TP062-Métodos Numéricos para Engenharia de Produção Sistemas Lineares Métodos Iterativos

Tamanho: px
Começar a partir da página:

Download "TP062-Métodos Numéricos para Engenharia de Produção Sistemas Lineares Métodos Iterativos"

Transcrição

1 TP6-Métodos Numércos pr Egehr de Produção Sstems Leres Métodos Itertvos Prof. Volmr Wlhelm Curt, 5

2 Resolução de Sstems Leres Métodos Itertvos Itrodução É stte comum ecotrr sstems leres que evolvem um grde porcetgem de coefcetes ulos. Esses sstems são chmdos de sstems esprsos. Pr esses tpos de sstems, o método de Elmção de Guss ão é o ms proprdo, pos ele ão preserv ess esprsdde, que pode ser útl por fcltr resolução do sstem. Métodos tertvos são ms ecoômcos o que tge memór dos computdores Podem ser usdos pr reduzr os erros de rredodmeto solução otd por métodos etos Em lgus csos podem ser plcdos pr resolver coutos de equções ão leres (Ruggero, pág 5) Prof. Volmr - UFPR - TP6

3 Resolução de Sstems Leres Métodos Itertvos Itrodução Um método é tertvo qudo forece um sequêc de promções d solução. Cd um ds promções é otd ds terores pel repetção do mesmo processo. Precsmos sempre ser se sequêc otd está covergdo ou ão pr solução desed. Ddos um sequêc de vetores { () }, dzemos que sequêc { () } coverge pr se (), qudo. Prof. Volmr - UFPR - TP6

4 Resolução de Sstems Leres Métodos Itertvos Itrodução Portto, como todo processo tertvo, estes métodos sempre presetrão um resultdo promdo, que será tão prómo do resultdo rel coforme o úmero de terções relzds. Pr determr solução de um sstem ler por métodos tertvos, precsmos trsformr o sstem ddo em um outro sstem ode poss ser defdo um processo tertvo. A solução otd pr o sstem trsformdo deve ser tmém solução do sstem orgl (sstems leres devem ser equvletes). Prof. Volmr - UFPR - TP6

5 Resolução de Sstems Leres Métodos Itertvos Algortmo Escrever o sstem A =, de form equvlete = F + d (tl como f() = g() pr terções de poto fo). Escolher um promção cl (). Começdo com (), gerr um sequêc de promções { } de form tertv trvés de X ( + ) = F () + d fzedo () = F () + d, () = F () + d e ssm sucessvmete. Oservção A represetção de F e d depede do tpo de método usdo. Assm, pr métodos tertvos dferetes, F e d são otdos prtr de A e de forms dferetes. Prof. Volmr - UFPR - TP6 5

6 Resolução de Sstems Leres Métodos Itertvos Algortmo Como, seqüêc { () } coverge pr o vetor solução so lgums codções d mtrz F. Isto mpõe codções dferetes mtrz A pr dferetes métodos. Pr mesm mtrz A, um método pode covergr, equto outro pode dvergr. Portto, pr cd processo, relção etre A e F deve ser ecotrd pr decdr sore covergêc. Prof. Volmr - UFPR - TP6 6

7 Resolução de Sstems Leres Métodos Itertvos Algortmo Qudo Prr? Se sequêc { () } estver sufcetemete prómo de (-) prmos o processo. Dd um precsão ε, qudo () < ε etão () é solução do sstem ler. Computcolmete, um úmero mámo de terções tmém é crtéro de prd. Prof. Volmr - UFPR - TP6 7

8 Resolução de Sstems Leres Método Itertvo Guss-Jco Prof. Volmr - UFPR - TP6 8

9 9 Prof. Volmr - UFPR - TP6 Resolução de Sstems Leres Método Itertvo Guss-Jco Motvção Se um sstem com vráves e equções

10 Prof. Volmr - UFPR - TP6 Resolução de Sstems Leres Método Itertvo Guss-Jco Se () um solução cl pr este sstem. Clculdo o segudo vlor, (), d sequêc { () } prtr de ()...

11 Prof. Volmr - UFPR - TP6 Resolução de Sstems Leres Método Itertvo Guss-Jco Clculdo o vlor de ordem (+) d sequêc { () } prtr de () Equção gerl...

12 Resolução de Sstems Leres Método Itertvo Guss-Jco Se o sstem... Cosderdo que (+) = F () + d, etão temos / F... /... / / / /... / / d... / Prof. Volmr - UFPR - TP6

13 A terção + = F + d pr o método Guss-Jco A mtrz A pode ser rescrt como A=L+D+U (ão é decomposção) A = (L + D + U) = D + = [ (L+U) ] + = (/D)*[ (L+U) ] D é mtrz dgol formdo pelos elemetos d dgol de A U mtrz trgulr superor formd pelos elemetos cm d dgol de A L mtrz trgulr feror formd pelos elemetos o d dgol de A Fzedo Q = (U + L ), e cosderdo D tl que A = (L + D + U) Prof. Volmr - UFPR - TP6 Resolução de Sstems Leres Método Itertvo Guss-Jco Q D

14 Resolução de Sstems Leres Método Itertvo Guss-Jco Pseudo-Algortmo. Sem A e. Costru s mtrzes Q e D tl que Q = (U + L) e A = (L + D + U). Fç () = ; = ; Erro = If; Tolerc = -5 ;. whle Erro > Tolerc Q D = + ; Erro = A ; ed Prof. Volmr - UFPR - TP6

15 Resolução de Sstems Leres Método Itertvo Guss-Jco Crtéro de Covergêc ds lhs Crtéro ds lhs. Ddo o sstem A =, se α, / Se α mα, etão o método de Guss-Jco ger um sére covergete pr solução do sstem depedetemete d escolh de (). pr,,..., (mtrz dgolmete domte) Se A é um mtrz dgolmete domte, etão o método Jco coverge pr qulquer vetor cl (). Prof. Volmr - UFPR - TP6 5

16 Resolução de Sstems Leres Método Itertvo Guss-Jco Crtéro ds lhs Eemplo A 5 Crtéro ds lhs: α, α 5, α,5 Como α mα,5 logo, sequêc coverge Prof. Volmr - UFPR - TP6 6

17 Resolução de Sstems Leres Método Itertvo Guss-Jco Eemplo A mtrz dos coefcetes é dgolmete domte A 6, ,75,65 8 5, 5,75,65, A,5 Prof. Volmr - UFPR - TP6 7

18 Resolução de Sstems Leres Método Itertvo Guss-Jco Eemplo ,65,6565,75, ,75,65,5 5,656,875,5 A 6,7 7,875,5,665,6565,5, ,6565,875,8875 5,665,985,8875 A,95 A mtrz é um dgolmete domte, etão o método Jco coverge. Prof. Volmr - UFPR - TP6 8

19 A A,,, 7/5 7/5 7/5 /D d,,,,,,,,, F,,, () 9 Resolução de Sstems Leres Método Itertvo Guss-Jco Eemplo Prof. Volmr - UFPR - TP6 F d q d Solução et, A Erro:

20 Resolução de Sstems Leres Método Itertvo Guss-Jco Eemplo, () () F d,, A,897,8 () () F d,8,8 A,999,6 () () F d,6,6 A,77596,97 () () F d,97,97 A,8, (5) () F d,, A 5,67,9959 (6) (5) F d,9959,9959 A 6,97 Prof. Volmr - UFPR - TP6

21 Resolução de Sstems Leres Método Itertvo Guss-Sedel Prof. Volmr - UFPR - TP6

22 Prof. Volmr - UFPR - TP6 Resolução de Sstems Leres Clculdo o vlor (+) d sequêc { () } prtr de () Guss-Jco Guss-Sedel......

