3 Teoria dos Conjuntos Fuzzy

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "3 Teoria dos Conjuntos Fuzzy"

Transcrição

1 0 Teori dos Conjuntos Fuzzy presentm-se qui lguns conceitos d teori de conjuntos fuzzy que serão necessários pr o desenvolvimento e compreensão do modelo proposto (cpítulo 5). teori de conjuntos fuzzy é eficiente pr modelr incertez n definição de prâmetros e tem resultdos ns mis vrids plicções [7] [8] [9]. Est teori que consider sujetividde e eperiênci dos profissionis é cpz de cpturr informções impreciss descrits em lingugem nturl e convertê-ls pr um formto numérico visndo efetur um rciocínio proimdo com proposições impreciss trvés de conjuntos fuzzy. O conceito de conjuntos fuzzy foi inicilmente introduzido por Zdeh [0] qundo ele oservou impossiilidde de modelr sistems com fronteirs ml definids segundo s ordgens mtemátics rígids e preciss dos métodos clássicos como por eemplo teori d proilidde... Conceitos de Lógic Fuzzy... Conjuntos Fuzzy Um conjunto fuzzy é definido por um função chmd de função de pertinênci. Cd função de pertinênci define um conjunto fuzzy do conjunto universl U trvés d triuição de um gru de pertinênci µ ( ) entre 0 e pr cd elemento de U. Este é o gru com o qul pertence : µ : U [0] (.) Um conjunto fuzzy pode ser interpretdo como ponte que lig o conceito impreciso à su modelgem numéric triuindo-se cd indivíduo no universo um vlor entre 0 e que represent o gru de pertinênci deste indivíduo o conjunto fuzzy.

2 Um conjunto fuzzy é dito normlizdo se o vlor máimo (ou supremum) é : sup U µ ( ) (.) Um conjunto fuzzy que não é norml é chmdo de sunorml. Dus crcterístics importntes de conjuntos fuzzy são: O suporte de : é prte de U sore qul função de pertinênci de não é supp( nul. su notção é supp() e verific: { U ( ) 0)} ) µ (.) O núcleo de : ele não é vzio n condição de que o conjunto fuzzy sej normlizdo. su notção é nuc() e verific: { U ( ) )} nuc ( ) µ (.4) Um propriedde importnte dos conjuntos fuzzy é su hilidde de epressr trnsições grduis de pertinênci pr não-pertinênci. Isto permite cptur pelo menos de form grosseir do sentido de epressões em lingugem nturl que são n miori ds vezes vgs. Conjuntos crisp são indequdos pr este fim. Figur 4 ilustr s componentes de um conjunto fuzzy [7] [9] []. µ() Função de Pertinênci Gru de Pertinênci Domínio do Conjunto Fuzzy Figur 4 Componentes de um Conjunto Fuzzy

3 ... Conjunto Singleton Um conjunto fuzzy é chmdo de singleton se seu suporte é um único ponto em U e com de gru de pertinênci igul µ(). Figur 5 ilustr um conjunto singleton de domínio 4. µ() Gru de Pertinênci Domínio do Conjunto Fuzzy Figur 5 Eemplo de um Conjunto Singleton... Conjunto -cut Pr todo vlor do intervlo [0] é definido o -cut (ou corte no nível ) de um conjunto fuzzy de U como o su-conjunto: { U µ ( } ) (.5) O -cut pode ser interpretdo como o conjunto fuzzy que present um restrição ou um limite imposto o domínio do conjunto sedo no vlor do. ssim o conjunto resultnte contém todos os elementos do domínio que possuem um gru de pertinênci µ() superior ou igul o vlor de. isto é: Qulquer conjunto fuzzy form um fmíli ninhd (nested fmily) de conjuntos β qundo > β (.6)

4 Figur 6 ilustr um conjunto -cut com 0. µ() Gru de Pertinênci Domínio do Conjunto Fuzzy Figur 6 Eemplo de Conjunto -Cut.. Conceitos de Números Fuzzy... Intervlos Qundo um intervlo é definido prtir de um número rel R este intervlo é chmdo de um suconjunto de R. Por eemplo se um intervlo é denotdo como [ ] R < pode-se interpretá-lo como um tipo de conjunto. Um intervlo tmém pode ser epresso trvés de um função de pertinênci (Figur 7): 0 < µ ( ) (.7) 0 > Se este indic um ponto ou sej [ ]

5 4 µ Α () Figur 7 Eemplo de Intervlo com [ ]... Número Fuzzy O número fuzzy é um cso especil de conjunto fuzzy que define um intervlo fuzzy nos números reis R. Pr um número rel cujo vlor preciso não é conhecido com etidão este número é definido trvés de um intervlo fuzzy. Um intervlo fuzzy é gerlmente representdo por dois pontos etremos e (um vlor mínimo e um vlor máimo) e um ponto médio (o vlor mis possível) como ) tmém ilustrdo n Figur 8. ( Sendo os números fuzzy mis comuns os tringulres e os trpezoidis os grus de pertinênci formm funções com equções simples. operção de -cut tmém pode ser plicd números fuzzy. Denotndo-se como o intervlo -cut de um número fuzzy este intervlo é definido como: ( ) ( ) [ ] (.8)

6 5 µ Α () Figur 8 Ilustrção gráfic do número fuzzy ) ( É tmém possível estelecer qulquer intervlo crisp dentro de um número fuzzy ssocido um -cut qulquer como ilustrdo n Figur 9. µ Α () ' (0) (') () () (') (0) Figur 9 - -cut de um número fuzzy: < ( ) ( ) [ ] ( ') ( ') [ ] ' '

7 6 Pr que um conjunto fuzzy sej definido como um número fuzzy este deve oedecer às seguintes condições: Estr definido nos números reis; função de pertinênci deve ser contínu; O conjunto fuzzy deve ser normlizdo; O conjunto fuzzy deve ser conveo. Logo um número fuzzy deve ser normlizdo e conveo. condição de normlizção implic que o vlor máimo do gru de pertinênci é conforme eq. (.9): R µ ( ) (.9) condição de conveidde signific que linh trçd por um -cut é contínu e o intervlo -cut stisfz às seguintes relções: ( ) ( ) [ ] (.0) ( ') ( ) ( ') ( ) ( ' < ) ( ) (.) condição de conveidde tmém pode ser escrit como n eq. (.): < (.) ( ' ) '... Número Fuzzy Tringulr Dentre s diverss forms de números fuzzy o número fuzzy tringulr é o mis utilizdo. É representdo por três pontos e epresso por ). Est representção ( é interpretd como funções de pertinênci eq. (.). 0 < µ ( ) (.) 0 >

