes. Matrizes Conceitos Básicos Mtemátic pr Economists LES uls e Mtrizes Ching Cpítulos e Usos em economi Mtrizes ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Márci.F. Dis de Mores Álgebr Mtricil Conceitos Básicos

Leia mais

Prof. Ms. Aldo Vieira Aluno:

Prof. Ms. Aldo Vieira Aluno: Prof. Ms. Aldo Vieir Aluno: Fich 1 Chmmos de mtriz, tod tbel numéric com m linhs e n coluns. Neste cso, dizemos que mtriz é do tipo m x n (onde lemos m por n ) ou que su ordem é m x n. Devemos representr

Leia mais

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON PROFJWPS@GMAIL.COM MATRIZES Definição e Notção... 11 21 m1 12... 22 m2............ 1n.. 2n. mn Chmmos de Mtriz todo conjunto de vlores, dispostos

Leia mais

ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS

ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS Equção Liner * Sej,,,...,, (números reis) e n (n ) 2 3 n x, x, x,..., x (números reis) 2 3 n Chm-se equção Liner sobre

Leia mais

Definição: uma permutação do conjunto de inteiros {1, 2,..., n} é um rearranjo destes inteiros em alguma ordem sem omissões ou repetições.

Definição: uma permutação do conjunto de inteiros {1, 2,..., n} é um rearranjo destes inteiros em alguma ordem sem omissões ou repetições. DETERMINANTES INTRODUÇÃO Funções determinnte, são funções reis de um vriável mtricil, o que signific que ssocim um número rel (X) um mtriz qudrd X Sus plicções envolvem crcterizção de mtriz invertível,

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT - ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA LISTA DE EXERCÍCIOS ) Sejm A, B e C mtries inversíveis de mesm ordem, encontre epressão d mtri X,

Leia mais

Aula 9. Sistemas de Equações Lineares Parte 2

Aula 9. Sistemas de Equações Lineares Parte 2 CÁLCULO NUMÉRICO Aul 9 Sistems de Equções Lineres Prte FATORAÇÃO LU Cálculo Numérico /6 FATORAÇÃO LU Um ftorção LU de um dd mtriz qudrd é dd por: onde L é tringulr inferior e U é tringulr superior. Eemplo:

Leia mais

SERVIÇO PÚBLICO FEDERAL Ministério da Educação

SERVIÇO PÚBLICO FEDERAL Ministério da Educação SERVIÇO PÚBLICO FEDERAL Ministério d Educção Universidde Federl do Rio Grnde Universidde Abert do Brsil Administrção Bchreldo Mtemátic pr Ciêncis Sociis Aplicds I Rodrigo Brbos Sores . Mtrizes:.. Introdução:

Leia mais

DETERMINANTES. Notação: det A = a 11. Exemplos: 1) Sendo A =, então det A = DETERMINANTE DE MATRIZES DE ORDEM 2

DETERMINANTES. Notação: det A = a 11. Exemplos: 1) Sendo A =, então det A = DETERMINANTE DE MATRIZES DE ORDEM 2 DETERMINANTES A tod mtriz qudrd ssoci-se um número, denomindo determinnte d mtriz, que é obtido por meio de operções entre os elementos d mtriz. Su plicção pode ser verificd, por exemplo, no cálculo d

Leia mais

Estatística e Matrizes

Estatística e Matrizes Esttístic e Mtrizes Introdução à Análise Multivrid Análise multivrid: De um modo gerl, refere-se todos os métodos esttísticos que simultnemente nlism múltipls medids sobre cd indivíduo ou objeto sob investigção.

Leia mais

Exercícios. setor Aula 25

Exercícios. setor Aula 25 setor 08 080409 080409-SP Aul 5 PROGRESSÃO ARITMÉTICA. Determinr o número de múltiplos de 7 que estão compreendidos entre 00 e 000. r 7 00 7 PA 05 30 4 n 994 00 98 98 + 7 05 n + (n ) r 994 05 + (n ) 7

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - CAPES MATRIZES Prof. Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr Ciêncis Sociis

Leia mais

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES Prof. Erivelton Gerldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE

Leia mais

Problemas e Algoritmos

Problemas e Algoritmos Problems e Algoritmos Em muitos domínios, há problems que pedem síd com proprieddes específics qundo são fornecids entrds válids. O primeiro psso é definir o problem usndo estruturs dequds (modelo), seguir

Leia mais

Formas Quadráticas. FUNÇÕES QUADRÁTICAS: denominação de uma função especial, definida genericamente por: 1 2 n ij i j i,j 1.

Formas Quadráticas. FUNÇÕES QUADRÁTICAS: denominação de uma função especial, definida genericamente por: 1 2 n ij i j i,j 1. Forms Qudrátics FUNÇÕES QUADRÁTICAS: denominção de um função especil, definid genericmente por: Q x,x,...,x x x x... x x x x x... x 1 n 11 1 1 1 1n 1 n 3 3 nn n ou Qx,x,...,x 1 n ij i j i,j1 i j n x x

Leia mais

, onde i é a linha e j é a coluna que o elemento ocupa na matriz.

