Revisão: Notações Tensorial e Simbólica. e assim, o resultado de um produto escalar dois vetores é um escalar. Na notação tensorial, ter-se-ia u

Tamanho: px
Começar a partir da página:

Download "Revisão: Notações Tensorial e Simbólica. e assim, o resultado de um produto escalar dois vetores é um escalar. Na notação tensorial, ter-se-ia u"

Transcrição

1 Apêndce B Reão: Noaçõe enoral e mbólca Ee apêndce complemena a reão maemáca ncada no Apêndce A. A relaçõe aq dedda e aplcam a ema de coordenada reanglare, para eore no epaço rdmenonal. O dero po de prodo e operadore apreenado ão ado emnenemene no capílo 6, 7 e 8 da apola. Na medda do poíel, oda a operaçõe ão apreenada na noaçõe eoral, enoral, marcal e mbólca. Ao leor nereado em e aprofndar no ano, recomenda-e conlar a referênca [], [] e []., defne- B.- Prodo ecalar enre eore Como e abe, dado do eore e o prodo ecalar ngle do de e como: e B. e am, o relado de m prodo ecalar do eore é m ecalar. Na noação enoral, er-e-a,, onde o índce repedo mplca em omaóro para =, e : B. endo o dela de Kronecer. Como omene para = e e alor é náro, em-e ambém B. Em noação marcal, o prodo ecalar do eore e é dado por B.4 B. Noação de prodo dádco A noação de prodo dádco para enore ngle do, ambém, qe defne a forma para e ecreer o prodo marcal

2 B.5 n nn n nm ema de coordenada reanglar, é B.6 Reala-e qe ea repreenação mbólca não dee er nerpreada omene como ma ora forma de e ecreer o prodo marcal. Na erdade, mbola ma operação qe relacona m eor fíco o geomérco com oro, endo qe não e depende do ema de coordenada ado para a repreenação. Por oro lado, é o prodo maemáco de mare aproprada da componene de e de nm dado ema de coordenada. Condo, nm ema de coordenada reanglar, a forma marcal empre pode er ada para repreenar a operação. Algn aore am a noação de operação mbólca de prodo dádco em o pono: B.7 É mporane enfaar qe o prodo dádco conere o prodo de ma mar por m eor em oro eor. A egr, apreenam-e algma propredade da dádca para coordenada reanglare: a eqale a B.8 a b B.8 b c B.8 c d V V B.8 d e B.8 e f B.8 f g B.8 g h B.8 h B.- Prodo ecalar de do enore O prodo ecalar de do enore é denoado por reanglare a : : e correponde em coordenada B.9 e rela nm ecalar. De fao, percebe-e qe

3 : B. é m ecalar. A egr, apreenam-e algma propredade do prodo ecalar de do enore: a : : B. a b : V : : V B. b c : : : B. c d : a não er qe B. d enão Dado o eore, em noação marcal, a ], b ], ec, [ [ a b c d : e f a d b e c f a d b e c f B. B.4 Prodo enor de do eore O prodo enor o prodo abero de do eore, denoado por ab o enor de egnda ordem o dádca, defndo pela egne egênca o a b, é m ab a b B. a a b a b B. b para odo o eore, endo qe denoa prodo dádco e é o prodo ecalar enre eore. Enão, e ab, ocorre a b B.4 para odo, em conformdade com a dcão da eção B., onde e eabelece qe o prodo dádco enre mar e eor rela em eor. Em coordenada reanglare, em-e qe correponde à a b, para,=,, B.5 relando em cada elemeno do enor.

4 Em noação marcal, o prodo enor ab a a b é dado por: a a a b [a a a ] b B.6 a a a a b endo a a a ] e b b b ]. [ a B.5 Prodo de da dádca [ b O prodo de do enore de egnda ordem dádca, denoado por., degna a compoção de da operaçõe e, com a de realada prmero, defnda pela egênca:. B.7 para odo o eore, onde denoa prodo dádco de mar por eor. Obere qe o orna neceáro qe. rele nma dádca. e P., em noação enoral, em-e P B.8 o em noação marcal P B.9 A egr, apreenam-e algma propredade do prodo de da dádca: a.. R.. R B. a b. R.. R B. b c R.. R. B. c d... B. d e.. B. e B.6 Gradene de fnção ecalar O gradene de ma fnção ecalar é defndo por F F B. onde e fornece cada componene. Em noação mbólca em coordenada reanglare, eme

5 F F, para =,, B. Como e obera, ee po de gradene ranforma m ecalar nm eor. Ora noaçõe ada na lerara ão: e F F F, F F F,, para =,, B. a B. b e o operador for raado como o eor mbólco, enão, o gradene correponde ao mple prodo enre o eor e o ecalar F em coordenada reanglare. B.7 Dergene de m eor O dergene de m eor, em coordenada reanglare, é defndo por o B.4 B.5, Verfca-e, am, qe o dergene de m eor rela nm ecalar ao conráro do gradene. Com o, erfca-e qe e for raado como m eor, a dergênca correponde ao prodo ecalar enre eore edado na eção B.. B.8 Roaconal de m eor O roaconal de m eor é defndo, em coordenada reanglare, como B.6, endo qe é o enor permação, defndo como, qando o conno de índce é obdo porcomaçãocíclca de, qando o conno de índce é obdo porcomaçãocíclca de B.7, qando do índce ão repedo

6 O ermo, correponde à como decro na eção B.6,. A forma enoral em B.6 em índce, e repedo, mplcando em omaóro rplo. Como e obera, o roaconal de m eor rela nm oro eor. B.9 Laplacano de fnção ecalar O operador laplacano de ma fnção ecalar é defndo como F F F F F B.8 Nee cao, ano F qano o e laplacano relane ão fnçõe ecalare. Em noação enoral, coma-e ecreer B.8 como B.9 F F, onde a repreenação com írgla, F,, ndca ma deração em relação a. O dplo índce, mplca ano em derada dpla em relação a, qano omaóro po o índce é repedo, o ea F B., F, B.- O gradene de m eor Na eção B.6 e dc o gradene de m ecalar. A fm de e nrodr o conceo de gradene de m eor de forma maemacamene preca, condere-e o eemplo de m delocameno de m pono em com relação a ma orgem arbrára, como eqemaado na Fg. B.. Fgra B. Delocameno generalado de m egmeno de lnha d. O pono e deloca de ma qandade, enqano o oro pono eremo, d, deloca-e por d. : omando-e o do prmero ermo da ére de alor da epreão de em orno de d... para =,, B. endo a componene do eor. O índce repedo mplca em omaóro. O ermo

