Capítulo 9 Rotação de corpos rígidos

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Capítulo 9 Rotação de corpos rígidos"

Transcrição

1 Capítulo 9 Rotação de corpos rígdos Defnção de corpo rígdo (CR): um sstema de partículas especal, cuja estrutura é rígda, sto é, cuja forma não muda, para o qual duas partes sempre estão gualmente dstantes Neste capítulo amos analsar apenas o momento de rotação do CR em torno de um eo fo.

2 9. Velocdade angular e aceleração angular Vamos consderar a rotação de um CR em torno do eo Qual aráel descree o momento de rotação?. Escolhe-se um ponto de referênca arbtráro () no CR y. A projeção da posção de no plano y fa um ângulo com o eo 3. A coordenada angular (medda em radanos) descree completamente a orentação do CR Lembrando do ângulo em radanos (rad): s r r s

3 Velocdade angular méda: se o CR gra de a entre os nstantes t e t, então m t t t (o índce ndca rotação em torno do eo ) Velocdade angular nstantânea: lm t t d Note a analoga com a cnemátca em D: Note que todos os pontos do CR têm a mesma elocdade angular, mas podem ter dferentes elocdades escalares. Eemplo: rotação da Terra A e B têm a mesma elocdade angular, mas têm elocdades escalares dferentes

4 Velocdade angular como etor: dreção ao longo do eo de rotação e sentdo dado pela regra da mão dreta Note que esta conenção é consstente com o snal da derada: d y

5 Mas e a coordenada angular, é também um etor? Não podemos assocar um etor ao deslocamento angular, pos etores deem obedecer às regras da soma etoral, o que não acontece neste caso. or eemplo, a soma etoral é comutata ( A B B A), mas duas rotações sucessas fetas em ordens dferentes dão resultados dferentes! ˆ yˆ yˆ ˆ (a menos que os ângulos de rotação sejam nfntesmas)

6 Aceleração angular méda: se a elocdade angular ara de a entre os nstantes t e t, então α m t t t Aceleração angular nstantânea: α lm t t d Contnuando a analoga com a cnemátca em D: Aceleração angular também é um etor: α d a α Aceleração e elocdade angulares no mesmo sentdo: rotação acelerada Aceleração e elocdade angulares em sentdos opostos: rotação retardada

7 9. Rotação com aceleração angular constante Usando a analoga com a cnemátca em D, obtemos: Momento retlíneo com aceleração constante Rotação em torno de um eo fo com aceleração angular constante ( ) ( )t a t a t t a a constante ( ) ( )t t t t constante α α α α Eemplo: Y&F 9.3

8 9.3 Relação entre cnemátca lnear e cnemátca angular Lembrando que: s s r r r s Derando: ds d ds d r r r Onde: ds (elocdade escalar) d (elocdade angular escalar)

9 Derando mas uma e: d d r r a tg αr Onde: d atg (componente tangencal da aceleracao) d α (taa de aracao da elocdade angular escalar) α α, mas α (Note que: ) α Fnalmente, lembramos que: r a rad r (aceleração centrípeta)

10 9.4 Energa no momento de rotação Consdere um CR em rotação com elocdade angular A energa cnétca do CR será a soma das energas cnétcas de todas as partículas que compõem o CR: Sabemos que Assm: K K r m r m (todas as partículas têm a mesma el. ang.) Onde defnmos o momento de nérca do CR em relação ao eo de rotação: m r Undades S..: kg.m

11 Notem uma noa analoga entre o momento lnear de translação de uma partícula e a rotação de um CR em torno de um eo fo: K K m (translação) (rotação) Momento de nérca: Defne a nérca para o momento de rotação (nérca rotaconal) Não depende apenas da massa do CR, mas também de como ela está dstrbuída (dos objetos de mesma massa podem ter momentos de nérca dferentes) Não é uma propredade ntrínseca do CR, mas depende da escolha do eo de rotação

12 Eemplo: sstema com massas m de dmensões despreíes (partículas) undas por uma haste fna de comprmento l e massa despreíel Eo Eo m l m Eo 3 Eo : l l m m ml Eo : Eo 3: ( ) m( l) m ml ( ) ( ) 3 m m

13 Momentos de nérca de dstrbuções contínuas de massa: m r r dm r ρdv

14 Eemplo: Y&F 9.9 Energa potencal grataconal para um corpo com massa dstrbuída: y Y cm y M c.m. g m U m gy g m y gmycm Como se toda a massa estesse concentrada na posção do c.m.

15 9.5 Teorema dos eos paralelos M y y a c.m. b m Vamos relaconar os momentos de nérca cm (em relação a um eo que passa pelo c.m.) e (em relação a um eo que passa por um ponto qualquer, paralelo ao eo que passa pelo c.m.) ( ) cm mr m y m [( a) ( y b) ] ( a a y by b ) m ( ) ( ) y a m b m y a b m ( a ) cm amx cm bmycm M b m

16 y M y a m d b cm Md c.m. ( a ) cm amx cm bmycm M b Teorema dos eos paralelos Vamos erfcar que funcona para uma haste fna: cm ML L ML ML etremdad e cm M 4 3 ML

17 rómas aulas: 4a. Fera /: Não haerá aula 6a. Fera 4/: Aula de Eercícos (sala A-37) 4a. Fera 9/: Aula Magna (sala A-343)

Dinâmica do Movimento de Rotação

Dinâmica do Movimento de Rotação Dnâmca do Movmento de Rotação - ntrodução Neste Capítulo vamos defnr uma nova grandeza físca, o torque, que descreve a ação gratóra ou o efeto de rotação de uma força. Verfcaremos que o torque efetvo que