, onde i é a linha e j é a coluna que o elemento ocupa na matriz. SÉRE: 2 AULA - MATRZES NOTA: FEVERERO Jneiro/Fevereiro 6 1 O PERÍODO PROF A ALESSANDRA MATTOS Muits vezes pr designr com clrez certs situções, é necessário um grupo ordendo de número de linhs(i) e coluns

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES DETERMINANTES

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES DETERMINANTES Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - APES DETERMINANTES Prof Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr iêncis

Leia mais

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Determinantes

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Determinantes Universidde Federl de Pelots Vetores e Álgebr Liner Prof : Msc. Merhy Heli Rodrigues Determinntes Determinntes Definição: Determinnte é um número ssocido um mtriz qudrd.. Determinnte de primeir ordem Dd

Leia mais

Definição 1 O determinante de uma matriz quadrada A de ordem 2 é por definição a aplicação. det

Definição 1 O determinante de uma matriz quadrada A de ordem 2 é por definição a aplicação. det 5 DETERMINANTES 5 Definição e Proprieddes Definição O erminnte de um mtriz qudrd A de ordem é por definição plicção ( ) : M IR IR A Eemplo : 5 A ( A ) ( ) ( ) 5 7 5 Definição O erminnte de um mtriz qudrd

Leia mais

Resolução Numérica de Sistemas Lineares Parte I

Resolução Numérica de Sistemas Lineares Parte I Cálculo Numérico Resolução Numéric de Sistems ineres Prte I Prof. Jorge Cvlcnti jorge.cvlcnti@univsf.edu.br MATERIA ADAPTADO DOS SIDES DA DISCIPINA CÁCUO NUMÉRICO DA UFCG - www.dsc.ufcg.edu.br/~cnum/ Sistems

Leia mais

MATRIZES. 1) (CEFET) Se A, B e C são matrizes do tipo 2x3, 3x1 e 1x4, respectivamente, então o produto A.B.C. (a) é matriz do tipo 4 x 2

MATRIZES. 1) (CEFET) Se A, B e C são matrizes do tipo 2x3, 3x1 e 1x4, respectivamente, então o produto A.B.C. (a) é matriz do tipo 4 x 2 MATRIZES ) (CEFET) Se A, B e C são mtrizes do tipo, e 4, respectivmente, então o produto A.B.C () é mtriz do tipo 4 () é mtriz do tipo 4 (c) é mtriz do tipo 4 (d) é mtriz do tipo 4 (e) não é definido )

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

Uso da linguagem R para análise de dados em ecologia

Uso da linguagem R para análise de dados em ecologia Uso d lingugem R pr nálise de ddos em ecologi Objetivo d ul Demonstrr função ed.shpe() e Apresentr noções básics de álgebr liner e mostrr como el se relcion à nálise de ddos. EDA Shpe Função presentd no

Leia mais

TÓPICOS. Matriz. Matriz nula. Matriz quadrada: Diagonais principal e secundária. Traço. Matriz diagonal. Matriz escalar. Matriz identidade.

TÓPICOS. Matriz. Matriz nula. Matriz quadrada: Diagonais principal e secundária. Traço. Matriz diagonal. Matriz escalar. Matriz identidade. Note bem: leitur destes pontmentos não dispens de modo lgum leitur tent d bibliogrfi principl d cdeir TÓPICOS Mtriz. AULA Chm-se tenção pr importânci do trblho pessol relizr pelo luno resolvendo os problems

Leia mais

TÓPICOS. Equação linear. Sistema de equações lineares. Equação matricial. Soluções do sistema. Método de Gauss-Jordan. Sistemas homogéneos.

TÓPICOS. Equação linear. Sistema de equações lineares. Equação matricial. Soluções do sistema. Método de Gauss-Jordan. Sistemas homogéneos. Note bem: leitur destes pontmentos não dispens de modo lgum leitur tent d bibliogrfi principl d cdeir ÓPICOS Equção liner. AUA 4 Chm-se tenção pr importânci do trblho pessol relizr pelo luno resolvendo

Leia mais

Conceito Representação Propriedades Desenvolvimento de Laplace Matriz Adjunta e Matriz Inversa

Conceito Representação Propriedades Desenvolvimento de Laplace Matriz Adjunta e Matriz Inversa Algebr Liner Boldrini/Cost/Figueiredo/Wetzler Objetivo: Clculr determinntes pelo desenvolvimento de Lplce Inverter Mtrizes Conceito Representção Proprieddes Desenvolvimento de Lplce Mtriz Adjunt e Mtriz

Leia mais

Os números racionais. Capítulo 3

Os números racionais. Capítulo 3 Cpítulo 3 Os números rcionis De modo informl, dizemos que o conjunto Q dos números rcionis é composto pels frções crids prtir de inteiros, desde que o denomindor não sej zero. Assim como fizemos nteriormente,

Leia mais

TÓPICOS. Determinantes de 1ª e 2ª ordem. Submatriz. Menor. Cofactor. Expansão em cofactores. Determinante de ordem n. Propriedades dos determinantes.