23 ... Resolução de Sstems Leres Método Itertvo Guss-Sedel Prof. Volmr - UFPR - TP6

24 Resolução de Sstems Leres Método Itertvo Guss-Sedel Prof. Volmr - UFPR - TP6 A = (L + D + U) = U L D +...

25 Resolução de Sstems Leres Método Itertvo Guss-Sedel Pseudo-Algortmo. Sem A e. Costru s mtrzes D, L e U tl que A = (L + D + D). Fç () = ; = ; Erro = If; Tolerc = -5 ;. whle Erro > Tolerc L U D K = + ; Erro = A ; ed Prof. Volmr - UFPR - TP6 5

26 Resolução de Sstems Leres Método Itertvo Guss-Sedel Crtéro de Covergêc Guss-Jco coverge pr qulquer vetor cl, se mtrz A é um mtrz dgol domte. Guss-Sedel coverge pr qulquer vetor cl se A é um mtrz defd postv. A Mtr é defd postv se T A > pr todo dferete do vetor ulo. A mtrz é defd postv, se todos os utovlores são postvos. Ms o crtéro ser dotdo pr covergêc do método Guss-Sedel será o de SASSENFELD. Prof. Volmr - UFPR - TP6 6

27 Resolução de Sstems Leres Método Itertvo Guss-Sedel Crtéro de Covergêc Crtéros de Covergêc; ) Crtéro ds lhs pr o método GAUSS-JACOBI; ) Crtéro de Sssefeld pr o método GAUSS-SEIDEL. Os crtéros cm estelecem codções sufcetes pr covergêc. Crtéro de Sssefeld Sem s qutddes dds por: β β β,,,..., Se β m{β } rápd é covergêc. o método de Guss-Sedel covergrá. Quto meor, ms Prof. Volmr - UFPR - TP6 7

28 Resolução de Sstems Leres Método Itertvo Guss-Sedel Crtéro de Sssefeld Sem e β β [ β β β ]/ β,, Se β m{β }. Se <, o método de Guss-Sedel ger um sequêc covergete pr qulquer (). Quto meor, ms rápd covergêc. Prof. Volmr - UFPR - TP6 8

29 Resolução de Sstems Leres Método Itertvo Guss-Sedel Crtéro de Covergêc de Sssefeld Eemplo A β β β β β β β β β β Se β m β. Se é meor que etão o método tertvo Guss-Sedel rá covergr pr solução do sstem. Prof. Volmr - UFPR - TP6 9

30 Resolução de Sstems Leres Método Itertvo Guss-Sedel Crtéro de Sssefeld Eemplo,,,,6,6, 7,8,,,,,,8,6 A,,,,,,6,8,,, β m β β β β β,,,6,7,6,,7,,7,,,,,7,,,8,58 m,7,,,,58,,76,7,,58 Como <, sequêc gerd pelo método de Guss-Sedel coverge pr solução do sstem A =.,76 Prof. Volmr - UFPR - TP6

31 Resolução de Sstems Leres Método Itertvo Guss-Sedel Eemplo A mtrz dos coefcetes é dgolmete domte A 6, ,75,75,5 8 5,75,5, 5,75,5, A GJ: A,,5 Prof. Volmr - UFPR - TP6

32 Resolução de Sstems Leres Método Itertvo Guss-Sedel Eemplo ,5,875,875, ,875,975,965 5,875,975,965 A GJ: A,765 6,7 7,975,965,997,997,965,99 8 5,997,99,999 5,997,99,999 A GJ: A,8,95 Qudo mos Jco e Guss-Sedel covergem, Guss-Sedel coverge ms rápdo. Prof. Volmr - UFPR - TP6

33 Resolução de Sstems Leres Método Itertvo Guss-Sedel Eemplo () F (), d,,896 () F (),9968 d,,996 () F (),996 d,, () F (),9996 d,, (5) F (), d,, Prof. Volmr - UFPR - TP6

34 Resolução de Sstems Leres Métodos Itertvos Guss-Jco e Guss-Sedel Comprção Implemetção prlel: Guss-Jco Guss Jord: L U D Guss Sedel : L U D Prof. Volmr - UFPR - TP6

Método de Gauss- Seidel

Método de Gauss- Seidel .7.- Método de Guss- Sedel Supohmos D = I, como fo feto pr o método de Jco-Rchrdso. Trsformmos o sstem ler A = como se segue: (L + I + R) = (L + I) = - R + O processo tertvo defdo por: é chmdo de Guss-Sedel.

Leia mais

Método de Eliminação de Gauss

Método de Eliminação de Gauss étodo de Elmção de Guss A de ásc deste método é trsformr o sstem A um sstem equvlete A () (), ode A () é um mtrz trgulr superor, efectudo trsformções elemetres sore s lhs do sstem ddo. Cosdere-se o sstem

Leia mais

Resolução Numérica de Sistemas Lineares Parte II

Resolução Numérica de Sistemas Lineares Parte II Cálculo Numérico Resolução Numéric de Sistems Lieres Prte II Prof Jorge Cvlcti jorgecvlcti@uivsfedubr MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - wwwdscufcgedubr/~cum/ Sistems

Leia mais

Unesp. Sistemas de Equações Lineares. Cálculo Numérico. Prof. Dr. G. J. de Sena CAMPUS DE GUARATINGUETÁ FACULDADE DE ENGENHARIA

Unesp. Sistemas de Equações Lineares. Cálculo Numérico. Prof. Dr. G. J. de Sena CAMPUS DE GUARATINGUETÁ FACULDADE DE ENGENHARIA Uesp UNIVERIDADE ETADUAL PAULITA CAMPU DE GUARATINGUETÁ FACULDADE DE ENGENHARIA Cálculo Nuérco stes de Equções Leres Prof. Dr. G. J. de e Deprteto de Mteátc Edção CAPÍTULO ITEMA DE EQUAÇÕE LINEARE.. INTRODUÇÃO

Leia mais

EQUAÇÕES LINEARES E DECOMPOSIÇÃO DOS VALORES SINGULARES (SVD)

EQUAÇÕES LINEARES E DECOMPOSIÇÃO DOS VALORES SINGULARES (SVD) EQUAÇÕES LINEARES E DECOMPOSIÇÃO DOS VALORES SINGULARES (SVD) 1 Equções Leres Em otção mtrcl um sstem de equções leres pode ser represetdo como 11 21 1 12 22 2 1 x1 b1 2 x2 b2. x b ou A.X = b (1) Pr solução,

