F-128 Física Geral I. Aula exploratória-07 UNICAMP IFGW F128 2o Semestre de 2012

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "F-128 Física Geral I. Aula exploratória-07 UNICAMP IFGW F128 2o Semestre de 2012"

Transcrição

1 F-18 Física Geral I Aula eploraória-07 UNICAMP IFGW F18 o Semesre de 01 1

2 Energia Energia é um conceio que ai além da mecânica de Newon e permanece úil ambém na mecânica quânica, relaiidade, eleromagneismo, ec. A conseração da energia oal de um sisema isolado é uma lei undamenal da naureza. F18 o Semesre de 01

3 Trabalho de uma orça ariáel (1-D) Seja F F() a orça resulane que aua sobre uma parícula de massa m. Diidimos o ineralo ( - 1 ) em um número muio grande de pequenos ineralos Δ i. Enão: W i F i Δ i No limie, azendo Δ i à 0 Δ i à 0 W F( ) d 1 (O rabalho é a área sob a cura de orça em unção da posição!) F18 o Semesre de 01 3

4 Energia cinéica e rabalho Subsiuindo a orça pela segunda lei Newon eremos: W F()d m d d m d d d m d d i 1 m ( i ) ΔK Ou seja: i ( ) i ( i ) W 1 m ( i ) ΔK i Ese é o eorema do rabalho-energia cinéica: W área ΔK O rabalho da orça resulane que aua sobre uma parícula enre as posições 1 e é igual à ariação da energia cinéica da parícula enre esas posições. F18 o Semesre de 01 4

5 Trabalho realizado por uma orça elásica F() k F() i Força da mola: F() k W mola i F()d F 1 ( mola i ) W k d k Se o rabalho sobre a mola (massa) or realizado por um agene eerno, seu alor é o obido acima, porém com sinal rocado. i (mola sendo esicada) Se i < à W < 0 F18 o Semesre de 01 5

6 Trabalho de uma orça ariáel: 3D O rabalho ininiesimal dw de uma orça F um deslocameno ininiesimal ds é: F F F ds ds Se θ ( ) ds F F F i + F e (Trajeória C) (em cada insane deemos calcular dw Fds cosθ) y ˆ+ j F F Fy Fy ( y) ; ; z F kˆ z F z (z) agindo em uma parícula ao longo de W dw F ds Porano o rabalho oal, W, será a soma de odos eses rabalhos ininiesimais, dw, ao longo da rajeória descria pela parícula. Esa soma lea uma nome e uma símbolo especial; é a Inegral de Linha dw F ds C W C C Fds cosθ F d + Fy dy + i y y i z z i F z dz F18 o Semesre de 01 6

7 Poência Aé agora não nos pergunamos sobre quão rapidamene é realizado um rabalho! A poência P é a razão (aa) de realização do rabalho por unidade de empo: P dw d Considerando o rabalho em mais de uma dimensão: P dw d F dr d O segundo ermo é a elocidade. Enão: P F Unidade SI: J/s wa (W) dw F dr F18 o Semesre de 01 7

8 Eercício 01 Uma parícula de massa m,0 kg desloca-se ao longo de uma rea. Enre 0 e 7,0 m, ela esá sujeia a uma orça F() represenada no gráico abaio. Sabendo-se que sua elocidade para 0 é de 3,0 m/s: a) calcule a elocidade da parícula nas posições 4,0 m e 7,0 m; b) em que posição a elocidade da parícula é nula? a) ( 4,0m) 5m / s ( 7,0m) 10m / s b) Nunca F18 o Semesre de 01 8

9 a) F up F down Eercício 0 Um bloco de massa m é lançado para cima sobre um plano inclinado de θ com elocidade inicial o. O coeiciene de ario enre o bloco e o plano é menor que gθ, de modo que, depois de parar ao inal do moimeno ascendene, o bloco olará a descer ao longo do plano. a) Consrua o gráico de orça oal sobre o bloco em unção da posição sobre o plano. b) Qual será a alura máima aingida pelo bloco sobre o plano? c) Qual é a quanidade de energia mecânica ransormada em energia érmica durane ese processo? d) Em que elocidade o bloco reornará ao pono de parida? F Area deermina a energia discipada em orma de calor F up mg(sina+mcosa) b) c) ma 0 g (sinα + µ cosα) µ cosα ΔE m (sinα + µ cosα) F down mg(sina -mcosa) sinα µ cosα ma d) 0 F18 o Semesre de 01 sinα + µ cosα m θ