7 repreena a ranlação de corpo óldo, po odo o pono na nhança de comparlham o memo delocameno. Epandndo-e B. ando-e apena a da prmera parcela da ére de alor, em-e: d B. a d B. b d B. c o enão, na forma marcal para =, e d d d B. Em noação eoral, B. é ecro como d B.4 onde o é denomnado de enor gradene do delocameno. Como e obera, o gradene de m eor rela nma mar. Infelmene, o enor não é mérco, o qe lma dreamene e lme de aplcação. O enor gradene do delocameno pode er eparado na pare mérca e anmérca como: d d B.5 o qa podem er aocado a enore de deformação e roação. Epandndo B.5 e epreando na forma marcal: d d d

8 d d d B.6 Am, d d A B.7 endo A B.8 a R B.8 b e onde e R ão defndo abao. A pare mérca do enor gradene do delocameno é B.9 o enão er Capílo 6:, para,=, e B.4 A pare an-mérca do enor gradene do delocameno é A B.4 o enão er Capílo 6:

9 R, para,=, e B.4 Am, B.7 pode er ecra como: d R d B.4 B.- Noação mbólca para ran Parndo-e da epreão B.4, para,=, e, em-e: B.44 a B.44 b B.44 c B.44 d B.44 e B.44 f A parr daí, defne-e a mar como B.45 onde fo empregada a noação de Vog,,, 4, 5, 6. A relação B.45 ambém coma er eprea no eo de mecânca do óldo como []: B.46 Em noação mbólca, B.46 é ecra como:

10 B.47 onde é a pare mérca do gradene de. Derando B.47 no empo, em-e B.48 Como o operador em B.46 é ma mar 6, enão, ambém e a a repreenação: I, para I=,..., 6 6 lnha e =, e colna, o ea I I IJ B.49 Noa-e qe, e não hoer roação, enão R, e, o é, orna-e gal ao gradene oal. De fao, e não há roação, enão, B.5 a B.5 b e enão, B.4 orna-e, para =. d d d B.5 e dem para e. Nea ação, pode-e ecreer qe d. B.5 como haa do anncado em B.4, porém, agora, com. Nea ação, B.48 orna-e B.5 o enão B.54

11 O ea, e não há roação, ó ebe a pare mérca, o qal paa a er mplemene a mar com,, ec. Como dcdo no capílo 6, eqale a e er ânglo drane a deformação. B.- Dlaação A dlaação do eor,, correponde a m dergene de eor, defndo conforme B.55 o enão, em noação marcal. B.56 B.- re A eqação de momeno le de Newon decra no Capílo 6, por 6.84, eabelece qe B.57 a qal, na erão epandda, orna-e B.58 O ema B.58 pode er ecro como o prodo de m eor por ma mar dádca: B.59 Nee eágo, pode-e recorrer à defnção de prodo dádco ngle do edado na eção B., e e ecreer B.59 como

12 B.6 dede qe e opere no ema de coordenada reanglare. Conforme haa do eabelecdo na defnção do prodo dádco, o operador dergene marcal ranforma ma dádca m mar nm eor. Em noação de índce reddo, o enor re dado em B.59 é ecro como B.6 no qal obera-e qe o faore ½ [como o ado em B.45] não ão neceáro. Já a eqação de momeno B.57 orna-e B.6 Em noação mbólca, a eqação de momeno B.57, o B.6, para índce reddo, fca como B.6 onde fo neceáro e aplcar, a ranpoa de. Am, raando-e na forma de mar colna, dada em B.6, em-e B.64 O operador marcal é ma mar 6, al qe: J, endo =, e, e, J=,..., 6. B.4 Bbografa [] mrno, A. V. Inrodcon o enor Calcl, Lecre noe, 4. [] Jarc, J. P., Kmanoc, D., Golboc, Z., On enor of Elac, heore. Appl. Mech., ol. 5, no., pp.9-6, 8. [] Kno, Gordon., Acoc Wae: Dece, Imagng, and Analog gnal Proceng Prence-Hall gnal Proceng ere, 987, 688 p.

CAPÍTULO 4. Vamos partir da formulação diferencial da lei de Newton

CAPÍTULO 4. Vamos partir da formulação diferencial da lei de Newton 9 CPÍTUL 4 DINÂMIC D PRTÍCUL: IMPULS E QUNTIDDE DE MVIMENT Nese capíulo será analsada a le de Newon na forma de negral no domíno do empo, aplcada ao momeno de parículas. Defne-se o conceo de mpulso e quandade

Leia mais

António Costa. Paulo Roma Cavalcanti

António Costa. Paulo Roma Cavalcanti Inrodção à Compação Gráfica Geomeria Adapação: Aoria: João alo ereira Anónio Cosa Cladio Esperança alo Roma Caalcani onos e Vecores (2D) ono: Denoa posição no plano ( Vecor: Denoa deslocameno, iso é, incli

Leia mais

ESPAÇO VETORIAL REAL DE DIMENSÃO FINITA

ESPAÇO VETORIAL REAL DE DIMENSÃO FINITA EPÇO ETORIL REL DE DIMENÃO FINIT Defnção ejam um conjuno não ao o conjuno do númeo ea R e dua opeaçõe bnáa adção e mulplcação po ecala : : R u a u a é um Epaço eoal obe R ou Epaço eoal Real ou um R-epaço

Leia mais

1. O movimento uniforme de uma partícula tem sua função horária representada no diagrama a seguir: e (m) t (s)

1. O movimento uniforme de uma partícula tem sua função horária representada no diagrama a seguir: e (m) t (s) . O moimeno uniforme de uma parícula em ua função horária repreenada no diagrama a eguir: e (m) - 6 7 - Deerminar: a) o epaço inicial e a elocidade ecalar; a função horária do epaço.. É dado o gráfico

Leia mais

apresentado: B 10cm 5 cm , (x, y, z) em cm Pede-se: onde elas

apresentado: B 10cm 5 cm , (x, y, z) em cm Pede-se: onde elas 1) Para a peça primáica indeformada da figura abaio foi admiido o campo de deformaçõe apreenado: 5 cm 1cm A B 1cm C ij a b b c,a, (,, ) em cm Para ajuar o modelo, ainda na configuração inicial indeformadaa

Leia mais

Tabela 1 Relações tensão-corrente, tensão-carga e impedância para capacitoers, resistores e indutores.

Tabela 1 Relações tensão-corrente, tensão-carga e impedância para capacitoers, resistores e indutores. Modelagem Maemáica MODELOS MATEMÁTICOS DE CIRCUITOS ELÉTRICOS O circuio equivalene à rede elérica com a quai rabalhamo coniem baicamene em rê componene lineare paivo: reiore, capaciore e induore. A Tabela

Leia mais

Texto 03: Campos Escalares e Vetoriais. Gradiente. Rotacional. Divergência. Campos Conservativos.