Leia mais

CAP. 5 DETERMINANTES 5.1 DEFINIÇÕES DETERMINANTE DE ORDEM 2 EXEMPLO DETERMINANTE DE ORDEM 3

CAP. 5 DETERMINANTES 5.1 DEFINIÇÕES DETERMINANTE DE ORDEM 2 EXEMPLO DETERMINANTE DE ORDEM 3 DETERMINNTES CP. DETERMINNTES. DEFINIÇÕES DETERMINNTE DE ORDEM O ermte de um mtrz qudrd de ordem é por defção plcção: : M IK IK ( ) DETERMINNTES DETERMINNTE DE ORDEM O ermte de um mtrz qudrd de ordem é

Leia mais

Máximos, Mínimos e Pontos de Sela de funções f ( x,

Máximos, Mínimos e Pontos de Sela de funções f ( x, Vsco Smões ISIG 3 Mámos Mímos e otos de Sel de uções ( w). Forms Qudrátcs Chm-se orm qudrátc em Q ) se: ( Q ) ( T ode.. é um vector colu e um mtr qudrd dt mtr d orm qudrátc sto é: Q( ) T [ ] s orms qudrátcs

Leia mais

1- Resolução de Sistemas Lineares.

1- Resolução de Sistemas Lineares. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Reolução de Stem Lere..- Mtrze e Vetore..- Reolução de Stem Lere de Equçõe Algébrc por Método Eto (Dreto)..3- Reolução de Stem Lere de Equçõe Algébrc

Leia mais

1- SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES

1- SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES - SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES.- Métodos etos pr solução de sistems lieres Métodos pr solução de sistems de equções lieres são divididos priciplmete em dois grupos: ) Métodos Etos:

Leia mais

3 SISTEMAS DE EQUAÇÕES LINEARES

3 SISTEMAS DE EQUAÇÕES LINEARES . Itrodução SISTEAS DE EQUAÇÕES INEARES A solução de sistems lieres é um ferrmet mtemátic muito importte egehri. Normlmete os prolems ão-lieres são soluciodos por ferrmets lieres. As fotes mis comus de

Leia mais

2. Resolução Numérica de Equações Não-Lineares

2. Resolução Numérica de Equações Não-Lineares . Resolução Numéric de Equções Não-Lieres. Itrodução Neste cpítulo será visto lgoritmos itertivos pr ecotrr rízes de fuções ão-lieres. Nos métodos itertivos, s soluções ecotrds ão são ets, ms estrão detro

Leia mais

Vitamina A Vitamina B Vitamina C Alimento 1 50 30 20 Alimento 2 100 40 10 Alimento 3 40 20 30

Vitamina A Vitamina B Vitamina C Alimento 1 50 30 20 Alimento 2 100 40 10 Alimento 3 40 20 30 Motvção: O prole d det Itrodução os Sstes Leres U pesso e det ecesst dgerr drete s segutes qutddes de vts: g de vt A 6 g de vt B 4 g de vt C El deve suprr sus ecessddes prtr do cosuo de três letos dferetes

Leia mais

Interpolação Polinomial e Quadratura Numérica

Interpolação Polinomial e Quadratura Numérica CURSO DE NIVELAMENTO AO M. SC./PEQ- PROF. EVARISTO Iterpolção Poloml e Qudrtur Numérc Teorem de Weerstrss: se f() é um fução cotíu em um tervlo fechdo [, ], etão pr cd >, este um polômo de gru () tl que:

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Interpolação Métodos de Lagrange

TP062-Métodos Numéricos para Engenharia de Produção Interpolação Métodos de Lagrange TP6-Métodos Numéricos pr Egehri de Produção Iterpolção Métodos de grge Prof. Volmir Wilhelm Curitib, 5 Iterpolção Cosiste em determir um fução g() que descreve de form proimd o comportmeto de outr fução

Leia mais

... Soma das áreas parciais sob a curva que fornece a área total sob a curva.

... Soma das áreas parciais sob a curva que fornece a área total sob a curva. CAPÍTULO 7 - INTEGRAL DEFINIDA OU DE RIEMANN 7.- Notção Sigm pr Soms A defiição forml d itegrl defiid evolve som de muitos termos, pr isso itroduzimos o coceito de somtório ( ). Eemplos: ( + ) + + + +

Leia mais

Marília Brasil Xavier REITORA. Prof. Rubens Vilhena Fonseca COORDENADOR GERAL DOS CURSOS DE MATEMÁTICA

Marília Brasil Xavier REITORA. Prof. Rubens Vilhena Fonseca COORDENADOR GERAL DOS CURSOS DE MATEMÁTICA Mríl Brsl Xver REITORA Prof. Rues Vlhe Fosec COORDENADOR GERA DOS CURSOS DE MATEMÁTICA MATERIA DIDÁTICO EDITORAÇÃO EETRONICA Odvldo Teer opes ARTE FINA DA CAPA Odvldo Teer opes REAIZAÇÃO BEÉM PARÁ BRASI

Leia mais

CAP. IV INTERPOLAÇÃO POLINOMIAL

CAP. IV INTERPOLAÇÃO POLINOMIAL CAP. IV INTERPOLAÇÃO POLINOMIAL INTRODUÇÃO Muts uções são cohecds pes um cojuto to e dscreto de potos de um tervlo [,b]. Eemplo: A tbel segute relco clor especíco d águ e tempertur: tempertur (ºC 5 5 clor

Leia mais

Apostila de Introdução Aos Métodos Numéricos

Apostila de Introdução Aos Métodos Numéricos Apostil de Itrodução Aos Métodos Numéricos PARTE II o Semestre - Prof. Slete Souz de Oliveir Buffoi Ídice SISTEMAS LINEARES... INTRODUÇÃO... MÉTODOS DIRETOS: ELIMINAÇÃO DE GAUSS... Sistem lier com... Eemplo:...

Leia mais

As funções exponencial e logarítmica

As funções exponencial e logarítmica As fuções epoecil e logrítmic. Potêcis em Sej um úmero rel positivo, isto é, * +. Pr todo, potêci, de bse e epoete é defiid como o produto de ftores iguis o úmero rel :...... vezes Pr, estbelece-se 0,

Leia mais

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Fatorial [ ] = A. Exercícios Resolvidos. Exercícios Resolvidos ( ) ( ) ( ) ( )! ( ).