Leia mais

Fone:

Fone: Prof. Valdr Gumarães Físca para Engenhara FEP111 (4300111) 1º Semestre de 013 nsttuto de Físca- Unversdade de São Paulo Aula 8 Rotação, momento nérca e torque Professor: Valdr Gumarães E-mal: valdrg@f.usp.br

Leia mais

F-128 Física Geral I. Aula exploratória-10b UNICAMP IFGW

F-128 Física Geral I. Aula exploratória-10b UNICAMP IFGW F-18 Físca Geral I Aula exploratóra-10b UNICAMP IFGW username@f.uncamp.br O teorema dos exos paralelos Se conhecermos o momento de nérca I CM de um corpo em relação a um exo que passa pelo seu centro de

Leia mais

Capítulo 9. Colisões. Recursos com copyright incluídos nesta apresentação:

Capítulo 9. Colisões. Recursos com copyright incluídos nesta apresentação: Capítulo 9 Colsões Recursos com copyrght ncluídos nesta apresentação: http://phet.colorado.edu Denremos colsão como uma nteração com duração lmtada entre dos corpos. Em uma colsão, a orça externa resultante

Leia mais

Física Geral I - F Aula 12 Momento Angular e sua Conservação. 2º semestre, 2012

Física Geral I - F Aula 12 Momento Angular e sua Conservação. 2º semestre, 2012 Físca Geral I - F -18 Aula 1 Momento Angular e sua Conservação º semestre, 01 Momento Angular Como vmos anterormente, as varáves angulares de um corpo rígdo grando em torno de um exo fxo têm sempre correspondentes

Leia mais

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016 Robótca Prof. Renaldo Banch Centro Unverstáro FEI 2016 6 a Aula IECAT Objetvos desta aula Momentos Lneares, angulares e de Inérca. Estátca de manpuladores: Propagação de forças e torques. Dnâmca de manpuladores:

Leia mais

F-128 Física Geral I. Aula exploratória-11b UNICAMP IFGW

F-128 Física Geral I. Aula exploratória-11b UNICAMP IFGW F-18 Físca Geral I Aula exploratóra-11b UNICAMP IFGW username@f.uncamp.br Momento Angular = r p O momento angular de uma partícula de momento em relação ao ponto O é: p (Note que a partícula não precsa

Leia mais

Aula 3 - Classificação de sinais

Aula 3 - Classificação de sinais Processamento Dgtal de Snas Aula 3 Professor Marco Esencraft feverero 0 Aula 3 - Classfcação de snas Bblografa OPPENHEIM, AV; WILLSKY, A S Snas e Sstemas, a edção, Pearson, 00 ISBN 9788576055044 Págnas

Leia mais

Consideraremos agora, uma de cada vez, as equivalentes angulares das grandezas de posição, deslocamento, velocidade e aceleração.

Consideraremos agora, uma de cada vez, as equivalentes angulares das grandezas de posição, deslocamento, velocidade e aceleração. CAPÍTULO 5 77 5.1 Introdução A cnemátca dos corpos rígdos trata dos movmentos de translação e rotação. No movmento de translação pura todas as partes de um corpo sofrem o mesmo deslocamento lnear. Por

Leia mais

S.A. 1. 2002; TIPLER, P. A.; MOSCA, G.

S.A. 1. 2002; TIPLER, P. A.; MOSCA, G. Rotação Nota Alguns sldes, fguras e exercícos pertencem às seguntes referêncas: HALLIDAY, D., RESNICK, R., WALKER, J. Fundamentos da Físca. V 1. 4a.Edção. Ed. Lvro Técnco Centífco S.A. 00; TIPLER, P. A.;

Leia mais

Física Geral I F Aula 3 Escalares e Vetores. Segundo semestre de 2009

Física Geral I F Aula 3 Escalares e Vetores. Segundo semestre de 2009 Físca Geral I F -128 ula 3 Escalares e Vetores Segundo semestre de 2009 Grandeas Escalares e Vetoras Uma grandea físca é um escalar quando pode ser caracterada apenas por um número, sem necessdade de assocar-lhe

Leia mais

FUNDAMENTOS DE ROBÓTICA. Modelo Cinemático de Robôs Manipuladores

FUNDAMENTOS DE ROBÓTICA. Modelo Cinemático de Robôs Manipuladores FUNDMENTOS DE ROBÓTIC Modelo Cnemátco de Robôs Manpuladores Modelo Cnemátco de Robôs Manpuladores Introdução Modelo Cnemátco Dreto Modelo Cnemátco de um Robô de GDL Representação de Denavt-Hartenberg Exemplos

Leia mais

MECÂNICA CLÁSSICA. AULA N o 7. Teorema de Liouville Fluxo no Espaço de Fases Sistemas Caóticos Lagrangeano com Potencial Vetor

MECÂNICA CLÁSSICA. AULA N o 7. Teorema de Liouville Fluxo no Espaço de Fases Sistemas Caóticos Lagrangeano com Potencial Vetor 1 MECÂNICA CLÁSSICA AULA N o 7 Teorema de Louvlle Fluo no Espaço de Fases Sstemas Caótcos Lagrangeano com Potencal Vetor Voltando mas uma ve ao assunto das les admssíves na Físca, acrescentamos que, nos

Leia mais

Física E Extensivo V. 6

Física E Extensivo V. 6 GAARITO ísca E Extenso V. 6 Exercícos ) I. also. Depende da permeabldade do meo. II. Verdadero. III. Verdadero. ~ R µ. µ. π. d R π π. R R ) R cm 6 A 5) 5 6 A µ. R 4 π. -7. 6., π. 6,π. 5 T 8 A 3) A A regra

Leia mais

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 37 (pág. 88) AD TM TC. Aula 38 (pág. 88) AD TM TC. Aula 39 (pág.