Texto 03: Campos Escalares e Vetoriais. Gradiente. Rotacional. Divergência. Campos Conservativos. 1 Unversdade Salvador UNIFACS Crsos de Engenhara Cálclo IV Profa: Ila Reboças Frere Cálclo Vetoral Teto 03: Campos Escalares e Vetoras. Gradente. Rotaconal. Dvergênca. Campos Conservatvos. Campos Escalares

Leia mais

Introdução à Computação Gráfica

Introdução à Computação Gráfica Inrodução à Compuação Gráfca Desenho de Consrução Naval Manuel Venura Insuo Superor Técnco Secção Auónoma de Engenhara Naval Sumáro Represenação maemáca de curvas Curvas polnomas e curvas paramércas Curvas

Leia mais

6. ESCOAMENTO SUPERFICIAL

6. ESCOAMENTO SUPERFICIAL 6. ESCOAMENTO SUPERFICIAL 6.1. GENERALIDADES O ecoameno perficial é o egmeno do ciclo hidrológico caracerizado pelo delocameno da ága na perfície da erra e no cro d ága narai. Tem origem fndamenalmene

Leia mais

TENSÕES E CORRENTES TRANSITÓRIAS E TRANSFORMADA LAPLACE

TENSÕES E CORRENTES TRANSITÓRIAS E TRANSFORMADA LAPLACE TNSÕS CONTS TANSTÓAS TANSFOMADA D APAC PNCPAS SNAS NÃO SNODAS Degrau de ampliude - É um inal que vale vol para < e vale vol, conane, para >. Ver fig. -a. v (a) (b) v Fig. A fig. -b mora um exemplo da geração

Leia mais

CONTROLABILIDADE E OBSERVABILIDADE

CONTROLABILIDADE E OBSERVABILIDADE Eduardo obo uoa Cabral CONTROABIIDADE E OBSERVABIIDADE. oiação Em um iema na forma do epaço do eado podem exiir dinâmica que não ão ia pela aída do iema ou não ão influenciada pela enrada do iema. Se penarmo

Leia mais

EEL-001 CIRCUITOS ELÉTRICOS ENGENHARIA DA COMPUTAÇÃO

EEL-001 CIRCUITOS ELÉTRICOS ENGENHARIA DA COMPUTAÇÃO L IRUITOS LÉTRIOS 8 UNIFI,VFS, Re. BDB PRT L IRUITOS LÉTRIOS NGNHRI D OMPUTÇÃO PÍTULO 5 PITORS INDUTORS: omporameno com Snas onínuos e com Snas lernaos 5. INTRODUÇÃO Ressor elemeno que sspa poênca. 5.

Leia mais

EXPERIÊNCIA 7 MEDIDA DE INDUTÂNCIA POR ONDA RETANGULAR

EXPERIÊNCIA 7 MEDIDA DE INDUTÂNCIA POR ONDA RETANGULAR UMCCE Eng. Elérca m - ab. Crco Elérco Prof. Wlon Yamag EXPEÊNC 7 MEDD DE NDUÂNC PO OND ENGU NODUÇÃO O objvo báco da xprênca é mdr a ndânca a rênca d ma bobna zando ma onda ranglar. O prncípo da mdção é

Leia mais

Cálculo do requerimento de capital regulatório para cobrir os riscos de subscrição das sociedades de capitalização

Cálculo do requerimento de capital regulatório para cobrir os riscos de subscrição das sociedades de capitalização Cálclo do reqermeno de caal reglaóro ara cobrr o rco de bcrção da edade de caalzação Sergo L ranln Jr* Céar da Rocha ee ** Edardo raga L de Melo + * MSc SUSEP/CGSOA e PUC-Ro; e-mal: ergofranln@egobr **

Leia mais

Física I. 2º Semestre de Instituto de Física- Universidade de São Paulo. Aula 5 Trabalho e energia. Professor: Valdir Guimarães

Física I. 2º Semestre de Instituto de Física- Universidade de São Paulo. Aula 5 Trabalho e energia. Professor: Valdir Guimarães Físca I º Semesre de 03 Insuo de Físca- Unversdade de São Paulo Aula 5 Trabalho e energa Proessor: Valdr Gumarães E-mal: valdrg@.usp.br Fone: 309.704 Trabalho realzado por uma orça consane Derenemene

Leia mais

CAPÍTULO 1 REPRESENTAÇÃO E CLASSIFICAÇÃO DE SISTEMAS. Sistema monovariável SISO = Single Input Single Output. s 1 s 2. ... s n

CAPÍTULO 1 REPRESENTAÇÃO E CLASSIFICAÇÃO DE SISTEMAS. Sistema monovariável SISO = Single Input Single Output. s 1 s 2. ... s n 1 CAPÍTULO 1 REPREENTAÇÃO E CLAIFICAÇÃO DE ITEMA 1.1. Represenação de ssemas 1.1.1. semas com uma enrada e uma saída (IO) e sema monovarável IO = ngle Inpu ngle Oupu s e = enrada s = saída = ssema 1.1..

Leia mais

Exemplos. representado a seguir, temos que: são positivas. são negativas. i

Exemplos. representado a seguir, temos que: são positivas. são negativas. i 6 Prodto Vetoral Para defnrmos o prodto etoral entre dos etores é ndspensáel dstngrmos o qe são bases postas e bases negatas Para sso consderemos ma base do espaço { } e m obserador Este obserador dee

Leia mais

Exemplo: y 3, já que sen 2 e log A matriz nula m n, indicada por O m n é tal que a ij 0, i {1, 2, 3,..., m} e j {1, 2, 3,..., n}.

Exemplo: y 3, já que sen 2 e log A matriz nula m n, indicada por O m n é tal que a ij 0, i {1, 2, 3,..., m} e j {1, 2, 3,..., n}. Mrzes Mrz rel Defnção Sem m e n dos números neros Um mrz rel de ordem m n é um conuno de mn números res, dsrbuídos em m lnhs e n coluns, formndo um bel que se ndc em gerl por 9 Eemplo: A mrz A é um mrz

Leia mais

Edital Nº. 04/2009-DIGPE 10 de maio de 2009

Edital Nº. 04/2009-DIGPE 10 de maio de 2009 Caderno de Prova CONTROLE DE PROCESSOS Edial Nº. /9-DIPE de maio de 9 INSTRUÇÕES ERAIS PARA A REALIZAÇÃO DA PROVA Ue apena canea eferográfica azul ou prea. Ecreva o eu nome compleo e o número do eu documeno

Leia mais

CAPITAL ADICIONAL RELATIVO AO RISCO DE SUBSCRIÇÃO DAS SOCIEDADES DE CAPITALIZAÇÃO

CAPITAL ADICIONAL RELATIVO AO RISCO DE SUBSCRIÇÃO DAS SOCIEDADES DE CAPITALIZAÇÃO Relaóro CGSOA/CORIS Caal Adconal Relavo ao Rco de Sbcrção da Socedade de Caalzação CAPITAL ADICIOAL RELATIVO AO RISCO DE SUBSCRIÇÃO DAS SOCIEDADES DE CAPITALIZAÇÃO RELATÓRIO Sernendênca de Segro Prvado