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Fatorial [ ] = A. Exercícios Resolvidos. Exercícios Resolvidos ( ) ( ) ( ) ( )! ( ). OSG: / ENSINO PRÉ-UNIVERSITÁRIO T MATEMÁTIA TURNO DATA ALUNO( TURMA Nº SÉRIE PROFESSOR( JUDSON SANTOS ITA-IME SEDE / / Ftorl Defção h-se ftorl de e dc-se or o úero turl defdo or: > se ou se A A A A Eercícos

Leia mais

Apostila de Introdução Aos Métodos Numéricos

Apostila de Introdução Aos Métodos Numéricos Apostil de Itrodução Aos étodos Numéricos PARTE II o Semestre - Prof. Slete Souz de Oliveir Buffoi Ídice SISTEAS LINEARES... INTRODUÇÃO... ÉTODOS DIRETOS: ELIINAÇÃO DE GAUSS... Sistem lier com...5 Eemplo:...7

Leia mais

Capítulo 4: Interpolação Polinomial. 1. Introdução

Capítulo 4: Interpolação Polinomial. 1. Introdução Cpítulo 4: Iterpolção Poloml. Itrodução Supohmos que cohecemos ução em pes em potos do tervlo [b] e que pretedemos cohece-l em qulquer outro poto desse tervlo. Pr tl vmos com bse os potos cohecdos costrur

Leia mais

Capítulo 2: Resolução Numérica de Equações

Capítulo 2: Resolução Numérica de Equações Cpítulo : Resolução Numéric de Equções.. Riz de um equção Em muitos prolems de egehri há ecessidde de determir um úmero ξ pr qul ução sej zero, ou sej, ξ. A ξ chmmos riz d equção ou zero d ução. Equções

Leia mais

Z = {, 3, 2, 1,0,1,2,3, }

Z = {, 3, 2, 1,0,1,2,3, } Pricípios Aritméticos O cojuto dos úmeros Iteiros (Z) Em Z estão defiids operções + e. tis que Z = {, 3,, 1,0,1,,3, } A) + y = y + (propriedde comuttiv d dição) B) ( + y) + z = + (y + z) (propriedde ssocitiv

Leia mais

[ η. lim. RECAPITULANDO: Soluções diluídas de polímeros. Equação de Mark-Houwink-Sakurada: a = 0.5 (solvente θ )

[ η. lim. RECAPITULANDO: Soluções diluídas de polímeros. Equação de Mark-Houwink-Sakurada: a = 0.5 (solvente θ ) RECPITULNDO: Soluções dluíds de polímeros Vsosdde tríse do polímero: 5 N V 5 (4 / 3) R 3 v h π h N v [ η ] v 5 Pode ser obtd prtr de: [ η ] lm η 0 sp / V Equção de rk-houwk-skurd: [η] K ode K e são osttes

Leia mais

Universidade do Vale do Rio dos Sinos UNISINOS Programa de Pós-Graduação em Engenharia Mecânica. Ajuste de equações

Universidade do Vale do Rio dos Sinos UNISINOS Programa de Pós-Graduação em Engenharia Mecânica. Ajuste de equações Unversdde do Vle do Ro dos Snos UNISINOS Progrm de Pós-Grdução em Engenhr Mecânc Ajuste de equções Ajuste de curvs Técnc usd pr representr crcterístcs e comportmento de sstems térmcos. Ddos representdos

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire Uiversidde Slvdor UNIFACS Cursos de Egehri Métodos Mtemáticos Aplicdos / Cálculo Avçdo / Cálculo IV Prof: Ilk Rebouçs Freire Série de Fourier Texto : Itrodução. Algus Pré-requisitos No curso de Cálculo

Leia mais

SEQÜÊNCIAS E SÉRIES 1. CÁLCULO SOMATÓRIO. variando de 0 a 50. Esta soma pode ser representada abreviadamente por:

SEQÜÊNCIAS E SÉRIES 1. CÁLCULO SOMATÓRIO. variando de 0 a 50. Esta soma pode ser representada abreviadamente por: SEQÜÊNCIAS E SÉRIES. CÁCUO SOMATÓRIO Cosderemos segute som dcd : 6 8.... Podemos oservr que cd rcel é um úmero r e ortto ode ser reresetd el form, este cso, com vrdo de. Est som ode ser reresetd revdmete

Leia mais

CAP. IV INTERPOLAÇÃO POLINOMIAL

CAP. IV INTERPOLAÇÃO POLINOMIAL CAP. IV INTERPOLAÇÃO POLINOMIAL INTRODUÇÃO Muts fuções são cohecds es um cojuto fto e dscreto de otos de um tervlo [,b]. Eemlo: A tbel segute relco clor esecífco d águ e temertur: temertur (ºC 5 3 35 clor

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA CÁLCULO NUMÉRICO. Notas de Aula Aplicações Exercícios

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA CÁLCULO NUMÉRICO. Notas de Aula Aplicações Exercícios PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA CÁLCULO NUMÉRICO Nots de Al Aplcções Eercícos Elete Bsotto Hser Ídce Sstem de Poto Fltte Normlzdo Teor dos Erros... Resolção

Leia mais

Capítulo V INTEGRAIS DE SUPERFÍCIE

Capítulo V INTEGRAIS DE SUPERFÍCIE Cpítulo V INTEAIS DE SUPEFÍCIE Cpítulo V Iters de Superfíce Cpítulo V Vmos flr sobre ters sobre superfíces o espço tr-dmesol Estes ters ocorrem em problems evolvedo fluídos e clor electrcdde metsmo mss

Leia mais

INTEGRAÇÃO NUMÉRICA. Profa. Luciana Montera Faculdade de Computação Facom/UFMS. Métodos Numéricos

INTEGRAÇÃO NUMÉRICA. Profa. Luciana Montera Faculdade de Computação Facom/UFMS. Métodos Numéricos NTEGRAÇÃO NUMÉRCA Pro. Luc Moter moter@com.ums.r Fculdde de Computção Fcom/UFMS Métodos Numércos tegrção Numérc tegrl ded Aplcções Métodos tegrção Numérc Fórmul ude Newto Cotes oes Método dos Trpézos Método

Leia mais

2- Resolução de Sistemas de Equações Lineares

2- Resolução de Sistemas de Equações Lineares - Resolução de Sistems de Equções ieres Um sistem de equções lieres, com m equções e vriáveis, é escrito gerlmete como: m m m m ode ij são coeficietes m i j são vráveis j i são costtes m i A resolução

Leia mais

Este capítulo tem por objetivo apresentar métodos para resolver numericamente uma integral.

Este capítulo tem por objetivo apresentar métodos para resolver numericamente uma integral. Nots de ul de Métodos Numéricos. c Deprtmeto de Computção/ICEB/UFOP. Itegrção Numéric Mrcoe Jmilso Freits Souz, Deprtmeto de Computção, Istituto de Ciêcis Exts e Biológics, Uiversidde Federl de Ouro Preto,

Leia mais

6.1: Séries de potências e a sua convergência

6.1: Séries de potências e a sua convergência 6 SÉRIES DE FUNÇÕES 6: Séries de potêcis e su covergêci Deiição : Um série de potêcis de orm é um série d ( ) ( ) ( ) ( ) () Um série de potêcis de é sempre covergete pr De cto, qudo, otemos série uméric,

Leia mais

Unidade 2 Progressão Geométrica

Unidade 2 Progressão Geométrica Uidde Progressão Geométric Seuêci e defiição de PG Fórmul do termo gerl Fução expoecil e PG Juros compostos e PG Iterpolção geométric Som dos termos de um PG Seuêci e defiição de PG Imgie ue você tem dus

Leia mais

6/16/2011. Relações de Girard Relações entre raizes e coeficientes. a x. a 1. Considere-se as raízes i, i=1,2,...n, e P(x) na forma fatorada:

6/16/2011. Relações de Girard Relações entre raizes e coeficientes. a x. a 1. Considere-se as raízes i, i=1,2,...n, e P(x) na forma fatorada: 66 Numero de Rizes Reis Teorem de Bolzo Sej = um equção lgébric com coeficietes reis,b. Se b , etão eiste um úmero pr de rízes reis, ou ão eistem

Leia mais

Exercícios - Sequências de Números Reais (Solução) Prof Carlos Alberto S Soares

Exercícios - Sequências de Números Reais (Solução) Prof Carlos Alberto S Soares Exercícos - Sequêcas de Números Reas (Solução Prof Carlos Alberto S Soares 1 Dscuta a covergêca da sequẽca se(2. Calcule, se exstr, lm se(2. Solução 1 Observe que se( 2 é lmtada e 1/ 0, portato lm se(2

Leia mais

1. (6,0 val.) Determine uma primitiva de cada uma das seguintes funções. (considere a mudança de variável u = tan 2

1. (6,0 val.) Determine uma primitiva de cada uma das seguintes funções. (considere a mudança de variável u = tan 2 Istituto Superior Técico Deprtmeto de Mtemátic Secção de Álgebr e Aálise o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBiom e MEFT o Sem. 00/ 5/J/0 - v. Durção: h30m RESOLUÇÃO. 6,0 vl. Determie um

Leia mais

Números Complexos. 2. (IME) Seja z um número complexo de módulo unitário que satisfaz a condição z 2n 1, onde n é um número inteiro positivo.

Números Complexos. 2. (IME) Seja z um número complexo de módulo unitário que satisfaz a condição z 2n 1, onde n é um número inteiro positivo. Números Complexos. (IME) Cosdere os úmeros complexos Z se α cos α e Z cos α se α ode α é um úmero real. Mostre que se Z Z Z etão R e (Z) e I m (Z) ode R e (Z) e I m (Z) dcam respectvamete as partes real

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear Geometri Alític e Álgebr Lier 8. Sistems Lieres Muitos problems ds ciêcis turis e sociis, como tmbém ds egehris e ds ciêcis físics, trtm de equções que relciom dois cojutos de vriáveis. Um equção do tipo,

Leia mais

MÉTODOS NUMÉRICOS. Prof. Ionildo José Sanches Prof. Diógenes Cogo Furlan. Universidade Federal do Paraná Departamento de Informática CI-202

MÉTODOS NUMÉRICOS. Prof. Ionildo José Sanches Prof. Diógenes Cogo Furlan. Universidade Federal do Paraná Departamento de Informática CI-202 Uversdde Federl do Prá Deprteto de Iforátc CI- MÉTODOS NUMÉRICOS Prof. Ioldo José Sches Prof. Dógees Cogo Furl E-Ml: oldo@oldo.cj.et URL: http://www.oldo.cj.et/etodos/ CURITIBA 7 SUMÁRIO INTRODUÇÃO...

Leia mais

Matemática Fascículo 03 Álvaro Zimmermann Aranha

Matemática Fascículo 03 Álvaro Zimmermann Aranha Mtemátic Fscículo 03 Álvro Zimmerm Arh Ídice Progressão Aritmétic e Geométric Resumo Teórico... Exercícios...3 Dics...4 Resoluções...5 Progressão Aritmétic e Geométric Resumo teórico Progressão Aritmétic

Leia mais

FUNÇÃO EXPONENCIAL. a 1 para todo a não nulo. a. a. a a. a 1. Chamamos de Função Exponencial a função definida por: f( x) 3 x. f( x) 1 1. 1 f 2.

FUNÇÃO EXPONENCIAL. a 1 para todo a não nulo. a. a. a a. a 1. Chamamos de Função Exponencial a função definida por: f( x) 3 x. f( x) 1 1. 1 f 2. 49 FUNÇÃO EXPONENCIAL Professor Lur. Potêcis e sus proprieddes Cosidere os úmeros ( 0, ), mr, N e, y, br Defiição: vezes por......, ( ), ou sej, potêci é igul o úmero multiplicdo Proprieddes 0 pr todo

Leia mais

CONSIDERAÇÕES SOBRE A OBTENÇÃO DE VETORES DE PRIORIDADES NO AHP

CONSIDERAÇÕES SOBRE A OBTENÇÃO DE VETORES DE PRIORIDADES NO AHP CONSIDERAÇÕES SOBRE A OBTENÇÃO DE VETORES DE PRIORIDADES NO AHP CLEBER ALMEIDA DE OLIVEIRA Isttuto Tecológco de Aeroáutc ITA, Prç Mrechl Edurdo Gomes, 50 - Vl ds Acács - São José dos Cmpos - SP cleber@t.br

Leia mais

Redes elétricas Circuitos que contém resistências e geradores de energia podem ser analisados usando sistemas de equações lineares;

Redes elétricas Circuitos que contém resistências e geradores de energia podem ser analisados usando sistemas de equações lineares; Álger Lier Mtrizes e vetores Sistems lieres Espços vetoriis Bse e dimesão Trsformções lieres Mtriz de um trsformção lier Aplicções d Álger Lier: Redes elétrics Circuitos que cotém resistêcis e gerdores

Leia mais

Matemática C Extensivo V. 6

Matemática C Extensivo V. 6 Mtemátic C Etesivo V 6 Eercícios ) D ) D ) C O vlor uitário do isumo é represetdo por y Portto pelo produto ds mtrizes A e B temos o seguite sistem: 5 5 9 y 5 5y 5y 9 5y 5 Portto: y 4 y 4 As médis uis

Leia mais

Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1

Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1 Mtrizes e Sistems de equções lieres D.I.C. Medes s mtrizes são um ferrmet básic formulção de problems de mtemátic e de outrs áres. Podem ser usds: resolução de sistems de equções lieres; resolução de sistems

Leia mais

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE ASSUNTO: SOMAÇÃO E ÁRAS E INTEGRAIS DEFINIDAS. INTEGRAIS DEFINIDAS

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE ASSUNTO: SOMAÇÃO E ÁRAS E INTEGRAIS DEFINIDAS. INTEGRAIS DEFINIDAS FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ENGENHARIA DE PRODUÇÃO ASSUNTO: SOMAÇÃO E ÁRAS E INTEGRAIS DEFINIDAS. PROFESSOR: MARCOS AGUIAR CÁLCULO II INTEGRAIS DEFINIDAS. NOTAÇÃO DE SOMAÇÃO

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOTS E U Geometri lític e Álger ier Sistems de Equções ieres Professor: ui Ferdo Nues, r Geometri lític e Álger ier ii Ídice Sistems de Equções ieres efiições Geris Iterpretção Geométric de Sistems de

Leia mais

Uma figura plana bem conhecida e que não possui lados é o círculo. Como determinar o perímetro de um círculo?

Uma figura plana bem conhecida e que não possui lados é o círculo. Como determinar o perímetro de um círculo? erímetro A defiição de erímetro de um figur l muits vezes ode ser ecotrd do seguite modo: é som ds medids dos ldos d figur. Ms será que ess defiição é bo? or exemlo, um figur como que segue bixo ossui

Leia mais

QUESTÕES DE 01 A 09. Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas.