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 37 (pág. 88) AD TM TC. Aula 38 (pág. 88) AD TM TC. Aula 39 (pág. ísca Setor Prof.: Índce-controle de Estudo ula 37 (pág. 88) D TM TC ula 38 (pág. 88) D TM TC ula 39 (pág. 88) D TM TC ula 40 (pág. 91) D TM TC ula 41 (pág. 94) D TM TC ula 42 (pág. 94) D TM TC ula 43 (pág.

Leia mais

F-128 Física Geral I. Aula Exploratória Cap. 3.

F-128 Física Geral I. Aula Exploratória Cap. 3. F-128 Físca Geral I ula Eploratóra Cap. 3 username@f.uncamp.br Soma de vetores usando componentes cartesanas Se, o vetor C será dado em componentes cartesanas por: C ( î ĵ)( î ĵ) ( )î ( )ĵ C C î C ĵ onde:

Leia mais

Engenharia Civil/Mecânica Cálculo 3-3º semestre de 2012 Profa Gisele A.A. Sanchez

Engenharia Civil/Mecânica Cálculo 3-3º semestre de 2012 Profa Gisele A.A. Sanchez Engenhara Cvl/Mecânca Cálclo - º semestre de 01 Proa Gsele A.A. Sanchez 4ª ala: Dervadas Dreconas e Gradente Gradentes e dervadas dreconas de nções com das varáves As dervadas parcas de ma nção nos dão

Leia mais

Trabalho e Energia. Definimos o trabalho W realizado pela força sobre uma partícula como o produto escalar da força pelo deslocamento.

Trabalho e Energia. Definimos o trabalho W realizado pela força sobre uma partícula como o produto escalar da força pelo deslocamento. Trabalho e Energa Podemos denr trabalho como a capacdade de produzr energa. Se uma orça eecutou um trabalho sobre um corpo ele aumentou a energa desse corpo de. 1 OBS: Quando estudamos vetores vmos que

Leia mais

Física. Física Módulo 1 Vetores, escalares e movimento em 2-D

Física. Física Módulo 1 Vetores, escalares e movimento em 2-D Físca Módulo 1 Vetores, escalares e movmento em 2-D Vetores, Escalares... O que são? Para que servem? Por que aprender? Escalar Defnção: Escalar Grandea sem dreção assocada. Eemplos: Massa de uma bola,

Leia mais

Física I para Engenharia. Aula 7 Massa variável - colisões

Física I para Engenharia. Aula 7 Massa variável - colisões Físca I para Engenhara º Seestre de 04 Insttuto de Físca- Unersdade de São Paulo Aula 7 Massa aráel - colsões Proessor: Valdr Guarães E-al: aldrg@.usp.br Massa Contnuaente Varáel F res F res F res dp d(

Leia mais

2010 The McGraw-Hill Companies, Inc. All rights reserved. Prof.: Anastácio Pinto Gonçalves Filho

2010 The McGraw-Hill Companies, Inc. All rights reserved. Prof.: Anastácio Pinto Gonçalves Filho rof.: nastáco nto Gonçalves lho Introdução Nem sempre é possível tratar um corpo como uma únca partícula. Em geral, o tamanho do corpo e os pontos de aplcação específcos de cada uma das forças que nele

Leia mais

Física I p/ IO FEP111 ( )

Física I p/ IO FEP111 ( ) ísca I p/ IO EP (4300) º Semestre de 00 Insttuto de ísca Unversdade de São Paulo Proessor: Antono Domngues dos Santos E-mal: adsantos@.usp.br one: 309.6886 4 e 6 de setembro Trabalho e Energa Cnétca º

Leia mais

Matemática. Veículo A. Veículo B. Os gráficos das funções interceptam-se quando 50t = 80t

Matemática. Veículo A. Veículo B. Os gráficos das funções interceptam-se quando 50t = 80t Matemátca 0 Dos veículos, A e B, partem de um ponto de uma estrada, em sentdos opostos e com velocdades constantes de 50km/h e 70km/h, respectvamente Após uma hora, o veículo B retorna e, medatamente,

Leia mais

2 Principio do Trabalho Virtual (PTV)

2 Principio do Trabalho Virtual (PTV) Prncpo do Trabalho rtual (PT)..Contnuo com mcroestrutura Na teora que leva em consderação a mcroestrutura do materal, cada partícula anda é representada por um ponto P, conforme Fgura. Porém suas propredades

Leia mais

Física I para Oceanografia FEP111 ( ) Aula 10 Rolamento e momento angular

Física I para Oceanografia FEP111 ( ) Aula 10 Rolamento e momento angular Físca para Oceanograa FEP (4300) º Semestre de 0 nsttuto de Físca- Unversdade de São Paulo Aula 0 olamento e momento angular Proessor: Valdr Gumarães E-mal: valdr.gumaraes@usp.br Fone: 309.704 olamento

Leia mais

INTRODUÇÃO À ASTROFÍSICA

INTRODUÇÃO À ASTROFÍSICA Introdução à Astrofísca INTRODUÇÃO À ASTROFÍSICA LIÇÃO 7: A MECÂNICA CELESTE Lção 6 A Mecânca Celeste O que vmos até agora fo um panorama da hstóra da astronoma. Porém, esse curso não pretende ser de dvulgação