8 7 Figur 0 ilustr um número fuzzy tringulr: no eio estão os vlores d vriável e ; no eio y está representdo o gru de pertinênci pr cd vlor de. O número fuzzy tringulr é utilizdo qundo o prâmetro em nálise possui um fi de vrição e um número dentro dest fi possui um possiilidde de ocorrênci num único pico mior do que os outros. µ Α () Figur 0 Número fuzzy tringulr ) ( este número fuzzy tringulr é plicd um operção de -cut. Sej um intervlo crisp de um número fuzzy tringulr otido trvés de um operção de -cut [0]. D eq. (.) otêm-se: ( ) ( ) ssim: ( ) ) ( + ( ) ) ( + Logo: ( ) ( ) [ ] [( ) + ( ] + ) (.4)

9 8 seguir é presentdo um eemplo pr ilustrr o intervlo -cut ou intervlo possiilístico. Eemplo: sej o número fuzzy tringulr ( 5 ) mostrdo n Figur onde função de pertinênci é dd pel eq. (.5) io: 0 < µ 4 ( ) (.5) 0 > nliticmente o intervlo -cut deste número fuzzy é: ( ) ( ) [ ] [ 4 5 ] (.6) + Se 05 prtir d eq. (.6) otém-se 0 5 : (05) (05) [ ] [ 0] 05

10 9 µ Α () Figur Intervlo 05 cut do número fuzzy tringulr (-5 - )..4. ritmétic de Intervlos Operções com números fuzzy podem ser generlizds prtir ds operções de intervlos crisp. seguir são presentds revemente s definições ds principis operções intervlres considerndo e como números epressos como intervlos [] [] [4] de modo que: R [ ] [ ] i) dição: dição de dois intervlos definidos nos números reis é eq. (.7): [ ]( + ) [ ] [ + ] + + (.7) ii) Sutrção: [ ]( ) [ ] [ ] (.8) iii) Multiplicção: [ ]() [ ]

11 40 [ ] isto é: { } { } [ ] m min (.9) iv) Divisão: [ ] [ ] () [ ] isto é: { } { } [ ] m min (.0) ecluindo o cso de 0 ou 0. v) Invers de um intervlo: [ ] isto é: m min (.) ecluindo o cso de 0 ou 0. vi) Multiplicção de um intervlo por um esclr: R λ > 0 λ se [ ] [ ] λ λ λ λ (.)

12 4 se λ < 0 [ ] [ λ λ ] λ λ (.)..5. ritmétic Fuzzy O conceito de números fuzzy pode ser presentdo de diverss mneirs. Neste trlho um número fuzzy é considerdo como um etensão do conceito de intervlo de confinç. Est etensão é sed num idéi nturl e simples: o invés de considerr o intervlo de confinç em um único nível ele é considerdo em vários níveis e mis especificmente entre os níveis 0 e. O intervlo de confinç máimo é considerdo igul e o mínimo igul 0. O nível de pertinênci pr [0 ] fornece um intervlo de ( ) confinç [ ] ( ) que: pr todo [0 ] que é um função monóton decrescente de. Isto quer dizer se ( ' > ) ' ou ( ') ( ') ( ) ( ) [ ] [ ] ( ' > ) Dest form pode-se plicr teori d ritmétic intervlr pr definir s operções com números fuzzy onde cd intervlo possiilístico definido por um -cut pode ser trtdo independentemente pel ritmétic intervlr Operções do Intervlo -cut Os intervlos -cut de um número fuzzy [ ] um conjunto crisp. ( ) ( ) [ ] [ 0] R Dest form ser plicds pr o intervlo -cut ( ) podem ser referencidos como ( ) é um intervlo crisp. Logo s operções vists n seção..4 podem.

13 4 Se o intervlo -cut de um número fuzzy é definido por: [ ] R ( ) ( ) [ ] [ 0 ] R s operções entre ( ) ( ) e podem ser descrits d seguinte form: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ]( + )[ ] [ + ] + + ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ]( ) [ ] [ ] Isto é pr cd gru de pertinênci do número fuzzy é estelecido um -cut crindo-se intervlos -cut. Logo s operções com o número fuzzy serão relizds pr cd nível cd -cut segundo ritmétic intervlr. Ests operções podem ser estendids pr multiplicção divisão etc. Pode-se concluir que s operções com números fuzzy seguem s mesms proprieddes ds operções intervlres. diferenç é que com os números fuzzy s operções são relizds pr cd nível de pertinênci. É como se o número fuzzy fosse ftido em diversos números intervlres Operções com o Número Fuzzy Tringulr lgums proprieddes ds operções do número fuzzy tringulr estão resumids io: i) Os resultdos de um dição ou de um sutrção entre números fuzzy tringulres tmém são números fuzzy tringulres. ii) Os resultdos d multiplicção ou d divisão não são números fuzzy tringulres. Freqüentemente proimm-se que os resultdos opercionis de um multiplicção ou de um divisão por números fuzzy tringulres.

14 4 Em primeiro lugr serão considerds dição e sutrção. Neste cso não é necessário o uso ds funções de pertinênci. Sejm os números fuzzy tringulres e definidos io: ) ) ( ( i) dição ( + ) ( ( + )( + )( + ) + ) : número fuzzy tringulr (.4) ii) Sutrção ( ) ( ( )( )( ) ) : número fuzzy tringulr (.5) iii) Imgem Simétric ) ( ) : número fuzzy tringulr (.6) ( Eemplo: sejm os números fuzzy tringulres e definidos io: logo: ( 4) e ( 0 6) ( + ) ( 4 0) ( ) ( 9 5) Os conjuntos fuzzy de e de ssim como os conjuntos fuzzy d som (+) e d sutrção (-) estão ilustrdos n Figur. No cso d multiplicção ou d divisão o invés de se efetur o cálculo preciso trvés ds funções de pertinênci o que resultri em um número fuzzy não tringulr é preferível proimr o resultdo pr um número fuzzy tringulr.