QUESTÕES DE 01 A 09. Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas. PROVA DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - SETEMBRO DE ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ PROFESSORA MARIA ANTÔNIA C GOUVEIA QUESTÕES DE A 9 Assile

Leia mais

POLINÔMIOS ORTOGONAIS E QUADRATURA DE GAUSS

POLINÔMIOS ORTOGONAIS E QUADRATURA DE GAUSS POLINÔMIOS ORTOGONAIS E QUADRATURA DE GAUSS RESUMO POLIANA MOITA BRAGA Uiversidde Ctólic de Brsíli Curso de Mtemátic Orietdor: José Edurdo Cstilho O grupo de poliômios ortogois vem sedo stte estuddo por

Leia mais

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS EQUAÇÕES E INEQUAÇÕES POLINOMIAIS Um dos grndes problems de mtemátic n ntiguidde er resolução de equções polinomiis. Encontrr um fórmul ou um método pr resolver tis equções er um grnde desfio. E ind hoje

Leia mais

MATRIZES. Exemplo: A tabela abaixo descreve as safras de milho, trigo, soja, arroz e feijão, em toneladas, durante os anos de 1991, 1992, 1993 e 1994.

MATRIZES. Exemplo: A tabela abaixo descreve as safras de milho, trigo, soja, arroz e feijão, em toneladas, durante os anos de 1991, 1992, 1993 e 1994. Professor Muricio Lut MTRIZES INTRODUÇÃO Qudo um prolem evolve um grde úmero de ddos (costtes ou vriáveis), disposição destes um tel retgulr de dupl etrd propici um visão mis glol do mesmo s tels ssim

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2015 DA FUVEST-FASE 2. POR PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2015 DA FUVEST-FASE 2. POR PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR DA FUVEST-FASE POR PROFA MARIA ATÔIA C GOUVEIA M gu bo ccueêc de ceto em O e o tgec o ldo BCdo tâgulo ABC o poto D e tgec et AB o poto E Os potos A D e O

Leia mais

o quociente C representa a quantidade de A por unidade de B. Exemplo Se um objecto custar 2, então 10 objectos custam 20. Neste caso temos 20 :10 2.

o quociente C representa a quantidade de A por unidade de B. Exemplo Se um objecto custar 2, então 10 objectos custam 20. Neste caso temos 20 :10 2. Mtemátic I - Gestão ESTG/IPB Resolução. (i).0 : r 0.000.0 00.0 00 0 0.0 00 0 00.000 00 000.008 90 0.000.000 00 000 008 90.00 00 00 00 9 Dividedo = Divisor x Quociete + Resto.0 = x.008 + 0.000. Num divisão

Leia mais

Cap 6. Substituição de Equipamentos

Cap 6. Substituição de Equipamentos Egehr Ecoômc Demétro E. Brct Cp 6. Substtução de Equpmetos 6. REOÇÃO E SUBSTTUÇÃO DE EQUPETOS o problem de reovção ou de reposção, desej-se sber qul o tempo ótmo pr se coservr um equpmeto, ou sej, qul

Leia mais

Análise de Variância

Análise de Variância 9//06 Uversdde Federl do Prá Isttuto de Tecolog Esttístc Aplcd I Prof. Dr. Jorge Teóflo de Brros Lopes mpus de Belém urso de Egehr Mecâc /09/06 : ESTATÍSTIA APLIADA I - Teor ds Probblddes Uversdde Federl

Leia mais

SISTEMAS LINEARES. Sendo x e y, respectivamente, o número de pontos que cada jogador marcou, temos uma equação com duas incógnitas:

SISTEMAS LINEARES. Sendo x e y, respectivamente, o número de pontos que cada jogador marcou, temos uma equação com duas incógnitas: SISTEMAS LINEARES Do grego system ( Sy sigific juto e st, permecer, sistem, em mtemátic,é o cojuto de equções que devem ser resolvids juts,ou sej, os resultdos devem stisfzêlos simultemete. Já há muito

Leia mais

Função Logaritmo - Teoria

Função Logaritmo - Teoria Fução Logritmo - Teori Defiição: O ritmo de um úmero rel positivo, bse IR { } podemos escrever Resumido temos: +, é o úmero rel tl que, equivletemete E: 7 8 8 8 8 7 * { }, IR { } * +, IR + Usdo que fução

Leia mais

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS Uversdde Federl Fluese UFF Volt Redod RJ INTRODUÇÃO AOS MÉTODOS NUMÉRICOS Prof. Dor Cesr Lobão Trblo orgl preprdo por: Prof. Ioldo José Sces e Prof. Dógees Lgo Furl Uversdde Federl do Prá. Deprteto de

Leia mais

AVALIAÇÃO TRIMESTRE. DISCIPLINA Matemática ALUNO(A) GABARITO

AVALIAÇÃO TRIMESTRE. DISCIPLINA Matemática ALUNO(A) GABARITO COORDENAÇÃO ENSINO MÉDIO AVALIAÇÃO - 0 TRIMESTRE NOTA UNIDADE(S): CAMBOINHAS PROFESSOR Equie DISCIPLINA Mtemátic SÉRIE/TURMA O /A E B DATA /0/00 NITERÓI SÃO GONÇALO X X ALUNO(A) GABARITO N IMPORTANTE:.

Leia mais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA Equções Epoeciis... Fução Epoecil..4 Logritmos: Proprieddes 6 Fução Logrítmic. Equções Logrítmics...5 Iequções Epoeciis e Logrítmics.8 Equções Epoeciis 0. (ITA/74)

Leia mais

1. Conceito de logaritmo

1. Conceito de logaritmo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Logritmos Prof.: Rogério

Leia mais

Noção intuitiva de limite

Noção intuitiva de limite Noção intuitiv de ite Qundo se proim de 1, y se proim de 3, isto é: 3 y + 1 1,5 4 1,3 3,6 1,1 3, 1,05 3,1 1,0 3,04 1,01 3,0 De um modo gerl: Eemplo de um ite básico Qundo tende um vlor determindo, o ite

Leia mais

Professor Mauricio Lutz FUNÇÃO LOGARÍTMICA

Professor Mauricio Lutz FUNÇÃO LOGARÍTMICA Professor Muriio Lutz LOGARITMO ) Defiição FUNÇÃO LOGARÍTMICA Chm-se ritmo de um úmero N, positivo, um se positiv e diferete de um, todo úmero, devemos elevr pr eotrr o úmero N Ou sej ÎÂ tl que é o epoete

Leia mais

SISTEMA DE EQUAÇÕES LINEARES

SISTEMA DE EQUAÇÕES LINEARES SISTEM DE EQUÇÕES LINERES Defiição Ddos os úmeros reis b com equção b ode são vriáveis ou icógits é deomid equção lier s vriáveis Os úmeros reis são deomidos coeficietes ds vriáveis respectivmete e b é

Leia mais

Somas de Riemann e Integração Numérica. Cálculo 2 Prof. Aline Paliga

Somas de Riemann e Integração Numérica. Cálculo 2 Prof. Aline Paliga Soms de Riem e Itegrção Numéric Cálculo 2 Prof. Alie Plig Itrodução Problems de tgete e de velocidde Problems de áre e distâci Derivd Itegrl Defiid 1.1 Áres e distâcis 1.2 Itegrl Defiid 1.1 Áres e distâcis