TÓPICOS. Determinantes de 1ª e 2ª ordem. Submatriz. Menor. Cofactor. Expansão em cofactores. Determinante de ordem n. Propriedades dos determinantes. Note bem: leitur destes pontmentos não dispens de modo lgum leitur tent d bibliogrfi principl d cdeir Chm-se tenção pr importânci do trblho pessol relizr pelo luno resolvendo os problems presentdos n bibliogrfi,

Leia mais

6. ÁLGEBRA LINEAR MATRIZES

6. ÁLGEBRA LINEAR MATRIZES MATRIZES. ÁLGEBRA LINEAR Definição Digonl Principl Mtriz Unidde Mtriz Trnspost Iguldde entre Mtrizes Mtriz Nul Um mtriz m n um tbel de números reis dispostos em m linhs e n coluns. Sempre que m for igul

Leia mais

Módulo 02. Sistemas Lineares. [Poole 58 a 85]

Módulo 02. Sistemas Lineares. [Poole 58 a 85] Módulo Note em, leitur destes pontmentos não dispens de modo lgum leitur tent d iliogrfi principl d cdeir Chm-se à tenção pr importânci do trlho pessol relizr pelo luno resolvendo os prolems presentdos

Leia mais

Então, det(a) = 1x3 1x2 = 3 2 = 1. Determinante de uma matriz 3 x 3 Regra de Sarrus (Pierre Frédéric Sarrus) Definimos det(a) =

Então, det(a) = 1x3 1x2 = 3 2 = 1. Determinante de uma matriz 3 x 3 Regra de Sarrus (Pierre Frédéric Sarrus) Definimos det(a) = Determinnte de um mtriz Sej um mtriz qudrd de ordem. Definimos det - E.: Sej mtriz Então, det Determinnte de um mtriz Regr de Srrus Pierre Frédéric Srrus Sej um mtriz qudrd de ordem. Definimos det Regr

Leia mais

Sistems Lineres Form Gerl onde: ij ij coeficientes n n nn n n n n n n b... b... b...

Sistems Lineres Form Gerl onde: ij ij coeficientes n n nn n n n n n n b... b... b... Cálculo Numérico Módulo V Resolução Numéric de Sistems Lineres Prte I Profs.: Bruno Correi d Nóbreg Queiroz José Eustáquio Rngel de Queiroz Mrcelo Alves de Brros Sistems Lineres Form Gerl onde: ij ij coeficientes

Leia mais

LISTA GERAL DE MATRIZES OPERAÇÕES E DETERMINANTES - GABARITO. b =

LISTA GERAL DE MATRIZES OPERAÇÕES E DETERMINANTES - GABARITO. b = LIS GERL DE MRIZES OPERÇÕES E DEERMINNES - GBRIO Dds s mtries [ ij ] tl que j ij i e [ ij ] B tl que ij j i, determine: c Solução Não é necessário construir tods s mtries Bst identificr os elementos indicdos

Leia mais

1. Sejam R e S duas relações entre os conjuntos não vazios E e F. Então mostre que

1. Sejam R e S duas relações entre os conjuntos não vazios E e F. Então mostre que 2 List de exercícios de Álgebr 1. Sejm R e S dus relções entre os conjuntos não vzios E e F. Então mostre que ) R 1 S 1 = (R S) 1, b) R 1 S 1 = (R S) 1. Solução: Pr primeir iguldde, temos que (, b) R 1

Leia mais

Rresumos das aulas teóricas Cap Capítulo 4. Matrizes e Sistemas de Equações Lineares

Rresumos das aulas teóricas Cap Capítulo 4. Matrizes e Sistemas de Equações Lineares Rresumos ds uls teórics ------------------ Cp ------------------------------ Cpítulo. Mtrizes e Sistems de Equções ineres Sistems de Equções ineres Definições Um sistem de m equções lineres n incógnits,

Leia mais

ÁLGEBRA LINEAR - 1. MATRIZES

ÁLGEBRA LINEAR - 1. MATRIZES ÁLGEBRA LINEAR - 1. MATRIZES 1. Conceios Básicos Definição: Chmmos de mriz um el de elemenos disposos em linhs e coluns. Por exemplo, o recolhermos os ddos populção, áre e disânci d cpil referenes à quros

Leia mais

Prof. Weber Campos Copyri'ght. Curso Agora eu Passo - Todos os direitos reservados ao autor.