Leia mais

Conceitos Básicos de Circuitos Elétricos

Conceitos Básicos de Circuitos Elétricos onceos Báscos de rcuos lércos. nrodução Nesa aposla são apresenados os conceos e defnções fundamenas ulzados na análse de crcuos elércos. O correo enendmeno e nerpreação deses conceos é essencal para o

Leia mais

MECÂNICA CLÁSSICA. AULA N o 4. Carga de Noether- Simetrias e Conservação

MECÂNICA CLÁSSICA. AULA N o 4. Carga de Noether- Simetrias e Conservação MECÂNIC CLÁSSIC UL N o 4 Carga de Noeher- Smeras e Conservação Vamos ver o caso de uma parícula movendo-se no plano, porém descrevendo-a agora em coordenadas polares: r r d dr T T m dr m d r d d m r m

Leia mais

Instituto de Física USP. Física V Aula 30. Professora: Mazé Bechara

Instituto de Física USP. Física V Aula 30. Professora: Mazé Bechara Insuo de Físca USP Físca V Aula 30 Professora: Maé Bechara Aula 30 Tópco IV - Posulados e equação básca da Mecânca quânca 1. Os posulados báscos da Mecânca Quânca e a nerpreação probablísca de Ma Born.

Leia mais

Acção da neve: quantificação de acordo com o EC1

Acção da neve: quantificação de acordo com o EC1 Acção da neve: quanificação de acordo com o EC1 Luciano Jacino Iniuo Superior de Engenharia de Liboa Área Deparamenal de Engenharia Civil Janeiro 2014 Índice 1 Inrodução... 1 2 Zonameno do erriório...

Leia mais

2 Programação Matemática Princípios Básicos

2 Programação Matemática Princípios Básicos Programação Maemáca Prncípos Báscos. Consderações Geras Os objevos dese capíulo são apresenar os conceos de Programação Maemáca (PM) necessáros à compreensão do processo de omzação de dmensões e descrever

Leia mais

É a parte da mecânica que descreve os movimentos, sem se preocupar com suas causas.

É a parte da mecânica que descreve os movimentos, sem se preocupar com suas causas. 1 INTRODUÇÃO E CONCEITOS INICIAIS 1.1 Mecânca É a pare da Físca que esuda os movmenos dos corpos. 1. -Cnemáca É a pare da mecânca que descreve os movmenos, sem se preocupar com suas causas. 1.3 - Pono

Leia mais

Engenharia Civil/Mecânica Cálculo 3-3º semestre de 2012 Profa Gisele A.A. Sanchez

Engenharia Civil/Mecânica Cálculo 3-3º semestre de 2012 Profa Gisele A.A. Sanchez Engenhara Cvl/Mecânca Cálclo - º semestre de 01 Proa Gsele A.A. Sanchez 4ª ala: Dervadas Dreconas e Gradente Gradentes e dervadas dreconas de nções com das varáves As dervadas parcas de ma nção nos dão

Leia mais

MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS

MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS BRUNO FIGUEREDO ARCENO FLORIANÓPOLIS 5 UNIVERSIDADE

Leia mais

5 Cálculo do Diâmetro e Espaçamento entre Estribos Utilizando a Formulação Proposta

5 Cálculo do Diâmetro e Espaçamento entre Estribos Utilizando a Formulação Proposta 5 Cácuo do Diâmero e Epaçameno enre Erio Uiizando a Formuação ropoa 5.1. Inrodução Nee capíuo apreena-e um criério para o cácuo do diâmero e epaçameno enre erio aravé da formuação propoa e comparam-e o

Leia mais

PROJEÇÃO DE DOMICÍLIOS PARA OS MUNICÍPIOS BRASILEIROS EM 31/12/2004

PROJEÇÃO DE DOMICÍLIOS PARA OS MUNICÍPIOS BRASILEIROS EM 31/12/2004 PROJEÇÃO DE DOMICÍLIOS PARA OS MUNICÍPIOS BRASILEIROS EM 31/12/2004 SUMÁRIO 1. INRODUÇÃO... 1 2. FONE DE DADOS... 1 3. PROJEÇÃO DO NÚMERO DE DOMICÍLIOS... 2 3.1 Mucípo emacpado em 2001... 5 3.2 População

Leia mais

v t Unidade de Medida: Como a aceleração é dada pela razão entre velocidade e tempo, dividi-se também suas unidades de medida.

v t Unidade de Medida: Como a aceleração é dada pela razão entre velocidade e tempo, dividi-se também suas unidades de medida. Diciplina de Fíica Aplicada A / Curo de Tecnólogo em Geão Ambienal Profeora M. Valéria Epíndola Lea. Aceleração Média Já imo que quando eamo andando de carro em muio momeno é neceário reduzir a elocidade,

Leia mais

CONTROLE POR REALIMENTAÇÃO DOS ESTADOS SISTEMAS SERVOS

CONTROLE POR REALIMENTAÇÃO DOS ESTADOS SISTEMAS SERVOS CONTROLE POR REALIMENTAÇÃO DOS ESTADOS SISTEMAS SERVOS. Moivaçõe Como vio o Regulado de Eado maném o iema em uma deeminada condição de egime pemanene, ou eja, ena mane o eado em uma dada condição eacionáia.

Leia mais

Capítulo 9 Rotação de corpos rígidos

Capítulo 9 Rotação de corpos rígidos Capítulo 9 Rotação de corpos rígdos Defnção de corpo rígdo (CR): um sstema de partículas especal, cuja estrutura é rígda, sto é, cuja forma não muda, para o qual duas partes sempre estão gualmente dstantes

Leia mais

PROF. DR. JACQUES FACON LIMIARIZAÇÃO POR ENTROPIA DE WULU

PROF. DR. JACQUES FACON LIMIARIZAÇÃO POR ENTROPIA DE WULU 1 PUCPR- Ponfíca Unversdade Caólca Do Paraná PPGIA- Programa de Pós-Graduação Em Informáca Aplcada PROF. DR. JACQUES FACON IMIARIZAÇÃO POR ENTROPIA DE WUU Resumo: Uma nova écnca de marzação baseada em

Leia mais

V - Modelo de onda cinemática

V - Modelo de onda cinemática Capíulo V - Onda cnemáca V - Modelo de onda cnemáca V. - Euaçõe do modelo de onda cnemáca Como e demonrou no capíulo IV, a euaçõe ue decrevem o modelo de Onda Cnemáca ão a euação da connudade: forma: e

Leia mais

Análise Matemática IV

Análise Matemática IV Análie Maemáica IV Problema para a Aula Práica Semana. Calcule a ranformada de Laplace e a regiõe de convergência da funçõe definida em 0 pela expreõe eguine: a f = cha b f = ena Reolução: a Aendendo a