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA LOGARITMOS PROF. CARLINHOS NOME: N O :

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA LOGARITMOS PROF. CARLINHOS NOME: N O : ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA LOGARITMOS PROF. CARLINHOS NOME: N O : 1 DEFINIÇÃO LOGARITMOS = os(rzão) + rithmos(números) Sejm e números reis positivos diferentes de zero e 1. Chm-se ritmo

Leia mais

Métodos Numéricos. Autores: Mário Barreto de Moura Neto Rafael Martins Gomes Nascimento Samara Anny Maia Fava Victor Sampaio Gondim

Métodos Numéricos. Autores: Mário Barreto de Moura Neto Rafael Martins Gomes Nascimento Samara Anny Maia Fava Victor Sampaio Gondim Métodos Numéricos Autores: Mário Brreto de Mour Neto Rel Mrtis Gomes Nscimeto Smr Ay Mi Fv Victor Smpio Godim Orietdor: Velser Drll Beício Corre Apresetção Itrodução Métodos pr Ecotrr Rízes Prte d Smr

Leia mais

LISTA P1T3. Professores: David. Matemática. 2ª Série. n 1. = n!

LISTA P1T3. Professores: David. Matemática. 2ª Série. n 1. = n! Mtemátic Professores: Dvid 2ª Série LISTA P1T3 FORMULÁRIO C, p! = p!( p)!! = p p!( p)!! α! β! δ! Tp+ 1 =.. b p P P α, β, δ = A, p PROBABILIDADES =!! = ( p)! p p 1. (PUC-SP 2010) Um luo prestou vestibulr

Leia mais

Sumário. Cálculo do juros compostos. Juros compostos conceitos. Cálculo do juros compostos. Exemplos. Engenharia Econômica e Finanças

Sumário. Cálculo do juros compostos. Juros compostos conceitos. Cálculo do juros compostos. Exemplos. Engenharia Econômica e Finanças Suáro Udde 3 ptlzção opost Professor: Fábo de Olver Alves ottos: fboolves@yhoo.de fbo@ptgors.co.br oceto de cptlzção copost Fóruls de cálculo oprtvo Juros Sples x Juros opostos Equvlêc de pts Equvlêc de

Leia mais

Sumário. Cálculo dos juros compostos. Juros compostos conceitos. Exemplos. Cálculo dos juros compostos. Engenharia Econômica e Finanças

Sumário. Cálculo dos juros compostos. Juros compostos conceitos. Exemplos. Cálculo dos juros compostos. Engenharia Econômica e Finanças Suáro Udde 3 ptlzção opost Professor: Fábo de Olver Alves ottos: fboolves@yhoo.de fbo@ptgors.co.br oceto de cptlzção copost Fóruls de cálculo oprtvo Juros Sples x Juros opostos Equvlêc de pts Equvlêc de

Leia mais

Resumo. Introdução PESQUISA OPERACIONAL NO ENSINO DA LOGÍSTICA

Resumo. Introdução PESQUISA OPERACIONAL NO ENSINO DA LOGÍSTICA PESQUISA OPERACIONAL NO ENSINO DA LOGÍSTICA Crlos Augusto Slver, Esp. Fáo Beylou Lvrtt, M.Sc. Rfel Crlos Vélez Beto, Dr. Resumo A Logístc como tvdde á está estelecd o Brsl há promdmete qutro décds. Seu

Leia mais

SISTEMAS DE EQUAÇÕES LINEARES

SISTEMAS DE EQUAÇÕES LINEARES SISTEMAS DE EQUAÇÕES LINEARES Um problem fudmetl que ormlmete é ecotrdo descrição mtemátic de feômeos físicos é o d solução simultâe de um cojuto de equções. Trduzido pr liuem mtemátic, tis feômeos pssm

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - CAPES MATRIZES Prof. Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr Ciêncis Sociis

Leia mais

Revisão de Álgebra Matricial

Revisão de Álgebra Matricial evisão de Álgebr Mtricil Prof. Ptrici Mri ortolo Fote: OLDINI, C. e WETZLE, F.; Álgebr Lier. ª. ed. São Pulo. Editor Hrbr, 986 Álgebr Mtricil D Mtemátic do º. Gru: y ( y ( De( : y Em ( : ( Em ( : y y 8

Leia mais

Lista de Exercícios 01 Algoritmos Sequência Simples

Lista de Exercícios 01 Algoritmos Sequência Simples Uiversidde Federl do Prá UFPR Setor de Ciêcis Exts / Deprtmeto de Iformátic DIf Discipli: Algoritmos e Estrutur de Ddos I CI055 Professor: Dvid Meotti (meottid@gmil.com) List de Exercícios 0 Algoritmos

Leia mais

PROGRESSÃO GEOMÉTRICA

PROGRESSÃO GEOMÉTRICA Professor Muricio Lutz PROGREÃO GEOMÉTRICA DEFINIÇÃO Progressão geométric (P.G.) é um seüêci de úmeros ão ulos em ue cd termo posterior, prtir do segudo, é igul o terior multiplicdo por um úmero fixo,

Leia mais

OS IMPACTOS ECONÔMICOS DO ACQUARIO CEARÁ E SUA VIABILIDADE

OS IMPACTOS ECONÔMICOS DO ACQUARIO CEARÁ E SUA VIABILIDADE Nº 48 Dezembro de 2012 OS IMPACTOS ECONÔMICOS DO ACQUARIO CEARÁ E SUA VIABILIDADE GOVERNO DO ESTADO DO CEARÁ Cd Ferrer Gomes Goverdor Domgos Gomes de Agur Flho Vce Goverdor SECRETARIO DO PLANEJAMENTO E

Leia mais

MATEMÁTICA BÁSICA. a c ad bc. b d bd EXERCÍCIOS DE AULA. 01) Calcule o valor de x em: FRAÇÕES

MATEMÁTICA BÁSICA. a c ad bc. b d bd EXERCÍCIOS DE AULA. 01) Calcule o valor de x em: FRAÇÕES MATEMÁTICA BÁSICA FRAÇÕES EXERCÍCIOS DE AULA ) Clcule o vlor de x em: A som e sutrção de frções são efetuds prtir d oteção do míimo múltiplo comum dos deomidores. É difícil respoder de imedito o resultdo

Leia mais

QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA.

QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. 006 PROVA CONHECIMENTOS ESPECÍFICOS MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetrl do Vestibulr Uificdo Trigoometri

Leia mais

Cinemática de Corpos Rígidos Cinética de Corpos Rígidos Métodos Newton-Euler Exemplos. EESC-USP M. Becker /67

Cinemática de Corpos Rígidos Cinética de Corpos Rígidos Métodos Newton-Euler Exemplos. EESC-USP M. Becker /67 SEM004 - Aul Cnemátc e Cnétc de Corpos Rígdos Prof. Dr. Mrcelo Becker SEM - EESC - USP Sumáro d Aul ntrodução Cnemátc de Corpos Rígdos Cnétc de Corpos Rígdos Métodos Newton-Euler Eemplos EESC-USP M. Becker

Leia mais

José Álvaro Tadeu Ferreira. Cálculo Numérico Notas de aulas

José Álvaro Tadeu Ferreira. Cálculo Numérico Notas de aulas UNIVERSIDADE FEDERA DE OURO PRETO Istituto de Ciêcis Ets e Biológics Deprtmeto de Computção José Álvro Tdeu Ferreir Cálculo Numérico Nots de uls Resolução de Sistems de Equções ieres Simultâes Ouro Preto

Leia mais

PARTE I. Figura Adição de dois vetores: C = A + B.

PARTE I. Figura Adição de dois vetores: C = A + B. 1 PRTE I FUNDENTS D ESTÁTIC VETRIL estudo d estátc dos corpos rígdos requer plcção de operções com vetores. Estes entes mtemátcos são defndos pr representr s grndes físcs que se comportm dferentemente

Leia mais

Licenciatura em Ensino de Matemática

Licenciatura em Ensino de Matemática UNIVERSIDADE DE CABO VERDE Lcectur em Eso de Mtemátc UNICV/9 UNIVERSIDADE DE CABO VERDE DEPARTAMENTO DE CIÊNCIA & TECNOLOGIA CECÍLIO SEMEDO CABRAL TEMA: APROXIMAÇÕES NUMÉRICAS E APLICAÇÕES COM MAPLE 7

Leia mais

Principio da Indução Finita (PIF)

Principio da Indução Finita (PIF) Arquvo ceddo or Alex Perer Bezerr Lst de Dscussão OBM Prco d Idução Ft (PIF) ) Axom d Bo Ordem em N: Cd sucojuto ão vzo de N ossu um meor( ou rmero) elemeto O xom d o ordem em N frm que se A é um sucojuto

Leia mais

Capítulo 2. Aproximações de Funções

Capítulo 2. Aproximações de Funções EQE-358 MÉTODOS NUMÉRICOS EM ENGENHARIA QUÍMICA PROFS. EVARISTO E ARGIMIRO Capítulo Aproações de Fuções Há bascaete dos tpos de probleas de aproações: ) ecotrar ua fução as sples, coo u polôo, para aproar

Leia mais

Classificação e Pesquisa de Dados

Classificação e Pesquisa de Dados Clssificção e Pesquis de Ddos Auls 06 Clssificção de ddos por Troc: QuickSort Exercício Supoh que se desej clssificr o seguite vetor: O R D E N A Assum que chve prticiodor está posição iicil do vetor e

Leia mais

Matrizes. Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Márcia A.F. Dias de Moraes. Matrizes Conceitos Básicos

Matrizes. Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Márcia A.F. Dias de Moraes. Matrizes Conceitos Básicos Mtemátic pr Economists LES uls e Mtrizes Ching Cpítulos e Usos em economi Mtrizes ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Márci.F. Dis de Mores Álgebr Mtricil Conceitos Básicos

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte B

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte B Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl 5 CPES FUNÇÕES Prte B Prof. ntônio Murício Medeiros lves Profª Denise Mri Vrell Mrtinez UNIDDE FUNÇÕES PRTE B. FUNÇÂO

Leia mais

A integral definida. f (x)dx P(x) P(b) P(a)

A integral definida. f (x)dx P(x) P(b) P(a) A integrl definid Prof. Méricles Thdeu Moretti MTM/CFM/UFSC. - INTEGRAL DEFINIDA - CÁLCULO DE ÁREA Já vimos como clculr áre de um tipo em específico de região pr lgums funções no intervlo [, t]. O Segundo

Leia mais

UNIVERSIDADE FEDERAL DO CEARÁ DEPARTAMENTO DE ENGENHARIA AGRÍCOLA HIDRÁULICA APLICADA AD 0195 Prof.: Raimundo Nonato Távora Costa CONDUTOS LIVRES

UNIVERSIDADE FEDERAL DO CEARÁ DEPARTAMENTO DE ENGENHARIA AGRÍCOLA HIDRÁULICA APLICADA AD 0195 Prof.: Raimundo Nonato Távora Costa CONDUTOS LIVRES UNVERSDADE FEDERAL DO CEARÁ DEPARTAMENTO DE ENGENHARA AGRÍCOLA HDRÁULCA APLCADA AD 019 Prof.: Rimudo Noto Távor Cost CONDUTOS LVRES 01. Fudmetos: Os codutos livres e os codutos forçdos, embor tem potos

Leia mais

1ª Lista de Exercícios - GABARITO

1ª Lista de Exercícios - GABARITO Uversdde Federl de Ms Gers Deprtmeto de Cê d Computção Algortmos e Estruturs de Ddos II ª Lst de Exeríos - GABARIO Est lst deverá ser etregue pr os professores durte ul do d de setembro de 0. Não serão

Leia mais

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 2 RADICIAÇÃO

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 2 RADICIAÇÃO INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA Professores: Griel Brião / Mrcello Amdeo Aluo(: Turm: ESTUDO DOS RADICAIS LISTA RADICIAÇÃO Deomi-se riz de ídice de um úmero rel, o úmero rel tl que

Leia mais

uma função real SOLUÇÃO 20 Temos f(x)

uma função real SOLUÇÃO 20 Temos f(x) Priipis otções o ojuto de todos os úmeros reis [,b] = { : b} ],b[ = { : < < b} (,b) pr ordedo gof fução omposto de g e f - mtri ivers d mtri T mtri trspost d mtri det () determite d mtri s uestões de ão

Leia mais

PROF. GILMAR AUGUSTO PROF. GILMAR AUGUSTO

PROF. GILMAR AUGUSTO PROF. GILMAR AUGUSTO MÚLTIPLOS E DIVISORES - (Of. Justiç Bttis e Adrdi). Ds firmtivs: - O úmero zero é o úico úmero pr que é primo; - O úmero ão é primo em composto; - Os úmeros que têm mis de dois divisores são chmdos úmeros

Leia mais

TÓPICOS. Álgebra matricial. Igualdade. Adição. Multiplicação por um escalar. Multiplicação matricial. Potenciação. Matriz transposta.

TÓPICOS. Álgebra matricial. Igualdade. Adição. Multiplicação por um escalar. Multiplicação matricial. Potenciação. Matriz transposta. Note em: leitur destes potmetos ão dispes de modo lgum leitur tet d iliogrfi priipl d deir TÓPICOS Álger mtriil. UL Chm-se teção pr importâi do trlho pessol relizr pelo luo resolvedo os prolems presetdos

Leia mais

Matemática Computacional. Carlos Alberto Alonso Sanches Juliana de Melo Bezerra

Matemática Computacional. Carlos Alberto Alonso Sanches Juliana de Melo Bezerra CCI- Mteátic Coputciol Crlos Alberto Aloso Sches Juli de Melo Bezerr CCI- Rízes de Sistes ieres Eliição de Guss Guss-Jord Decoposição U Guss-Jcobi Guss-Seidel CCI- Itrodução Métodos diretos Regr de Crer

Leia mais