Prof. Weber Campos Copyri'ght. Curso Agora eu Passo - Todos os direitos reservados ao autor. AEP FISCAL Rciocínio Lógico - MATRIZES E DETERMINANTES - SISTEMAS LINEARES Prof. Weer Cmpos weercmpos@gmil.com Copyri'ght. Curso Agor eu Psso - Todos os direitos reservdos o utor. Rciocínio Lógico EXERCÍCIOS

Leia mais

Linhas 1 2 Colunas 1 2. (*) Linhas 1 2 (**) Colunas 2 1.

Linhas 1 2 Colunas 1 2. (*) Linhas 1 2 (**) Colunas 2 1. Resumos ds uls teórics -------------------- Cp 5 -------------------------------------- Cpítulo 5 Determinntes Definição Consideremos mtriz do tipo x A Formemos todos os produtos de pres de elementos de

Leia mais

MATRIZES E DETERMINANTES

MATRIZES E DETERMINANTES Professor: Cssio Kiechloski Mello Disciplin: Mtemátic luno: N Turm: Dt: MTRIZES E DETERMINNTES MTRIZES: Em quse todos os jornis e revists é possível encontrr tbels informtivs. N Mtemátic chmremos ests

Leia mais

Resolução Numérica de Sistemas Lineares Parte I

Resolução Numérica de Sistemas Lineares Parte I Cálculo Numérico Módulo V Resolução Numéric de Sistems ineres Prte I Profs.: Bruno Correi d Nóbreg Queiroz José Eustáquio Rngel de Queiroz Mrcelo Alves de Brros Sistems ineres Form Gerl... n n b... n n

Leia mais

Recordando produtos notáveis

Recordando produtos notáveis Recordndo produtos notáveis A UUL AL A Desde ul 3 estmos usndo letrs pr representr números desconhecidos. Hoje você sbe, por exemplo, que solução d equção 2x + 3 = 19 é x = 8, ou sej, o número 8 é o único

Leia mais

CCI-22. Eliminação de Gauss, Gauss-Jordan, Decomposição LU, Gauss-Jacobi, Gauss-Seidel

CCI-22. Eliminação de Gauss, Gauss-Jordan, Decomposição LU, Gauss-Jacobi, Gauss-Seidel CCI- ) Rízes de Sistems Lineres Eliminção de Guss, Guss-Jordn, Decomposição LU, Guss-Jcobi, Guss-Seidel CCI- Introdução Métodos diretos Regr de Crmer Eliminção de Guss Guss-Jordn Resíduos e Condicionmento

Leia mais

Bhaskara e sua turma Cícero Thiago B. Magalh~aes

Bhaskara e sua turma Cícero Thiago B. Magalh~aes 1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como

Leia mais

Matrizes e Determinantes

Matrizes e Determinantes Págin de - // - : PROFESSOR: EQUIPE DE MTEMÁTIC NCO DE QUESTÕES - MTEMÁTIC - ª SÉRIE - ENSINO MÉDIO - PRTE =============================================================================================

Leia mais

MATEMÁTICA PARA REFLETIR! EXERCÍCIOS EXERCÍCIOS COMPLEMENTARES OPERAÇÕES COM MATRIZES PARA REFLETIR!...437

MATEMÁTICA PARA REFLETIR! EXERCÍCIOS EXERCÍCIOS COMPLEMENTARES OPERAÇÕES COM MATRIZES PARA REFLETIR!...437 ÍNICE MATEMÁTICA... PARA REFLETIR!... EXERCÍCIOS... EXERCÍCIOS COMPLEMENTARES... OPERAÇÕES COM MATRIZES... PARA REFLETIR!...7 EXERCÍCIOS E APLICAÇÃO...8 EXERCÍCIOS COMPLEMENTARES...8...9 PARA REFLETIR!...

Leia mais

Cálculo Numérico Módulo III Resolução Numérica de Sistemas Lineares Parte I

Cálculo Numérico Módulo III Resolução Numérica de Sistemas Lineares Parte I Cálculo Numérico Módulo III Resolução Numéric de Sistems Lineres Prte I Prof: Reinldo Hs Sistems Lineres Form Gerl... n n b... n n b onde: ij n n coeficientes i incógnits b i termos independentes... nn

Leia mais

1.3 Matrizes inversas ] [ 0 1] = [ ( 1) ( 1) ] = [1 0

1.3 Matrizes inversas ] [ 0 1] = [ ( 1) ( 1) ] = [1 0 1.3 Matrizes inversas Definição: Seja A uma matriz de ordem k n, a matriz B de ordem n k é uma inversa à direita de A, se AB = I. A Matriz C de ordem n k é uma inversa à esquerda de A, se CA = I. Exemplo

Leia mais

Área entre curvas e a Integral definida

Área entre curvas e a Integral definida Universidde de Brsíli Deprtmento de Mtemátic Cálculo Áre entre curvs e Integrl definid Sej S região do plno delimitd pels curvs y = f(x) e y = g(x) e s rets verticis x = e x = b, onde f e g são funções