10 Eercício 03 Um corpo de massa m acelera-se uniormemene, parindo do repouso aé a elocidade, no empo. a) Mosre que o rabalho realizado sobre o corpo, como unção do empo em unção de e é dado por: b) Em unção do empo, qual a poência insanânea ornecida ao corpo? c) Qual a poência insanânea, em 10 s, ornecida a um corpo de 1500 kg que é uniormemene acelerado de 0 a 100km/h neses 10 s? 1 m a) a F m W ( ) Fd m d 0 d d m 0 d a b) dw P m d c) P W 155 c (1c 745W) F18 o Semesre de 01 10

11 Eercício 04 Um caioe de massa m esa pendurado na eremidade de uma corda de comprimeno L. Você pua o caioe horizonalmene com uma orça ariáel F, deslocando-o para o lado de uma disância d. a) Qual é o módulo de F, quando o caioe esá na posição inal? Nese deslocameno quais são: b) o rabalho oal realizado sobre o caioe; c) o rabalho oal realizado pela orça graiacional sobre o caioe; d) o rabalho realizado pela corda sobre o caioe? e) Sabendo que o caioe esá em repouso anes e depois do deslocameno, use os iens (b), (c) e (d) para deerminar o rabalho que sua orça realiza sobre o caioe; ) Porque o rabalho da sua orça não é igual ao produo do deslocameno horizonal pela resposa do iem (a)? Resposa (er eercício 65 do liro eo): a) F mggθ b) W Toal 0 c) W P L(1 cosθ) mg d) W T 0 e) W F L(1 cosθ) mg ) A orça aplicada no caioe aria durane o deslocameno F18 o Semesre de 01 11

12 Eercício 05 Qual o rabalho realizado por uma orça: F î + 3 ĵ, onde esá em meros, que é eercida sobre uma parícula enquano ela se moe enre as posições r i î + 3 ĵ e r j 4î 3 ĵ? (Use os dois caminhos abaio) Resp. -6J y F18 o Semesre de 01 1

13 Eercício 06-Era Um sisema ormado por duas lâminas delgadas de mesma massa m, presas por uma mola de consane elásica k e massa desprezíel, enconram-se sobre uma mesa horizonal. a) De que disância a mola esá comprimida na posição de equilíbrio? b) Comprime-se a lâmina superior, abaiando-a de uma disância adicional a parir da posição de equilíbrio. De que disância ela subirá acima da posição de equilíbrio, supondo que a lâmina inerior permaneça em conao com a mesa? c) Qual é o alor mínimo de no iem (b) para qual a lâmina inerior sale da mesa? F18 o Semesre de 01 13

F-128 Física Geral I. Aula exploratória-02 UNICAMP IFGW

F-128 Física Geral I. Aula exploratória-02 UNICAMP IFGW F-8 Física Geral I Aula eploraória- UNICAMP IFGW username@ifi.unicamp.br Velocidades média e insanânea Velocidade média enre e + Δ - - m Δ Δ ** Se Δ > m > (moimeno à direia, ou no senido de crescimeno

Leia mais

Cinemática Vetorial Movimento Retilíneo. Movimento. Mecânica : relaciona força, matéria e movimento

Cinemática Vetorial Movimento Retilíneo. Movimento. Mecânica : relaciona força, matéria e movimento Fisica I - IO Cinemáica Veorial Moimeno Reilíneo Prof. Crisiano Olieira Ed. Basilio Jafe sala crislpo@if.usp.br Moimeno Mecânica : relaciona força, maéria e moimeno Cinemáica : Pare da mecânica que descree

Leia mais

Questões sobre derivadas. 1. Uma partícula caminha sobre uma trajetória qualquer obedecendo à função horária 2