Leia mais

γ = C P C V = C V + R = q = 2 γ 1 = 2 S gas = dw = W isotermico

γ = C P C V = C V + R = q = 2 γ 1 = 2 S gas = dw = W isotermico Q1 Um clndro feto de materal com alta condutvdade térmca e de capacdade térmca desprezível possu um êmbolo móvel de massa desprezível ncalmente fxo por um pno. O rao nterno do clndro é r = 10 cm, a altura

Leia mais

Física I. Aula 9 Rotação, momento inércia e torque

Física I. Aula 9 Rotação, momento inércia e torque Físca º Semeste de 01 nsttuto de Físca- Unvesdade de São Paulo Aula 9 Rotação, momento néca e toque Pofesso: Vald Gumaães E-mal: valdg@f.usp.b Fone: 091.7104 Vaáves da otação Neste tópco, tataemos da otação

Leia mais

Módulo 4 Sistema de Partículas e Momento Linear

Módulo 4 Sistema de Partículas e Momento Linear Módulo 4 Sstea de Partículas e Moento Lnear Moento lnear Moento lnear (quantdade de oento) de ua partícula: Grandeza etoral Undades S.I. : kg./s p Moento lnear e ª Le de ewton: Se a assa é constante: F

Leia mais

Exemplos. representado a seguir, temos que: são positivas. são negativas. i

Exemplos. representado a seguir, temos que: são positivas. são negativas. i 6 Prodto Vetoral Para defnrmos o prodto etoral entre dos etores é ndspensáel dstngrmos o qe são bases postas e bases negatas Para sso consderemos ma base do espaço { } e m obserador Este obserador dee

Leia mais

Capítulo 24: Potencial Elétrico

Capítulo 24: Potencial Elétrico Capítulo 24: Potencal Energa Potencal Elétrca Potencal Superfíces Equpotencas Cálculo do Potencal a Partr do Campo Potencal Produzdo por uma Carga Pontual Potencal Produzdo por um Grupo de Cargas Pontuas

Leia mais

4 Sistemas de partículas

4 Sistemas de partículas 4 Sstemas de partículas Nota: será feta a segunte convenção: uma letra em bold representa um vector,.e. b b Nesta secção estudaremos a generalzação das les de Newton a um sstema de váras partículas e as

Leia mais

Vibrações e Dinâmica das Máquinas Aula - Cinemática. Professor: Gustavo Silva

Vibrações e Dinâmica das Máquinas Aula - Cinemática. Professor: Gustavo Silva Vibrações e Dinâmica das Máquinas Aula - Cinemática Professor: Gustavo Silva 1 Cinemática do Movimento Plano de um Corpo Rígido 1 Movimento de um corpo rígido; 2 Translação; 3 Rotação em torno de um eixo

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Potências e raízes Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Potências e raízes Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Potêncas e raízes Propostas de resolução Exercícos de exames e testes ntermédos 1. Smplfcando a expressão de z na f.a., como 5+ ) 5 1 5, temos: z 1 + 1 ) + 1 1 1

Leia mais

Mecânica. Sistemas de Partículas

Mecânica. Sistemas de Partículas Mecânca Sstemas de Partículas Mecânca» Sstemas de Partículas Introdução A dnâmca newtonana estudada até aqu fo utlzada no entendmento e nas prevsões do movmento de objetos puntformes. Objetos dealzados,

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos da físca 3 Undade C Capítulo 4 Força agnétca esoluções dos exercícos propostos P.33 Característcas da força agnétca : dreção: perpendcular a e a, sto é: da reta s C u D r sentdo: deternado pela regra da

Leia mais

Vibrações e Dinâmica das Máquinas Aula Momento de Inércia. Professor: Gustavo Silva

Vibrações e Dinâmica das Máquinas Aula Momento de Inércia. Professor: Gustavo Silva Vibrações e Dinâmica das Máquinas Aula Momento de Inércia Professor: Gustavo Silva 1 1.Momento de Inércia A massa m representa a resistência de um corpo à aceleração a. F = m a Força Massa Do mesmo modo,

Leia mais

Revisão da mecânica Newtoniana

Revisão da mecânica Newtoniana apítulo Resão da mecânca Newtonana 1 nemátca O objecto da cnemátca é a descrção completa da trajectóra do momento de um corpo em função do tempo pergunta que se coloca aqu é como se moe um corpo, não se

Leia mais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais 30 Varáves aleatóras bdmensonas Sea ε uma experênca aleatóra e S um espaço amostral assocado a essa experênca. Seam X X(s) e Y Y(s) duas funções cada uma assocando um número real a cada resultado s S.

Leia mais

Antenas e Propagação Folha de exercícios nº2 Conceitos Fundamentais

Antenas e Propagação Folha de exercícios nº2 Conceitos Fundamentais Antenas e Propagação Folha de eercícos nº2 Concetos Fundamentas 1. Uma onda electromagnétca plana e unforme propaga-se em meo lvre. O campo magnétco H é dado por: 1 jk H e ( ˆ 2 yˆ) 120 a) Determne o campo

Leia mais

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE EXERCÍCIOS DE RECUERAÇÃO ARALELA 4º BIMESTRE NOME Nº SÉRIE : 2º EM DATA : / / BIMESTRE 4º ROFESSOR: Renato DISCILINA: Físca 1 VISTO COORDENAÇÃO ORIENTAÇÕES: 1. O trabalho deverá ser feto em papel almaço

Leia mais

18 e 20/Abr/2016 Aulas 12 e 13. Introdução à Física Estatística Postulados Equilíbrio térmico Função de Partição; propriedades termodinâmicas