Leia mais

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática 1 NÚMEROS E OPERAÇÕES 1.1 Lingugem Mtemátic AULA 1 1 1.2 Conjuntos Numéricos Chm-se conjunto o grupmento num todo de objetos, bem definidos e discerníveis, de noss percepção ou de nosso entendimento, chmdos

Leia mais

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i Integrl Noção de Integrl. Integrl é o nálogo pr unções d noção de som. Ddos n números 1, 2,..., n, podemos tomr su som 1 + 2 +... + n = i. O integrl de = té = b dum unção contínu é um mneir de somr todos

Leia mais

Propriedades Matemáticas

Propriedades Matemáticas Proprieddes Mtemátics Guilherme Ferreir guifs2@hotmil.com Setembro, 2018 Sumário 1 Introdução 2 2 Potêncis 2 3 Rízes 3 4 Frções 4 5 Produtos Notáveis 4 6 Logritmos 5 6.1 Consequêncis direts d definição

Leia mais

Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A?

Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A? PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO ============================================================================================= Determinntes - O vlor

Leia mais

Prof. Jomar. matriz A. A mxn ou m A n

Prof. Jomar. matriz A. A mxn ou m A n MATRIZES Prof. Jomr 1. Introdução Em mtemátic, é comum lidr com ddos relciondos dus informções. Por isso, os mtemáticos crirm s sus própris tbels, que receberm o nome de mtrizes. N verdde, s mtrizes podem

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano.

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano. CÁLCULO NUMÉRICO Prof. Dr. Yr de Souz Tdno yrtdno@utfpr.edu.br Aul 0 0/04 Sistems de Equções Lineres Prte MÉTODOS ITERATIVOS Cálculo Numérico /9 MOTIVAÇÃO Os métodos itertivos ou de proimção fornecem um

Leia mais

Avaliação e programa de Álgebra Linear

Avaliação e programa de Álgebra Linear Avaliação e programa de Álgebra Linear o Teste ( de Março): Sistemas de equações lineares e matrizes. Espaços lineares. o Teste ( de Maio): Matriz de mudança de base. Transformações lineares. o Teste (

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA PRIMEIRO SEMESTRE DE 2015 13 de Fevereiro de 2015 Prte I Álgebr Liner 1 Questão: Sejm

Leia mais

Sebenta de Álgebra Linear e Geometria Analítica

Sebenta de Álgebra Linear e Geometria Analítica Sebent de Álgebr Liner e Geometri Anlític Pulo Jorge Afonso Alves Cpítulo 1 Mtrizes Objectivo Neste cpítulo vmos introduzir um novo conceito, o de mtriz; os diferentes tipos de mtrizes existentes; estudr

Leia mais

MATEMÁTICA II - Engenharias/Itatiba MATRIZES

MATEMÁTICA II - Engenharias/Itatiba MATRIZES MTEMÁTI II - Engenhris/Ittib o Semestre de 9 Prof Murício Fbbri -9 Série de Eercícios MTRIZES Um mtriz de dimensões m n é um conjunto ordendo de mn elementos, disostos em um grde retngulr de m linhs e

Leia mais

ALGEBRA LINEAR AUTOVALORES E AUTOVETORES. Prof. Ademilson

ALGEBRA LINEAR AUTOVALORES E AUTOVETORES. Prof. Ademilson LGEBR LINER UTOVLORES E UTOVETORES Prof. demilson utovlores e utovetores utovlores e utovetores são conceitos importntes de mtemátic, com plicções prátics em áres diversificds como mecânic quântic, processmento

Leia mais

Revisão Vetores e Matrizes

Revisão Vetores e Matrizes Revisão Vetores e trizes Vetores Vetores no R n R n {(x,..., x n ) tl que x,..., x n R} com s definições usuis de dição e multilicção Adição (x,..., x n ) (y,..., y n ) (x y,..., x n y n ) Vetores ultilicção

Leia mais

UNITAU APOSTILA DETERMINANTES PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: Bibliografia: Curso de Matemática Volume Único

UNITAU APOSTILA DETERMINANTES PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: Bibliografia: Curso de Matemática Volume Único ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA DETERMINANTES PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: Bibliogrfi: Curso de Mtemátic Volume Único Autores: Binchini&Pccol Ed. Modern Mtemátic

Leia mais

Teorema 1. Seja A um anel comutativo. Então A é um domínio de integridade se e somente se A é isomorfo a um subanel de um corpo.

Teorema 1. Seja A um anel comutativo. Então A é um domínio de integridade se e somente se A é isomorfo a um subanel de um corpo. 1. Domínios Um domínio de integridde (ou simplesmente domínio) é um nel comuttivo unitário A tl que se, b A e b = 0 então = 0 ou b = 0. Por exemplo Z e Z[X] são domínios e mis em gerl se A é um domínio

Leia mais

Desigualdades - Parte II. n (a1 b 1 +a 2 b a n b n ) 2.