Leia mais

CONTROLE LINEAR I. Parte A Sistemas Contínuos no Tempo PROF. DR. EDVALDO ASSUNÇÃO PROF. DR. MARCELO C. M. TEIXEIRA -2013-

CONTROLE LINEAR I. Parte A Sistemas Contínuos no Tempo PROF. DR. EDVALDO ASSUNÇÃO PROF. DR. MARCELO C. M. TEIXEIRA -2013- CONTROLE LINEAR I Pare A Siema Conínuo no Tempo PROF. DR. EDVALDO ASSUNÇÃO PROF. DR. MARCELO C. M. TEIXEIRA -03- AGRADECIMENTOS O auore deejam agradecer ao aluno Pierre Goebel, que em uma arde de verão

Leia mais

RASCUNHO. a) 120º10 b) 95º10 c) 120º d) 95º e) 110º50

RASCUNHO. a) 120º10 b) 95º10 c) 120º d) 95º e) 110º50 ª QUESTÃO Uma deerminada cidade organizou uma olimpíada de maemáica e física, para os alunos do º ano do ensino médio local. Inscreveramse 6 alunos. No dia da aplicação das provas, consaouse que alunos

Leia mais

Movimento Uniforme Variado (MUV)

Movimento Uniforme Variado (MUV) Moimeno Uniforme Variado (MUV) Oberamo aneriormene que um corpo com elocidade conane (MU) apreena comporameno bem peculiare. Em noo dia-a-dia é muio comum raarmo de um ouro ipo de problema: o que enole

Leia mais

CORRENTE DE DESLOCAMENTO, EQUAÇÕES DE MAXWELL

CORRENTE DE DESLOCAMENTO, EQUAÇÕES DE MAXWELL 24 CORRENTE DE CONDUÇÃO, CORRENTE DE DESLOCMENTO, EQUÇÕES DE MXWELL 24.1 - Correne e Conução e Correne e Delocameno Nee capíulo inrouziremo um noo conceio, que é a correne e elocameno. Suponha que o capacior

Leia mais

a) Calcule a força medida pelo dinamômetro com a chave aberta, estando o fio rígido em equilíbrio.

a) Calcule a força medida pelo dinamômetro com a chave aberta, estando o fio rígido em equilíbrio. UJ MÓDULO III DO PISM IÊNIO - POA DE ÍSICA PAA O DESENOLIMENO E A ESPOSA DAS QUESÕES, SÓ SEÁ ADMIIDO USA CANEA ESEOGÁICA AZUL OU PEA. Na olução da proa, ue, uando neeário, g = /, = 8 /, e = 9 - kg, π =.

Leia mais

Aula 2: Vetores tratamento algébrico

Aula 2: Vetores tratamento algébrico Ala : Vetores tratamento algébrico Vetores no R e no R Decomposição de etores no plano ( R ) Dados dois etores e não colineares então qalqer etor pode ser decomposto nas direções de e. O problema é determinar

Leia mais

RELATIVIDADE ESPECIAL

RELATIVIDADE ESPECIAL RELATIVIDADE ESPECIAL AULA N O ( Quadriveores - Velocidade relaivísica - Tensores ) Vamos ver um eemplo de uma lei que é possível na naureza, mas que não é uma lei da naureza. Duas parículas colidem no

Leia mais

velocidade inicial: v 0 ; ângulo de tiro com a horizontal: 0.

velocidade inicial: v 0 ; ângulo de tiro com a horizontal: 0. www.fisicaee.com.br Um projéil é disparado com elocidade inicial iual a e formando um ânulo com a horizonal, sabendo-se que os ponos de disparo e o alo esão sobre o mesmo plano horizonal e desprezando-se

Leia mais

AULA Exercícios. DETERMINAR A EXPRESSÃO GERAL E A MATRIZ DE UMA TL CONHECIDAS AS IMAGENS DE UMA BASE DO

AULA Exercícios. DETERMINAR A EXPRESSÃO GERAL E A MATRIZ DE UMA TL CONHECIDAS AS IMAGENS DE UMA BASE DO Note bem: a leitra destes apontamentos não dispensa de modo algm a leitra atenta da bibliografia principal da cadeira Chama-se a atenção para a importância do trabalho pessoal a realizar pelo alno resolvendo

Leia mais

CONCEITOS FUNDAMENTAIS

CONCEITOS FUNDAMENTAIS Projeo eenge - Eng. Elérica Apoila de Siema de Conrole I III- &$3Ì78/,,, CONCEITOS FUNDAMENTAIS 3.- INTODUÇÃO Inicialmene nee capíulo, euda-e o conceio de função de ranferência, o qual é a bae da eoria

Leia mais

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc.

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc. ECONOMETRIA Prof. Paricia Maria Borolon, D. Sc. Aocorrelação Fone: GUJARATI; D. N. Economeria Básica: 4ª Edição. Rio de Janeiro. Elsevier- Camps, 006 Core Transversal Série Temporal Em geral, com dados

Leia mais

AULA 4. Produto escalar. Produto escalar definição algébrica. , chamamos de produto. escalar o número real: Notação: u v ou u, v e se lê: u escalar v.

AULA 4. Produto escalar. Produto escalar definição algébrica. , chamamos de produto. escalar o número real: Notação: u v ou u, v e se lê: u escalar v. AULA 4 Prodto escalar Prodto escalar definição algébrica Sejam,, e,, escalar o número real:, chamamos de prodto Notação: o, e se lê: escalar. Eemplos: ) Dados os etores,,3 e 3,4,, calclar: a) =. (-3) +.

Leia mais

5 Proposta de um método de ajuste sazonal

5 Proposta de um método de ajuste sazonal 5 Propoa de um méodo de ajue azonal 5.1 Inrodução A generalização do procedimeno em 4.3 moivou a conrução de um filro exraor de endência que poa er aplicado direamene em uma érie independene de er azonal

Leia mais

Determinante Introdução. Algumas Propriedades Definição Algébrica Equivalências Propriedades Fórmula Matriz

Determinante Introdução. Algumas Propriedades Definição Algébrica Equivalências Propriedades Fórmula Matriz ao erminante Área e em R 2 O qe é? Qais são sas propriedades? Como se calcla (Qal é a fórmla o algoritmo para o cálclo)? Para qe sere? A = matriz. P paralelogramo com arestas e. + A é a área (com sinal)

Leia mais

Para quantificar a variabilidade de um conjunto de dados ou medidas é que se usam medidas de dispersão. Vamos estudar algumas delas nesta aula.