18 e 20/Abr/2016 Aulas 12 e 13. Introdução à Física Estatística Postulados Equilíbrio térmico Função de Partição; propriedades termodinâmicas 01/Abr/2016 Aula 11 Potencas termodnâmcos Energa nterna total Entalpa Energas lvres de Helmholtz e de Gbbs Relações de Maxwell 18 e 20/Abr/2016 Aulas 12 e 13 Introdução à Físca Estatístca Postulados Equlíbro

Leia mais

CAPÍTULO 4. Vamos partir da formulação diferencial da lei de Newton

CAPÍTULO 4. Vamos partir da formulação diferencial da lei de Newton 9 CPÍTUL 4 DINÂMIC D PRTÍCUL: IMPULS E QUNTIDDE DE MVIMENT Nese capíulo será analsada a le de Newon na forma de negral no domíno do empo, aplcada ao momeno de parículas. Defne-se o conceo de mpulso e quandade

Leia mais

ANÁLISE MATRICIAL DE ESTRUTURAS DE BARRAS PELO MÉTODO DE RIGIDEZ

ANÁLISE MATRICIAL DE ESTRUTURAS DE BARRAS PELO MÉTODO DE RIGIDEZ ANÁISE MATRICIA DE ESTRUTURAS DE BARRAS PEO MÉTODO DE RIGIDEZ A análse matrcal de estruturas pelo método de rgdez compreende o estudo de cnco modelos estruturas báscos: trelça plana, trelça espacal, pórtco

Leia mais

Cap. 6 - Energia Potencial e Conservação da Energia Mecânica

Cap. 6 - Energia Potencial e Conservação da Energia Mecânica Unversdade Federal do Ro de Janero Insttuto de Físca Físca I IGM1 014/1 Cap. 6 - Energa Potencal e Conservação da Energa Mecânca Prof. Elvs Soares 1 Energa Potencal A energa potencal é o nome dado a forma

Leia mais

Sistema de Partículas e Conservação da Quantidade de Movimento Linear

Sistema de Partículas e Conservação da Quantidade de Movimento Linear Sst. Part e Cons. Quant. o. Lnear Sstea de Partículas e Conseração da Quantdade de oento Lnear ota Alguns sldes, fguras e eercícos pertence às seguntes referêncas: HALLIDAY, D., RESICK, R., WALKER, J.

Leia mais

Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino*

Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino* ROTAÇÃO Física Geral I (1108030) - Capítulo 07 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 25 Translação e Rotação Sumário Definições, variáveis da rotação e notação vetorial Rotação com aceleração angular

Leia mais

Aula 3 Trabalho e Energia - Bioenergética

Aula 3 Trabalho e Energia - Bioenergética Aula 3 Tabalho e Enega - Boenegétca Cálculo deencal Taa de vaação nstantânea de uma unção: lm ( ) ( ) (Função devada) Notação: lm ( ) ( ) d d Cálculo ntegal Áea sob o gáco de uma unção: ( 1 ) ) ( 2 Áea

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

Física Geral I - F Aula 13 Conservação do Momento Angular e Rolamento. 2 0 semestre, 2010

Física Geral I - F Aula 13 Conservação do Momento Angular e Rolamento. 2 0 semestre, 2010 Físca Geal - F -18 Aula 13 Consevação do Momento Angula e Rolamento 0 semeste, 010 Consevação do momento angula No sstema homem - haltees só há foças ntenas e, potanto: f f z constante ) ( f f Com a apoxmação

Leia mais

A ; (1) A z. A A y

A ; (1) A z. A A y 1 Prmera aula Thals Grard thalsjg@gmal.com Sumáro 1. Introdução da notação ndcal 2. O produto escalar e o de Kronecker 3. Rotações 4. O produto vetoral e o " de Lev-Cvta 5. Trplo produto escalar e determnantes

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Constata-se, freqüentemente, a estênca de uma relação entre duas (ou mas) varáves. Se tal relação é de natureza quanttatva, a correlação é o nstrumento adequado para descobrr e medr

Leia mais

CONSERVAÇÃO DO MOMENTO ANGULAR

CONSERVAÇÃO DO MOMENTO ANGULAR Aula 9 CONSEVAÇÃO DO MOMENTO ANGULA META ntroduzr a tercera grande le de conservação da mecânca, que é a le de Conservação do Momento Angular. Mostrar como resolver os problemas de cnemátca e dnâmca envolvendo

Leia mais

Capítulo 26: Corrente e Resistência

Capítulo 26: Corrente e Resistência Capítulo 6: Corrente e esstênca Cap. 6: Corrente e esstênca Índce Corrente Elétrca Densdade de Corrente Elétrca esstênca e esstvdade Le de Ohm Uma Vsão Mcroscópca da Le de Ohm Potênca em Crcutos Elétrcos

Leia mais

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo POLEMS ESOLVDOS DE FÍSC Prof. nderson Coser Gaudo Departamento de Físca Centro de Cêncas Eatas Unversdade Federal do Espírto Santo http://www.cce.ufes.br/anderson anderson@npd.ufes.br Últma atualação:

Leia mais

1 Introdução. 2 Sólidos e fluidos

1 Introdução. 2 Sólidos e fluidos Lcencatura em Engenhara do Ambente Dscplna de Mecânca dos Fludos Propredades dos Fludos e do Campo de Velocdades Ramro ees 00 Índce Introdução... Sóldos e fludos... Massa Volúmca:... 4 Peso olúmco... 5