Desigualdades - Parte II. n (a1 b 1 +a 2 b a n b n ) 2. Polos Olímpicos de Treinmento Curso de Álgebr - Nível Prof. Mrcelo Mendes Aul 9 Desigulddes - Prte II A Desiguldde de Cuchy-Schwrz Sejm,,..., n,b,b,...,b n números reis. Então: + +...+ ) n b +b +...+b

Leia mais

Introdução ao Cálculo Numérico S(M, B) = (y i Mx i B) 2

Introdução ao Cálculo Numérico S(M, B) = (y i Mx i B) 2 Introdução o Cálculo Numérico 25 List de Exercícios 2 Observção importnte: Resolv o proplem pr o di d prov com função f(x) = cos(πx/2) e não com f(x) = sin(πx)! Problem 1. Sejm {x i, y i } n i= números

Leia mais

Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA

Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA Trigonometri é o estudo dos triângulos, que contêm ângulos, clro. Conheç lgums regrs especiis pr ângulos e váris outrs funções, definições e trnslções importntes. Senos e cossenos são dus funções trigonométrics

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática + = B =.. matrizes de M )

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática + = B =.. matrizes de M ) Se ( ij ) é um mtri, definid pel lei Universidde Federl de Viços Centro de Ciêncis Ets e ecnológics Deprtmento de Mtemátic LIS DE EXERCÍCIOS M 7 Prof Gem/ Prof Hugo/ Prof Mrgreth i j, se i j ij, clcule

Leia mais

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS EQUAÇÕES E INEQUAÇÕES POLINOMIAIS Um dos grndes problems de mtemátic n ntiguidde er resolução de equções polinomiis. Encontrr um fórmul ou um método pr resolver tis equções er um grnde desfio. E ind hoje

Leia mais

Comprimento de arco. Universidade de Brasília Departamento de Matemática

Comprimento de arco. Universidade de Brasília Departamento de Matemática Universidde de Brsíli Deprtmento de Mtemátic Cálculo Comprimento de rco Considerefunçãof(x) = (2/3) x 3 definidnointervlo[,],cujográficoestáilustrdo bixo. Neste texto vmos desenvolver um técnic pr clculr

Leia mais

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c.

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c. EQUAÇÃO DO GRAU Você já estudou em série nterior s equções do 1 gru, o gru de um equção é ddo pelo mior expoente d vriável, vej lguns exemplos: x + = 3 equção do 1 gru já que o expoente do x é 1 5x 8 =

Leia mais

CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS. : Variáveis e parâmetros. : Conjuntos. : Pertence. : Não pertence. : Está contido. : Não está contido.

CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS. : Variáveis e parâmetros. : Conjuntos. : Pertence. : Não pertence. : Está contido. : Não está contido. CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS,,... A, B,... ~ > < : Vriáveis e prâmetros : Conjuntos : Pertence : Não pertence : Está contido : Não está contido : Contém : Não contém : Existe : Não existe : Existe

Leia mais

Prova 1 Soluções MA-602 Análise II 27/4/2009 Escolha 5 questões

Prova 1 Soluções MA-602 Análise II 27/4/2009 Escolha 5 questões Prov 1 Soluções MA-602 Análise II 27/4/2009 Escolh 5 questões 1. Sej f : [, b] R um função limitd. Mostre que f é integrável se, e só se, existe um sequênci de prtições P n P [,b] do intervlo [, b] tl

Leia mais

Renato Martins Assunção

Renato Martins Assunção Análise Numérica Renato Martins Assunção DCC - UFMG 2012 Renato Martins Assunção (DCC - UFMG) Análise Numérica 2012 1 / 84 Equação linear Sistemas de equações lineares A equação 2x + 3y = 6 é chamada linear

Leia mais

xy 1 + x 2 y + x 1 y 2 x 2 y 1 x 1 y xy 2 = 0 (y 1 y 2 ) x + (x 2 x 1 ) y + (x 1 y 2 x 2 y 1 ) = 0

xy 1 + x 2 y + x 1 y 2 x 2 y 1 x 1 y xy 2 = 0 (y 1 y 2 ) x + (x 2 x 1 ) y + (x 1 y 2 x 2 y 1 ) = 0 EQUAÇÃO DA RETA NO PLANO 1 Equção d ret Denominmos equção de um ret no R 2 tod equção ns incógnits x e y que é stisfeit pelos pontos P (x, y) que pertencem à ret e só por eles. 1.1 Alinhmento de três pontos

Leia mais

Matemática. Resolução das atividades complementares. M13 Determinantes. 1 (Unifor-CE) Sejam os determinantes A 5. 2 (UFRJ) Dada a matriz A 5 (a ij

Matemática. Resolução das atividades complementares. M13 Determinantes. 1 (Unifor-CE) Sejam os determinantes A 5. 2 (UFRJ) Dada a matriz A 5 (a ij Resolução ds tividdes complementres Mtemátic M Determinntes p. (Unifor-CE) Sejm os determinntes A, B e C. Nests condições, é verdde que AB C é igul : ) c) e) b) d) A?? A B?? B C?? C AB C ()? AB C, se i,