15 () Números fuzzy tringulres e (+) () Som (+) de números fuzzy tringulres (-) (c) Sutrção (-) de números fuzzy tringulres Figur (+) e (-) de números fuzzy tringulres Eemplo: proimção d multiplicção Sejm os dois números fuzzy tringulres definidos io: ( 4) ( 4 6) O primeiro psso é oter os -cuts dos números fuzzy em questão:

16 45 [( ) + (4 ) + 4] [ + + 4] [(4 ) + (6 4) + 6] [ + + 6] Pr todo [0 ] multiplic-se e que são dois intervlos crisp. Oservese que pr [0 ] todos os elementos de cd intervlo são números positivos. Logo operção de multiplicção dos dois intervlos é simples. () [ ]()[ + + 6] [( + )( + ) ( + 4)( + 6) ] [ ] É importnte oservr que neste ponto fic clro que o número fuzzy resultnte d multiplicção de dois números fuzzy tringulres não é um número fuzzy tringulr. () : Qundo 0: 0 () 0 Qundo : [ 4] [ ] [ 8 8 8] () Otem-se dest form um número fuzzy tringulr que é um proimção de () ( 8 4) Figur present s funções de pertinênci dos números fuzzy tringulres e função de pertinênci não proimd d multiplicção () e função de pertinênci d mesm multiplicção proimd por um número fuzzy tringulr. Oservse que diferenç entre s dus funções de pertinênci de () é pequen.

17 46 () Não proimdo () proimdo Figur Multiplicção () de dois números fuzzy tringulres Eemplo: proimção d divisão De modo similr o resultdo proimdo d divisão () é epresso trvés de um número fuzzy tringulr. Sejm os dois números fuzzy tringulres e do eemplo nterior e os mesmos intervlos -cut e. Pr todo [0 ] como todos os elementos de cd intervlo são números positivos e não nulos divisão seguinte mneir: () [ ]()[ + + 6] [( + ) ( + 6) ( + 4) ( + ) ] () é feit d Qundo 0: () 0 0 Qundo : () [ 6 4 ] [ 07 ] [( + ) ( + 6) ( + 4) ( + ) ] [ 4 4] [ 05 05] 05

18 47 Otém-se dest form um número fuzzy tringulr que é um proimção de () ( ) () :

CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS. : Variáveis e parâmetros. : Conjuntos. : Pertence. : Não pertence. : Está contido. : Não está contido.

CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS. : Variáveis e parâmetros. : Conjuntos. : Pertence. : Não pertence. : Está contido. : Não está contido. CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS,,... A, B,... ~ > < : Vriáveis e prâmetros : Conjuntos : Pertence : Não pertence : Está contido : Não está contido : Contém : Não contém : Existe : Não existe : Existe

Leia mais

Matemática para Economia Les 201

Matemática para Economia Les 201 Mtemátic pr Economi Les uls 8_9 Integris Márci znh Ferrz Dis de Mores _//6 Integris s operções inverss n mtemátic: dição e sutrção multiplicção e divisão potencição e rdicição operção invers d dierencição

Leia mais

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática 1 NÚMEROS E OPERAÇÕES 1.1 Lingugem Mtemátic AULA 1 1 1.2 Conjuntos Numéricos Chm-se conjunto o grupmento num todo de objetos, bem definidos e discerníveis, de noss percepção ou de nosso entendimento, chmdos

Leia mais

x = x 2 x 1 O acréscimo x é também chamado de diferencial de x e denotado por dx, isto é, dx = x.

x = x 2 x 1 O acréscimo x é também chamado de diferencial de x e denotado por dx, isto é, dx = x. Universidde Federl Fluminense Mtemátic II Professor Mri Emili Neves Crdoso Cpítulo Integrl. Diferenciis dy Anteriormente, foi considerdo um símolo pr derivd de y em relção à, ms em lguns prolems é útil

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte B

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte B Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl 5 CPES FUNÇÕES Prte B Prof. ntônio Murício Medeiros lves Profª Denise Mri Vrell Mrtinez UNIDDE FUNÇÕES PRTE B. FUNÇÂO

Leia mais

Matrizes. Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Márcia A.F. Dias de Moraes. Matrizes Conceitos Básicos

Matrizes. Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Márcia A.F. Dias de Moraes. Matrizes Conceitos Básicos Mtemátic pr Economists LES uls e Mtrizes Ching Cpítulos e Usos em economi Mtrizes ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Márci.F. Dis de Mores Álgebr Mtricil Conceitos Básicos

Leia mais

8/6/2007. Dados os conjuntos: A={0,1} e B={a,b,c},

8/6/2007. Dados os conjuntos: A={0,1} e B={a,b,c}, 8/6/7 Orgnizção Aul elções clássics e relções Fuzz Prof. Dr. Alendre d ilv imões Produto Crtesino elções Crisp Produto crtesino Forç d relção Crdinlidde Operções em relções Crisp Proprieddes de relções

Leia mais

Módulo 02. Sistemas Lineares. [Poole 58 a 85]

Módulo 02. Sistemas Lineares. [Poole 58 a 85] Módulo Note em, leitur destes pontmentos não dispens de modo lgum leitur tent d iliogrfi principl d cdeir Chm-se à tenção pr importânci do trlho pessol relizr pelo luno resolvendo os prolems presentdos

Leia mais

Diferenciação Numérica

Diferenciação Numérica Cpítulo 6: Dierencição e Integrção Numéric Dierencição Numéric Em muits circunstâncis, torn-se diícil oter vlores de derivds de um unção: derivds que não são de ácil otenção; Eemplo clculr ª derivd: e

Leia mais

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c.

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c. EQUAÇÃO DO GRAU Você já estudou em série nterior s equções do 1 gru, o gru de um equção é ddo pelo mior expoente d vriável, vej lguns exemplos: x + = 3 equção do 1 gru já que o expoente do x é 1 5x 8 =

Leia mais

Funções do 1 o Grau. Exemplos

Funções do 1 o Grau. Exemplos UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Funções do o Gru. Função

Leia mais

Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Luiz Fernando Satolo

Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Luiz Fernando Satolo Mtemátic pr Economists LES Auls 5 e Mtrizes Ching Cpítulos e 5 Luiz Fernndo Stolo Mtrizes Usos em economi ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Álgebr Mtricil Conceitos Básicos

Leia mais

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou POLINÔMIOS Definição: Um polinômio de gru n é um função que pode ser escrit n form P() n n i 0... n i em que cd i é um número compleo (ou i 0 rel) tl que n é um número nturl e n 0. Os números i são denomindos

Leia mais

Capítulo III INTEGRAIS DE LINHA

Capítulo III INTEGRAIS DE LINHA pítulo III INTEGRIS DE LINH pítulo III Integris de Linh pítulo III O conceito de integrl de linh é um generlizção simples e nturl do conceito de integrl definido: f ( x) dx Neste último, integr-se o longo