Leia mais

Laboratório de Mecânica Aplicada I Estática: Roldanas e Equilíbrio de Momentos

Laboratório de Mecânica Aplicada I Estática: Roldanas e Equilíbrio de Momentos Laboratóro de Mecânca Aplcada I Estátca: Roldanas e Equlíbro de Momentos 1 Introdução O conhecmento das condções de equlíbro de um corpo é mprescndível em númeras stuações. Por exemplo, o estudo do equlíbro

Leia mais

Notas de Aula de Probabilidade A

Notas de Aula de Probabilidade A VII- VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS. 7. CONCEITO DE VARIÁVEIS ALEATÓRIAS: Informalmente, uma varável aleatóra é um característco numérco do resultado de um epermento aleatóro. Defnção: Uma varável

Leia mais

Física I para a Escola Politécnica ( ) - P3 (07/07/2017)

Física I para a Escola Politécnica ( ) - P3 (07/07/2017) Física I para a Escola Politécnica (433101) - P3 (07/07/017) [0000]-p1/9 QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) (1) [1,0] Uma bola de sinuca de raio r rola sem deslizar do topo de um domo esférico com raio

Leia mais

3. Um protão move-se numa órbita circular de raio 14 cm quando se encontra. b) Qual o valor da velocidade linear e da frequência ciclotrónica do

3. Um protão move-se numa órbita circular de raio 14 cm quando se encontra. b) Qual o valor da velocidade linear e da frequência ciclotrónica do Electromagnetsmo e Óptca Prmero Semestre 007 Sére. O campo magnétco numa dada regão do espaço é dado por B = 4 e x + e y (Tesla. Um electrão (q e =.6 0 9 C entra nesta regão com velocdade v = e x + 3 e

Leia mais

3. Equações de base da mecânica dos fluidos (perfeitos)

3. Equações de base da mecânica dos fluidos (perfeitos) UC Mecânca de Fludos / 2º cclo de ng mbente UC Mecânca de Fludos / 2º cclo de ng mbente MCÂNIC D FLUIDO 3. da mecânca dos fludos (perfetos) 4ª aula 3.1 Fundamentos de cnemátca de fludos; Campos de escoamento;

Leia mais

MOVIMENTO ROTACIONAL E MOMENTO DE INÉRCIA

MOVIMENTO ROTACIONAL E MOMENTO DE INÉRCIA MOVIMENTO ROTACIONAL E MOMENTO DE INÉRCIA 1.0 Definições Posição angular: utiliza-se uma medida de ângulo a partir de uma direção de referência. É conveniente representar a posição da partícula com suas

Leia mais

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012 Notas Processos estocástcos Nestor Catcha 23 de abrl de 2012 notas processos estocástcos 2 O Teorema de Perron Frobenus para matrzes de Markov Consdere um processo estocástco representado por um conunto

Leia mais

Eletromagnetismo Aplicado

Eletromagnetismo Aplicado letromagnetsmo Aplcado Undade 5 Propagação de Ondas letromagnétcas em Meos Ilmtados e Polaração Prof. Marcos V. T. Heckler Propagação de Ondas letromagnétcas e Polaração 1 Conteúdo Defnções e parâmetros

Leia mais

Equações de Movimento

Equações de Movimento Euações de Movmento Vbrações e Ruído (0375) 06 Departamento de Cêncas Aeroespacas Tópcos Abordagem Newtonana. Prncípo de d Alembert. Abordagem energétca. Prncípo dos trabalhos vrtuas. Euações de Lagrange.

Leia mais

Capítulo 19. A teoria cinética dos gases

Capítulo 19. A teoria cinética dos gases Capítulo 19 A teora cnétca dos gases Neste capítulo, a ntroduzr a teora cnétca dos gases que relacona o momento dos átomos e moléculas com olume, pressão e temperatura do gás. Os seguntes tópcos serão

Leia mais

Aula 10: Corrente elétrica

Aula 10: Corrente elétrica Unversdade Federal do Paraná Setor de Cêncas Exatas Departamento de Físca Físca III Prof. Dr. Rcardo Luz Vana Referêncas bblográfcas: H. 28-2, 28-3, 28-4, 28-5 S. 26-2, 26-3, 26-4 T. 22-1, 22-2 Aula 10:

Leia mais

As variáveis de rotação

As variáveis de rotação Capítulo 10 Rotação Neste capítulo vamos estudar o movimento de rotação de corpos rígidos sobre um eixo fixo. Para descrever esse tipo de movimento, vamos introduzir os seguintes conceitos novos: -Deslocamento

Leia mais

2ª PARTE Estudo do choque elástico e inelástico.

2ª PARTE Estudo do choque elástico e inelástico. 2ª PARTE Estudo do choque elástco e nelástco. Introdução Consderemos dos corpos de massas m 1 e m 2, anmados de velocdades v 1 e v 2, respectvamente, movmentando-se em rota de colsão. Na colsão, os corpos

Leia mais

Mecânica dos Solos I prof. Agda A ÁGUA NO SOLO 1. INTRODUÇÃO 2. CONSERVAÇÃO DA ENERGIA. u γ. v htotal 2. LEI DE DARCY

Mecânica dos Solos I prof. Agda A ÁGUA NO SOLO 1. INTRODUÇÃO 2. CONSERVAÇÃO DA ENERGIA. u γ. v htotal 2. LEI DE DARCY A ÁGUA NO SOLO. INTRODUÇÃO A água ocupa a maor parte dos azos do solo. E quando é submetda a dferenças de potencas, ela se desloca no seu nteror. As les que regem os fenômenos de fluxo de água em solos

Leia mais

Conhecimentos Específicos

Conhecimentos Específicos PROCESSO SELETIVO 010 13/1/009 INSTRUÇÕES 1. Confra, abaxo, o seu número de nscrção, turma e nome. Assne no local ndcado. Conhecmentos Específcos. Aguarde autorzação para abrr o caderno de prova. Antes

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

1 Objetivo da experiência: Medir o módulo da aceleração da gravidade g no nosso laboratório com ajuda de um pêndulo simples.