Leia mais

Lista 7.1 Formas Quadráticas; Conjunto Convexo; Função Convexa

Lista 7.1 Formas Quadráticas; Conjunto Convexo; Função Convexa Fculdde de Economi d Universidde Nov de isbo pontmentos Cálculo II ist 7.1 Forms Qudrátics; Conjunto Convexo; Função Convex 1. Form qudrátic de n vriáveis reis (Q): Polinómio de º gru de n vriáveis reis

Leia mais

Notas para o Curso de Algebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009

Notas para o Curso de Algebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009 Notas para o Curso de Álgebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009 2 Sumário 1 Matrizes e Sistemas Lineares 5 11 Matrizes 6 12 Sistemas Lineares 11 121 Eliminação Gaussiana 12 122 Resolução

Leia mais

é encontrado no cruzamento da linha i com a coluna j, ou seja, o primeiro índice se refere à linha e o segundo à coluna.

é encontrado no cruzamento da linha i com a coluna j, ou seja, o primeiro índice se refere à linha e o segundo à coluna. Ministério da Educação Secretaria de Educação Profissional e Tecnológica Instituto Federal De Santa Catarina Campus São José Professora: ELENIRA OLIVEIRA VILELA COMPONENTE CURRICULAR: ALG ÁLG. LINEAR MATRIZES

Leia mais

MATRIZES. Neste caso, temos uma matriz de ordem 3x4 (lê-se três por quatro ), ou seja, 3 linhas e 4

MATRIZES. Neste caso, temos uma matriz de ordem 3x4 (lê-se três por quatro ), ou seja, 3 linhas e 4 A eori ds mrizes em cd vez mis plicções em áres como Economi, Engenhris, Memáic, Físic, enre ours. Vejmos um exemplo de mriz: A bel seguir represen s nos de rês lunos do primeiro semesre de um curso: Físic

Leia mais

Aula 1 - POTI = Produtos Notáveis

Aula 1 - POTI = Produtos Notáveis Aul 1 - POTI = Produtos Notáveis O que temos seguir são s demonstrções lgébrics dos sete principis produtos notáveis e tmbém prov geométric dos três primeiros. 1) Qudrdo d Som ( + b) = ( + b) * ( + b)

Leia mais

Testes e Sebentas. Exercícios resolvidos de Álgebra Linear (Matrizes e Determinantes)

Testes e Sebentas. Exercícios resolvidos de Álgebra Linear (Matrizes e Determinantes) Testes e Sebentas Exercícios resolvidos de Álgebra Linear (Matrizes e Determinantes) Índice: 1. Matrizes 1.1. Igualdade de matrizes 3 1.2. Transposta de uma matriz 3 1.3. Multiplicação por um escalar 3

Leia mais

IFRN Campus Natal/Central. Prof. Tibério Alves, D. Sc. FIC Métodos matemáticos para físicos e engenheiros - Aula 02.

IFRN Campus Natal/Central. Prof. Tibério Alves, D. Sc. FIC Métodos matemáticos para físicos e engenheiros - Aula 02. IFRN Cmpus Ntl/Centrl Prof. Tibério Alves, D. Sc. FIC Métodos mtemáticos pr físicos e engenheiros - Aul 0 Séries de Fourier 3 de gosto de 08 Resumo Neste ul, vmos estudr o conceito de conjunto completo

Leia mais

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli Introdução à Integrl Definid Aul 04 Mtemátic II Agronomi Prof. Dnilene Donin Berticelli Áre Desde os tempos mis ntigos os mtemáticos se preocupm com o prolem de determinr áre de um figur pln. O procedimento

Leia mais

FÓRMULA DE TAYLOR USP MAT

FÓRMULA DE TAYLOR USP MAT FÓRMULA DE TAYLOR USP MAT 5 SEVERINO TOSCANO DO REGO MELO. Polinômios de Tylor A ret tngente o gráfico de um função f derivável em um ponto define função de primeiro gru que melhor proxim função em pontos

Leia mais

1 INTRODUÇÃO À ÁLGEBRA EM CAMPOS DE GALOIS GF(2 m )

1 INTRODUÇÃO À ÁLGEBRA EM CAMPOS DE GALOIS GF(2 m ) INTRODUÇÃO À ÁLGEBRA EM CAMPOS DE GALOIS GF m.. INTRODUÇÃO O propósito deste texto é presentr conceitução básic d álgebr em Cmpos de Glois. A bordgem usd pr presentção deste ssunto é descritiv e com vários

Leia mais

2.4 Integração de funções complexas e espaço

2.4 Integração de funções complexas e espaço 2.4 Integrção de funções complexs e espço L 1 (µ) Sej µ um medid no espço mensurável (, F). A teori de integrção pr funções complexs é um generlizção imedit d teori de integrção de funções não negtivs.