Para quantificar a variabilidade de um conjunto de dados ou medidas é que se usam medidas de dispersão. Vamos estudar algumas delas nesta aula. Probabldade e Etatítca I Antono Roque Aula Medda de Dperão A medda de tendênca central não ão ufcente para e caracterzar um conjunto de dado. O motvo é que ete varação na natureza, to é, dado que venham

Leia mais

Análise e Processamento de Bio-Sinais Mestrado Integrado em Engenharia Biomédica. Sinais e Sistemas Licenciatura em Engenharia Física

Análise e Processamento de Bio-Sinais Mestrado Integrado em Engenharia Biomédica. Sinais e Sistemas Licenciatura em Engenharia Física Análise e Processameno e Bio-Sinais Mesrao Inegrao em Engenaria Bioméica Sinais e Sisemas Licenciara em Engenaria Física Deparameno e Engenaria Elecroécnica e Compaores Faclae e Ciências e Tecnologia Universiae

Leia mais

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL42 Coneúdo 8 - Inrodução aos Circuios Lineares e Invarianes...1 8.1 - Algumas definições e propriedades gerais...1 8.2 - Relação enre exciação

Leia mais

Resoluções de Exercícios

Resoluções de Exercícios eoluçõe de Eercício caraca Capíulo O Moimeno, o Equilíbrio e a Decobera da Lei Fíica Cinemáica angular D coroa BLOCO D Dado: p =, e raio da Terra: T = 6 km. Como o período de roação da Terra é T = h, em:

Leia mais

são as resistências térmicas de superfície à superfície para cada seção (a, b,, n), determinadas pela expressão 4; são as áreas de cada seção

são as resistências térmicas de superfície à superfície para cada seção (a, b,, n), determinadas pela expressão 4; são as áreas de cada seção ABNT NBR 5220-2 - Desempenho érmico de edificações - Pare 2: Méodos de cálculo da ransmiância érmica, da capacidade érmica, do araso érmico e do faor solar de elemenos e componenes de edificações Esabelece

Leia mais

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara Insiuo de Física USP Física V - Aula 6 Professora: Mazé Bechara Aula 6 Bases da Mecânica quânica e equações de Schroedinger. Aplicação e inerpreações. 1. Ouros posulados da inerpreação de Max-Born para

Leia mais

CAPÍTULO 5: CISALHAMENTO

CAPÍTULO 5: CISALHAMENTO Curo de Engenaria Civil Univeridade Eadual de Maringá Cenro de Tecnologia Deparameno de Engenaria Civil CAPÍTULO 5: CSALHAMENTO 5. Tenõe de Cialameno em iga o Flexão Hipóee Báica: a) A enõe de cialameno

Leia mais

Alocação Estratégica Intertemporal de Ativos para Otimização de Carteiras de Renda Fixa. Victor Hideki Obara

Alocação Estratégica Intertemporal de Ativos para Otimização de Carteiras de Renda Fixa. Victor Hideki Obara UNIVERSIDADE DE SÃO PAULO INSIUO DE MAEMÁICA E ESAÍSICA DEPARAMENO DE MAEMÁICA APLICADA BACHARELADO EM MAEMÁICA APLICADA E COMPUACIONAL Alocação Eraégica Ineremporal de Aivo para Oimização de Careira de

Leia mais

Relatividade especial Capítulo 37

Relatividade especial Capítulo 37 Relaiidade espeial Capíulo 37 º Posulado: s leis da físia são as mesmas em odos os refereniais ineriais. º Posulado: eloidade da luz no áuo em o mesmo alor em odas as direções e em odos os refereniais

Leia mais

RELATIVIDADE ESPECIAL

RELATIVIDADE ESPECIAL 1 RELATIVIDADE ESPECIAL AULA N O (paradoos - empo próprio - elocidade momeno) Vamos agora coninuar a er os efeios decorrenes da Transformação de Lorenz com relação às leis da Física, nos diersos sisemas

Leia mais

Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales. Teorema de Tales - Parte I. Nono Ano do Ensino Fundamental

Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales. Teorema de Tales - Parte I. Nono Ano do Ensino Fundamental Maerial Teórico - Módulo de Semelhança de Triângulo e Teorema de Tale Teorema de Tale - are I Nono no do Enino Fundamenal rof. Marcelo Mende de Oliveira rof. nonio aminha M. Neo 1 Razão de egmeno ara organizar

Leia mais

8.6 A corrente de deslocamento e as equações de Maxwell

8.6 A corrente de deslocamento e as equações de Maxwell 8.6 A correne de delocameno e a equaçõe de Maxwell Michael Faraday decobriu uma da dua lei báica que regem o fenômeno não eacionário do eleromagneimo. Nela aparece uma derivada emporal do campo magnéico.

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

4 a 7 de novembro de 2003, Natal-RN. A pesquisa Operacional e os Recursos Renováveis

4 a 7 de novembro de 2003, Natal-RN. A pesquisa Operacional e os Recursos Renováveis A pequa Operacona e o Recuro Renováve 4 a 7 de novembro de 2003, Naa-RN DESENVOLVIMENO DE UM SISEMA DE APOIO À DECISÃO DEDICADO AO ESUDO DE PROBLEMAS DE LOCALIZAÇÃO DINÂMICA DE EQUIPAMENOS PARA RANSFERÊNCIA,

Leia mais

A velocidade angular ( ), em rad/s, do ponto A é a) 10,0 b) 12,0 c) 14,0 d) 16,0 e) 18,0

A velocidade angular ( ), em rad/s, do ponto A é a) 10,0 b) 12,0 c) 14,0 d) 16,0 e) 18,0 Lisa e exercícios :. Uma parícula escree moimeno circular e uniorme m períoo igual a,0 s, a requência o moimeno a parícula, em r.p.m., é igual a a) 5,0 b) 0,0 c) 0,0 ) 40,0 e) 50,0. Se a requência e roação

Leia mais

INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas.

INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas. SIMULADO DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - JULHO DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES de 0 a

Leia mais

A Teoria da Relatividade Especial. Prof. Edgard P. M. Amorim Disciplina: FEE º sem/2011.