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT - ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA LISTA DE EXERCÍCIOS ) Sejm A, B e C mtries inversíveis de mesm ordem, encontre epressão d mtri X,

Leia mais

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS EQUAÇÕES E INEQUAÇÕES POLINOMIAIS Um dos grndes problems de mtemátic n ntiguidde er resolução de equções polinomiis. Encontrr um fórmul ou um método pr resolver tis equções er um grnde desfio. E ind hoje

Leia mais

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 7 _ Função Modular, Exponencial e Logarítmica Professor Luciano Nóbrega

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 7 _ Função Modular, Exponencial e Logarítmica Professor Luciano Nóbrega 1 TECNÓLOGO EM CONSTRUÇÃO CIVIL Aul 7 _ Função Modulr, Eponencil e Logrítmic Professor Lucino Nóbreg FUNÇÃO MODULAR 2 Módulo (ou vlor bsolutode um número) O módulo (ou vlor bsoluto) de um número rel, que

Leia mais

1 Distribuições Contínuas de Probabilidade

1 Distribuições Contínuas de Probabilidade Distribuições Contínus de Probbilidde São distribuições de vriáveis letóris contínus. Um vriável letóri contínu tom um numero infinito não numerável de vlores (intervlos de números reis), os quis podem

Leia mais

16.4. Cálculo Vetorial. Teorema de Green

16.4. Cálculo Vetorial. Teorema de Green ÁLULO VETORIAL álculo Vetoril pítulo 6 6.4 Teorem de Green Nest seção, prenderemos sore: O Teorem de Green pr váris regiões e su plicção no cálculo de integris de linh. INTROUÇÃO O Teorem de Green fornece

Leia mais

ESTATÍSTICA APLICADA. 1 Introdução à Estatística. 1.1 Definição

ESTATÍSTICA APLICADA. 1 Introdução à Estatística. 1.1 Definição ESTATÍSTICA APLICADA 1 Introdução à Esttístic 1.1 Definição Esttístic é um áre do conhecimento que trduz ftos prtir de nálise de ddos numéricos. Surgiu d necessidde de mnipulr os ddos coletdos, com o objetivo

Leia mais

Conjuntos Numéricos. Conjuntos Numéricos

Conjuntos Numéricos. Conjuntos Numéricos UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA.. Proprieddes dos números

Leia mais

a) 3 ( 2) = d) 4 + ( 3) = g) = b) 4 5 = e) 2 5 = h) = c) = f) = i) =

a) 3 ( 2) = d) 4 + ( 3) = g) = b) 4 5 = e) 2 5 = h) = c) = f) = i) = List Mtemátic -) Efetue s dições e subtrções: ) ( ) = d) + ( ) = g) + 7 = b) = e) = h) + = c) 7 + = f) + = i) 7 = ) Efetue s multiplicções e divisões: ).( ) = d).( ) = g) ( ) = b).( 7) = e).( 6) = h) (

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5,

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5, - Limite. - Conceito Intuitivo de Limite Considere função f definid pel guinte epressão: f - - Podemos obrvr que função está definid pr todos os vlores de eceto pr. Pr, tnto o numerdor qunto o denomindor

Leia mais

Substituição Trigonométrica. Substituição Trigonométrica. Se a integral fosse. a substituição u = a 2 x 2 poderia ser eficaz, mas, como está,

Substituição Trigonométrica. Substituição Trigonométrica. Se a integral fosse. a substituição u = a 2 x 2 poderia ser eficaz, mas, como está, UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. Introdução Se integrl

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adrino Pedreir Ctti pctti@hoocomr Universidde Federl d Bhi UFBA, MAT A01, 006 Superfícies de Revolução 1 Introdução Podemos oter superfícies não somente por meio de um equção do tipo F(,, ), eistem muitos

Leia mais

E m Física chamam-se grandezas àquelas propriedades de um sistema físico

E m Física chamam-se grandezas àquelas propriedades de um sistema físico Bertolo Apêndice A 1 Vetores E m Físic chmm-se grndezs àquels proprieddes de um sistem físico que podem ser medids. Els vrim durnte um fenômeno que ocorre com o sistem, e se relcionm formndo s leis físics.

Leia mais

Resumo. Estruturas de Sistemas Discretos. A Explosão do Ariane 5. Objectivo. Representações gráficas das equações às diferenças

Resumo. Estruturas de Sistemas Discretos. A Explosão do Ariane 5. Objectivo. Representações gráficas das equações às diferenças Resumo Estruturs de Sistems Discretos Luís Clds de Oliveir lco@ist.utl.pt Instituto Superior Técnico Representções gráfics ds equções às diferençs Estruturs ásics de sistems IIR Forms trnsposts Estruturs

Leia mais

Incertezas e Propagação de Incertezas. Biologia Marinha

Incertezas e Propagação de Incertezas. Biologia Marinha Incertezs e Propgção de Incertezs Cursos: Disciplin: Docente: Biologi Biologi Mrinh Físic Crl Silv Nos cálculos deve: Ser coerente ns uniddes (converter tudo pr S.I. e tender às potêncis de 10). Fzer um

Leia mais

Vetores CAPÍTULO. Descrição do capítulo

Vetores CAPÍTULO. Descrição do capítulo CAPÍTULO 1 Vetores Descrição do cpítulo 1.1 Vetores em dus dimensões 1.2 Vetores em três dimensões 1.3 Produto esclr 1.4 Produto vetoril 1.5 Rets e plnos em três dimensões 1.6 Espços vetoriis 1.7 Processo

Leia mais

DETERMINANTES. Notação: det A = a 11. Exemplos: 1) Sendo A =, então det A = DETERMINANTE DE MATRIZES DE ORDEM 2

DETERMINANTES. Notação: det A = a 11. Exemplos: 1) Sendo A =, então det A = DETERMINANTE DE MATRIZES DE ORDEM 2 DETERMINANTES A tod mtriz qudrd ssoci-se um número, denomindo determinnte d mtriz, que é obtido por meio de operções entre os elementos d mtriz. Su plicção pode ser verificd, por exemplo, no cálculo d

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - CAPES MATRIZES Prof. Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr Ciêncis Sociis

Leia mais

Aprender o conceito de vetor e suas propriedades como instrumento apropriado para estudar movimentos não-retilíneos;

Aprender o conceito de vetor e suas propriedades como instrumento apropriado para estudar movimentos não-retilíneos; Aul 5 Objetivos dest Aul Aprender o conceito de vetor e sus proprieddes como instrumento proprido pr estudr movimentos não-retilíneos; Entender operção de dição de vetores e multiplicção de um vetor por

Leia mais

SERVIÇO PÚBLICO FEDERAL Ministério da Educação

SERVIÇO PÚBLICO FEDERAL Ministério da Educação SERVIÇO PÚBLICO FEDERAL Ministério d Educção Universidde Federl do Rio Grnde Universidde Abert do Brsil Administrção Bchreldo Mtemátic pr Ciêncis Sociis Aplicds I Rodrigo Brbos Sores . Mtrizes:.. Introdução:

Leia mais

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES Prof. Erivelton Gerldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE

Leia mais

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A.