Leia mais

Faculdade de Computação

Faculdade de Computação UNIVERIDADE FEDERAL DE UBERLÂNDIA Fculdde de Computção Disciplin : Teori d Computção Professor : ndr de Amo Revisão de Grmátics Livres do Contexto (1) 1. Fzer o exercicio 2.3 d págin 128 do livro texto

Leia mais

ESTUDO SOBRE A INTEGRAL DE DARBOUX. Introdução. Partição de um Intervalo. Alana Cavalcante Felippe 1, Júlio César do Espírito Santo 1.

ESTUDO SOBRE A INTEGRAL DE DARBOUX. Introdução. Partição de um Intervalo. Alana Cavalcante Felippe 1, Júlio César do Espírito Santo 1. Revist d Mtemátic UFOP, Vol I, 2011 - X Semn d Mtemátic e II Semn d Esttístic, 2010 ISSN 2237-8103 ESTUDO SOBRE A INTEGRAL DE DARBOUX Aln Cvlcnte Felippe 1, Júlio Césr do Espírito Snto 1 Resumo: Este trblho

Leia mais

Matemática para CG. Soraia Raupp Musse

Matemática para CG. Soraia Raupp Musse Mtemátic pr CG Sori Rupp Musse Sumário Introdução Revisão Mtemátic Vetores Mtries Introdução Em CG, trlh-se com ojetos definidos em um mundo 3D Todos os ojetos têm form, posição e orientção Precismos de

Leia mais

NOTA DE AULA. Tópicos em Matemática

NOTA DE AULA. Tópicos em Matemática Universidde Tecnológic Federl do Prná Cmpus Curitib Prof. Lucine Deprtmento Acdêmico de Mtemátic NOTA DE AULA Tópicos em Mtemátic Fonte: http://eclculo.if.usp.br/ 1. CONJUNTOS NUMÉRICOS: 1.1 Números Nturis

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas.

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas. CÁLCULO L1 NOTAS DA DÉCIMA SÉTIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nest ul, utilizremos o Teorem Fundmentl do Cálculo (TFC) pr o cálculo d áre entre dus curvs. 1. A áre entre dus curvs A

Leia mais

Material Teórico - Módulo de Razões e Proporções. Proporções e Conceitos Relacionados. Sétimo Ano do Ensino Fundamental

Material Teórico - Módulo de Razões e Proporções. Proporções e Conceitos Relacionados. Sétimo Ano do Ensino Fundamental Mteril Teórico - Módulo de Rzões e Proporções Proporções e Conceitos Relciondos Sétimo Ano do Ensino Fundmentl Prof. Frncisco Bruno Holnd Prof. Antonio Cminh Muniz Neto Portl OBMEP 1 Introdução N ul nterior,

Leia mais

Equações diofantinas lineares a duas e três variáveis

Equações diofantinas lineares a duas e três variáveis Equções diofntins lineres dus e três vriáveis Eudes Antonio Cost Fbino F. T. dos Sntos Introdução O objetivo deste rtigo é presentr teori básic envolvid ns equções diofntins lineres dus e três incógnits

Leia mais

Lista 5: Geometria Analítica

Lista 5: Geometria Analítica List 5: Geometri Anlític A. Rmos 8 de junho de 017 Resumo List em constnte tulizção. 1. Equção d elipse;. Equção d hiperból. 3. Estudo unificdo ds cônics não degenerds. Elipse Ddo dois pontos F 1 e F no

Leia mais

Gabarito Sistemas Lineares

Gabarito Sistemas Lineares Gbrito Sistes ineres Eercício : () rieir inh :. > Segund inh :. > Terceir inh :. Qurt inh :. α á( α ) > ogo, não stisfz o Critério ds inhs. (b) rieir inh : > Segund inh : 6 > Terceir inh : > Qurt inh :

Leia mais

Índice. Matrizes, Determinantes e Sistemas Lineares. Resumo Teórico...1 Exercícios...5 Dicas...6 Resoluções...7

Índice. Matrizes, Determinantes e Sistemas Lineares. Resumo Teórico...1 Exercícios...5 Dicas...6 Resoluções...7 Índice Mtrizes, Determinntes e Sistems Lineres Resumo Teórico...1 Exercícios...5 Dics...6 Resoluções...7 Mtrizes, Determinntes e Sistems Lineres Resumo Teórico Mtrizes Representção A=( ij )x3pode ser representd

Leia mais

Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1

Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1 Mtrizes e Sistems de equções lieres D.I.C. Medes s mtrizes são um ferrmet básic formulção de problems de mtemátic e de outrs áres. Podem ser usds: resolução de sistems de equções lieres; resolução de sistems

Leia mais

Análise de Regressão EST036

Análise de Regressão EST036 Análise de Regressão EST036 Michel Helcias Montoril Instituto de Ciências Exatas Universidade Federal de Juiz de Fora Tópicos matriciais; Derivação de vetores e matrizes. Tópicos matriciais Tipos especiais

Leia mais