A Teoria da Relatividade Especial. Prof. Edgard P. M. Amorim Disciplina: FEE º sem/2011. A Teoria da Relaiidade Espeial Prof. Edgard P. M. Amorim Disiplina: FEE º sem/. Inrodução Para definirmos o esado de um sisema físio preisamos: Sisema de referênia: em relação ao quê? Posições e deriadas

Leia mais

ESCOAMENTO TURBULENTO

ESCOAMENTO TURBULENTO ESCOAMENTO TURBULENTO a rblênca em geral srge de ma nsabldade do escoameno em regme lamnar, qando o número de Renolds orna-se grande. As nsabldades esão relaconadas com nerações enre ermos vscosos e ermos

Leia mais

2.7 Derivadas e Taxas de Variação

2.7 Derivadas e Taxas de Variação LIMITES E DERIVADAS 131 2.7 Derivadas e Taas de Variação O problema de enconrar a rea angene a uma curva e o problema de enconrar a velocidade de um objeo envolvem deerminar o mesmo ipo de limie, como

Leia mais

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa C. Os números inteiros x e y satisfazem a equação

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa C. Os números inteiros x e y satisfazem a equação Quesão Os números ineiros x e y saisfazem a equação x x y y 5 5.Enãox y é: a) 8 b) 5 c) 9 d) 6 e) 7 alernaiva B x x y y 5 5 x ( ) 5 y (5 ) x y 7 x 6 y 5 5 5 Como x e y são ineiros, pelo Teorema Fundamenal

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar Progressão Ariméica e Progressão Geomérica. (Pucrj 0) Os números a x, a x e a x esão em PA. A soma dos números é igual a: a) 8 b) c) 7 d) e) 0. (Fuves 0) Dadas as sequências an n n, n n cn an an b, e b

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar . (Pucrj 0) Os números a x, a x e a3 x 3 esão em PA. A soma dos 3 números é igual a: é igual a e o raio de cada semicírculo é igual à meade do semicírculo anerior, o comprimeno da espiral é igual a a)

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

Cinemática Vetorial Movimento Retilíneo. Movimento. Mecânica : relaciona força, matéria e movimento

Cinemática Vetorial Movimento Retilíneo. Movimento. Mecânica : relaciona força, matéria e movimento Fisica I - IO Cinemáica Veorial Moimeno Reilíneo Prof. Crisiano Olieira Ed. Basilio Jafe sala crislpo@if.usp.br Moimeno Mecânica : relaciona força, maéria e moimeno Cinemáica : Pare da mecânica que descree

Leia mais

ALGORITMOS PARA A DESCOBERTA DE SERVIÇOS WEB DESCRITOS EM OWL-S: ORDENAÇÃO DE SERVIÇOS USANDO FILTRAGEM COLABORATIVA

ALGORITMOS PARA A DESCOBERTA DE SERVIÇOS WEB DESCRITOS EM OWL-S: ORDENAÇÃO DE SERVIÇOS USANDO FILTRAGEM COLABORATIVA Anai do XV Encontro de Iniciação Cientíica da PUC-Campina - 6 e 7 de otbro de 010 ALGORITMOS PARA A DESCOBERTA DE SERVIÇOS WEB DESCRITOS EM OWL-S: ORDENAÇÃO DE SERVIÇOS USANDO FILTRAGEM COLABORATIVA Gilherme

Leia mais

MATEMÁTICA E SUAS TECNOLOGIAS

MATEMÁTICA E SUAS TECNOLOGIAS 1º SIMULADO ENEM 017 Resposa da quesão 1: MATEMÁTICA E SUAS TECNOLOGIAS Basa aplicar a combinação de see espores agrupados dois a dois, logo: 7! C7,!(7 )! 7 6 5! C7,!5! 7 6 5! C7, 1!5! Resposa da quesão

Leia mais

Methods For Pricing Inter - Area Electricity Trades

Methods For Pricing Inter - Area Electricity Trades Method For rcng Inter - rea Electrcty Trade Jdte Ferrera, Zta Vale 2,2 Gecad Grpo de Invetgação em Engenhara do Conhecmento e apoo à ecão do Inttto oltécnco do orto (I)/ (ISE) Ra r. ntóno Bernardno de

Leia mais

Trabalho e Energia. Definimos o trabalho W realizado pela força sobre uma partícula como o produto escalar da força pelo deslocamento.

Trabalho e Energia. Definimos o trabalho W realizado pela força sobre uma partícula como o produto escalar da força pelo deslocamento. Trabalho e Energa Podemos denr trabalho como a capacdade de produzr energa. Se uma orça eecutou um trabalho sobre um corpo ele aumentou a energa desse corpo de. 1 OBS: Quando estudamos vetores vmos que

Leia mais

GEOMETRIA DE POSIÇÃO.

GEOMETRIA DE POSIÇÃO. GEMETRI DE SIÇÃ. Geomeia de oição é a pae da Geomeia que euda a deeminação do elemeno geoméico, bem como a poiçõe elaiva e a ineeçõe dee elemeno no epaço. III - o dua ea paalela diina. IV - o dua ea concoene.

Leia mais

Mecânica da partícula

Mecânica da partícula -- Mecânica da parícula Moimenos sob a acção de uma força resulane consane Prof. Luís C. Perna LEI DA INÉRCIA OU ª LEI DE NEWTON LEI DA INÉRCIA Para que um corpo alere o seu esado de moimeno é necessário

Leia mais

CIRCUITO RC SÉRIE. max

CIRCUITO RC SÉRIE. max ELETRICIDADE 1 CAPÍTULO 8 CIRCUITO RC SÉRIE Ese capíulo em por finalidade inroduzir o esudo de circuios que apresenem correnes eléricas variáveis no empo. Para ano, esudaremos o caso de circuios os quais

Leia mais

Despacho n.º 13/06. 2. A presente resolução entra em vigor no dia seguinte ao da sua publicação. João Renato Lima Presidente do C.A.

Despacho n.º 13/06. 2. A presente resolução entra em vigor no dia seguinte ao da sua publicação. João Renato Lima Presidente do C.A. Despacho n.º 13/06 De enre as arbuções da Agênca de Regulação Económca desaca-se a compeênca de fxar as arfas e os mecansmos de reajuses a serem pracados pela oncessonára do servço públco de ranse e dsrbução

Leia mais

F-128 Física Geral I. Aula exploratória-07 UNICAMP IFGW F128 2o Semestre de 2012

F-128 Física Geral I. Aula exploratória-07 UNICAMP IFGW F128 2o Semestre de 2012 F-18 Física Geral I Aula eploraória-07 UNICAMP IFGW username@ii.unicamp.br F18 o Semesre de 01 1 Energia Energia é um conceio que ai além da mecânica de Newon e permanece úil ambém na mecânica quânica,

Leia mais

Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales. Teorema de Tales - Parte I. Nono Ano do Ensino Fundamental

Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales. Teorema de Tales - Parte I. Nono Ano do Ensino Fundamental Maerial Teórico - Módulo de Semelhança de Triângulo e Teorema de Tale Teorema de Tale - are I Nono no do Enino Fundamenal rof. Marcelo Mende de Oliveira rof. nonio aminha M. Neo oral da OME 1 Razão de

Leia mais

Tipos de Processos Estocásticos

Tipos de Processos Estocásticos Mesrado em Finanças e Economia Empresarial EPGE - FGV Derivaivos Pare 7: Inrodução ao álculo Diferencial Esocásico Derivaivos - Alexandre Lowenkron Pág. 1 Tipos de Processos Esocásicos Qualquer variável

Leia mais

Representação de Curvas

Representação de Curvas CI8 Ssemas Gráfcos para Engenhara 5. Represenação e Crvas Lz Fernano Marha Anré Perera Baseao em maeral preparao por Marcelo Gaass Depo. e Informáca PUC-Ro aapao para a scplna CI8 Represenações e Crvas