Questões sobre derivadas. 1. Uma partícula caminha sobre uma trajetória qualquer obedecendo à função horária 2 Quesões sobre deriadas. Uma parícula caminha sobre uma rajeória qualquer obedecendo à função horária s ( = - + 0 ( s em meros e em segundos. a Deermine a lei de sua elocidade em função do empo. b Deermine

Leia mais

velocidade inicial: v 0 ; ângulo de tiro com a horizontal: 0.

velocidade inicial: v 0 ; ângulo de tiro com a horizontal: 0. www.fisicaee.com.br Um projéil é disparado com elocidade inicial iual a e formando um ânulo com a horizonal, sabendo-se que os ponos de disparo e o alo esão sobre o mesmo plano horizonal e desprezando-se

Leia mais

Mecânica da partícula

Mecânica da partícula -- Mecânica da parícula Moimenos sob a acção de uma força resulane consane Prof. Luís C. Perna LEI DA INÉRCIA OU ª LEI DE NEWTON LEI DA INÉRCIA Para que um corpo alere o seu esado de moimeno é necessário

Leia mais

Física e Química A 11.º Ano N.º 2 - Movimentos

Física e Química A 11.º Ano N.º 2 - Movimentos Física e Química A 11.º Ano N.º 2 - Moimenos 1. Uma parícula P 1 descree uma rajecória circular, de raio 1,0 m, parindo da posição A no senido indicado na figura 1 (a). fig. 1 Uma oura parícula P 2 descree

Leia mais

Física e Química A Ficha de trabalho nº 2: Unidade 1 Física 11.º Ano Movimentos na Terra e no Espaço

Física e Química A Ficha de trabalho nº 2: Unidade 1 Física 11.º Ano Movimentos na Terra e no Espaço Física e Química A Ficha de rabalho nº 2: Unidade 1 Física 11.º Ano Moimenos na Terra e no Espaço 1. Um corpo descree uma rajecória recilínea, sendo regisada a sua posição em sucessios insanes. Na abela

Leia mais

PROCESSO SELETIVO O DIA GABARITO 2 13 FÍSICA QUESTÕES DE 31 A 45

PROCESSO SELETIVO O DIA GABARITO 2 13 FÍSICA QUESTÕES DE 31 A 45 PROCESSO SELETIVO 27 2 O DIA GABARITO 2 13 FÍSICA QUESTÕES DE 31 A 45 31. No circuio abaixo, uma fone de resisência inerna desprezível é ligada a um resisor R, cuja resisência pode ser variada por um cursor.

Leia mais

figura 1 Vamos encontrar, em primeiro lugar, a velocidade do som da explosão (v E) no ar que será dada pela fórmula = v

figura 1 Vamos encontrar, em primeiro lugar, a velocidade do som da explosão (v E) no ar que será dada pela fórmula = v Dispara-se, segundo um ângulo de 6 com o horizone, um projéil que explode ao aingir o solo e oue-se o ruído da explosão, no pono de parida do projéil, 8 segundos após o disparo. Deerminar a elocidade inicial

Leia mais

Aula - 2 Movimento em uma dimensão

Aula - 2 Movimento em uma dimensão Aula - Moimeno em uma dimensão Física Geral I - F- 18 o semesre, 1 Ilusração dos Principia de Newon mosrando a ideia de inegral Moimeno 1-D Conceios: posição, moimeno, rajeória Velocidade média Velocidade

Leia mais

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara Insiuo de Física USP Física V - Aula 6 Professora: Mazé Bechara Aula 6 Bases da Mecânica quânica e equações de Schroedinger. Aplicação e inerpreações. 1. Ouros posulados da inerpreação de Max-Born para

Leia mais

Capítulo 3 Derivada. 3.1 Reta Tangente e Taxa de Variação

Capítulo 3 Derivada. 3.1 Reta Tangente e Taxa de Variação Inrodução ao Cálculo Capíulo Derivada.1 Rea Tangene e Taxa de Variação Exemplo nr. 1 - Uma parícula caminha sobre uma rajeória qualquer obedecendo à função horária: s() 5 + (s em meros, em segundos) a)

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL42 Coneúdo 8 - Inrodução aos Circuios Lineares e Invarianes...1 8.1 - Algumas definições e propriedades gerais...1 8.2 - Relação enre exciação

Leia mais

CAPÍTULO 8. v G G. r G C. Figura Corpo rígido C com centro de massa G.