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A. MÓDULO - AULA Aul Técnics de Integrção Substituição Trigonométric Objetivo Conhecer técnic de integrção chmd substituição trigonométric. Introdução Você prendeu, no Cálculo I, que integrl de um função

Leia mais

A integral definida. f (x)dx P(x) P(b) P(a)

A integral definida. f (x)dx P(x) P(b) P(a) A integrl definid Prof. Méricles Thdeu Moretti MTM/CFM/UFSC. - INTEGRAL DEFINIDA - CÁLCULO DE ÁREA Já vimos como clculr áre de um tipo em específico de região pr lgums funções no intervlo [, t]. O Segundo

Leia mais

Diagrama de Blocos. Estruturas de Sistemas Discretos. Grafo de Fluxo. Sistemas IIR Forma Directa I

Diagrama de Blocos. Estruturas de Sistemas Discretos. Grafo de Fluxo. Sistemas IIR Forma Directa I Estruturs de Sistems Discretos Luís Clds de Oliveir Digrm de Blocos As equções às diferençs podem ser representds num digrm de locos com símolos pr:. Representções gráfics ds equções às diferençs som de

Leia mais

Área entre curvas e a Integral definida

Área entre curvas e a Integral definida Universidde de Brsíli Deprtmento de Mtemátic Cálculo Áre entre curvs e Integrl definid Sej S região do plno delimitd pels curvs y = f(x) e y = g(x) e s rets verticis x = e x = b, onde f e g são funções

Leia mais

REPRESENTAÇÃO DE INCERTEZAS

REPRESENTAÇÃO DE INCERTEZAS REPRESENTAÇÃO DE INCERTEZAS JUAN LAZO LAZO Incertezs: Definições e Tipos N litertur imperfeição d informção é gerlmente conhecid como incertez. Este termo é muito restritivo; o que se convencion chmr trtmento

Leia mais

Função Modular. x, se x < 0. x, se x 0

Função Modular. x, se x < 0. x, se x 0 Módulo de um Número Rel Ddo um número rel, o módulo de é definido por:, se 0 = `, se < 0 Observção: O módulo de um número rel nunc é negtivo. Eemplo : = Eemplo : 0 = ( 0) = 0 Eemplo : 0 = 0 Geometricmente,

Leia mais

e dx dx e x + Integrais Impróprias Integrais Impróprias

e dx dx e x + Integrais Impróprias Integrais Impróprias UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. Integris imprópris

Leia mais

Lista 5: Geometria Analítica

Lista 5: Geometria Analítica List 5: Geometri Anlític A. Rmos 8 de junho de 017 Resumo List em constnte tulizção. 1. Equção d elipse;. Equção d hiperból. 3. Estudo unificdo ds cônics não degenerds. Elipse Ddo dois pontos F 1 e F no

Leia mais

Nota de aula_2 2- FUNÇÃO POLINOMIAL

Nota de aula_2 2- FUNÇÃO POLINOMIAL Universidde Tecnológic Federl do Prná Cmpus Curiti Prof. Lucine Deprtmento Acdêmico de Mtemátic Not de ul_ - FUNÇÃO POLINOMIAL Definição 8: Função polinomil com um vriável ou simplesmente função polinomil

Leia mais

Bhaskara e sua turma Cícero Thiago B. Magalh~aes

Bhaskara e sua turma Cícero Thiago B. Magalh~aes 1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como

Leia mais

Álgebra Linear e Geometria Analítica. Espaços Vectoriais

Álgebra Linear e Geometria Analítica. Espaços Vectoriais Álgebr Liner e Geometri Anlític Espços Vectoriis O que é preciso pr ter um espço vectoril? Um conjunto não vzio V Um operção de dição definid nesse conjunto Um produto de um número rel por um elemento

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Universidde Estdul do Sudoeste d Bhi Deprtmento de Estudos Básicos e Instrumentis 3 Vetores Físic I Prof. Roberto Cludino Ferreir 1 ÍNDICE 1. Grndez Vetoril; 2. O que é um vetor; 3. Representção de um

Leia mais

Introdução ao estudo de equações diferenciais

Introdução ao estudo de equações diferenciais MTDI I - 2007/08 - Introdução o estudo de equções diferenciis 63 Introdução o estudo de equções diferenciis Existe um grnde vriedde de situções ns quis se desej determinr um quntidde vriável prtir de um

Leia mais

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que:

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que: Cpítulo 8 Integris Imprópris 8. Introdução A eistênci d integrl definid f() d, onde f é contínu no intervlo fechdo [, b], é grntid pelo teorem fundmentl do cálculo. Entretnto, determinds plicções do Cálculo

Leia mais

Progressões Aritméticas

Progressões Aritméticas Segund Etp Progressões Aritmétics Definição São sequêncis numérics onde cd elemento, prtir do segundo, é obtido trvés d som de seu ntecessor com um constnte (rzão).,,,,,, 1 3 4 n 1 n 1 1º termo º termo

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito

Leia mais

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli Introdução à Integrl Definid Aul 04 Mtemátic II Agronomi Prof. Dnilene Donin Berticelli Áre Desde os tempos mis ntigos os mtemáticos se preocupm com o prolem de determinr áre de um figur pln. O procedimento

Leia mais

Cálculo Numérico Módulo III Resolução Numérica de Sistemas Lineares Parte I

Cálculo Numérico Módulo III Resolução Numérica de Sistemas Lineares Parte I Cálculo Numérico Módulo III Resolução Numéric de Sistems Lineres Prte I Prof: Reinldo Hs Sistems Lineres Form Gerl... n n b... n n b onde: ij n n coeficientes i incógnits b i termos independentes... nn