Leia mais

Exemplo pág. 28. Aplicação da distribuição normal. Normal reduzida Z=(900 1200)/200= 1,5. Φ( z)=1 Φ(z)

Exemplo pág. 28. Aplicação da distribuição normal. Normal reduzida Z=(900 1200)/200= 1,5. Φ( z)=1 Φ(z) Exemplo pág. 28 Aplcação da dsrbução ormal Normal reduzda Z=(9 2)/2=,5 Φ( z)= Φ(z) Subsudo valores por recurso à abela da ormal:,9332 = Φ(z) Φ(z) =,668 Φ( z)= Φ(z) Φ(z) =,33 Φ(z) =,977 z = (8 2)/2 = 2

Leia mais

Confiabilidade e Taxa de Falhas

Confiabilidade e Taxa de Falhas Prof. Lorí Viali, Dr. hp://www.pucrs.br/fama/viali/ viali@pucrs.br Definição A confiabilidade é a probabilidade de que de um sisema, equipameno ou componene desempenhe a função para o qual foi projeado

Leia mais

Unidade 3 Geometria: triângulos

Unidade 3 Geometria: triângulos Sugeõe de ividde Unidde 3 Geomei: iângulo 8 MTEMÁTI 1 Memáic 1. No iângulo egui você deve deemin: ) medid do ângulo ; b) medid do ângulo ; c) medid do ângulo z; d) medid do ângulo eeno o ângulo z. 120

Leia mais

Departamento de Economia, FEA/USP Macroeconomia II 2º/2015 Mauro Rodrigues Primeira Lista de Exercícios - Solução

Departamento de Economia, FEA/USP Macroeconomia II 2º/2015 Mauro Rodrigues Primeira Lista de Exercícios - Solução Deparameo de Ecoomia, FEA/USP Macroecoomia II 2º/205 Mauro Rodriue Primeira Lia de Exercício - Solução. Joe, cap.4, exercício. Ver arquivo com plailha. 2. Coidere uma ecoomia a qual a fução de produção

Leia mais

CALIBRAÇÃO DO GASÔMETRO SECO POR MEIO DE GASÔMETRO SECO DE REFERÊNCIA (PADRÃO)

CALIBRAÇÃO DO GASÔMETRO SECO POR MEIO DE GASÔMETRO SECO DE REFERÊNCIA (PADRÃO) ENERGÉTICA IND.E COM. LTDA. Ra Gravataí, 99 Rocha CEP 20975-030 Rio de Janeiro RJ CNPJ 29.341.583/0001-04 IE 82.846.190 Fone: (0xx21) 3797-9800; Fax: (0xx21) 3797-9830 www.energetica.ind.r CALIBRAÇÃO DO

Leia mais

Seção 5: Equações Lineares de 1 a Ordem

Seção 5: Equações Lineares de 1 a Ordem Seção 5: Equações Lineares de 1 a Ordem Definição. Uma EDO de 1 a ordem é dia linear se for da forma y + fx y = gx. 1 A EDO linear de 1 a ordem é uma equação do 1 o grau em y e em y. Qualquer dependência

Leia mais

Aula 20. Efeito Doppler

Aula 20. Efeito Doppler Aula 20 Efeito Doppler O efeito Doppler conite na frequência aparente, percebida por um oberador, em irtude do moimento relatio entre a fonte e o oberador. Cao I Fonte em repouo e oberador em moimento

Leia mais

EOREMA DE TALES. Assim, um feixe de paralelas determina, em duas transversais quaisquer, segmentos proporcionais. Exemplo: Quanto vale x?

EOREMA DE TALES. Assim, um feixe de paralelas determina, em duas transversais quaisquer, segmentos proporcionais. Exemplo: Quanto vale x? EOREMA DE TALES Se um feixe de paalela deemina egmeno conguene obe uma anveal, enão ee feixe deemina egmeno conguene obe qualque oua anveal. Aim, um feixe de paalela deemina, em dua anveai quaique, egmeno

Leia mais

Índices Físicos ÍNDICES

Índices Físicos ÍNDICES Ínice Fíico ÍNDICES = volume oal a amora; = volume a fae ólia a amora; = volume a fae líquia; a = volume a fae aoa; v = volume e vazio a amora = a + ; = peo oal a amora ; a = peo a fae aoa a amora; = peo

Leia mais

Conceitos Fundamentais 1.1

Conceitos Fundamentais 1.1 Conceitos Fndamentais. Capítlo Conceitos Fndamentais. Introdção Um sólido deformável sob a acção de forças eternas, deformar-se-á e no sólido desenvolver-se-ão esforços internos. Estes esforços serão em

Leia mais

CAPÍTULO III TORÇÃO PROBLEMAS ESTATICAMENTE INDETERMINADOS TORÇÃO - PEÇAS DE SEÇÃO VAZADA DE PAREDES FINAS

CAPÍTULO III TORÇÃO PROBLEMAS ESTATICAMENTE INDETERMINADOS TORÇÃO - PEÇAS DE SEÇÃO VAZADA DE PAREDES FINAS APÍTULO III TORÇÃO PROBLEMAS ESTATIAMENTE INDETERMINADOS TORÇÃO - PEÇAS DE SEÇÃO VAZADA DE PAREDES FINAS A- TORÇÃO PROBLEMAS ESTATIAMENTE INDETERMINADOS Vimos aé aqui que para calcularmos as ensões em

Leia mais

Gripe: Época de gripe; actividade gripal; cálculo da linha de base e do respectivo intervalo de confiança a 95%; e área de actividade basal.

Gripe: Época de gripe; actividade gripal; cálculo da linha de base e do respectivo intervalo de confiança a 95%; e área de actividade basal. Grpe: Época de grpe; acvdade grpal; cálculo da lnha de ase e do respecvo nervalo de confança a 95%; e área de acvdade asal. ÉPOCA DE GRPE Para maor facldade de compreensão será desgnado por época de grpe

Leia mais

Física Geral I - F Aula 11 Cinemática e Dinâmica das Rotações. 1º semestre, 2012

Física Geral I - F Aula 11 Cinemática e Dinâmica das Rotações. 1º semestre, 2012 Físca Geral I - F -8 Aula Cnemáca e Dnâmca das oações º semesre, 0 Movmeno de um corpo rígdo Vamos abandonar o modelo de parícula: passamos a levar em cona as dmensões do corpo, nroduzndo o conceo de corpo

Leia mais

Características dos Processos ARMA

Características dos Processos ARMA Caracerísicas dos Processos ARMA Aula 0 Bueno, 0, Capíulos e 3 Enders, 009, Capíulo. a.6 Morein e Toloi, 006, Capíulo 5. Inrodução A expressão geral de uma série emporal, para o caso univariado, é dada

Leia mais