1 Objetivo da experiência: Medir o módulo da aceleração da gravidade g no nosso laboratório com ajuda de um pêndulo simples. Departamento de Físca ICE/UFJF Laboratóro de Físca II Prátca : Medda da Aceleração da Gravdade Objetvo da experênca: Medr o módulo da aceleração da gravdade g no nosso laboratóro com ajuda de um pêndulo

Leia mais

MECÂNICA GERAL Apostila 3 : Rotação do Corpo Rígido. Professor Renan

MECÂNICA GERAL Apostila 3 : Rotação do Corpo Rígido. Professor Renan MECÂNICA GERAL Apostila 3 : Rotação do Corpo Rígido Professor Renan 1 Centro de massa Um corpo extenso pode ser considerado um sistema de partículas, cada uma com sua massa. A resultante total das massas

Leia mais

Apostila 2 Setor A. Aula 20. Velocidade Vetorial. Página 184. Gnomo

Apostila 2 Setor A. Aula 20. Velocidade Vetorial. Página 184. Gnomo Apostila 2 Setor A Aula 20 Página 184 Velocidade Vetorial INTRODUÇÃO Na Cinemática Escalar, o estudo de um movimento era feito independentemente da trajetória do móvel. Na Cinemática Vetorial, as grandezas

Leia mais

Experiência V (aulas 08 e 09) Curvas características

Experiência V (aulas 08 e 09) Curvas características Experênca (aulas 08 e 09) Curvas característcas 1. Objetvos 2. Introdução 3. Procedmento expermental 4. Análse de dados 5. Referêncas 1. Objetvos Como no expermento anteror, remos estudar a adequação de

Leia mais

Física I para Engenharia. Aula 5 Trabalho Energia Potencial

Física I para Engenharia. Aula 5 Trabalho Energia Potencial ísca I para Engenhara º Semestre de 4 Insttuto de ísca- Unversdade de São Paulo Aula 5 Trabalho Energa Potencal Proessor: Valdr Gumarães E-mal: valdrg@.usp.br Trabalho realzado por uma orça constante

Leia mais

Cinemática de Corpos Rígidos Cinética de Corpos Rígidos Métodos Newton-Euler Exemplos. EESC-USP M. Becker /67

Cinemática de Corpos Rígidos Cinética de Corpos Rígidos Métodos Newton-Euler Exemplos. EESC-USP M. Becker /67 SEM004 - Aul Cnemátc e Cnétc de Corpos Rígdos Prof. Dr. Mrcelo Becker SEM - EESC - USP Sumáro d Aul ntrodução Cnemátc de Corpos Rígdos Cnétc de Corpos Rígdos Métodos Newton-Euler Eemplos EESC-USP M. Becker

Leia mais

Probabilidade e Estatística. Correlação e Regressão Linear

Probabilidade e Estatística. Correlação e Regressão Linear Probabldade e Estatístca Correlação e Regressão Lnear Correlação Este uma correlação entre duas varáves quando uma delas está, de alguma forma, relaconada com a outra. Gráfco ou Dagrama de Dspersão é o

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso de Admnstração em Gestão Públca Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos uns dos

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso Superor de tecnólogo em Gestão Ambental Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos

Leia mais

Aula 7: Circuitos. Curso de Física Geral III F-328 1º semestre, 2014

Aula 7: Circuitos. Curso de Física Geral III F-328 1º semestre, 2014 Aula 7: Crcutos Curso de Físca Geral III F-38 º semestre, 04 Ponto essencal Para resolver um crcuto de corrente contínua, é precso entender se as cargas estão ganhando ou perdendo energa potencal elétrca

Leia mais

G3 FIS /06/2013 MECÂNICA NEWTONIANA B NOME:

G3 FIS /06/2013 MECÂNICA NEWTONIANA B NOME: G3 FIS1026 17/06/2013 MECÂNICA NEWTONIANA B NOME: Matrícula: TURMA: QUESTÃO VALOR GRAU REVISÃO 1 3,0 2 3,5 3 3,5 Total 10,0 Dados: g = 10 m/s 2 ; Sistema de coordenadas y α constante: Δω = αt; Δθ = ω 0

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas Unversdade Salvador UNIFACS Cursos de Engenhara Cálculo IV Profa: Ilka ebouças Frere Integras Múltplas Texto 3: A Integral Dupla em Coordenadas Polares Coordenadas Polares Introduzremos agora um novo sstema

Leia mais

Física I 2010/2011. Aula 13 Rotação I

Física I 2010/2011. Aula 13 Rotação I Física I 2010/2011 Aula 13 Rotação I Sumário As variáveis do movimento de rotação As variáveis da rotação são vectores? Rotação com aceleração angular constante A relação entre as variáveis lineares e

Leia mais

Aula 6: Corrente e resistência

Aula 6: Corrente e resistência Aula 6: Corrente e resstênca Físca Geral III F-328 1º Semestre 2014 F328 1S2014 1 Corrente elétrca Uma corrente elétrca é um movmento ordenado de cargas elétrcas. Um crcuto condutor solado, como na Fg.