Leia mais

3n 3 3 3n. R = k(1,1) t. Pessoa Anos de Formação (t) Fator de Carreira (k) A B C

3n 3 3 3n. R = k(1,1) t. Pessoa Anos de Formação (t) Fator de Carreira (k) A B C Aul 0 Potencição 0) (PUC-SP) Simplificndo epressão ) n 9 ) n + n d) 6 7 6 9 n n n, otém-se 0) (Insper) Um nlist de recursos humnos desenvolveu o seguinte modelo mtemático pr relcionr os nos de formção

Leia mais

1. Conceito de logaritmo

1. Conceito de logaritmo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Logritmos Prof.: Rogério

Leia mais

MATEMÁTICA PARA REFLETIR! EXERCÍCIOS EXERCÍCIOS COMPLEMENTARES OPERAÇÕES COM MATRIZES PARA REFLETIR!...437

MATEMÁTICA PARA REFLETIR! EXERCÍCIOS EXERCÍCIOS COMPLEMENTARES OPERAÇÕES COM MATRIZES PARA REFLETIR!...437 ÍNICE MATEMÁTICA... PARA REFLETIR!... EXERCÍCIOS... EXERCÍCIOS COMPLEMENTARES... OPERAÇÕES COM MATRIZES... PARA REFLETIR!...7 EXERCÍCIOS E APLICAÇÃO...8 EXERCÍCIOS COMPLEMENTARES...8...9 PARA REFLETIR!...

Leia mais

Modelagem Matemática de Sistemas Eletromecânicos

Modelagem Matemática de Sistemas Eletromecânicos 1 9 Modelgem Mtemátic de Sistems Eletromecânicos 1 INTRODUÇÃO Veremos, seguir, modelgem mtemátic de sistems eletromecânicos, ou sej, sistems que trtm d conversão de energi eletromgnétic em energi mecânic

Leia mais

Aos pais e professores

Aos pais e professores MAT3_015_F01_5PCImg.indd 9 9/09/16 10:03 prcels ou termos som ou totl Pr dicionres mentlmente, podes decompor os números e dicioná-los por ordens. 136 + 5 = (100 + 30 + 6) + (00 + 50 + ) 300 + 80 + 8 MAT3_015_F0.indd

Leia mais

Análise de Variância com Dois Factores

Análise de Variância com Dois Factores Análise de Vriânci com Dois Fctores Modelo sem intercção Eemplo Neste eemplo, o testrmos hipótese de s três lojs terem volumes médios de vends iguis, estmos testr se o fctor Loj tem influênci no volume

Leia mais

Dessa forma o eixo ox é uma assíntota da função exponencial e assim valores de y < 0 não se relacionam com nenhum x do domínio, portanto Im = R +.

Dessa forma o eixo ox é uma assíntota da função exponencial e assim valores de y < 0 não se relacionam com nenhum x do domínio, portanto Im = R +. 6 4. Função Eponencil É todo função que pode ser escrit n form: f: R R + = Em que é um número rel tl que 0

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES DETERMINANTES

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES DETERMINANTES Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - APES DETERMINANTES Prof Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr iêncis

Leia mais

Teorema Fundamental do Cálculo - Parte 2

Teorema Fundamental do Cálculo - Parte 2 Universidde de Brsíli Deprtmento de Mtemátic Cálculo Teorem Fundmentl do Cálculo - Prte 2 No teto nterior vimos que, se F é um primitiv de f em [,b], então f()d = F(b) F(). Isto reduz o problem de resolver

Leia mais

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc.

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc. Aul Métodos Esttísticos sticos de Apoio à Decisão Aul Mônic Brros, D.Sc. Vriáveis Aletóris Contínus e Discrets Função de Probbilidde Função Densidde Função de Distribuição Momentos de um vriável letóri

Leia mais

ESTÁTICA DO SISTEMA DE SÓLIDOS.

ESTÁTICA DO SISTEMA DE SÓLIDOS. Definições. Forçs Interns. Forçs Externs. ESTÁTIC DO SISTEM DE SÓLIDOS. (Nóbreg, 1980) o sistem de sólidos denomin-se estrutur cuj finlidde é suportr ou trnsferir forçs. São quels em que ção e reção, pertencem

Leia mais

Rresumos das aulas teóricas Cap Capítulo 4. Matrizes e Sistemas de Equações Lineares

Rresumos das aulas teóricas Cap Capítulo 4. Matrizes e Sistemas de Equações Lineares Rresumos ds uls teórics ------------------ Cp ------------------------------ Cpítulo. Mtrizes e Sistems de Equções ineres Sistems de Equções ineres Definições Um sistem de m equções lineres n incógnits,

Leia mais

um número finito de possibilidades para o resto, a saber, 0, 1, 2,..., q 1. Portanto, após no máximo q passos,

um número finito de possibilidades para o resto, a saber, 0, 1, 2,..., q 1. Portanto, após no máximo q passos, Instituto de Ciêncis Exts - Deprtmento de Mtemátic Cálculo I Profª Mri Juliet Ventur Crvlho de Arujo Cpítulo : Números Reis - Conjuntos Numéricos Os primeiros números conhecidos pel humnidde são os chmdos

Leia mais

1 ÁLGEBRA MATRICIAL 1.1 TIPOS ESPECIAIS DE MATRIZES. Teorema. Sejam A uma matriz k x m e B uma matriz m x n. Então (AB) T = B T A T

1 ÁLGEBRA MATRICIAL 1.1 TIPOS ESPECIAIS DE MATRIZES. Teorema. Sejam A uma matriz k x m e B uma matriz m x n. Então (AB) T = B T A T ÁLGEBRA MATRICIAL Teorem Sejm A um mtriz k x m e B um mtriz m x n Então (AB) T = B T A T Demonstrção Pr isso precismos d definição de mtriz trnspost Definição Mtriz trnspost (AB) T = (AB) ji i j = A jh

Leia mais

NOTA DE AULA. Tópicos em Matemática

NOTA DE AULA. Tópicos em Matemática Universidde Tecnológic Federl do Prná Cmpus Curitib Prof. Lucine Deprtmento Acdêmico de Mtemátic NOTA DE AULA Tópicos em Mtemátic Fonte: http://eclculo.if.usp.br/ 1. CONJUNTOS NUMÉRICOS: 1.1 Números Nturis

Leia mais

Capítulo IV. Funções Contínuas. 4.1 Noção de Continuidade

Capítulo IV. Funções Contínuas. 4.1 Noção de Continuidade Cpítulo IV Funções Contínus 4 Noção de Continuidde Um idei muito básic de função contínu é de que o seu gráfico pode ser trçdo sem levntr o lápis do ppel; se houver necessidde de interromper o trço do

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

Quadratura por interpolação Fórmulas de Newton-Cotes Quadratura Gaussiana. Integração Numérica. Leonardo F. Guidi DMPA IM UFRGS.

Quadratura por interpolação Fórmulas de Newton-Cotes Quadratura Gaussiana. Integração Numérica. Leonardo F. Guidi DMPA IM UFRGS. Qudrtur por interpolção DMPA IM UFRGS Cálculo Numérico Índice Qudrtur por interpolção 1 Qudrtur por interpolção 2 Qudrturs simples Qudrturs composts 3 Qudrtur por interpolção Qudrtur por interpolção O

Leia mais

Aula 5 Plano de Argand-Gauss

Aula 5 Plano de Argand-Gauss Ojetivos Plno de Argnd-Guss Aul 5 Plno de Argnd-Guss MÓDULO - AULA 5 Autores: Celso Cost e Roerto Gerldo Tvres Arnut 1) presentr geometricmente os números complexos ) Interpretr geometricmente som, o produto

Leia mais

2.4 Integração de funções complexas e espaço

2.4 Integração de funções complexas e espaço 2.4 Integrção de funções complexs e espço L 1 (µ) Sej µ um medid no espço mensurável (, F). A teori de integrção pr funções complexs é um generlizção imedit d teori de integrção de funções não negtivs.

Leia mais

Logaritmo. 1. (Espcex (Aman) 2014) Na figura abaixo, está representado o gráfico da função y = Iog x.

Logaritmo. 1. (Espcex (Aman) 2014) Na figura abaixo, está representado o gráfico da função y = Iog x. Logritmo 1. (Espce (Amn) 014) N figur io, está representdo o gráfico d função y = Iog. Nest representção, estão destcdos três retângulos cuj som ds áres é igul : ) Iog + Iog3 + Iog5 ) log30 c) 1+ Iog30

Leia mais

TÓPICOS. Equação linear. Sistema de equações lineares. Equação matricial. Soluções do sistema. Método de Gauss-Jordan. Sistemas homogéneos.

TÓPICOS. Equação linear. Sistema de equações lineares. Equação matricial. Soluções do sistema. Método de Gauss-Jordan. Sistemas homogéneos. Note bem: leitur destes pontmentos não dispens de modo lgum leitur tent d bibliogrfi principl d cdeir ÓPICOS Equção liner. AUA 4 Chm-se tenção pr importânci do trblho pessol relizr pelo luno resolvendo

Leia mais

Eletrotécnica TEXTO Nº 7

Eletrotécnica TEXTO Nº 7 Eletrotécnic TEXTO Nº 7 CIRCUITOS TRIFÁSICOS. CIRCUITOS TRIFÁSICOS EQUILIBRADOS E SIMÉTRICOS.. Introdução A quse totlidde d energi elétric no mundo é gerd e trnsmitid por meio de sistems elétricos trifásicos

Leia mais

(x, y) dy. (x, y) dy =

(x, y) dy. (x, y) dy = Seção 7 Função Gm A expressão n! = 1 3... n (1 está definid pens pr vlores inteiros positivos de n. Um primeir extensão é feit dizendo que! = 1. Ms queremos estender noção de ftoril inclusive pr vlores

Leia mais

Exercícios. setor Aula 25. f(2) = 3. f(3) = 0. f(11) = 12. g(3) = 14. Temos: 2x 1 = 5 x = 3 Logo, f(5) = 3 2 = 9

Exercícios. setor Aula 25. f(2) = 3. f(3) = 0. f(11) = 12. g(3) = 14. Temos: 2x 1 = 5 x = 3 Logo, f(5) = 3 2 = 9 setor 07 070409 070409-SP Aul 5 FUNÇÃO (COMPOSIÇÃO DE FUNÇÕES) FUNÇÃO COMPOSTA Sej f um função de A em B e sej g um função de B em C. Chm-se função compost de g com f função h definid de A em C, tl que

Leia mais

Matemática I. Prof. Gerson Lachtermacher, Ph.D. Prof. Rodrigo Leone, D.Sc. Colaboração Prof. Walter Paulette. Elaborado por. Seção 2.

Matemática I. Prof. Gerson Lachtermacher, Ph.D. Prof. Rodrigo Leone, D.Sc. Colaboração Prof. Walter Paulette. Elaborado por. Seção 2. Mtemátic I Elordo por Prof. Gerson Lchtermcher, Ph.D. Prof. Rodrigo Leone, D.Sc. Seção Colorção Prof. Wlter Pulette Versão 009-1 ADM 01004 Mtemátic I Prof. d Disciplin Luiz Gonzg Dmsceno, M. Sc. Seção

Leia mais

DERIVADAS DAS FUNÇÕES SIMPLES12

DERIVADAS DAS FUNÇÕES SIMPLES12 DERIVADAS DAS FUNÇÕES SIMPLES2 Gil d Cost Mrques Fundentos de Mteátic I 2. Introdução 2.2 Derivd de y = n, n 2.2. Derivd de y = / pr 0 2.2.2 Derivd de y = n, pr 0, n =,, isto é, n é u núero inteiro negtivo

Leia mais

x u 30 2 u 1 u 6 + u 10 2 = lim (u 1)(1 + u + u 2 + u 3 + u 4 )(2 + 2u 5 + u 10 )

x u 30 2 u 1 u 6 + u 10 2 = lim (u 1)(1 + u + u 2 + u 3 + u 4 )(2 + 2u 5 + u 10 ) Universidde Federl de Viços Deprtmento de Mtemátic MAT 40 Cálculo I - 207/II Eercícios Resolvidos e Comentdos Prte 2 Limites: Clcule os seguintes ites io se eistirem. Cso contrário, justique não eistênci.

Leia mais

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON PROFJWPS@GMAIL.COM MATRIZES Definição e Notção... 11 21 m1 12... 22 m2............ 1n.. 2n. mn Chmmos de Mtriz todo conjunto de vlores, dispostos

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031 Universidde Federl do Rio Grnde do Sul Escol de Engenhri de Porto Alegre Deprtmento de Engenhri Elétric ANÁLISE DE CIRCUITOS II - ENG04031 Aul 2 - Teorems de Thévenin e Norton Sumário Algrismos significtivos

Leia mais

Módulo e Equação Modular (valor absoluto)?