Leia mais

Proposta de resolução do Exame Nacional de Matemática A 2016 (2 ạ fase) GRUPO I (Versão 1) Logo, P(A B) = = = Opção (A)

Proposta de resolução do Exame Nacional de Matemática A 2016 (2 ạ fase) GRUPO I (Versão 1) Logo, P(A B) = = = Opção (A) Proosta de resolução do Eame Naconal de Matemátca A 0 ( ạ fase) GRUPO I (Versão ). P( A B) 0, P(A B) 0, P(A B) 0, P(A B) 0,4 P(A) + P(B) P(A B) 0,4 Como P(A) 0, e P(B) 0,, vem que: 0, + 0, P(A B) 0,4 P(A

Leia mais

Matemática 3 Módulo 3

Matemática 3 Módulo 3 Matemática Módulo COMENTÁRIOS ATIVIDADES PARA SALA 1. Lembrando... Se duas figuras são semelhantes, temos: 1 A = k; 1 = k, em que R 1 e R são medidas lineares A e A 1 e A são as áreas. Círculo I IV. =

Leia mais

CAPITULO II - FORMULAÇAO MATEMATICA

CAPITULO II - FORMULAÇAO MATEMATICA CAPITULO II - FORMULAÇAO MATEMATICA II.1. HIPOTESES BASICAS A modelagem aqu empregada está baseado nas seguntes hpóteses smplfcadoras : - Regme permanente; - Ausênca de forças de campo; - Ausênca de trabalho

Leia mais

FIS-26 Resolução Lista-04 Lucas Galembeck 2013

FIS-26 Resolução Lista-04 Lucas Galembeck 2013 FIS-6 Resolução Lista-4 Lucas Galembeck 1 1. Um cordão é enrolado num pequeno cilindro homogêneo de massa M. Supondo que ele seja puxado por uma força F para frente, calcule a aceleração do cilindro e

Leia mais

MOVIMENTO 3D: EQUAÇÕES DE MOVIMENTO

MOVIMENTO 3D: EQUAÇÕES DE MOVIMENTO MOVIMENTO 3D: EQUAÇÕES DE MOVIMENTO INTRODUÇÃO ESTUDO DE CASO Um motor de dois cilindros roda em vazio a 1000 rpm quando a válvula borboleta é aberta. Como a forma assimétrica da árvore de manivelas e

Leia mais

Eletromagnetismo. Distribuição de grandezas físicas: conceitos gerais

Eletromagnetismo. Distribuição de grandezas físicas: conceitos gerais Eletromagnetsmo Dstrbução de grandezas físcas: concetos geras Eletromagnetsmo» Dstrbução de grandezas físcas: concetos geras 1 Introdução Pode-se caracterzar um problema típco do eletromagnetsmo como o

Leia mais

Circuitos Elétricos. 1) Introducão. Revisão sobre elementos. Fontes independentes de tensão e corrente. Fonte Dependente

Circuitos Elétricos. 1) Introducão. Revisão sobre elementos. Fontes independentes de tensão e corrente. Fonte Dependente Crcutos Elétrcos 1) Introducão Resão sobre elementos Fontes ndependentes de tensão e corrente Estas fontes são concetos muto útes para representar nossos modelos de estudo de crcutos elétrcos. O fato de

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

d) [1,0 pt.] Determine a velocidade v(t) do segundo corpo, depois do choque, em relação à origem O do sistema de coordenadas mostrado na figura.

d) [1,0 pt.] Determine a velocidade v(t) do segundo corpo, depois do choque, em relação à origem O do sistema de coordenadas mostrado na figura. 1) Uma barra delgada homogênea de comprimento L e massa M está inicialmente em repouso como mostra a figura. Preso a uma de suas extremidades há um objeto de massa m e dimensões desprezíveis. Um segundo

Leia mais

Capítulo 6 Trabalho e Energia Cinética

Capítulo 6 Trabalho e Energia Cinética Capítulo 6 Trabalho e Energia Cinética Muitos problemas de Mecânica não têm solução simples usando as Leis de Newton Eemplo: velocidade de um carrinho de montanha-russa durante seu percurso (mesmo desprezando

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

do Semi-Árido - UFERSA

do Semi-Árido - UFERSA Unversdade Federal Rural do Sem-Árdo - UFERSA Temperatura e Calor Subêna Karne de Mederos Mossoró, Outubro de 2009 Defnção: A Termodnâmca explca as prncpas propredades damatéra e a correlação entre estas

Leia mais

Rede de Hopfield. Rede de camada única com realimentação x n x 2 x 1 w 1n. w n2. w n1 w 2n w 21. w 12

Rede de Hopfield. Rede de camada única com realimentação x n x 2 x 1 w 1n. w n2. w n1 w 2n w 21. w 12 Rede de Hopfeld Rede de camada únca com realmentação x n x 2 x n n2 2 n 2n 2 - b - - n b 2 b n 2 Memóra (auto-assocata) assocata (terata) ou memóra de conteúdo endereçáel não lnear Cada undade lga com

Leia mais

Física Geral I - F -128. Aula 14 Conservação do Momento Angular; Rolamento. 2º semestre, 2012

Física Geral I - F -128. Aula 14 Conservação do Momento Angular; Rolamento. 2º semestre, 2012 Físca Geral - F -18 Aula 14 Conservação do Momento Angular; Rolamento º semestre, 01 Cnemátca de Rotação Varáves Rotaconas Deslocamento angular: Δθ( t) θ( t+δt) θ( t) z Velocdade angular méda Δ ω θ Δt

Leia mais