Módulo e Equação Modular (valor absoluto)? Mtemátic Básic Unidde 6 Função Modulr RANILDO LOES Slides disponíveis no nosso SITE: https://ueedgrtito.wordpress.com Módulo e Equção Modulr (vlor bsoluto)? - - - - R uniddes uniddes Definição, se, se

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? Cálculo II Prof. Adrin Cherri 1 INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região

Leia mais

SOMA E PRODUTO DAS RAÍZES DA EQUAÇÃO QUADRÁTICA: CONHECER PARA APLICAR

SOMA E PRODUTO DAS RAÍZES DA EQUAÇÃO QUADRÁTICA: CONHECER PARA APLICAR SOMA E PRODUTO DAS RAÍZES DA EQUAÇÃO QUADRÁTICA: CONHECER PARA APLICAR Denise Ritter Instituto Federl de Educção, Ciênci e Tecnologi Frroupilh deniseritter7@hotmil.com Alessndr Vrgs Instituto Federl de

Leia mais

Algarismo Correto e Algarismo Duvidoso

Algarismo Correto e Algarismo Duvidoso Algrismo Correto e Algrismo Duvidoso Vmos supor que gor você está efetundo medição de um segmento de ret, utilizndo pr isso um régu grdud em milímetros. Você oserv que o segmento de ret tem um pouco mis

Leia mais

3 SISTEMAS DE EQUAÇÕES LINEARES

3 SISTEMAS DE EQUAÇÕES LINEARES . Itrodução SISTEAS DE EQUAÇÕES INEARES A solução de sistems lieres é um ferrmet mtemátic muito importte egehri. Normlmete os prolems ão-lieres são soluciodos por ferrmets lieres. As fotes mis comus de

Leia mais

Então, det(a) = 1x3 1x2 = 3 2 = 1. Determinante de uma matriz 3 x 3 Regra de Sarrus (Pierre Frédéric Sarrus) Definimos det(a) =

Então, det(a) = 1x3 1x2 = 3 2 = 1. Determinante de uma matriz 3 x 3 Regra de Sarrus (Pierre Frédéric Sarrus) Definimos det(a) = Determinnte de um mtriz Sej um mtriz qudrd de ordem. Definimos det - E.: Sej mtriz Então, det Determinnte de um mtriz Regr de Srrus Pierre Frédéric Srrus Sej um mtriz qudrd de ordem. Definimos det Regr

Leia mais

CONJUNTOS NUMÉRICOS Símbolos Matemáticos

CONJUNTOS NUMÉRICOS Símbolos Matemáticos CONJUNTOS NUMÉRICOS Símolos Mtemáticos,,... vriáveis e prâmetros igul A, B,... conjuntos diferente pertence > mior que não pertence < menor que está contido mior ou igul não está contido menor ou igul

Leia mais

Cálculo Infinitesimal. Gabriela Chaves

Cálculo Infinitesimal. Gabriela Chaves Cálculo Infinitesiml Gbriel Chves versão de Agosto de ii Índice Índice iii Proprieddes básics dos números. Operções de dição e multiplicção...................................... Relção de ordem.................................................

Leia mais

Circuitos simples em corrente contínua resistores

Circuitos simples em corrente contínua resistores Circuitos simples em corrente contínu resistores - Conceitos relciondos esistênci elétric, corrente elétric, tensão elétric, tolerânci, ssocição em série e prlelo, desvio, propgção de erro. Ojetivos Fmilirizr-se

Leia mais

Definição Definimos o dominio da função vetorial dada em (1.1) como: dom(f i ) i=1

Definição Definimos o dominio da função vetorial dada em (1.1) como: dom(f i ) i=1 Cpítulo 1 Funções Vetoriis Neste cpítulo estudremos s funções f : R R n, funções que descrevem curvs ou movimentos de objetos no espço. 1.1 Definições e proprieddes Definição 1.1.1 Um função vetoril, é

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA PRIMEIRO SEMESTRE DE 2015 13 de Fevereiro de 2015 Prte I Álgebr Liner 1 Questão: Sejm

Leia mais

MTDI I /08 - Integral de nido 55. Integral de nido

MTDI I /08 - Integral de nido 55. Integral de nido MTDI I - 7/8 - Integrl de nido 55 Integrl de nido Sej f um função rel de vriável rel de nid e contínu num intervlo rel I [; b] e tl que f (x) ; 8x [; b]: Se dividirmos [; b] em n intervlos iguis, mplitude

Leia mais

Faculdade de Computação

Faculdade de Computação UNIVERIDADE FEDERAL DE UBERLÂNDIA Fculdde de Computção Disciplin : Teori d Computção Professor : ndr de Amo Revisão de Grmátics Livres do Contexto (1) 1. Fzer o exercicio 2.3 d págin 128 do livro texto

Leia mais

Circuitos simples em corrente contínua resistores

Circuitos simples em corrente contínua resistores Circuitos simples em corrente contínu resistores - Conceitos relciondos esistênci elétric, corrente elétric (DC, tensão elétric (DC, tolerânci, ssocição de resistores (série, prlelo e mist, desvio, propgção

Leia mais

Linguagens Formais Capítulo 5: Linguagens e gramáticas livres de contexto

Linguagens Formais Capítulo 5: Linguagens e gramáticas livres de contexto Lingugens ormis Cpítulo 5: Lingugens e grmátics livres de contexto José Lucs Rngel, mio 1999 5.1 - Introdução Vimos no cpítulo 3 definição de grmátic livre de contexto (glc) e de lingugem livre de contexto

Leia mais

LISTA DE EXERCÍCIOS #6 - ELETROMAGNETISMO I

LISTA DE EXERCÍCIOS #6 - ELETROMAGNETISMO I LIST DE EXERCÍCIOS #6 - ELETROMGNETISMO I 1. N figur temos um fio longo e retilíneo percorrido por um corrente i fio no sentido indicdo. Ess corrente é escrit pel epressão (SI) i fio = 2t 2 i fio Pr o

Leia mais

Conceitos de medidas e teoria de erros

Conceitos de medidas e teoria de erros Conceitos de medids e teori de erros - Introdução o curso de Lortório de Físic I nosso ojetivo será fmilirizção com o método científico, utilizndo-o n oservção de fenômenos descritos pel Mecânic clássic.

Leia mais