CAPÍTULO 8. v G G. r G C. Figura Corpo rígido C com centro de massa G. 7 CÍTULO 8 DINÂMIC DO MOVIMENTO LNO DE COROS RÍIDOS IMULSO E QUNTIDDE DE MOVIMENTO Nese capíulo será analisada a lei de Newon apresenada nua ra fora inegral. Nesa fora inegra-se a lei de Newon dada por

Leia mais

Física I. 2º Semestre de Instituto de Física- Universidade de São Paulo. Aula 5 Trabalho e energia. Professor: Valdir Guimarães

Física I. 2º Semestre de Instituto de Física- Universidade de São Paulo. Aula 5 Trabalho e energia. Professor: Valdir Guimarães Físca I º Semesre de 03 Insuo de Físca- Unversdade de São Paulo Aula 5 Trabalho e energa Proessor: Valdr Gumarães E-mal: valdrg@.usp.br Fone: 309.704 Trabalho realzado por uma orça consane Derenemene

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

PROCESSO SELETIVO 2006/2 UNIFAL 2 O DIA GABARITO 1 13 FÍSICA QUESTÕES DE 31 A 45

PROCESSO SELETIVO 2006/2 UNIFAL 2 O DIA GABARITO 1 13 FÍSICA QUESTÕES DE 31 A 45 OCEO EEIVO 006/ UNIF O DI GIO 1 13 FÍIC QUEÕE DE 31 45 31. Uma parícula é sola com elocidade inicial nula a uma alura de 500 cm em relação ao solo. No mesmo insane de empo uma oura parícula é lançada do

Leia mais

Capítulo 8 Momento linear, impulso e colisões

Capítulo 8 Momento linear, impulso e colisões Capíulo 8 Moeno linear, ipulso e colisões 8. Moeno linear e ipulso Moeno linear (quanidade de oieno) de ua parícula: Grandeza eorial Unidades S.I. : kg./s p Moeno linear e ª Lei de Newon: Se a assa é consane:

Leia mais

As cargas das partículas 1, 2 e 3, respectivamente, são:

As cargas das partículas 1, 2 e 3, respectivamente, são: 18 GAB. 1 2 O DIA PROCSSO SLTIVO/2006 FÍSICA QUSTÕS D 31 A 45 31. A figura abaixo ilusra as rajeórias de rês parículas movendo-se unicamene sob a ação de um campo magnéico consane e uniforme, perpendicular

Leia mais

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL Movimeno unidimensional 5 MOVIMENTO UNIDIMENSIONAL. Inrodução Denre os vários movimenos que iremos esudar, o movimeno unidimensional é o mais simples, já que odas as grandezas veoriais que descrevem o

Leia mais

Lista de exercícios 1

Lista de exercícios 1 Fundamenos de Mecânica - FAP151 Licenciaura em Física - 1 o semesre de 5 Lisa de eercícios 1 Para enregar: eercícios 16 e 17 Algarismos significaios 1) Usando uma régua de madeira, ocê mede o comprimeno

Leia mais

Física. Física Módulo 1

Física. Física Módulo 1 Física Módulo 1 Nesa aula... Movimeno em uma dimensão Aceleração e ouras coisinhas O cálculo de x() a parir de v() v( ) = dx( ) d e x( ) x v( ) d = A velocidade é obida derivando-se a posição em relação

Leia mais

18 GABARITO 1 2 O DIA PROCESSO SELETIVO/2005 FÍSICA QUESTÕES DE 31 A 45

18 GABARITO 1 2 O DIA PROCESSO SELETIVO/2005 FÍSICA QUESTÕES DE 31 A 45 18 GABARITO 1 2 O DIA PROCESSO SELETIO/2005 ÍSICA QUESTÕES DE 31 A 45 31. O gálio é um meal cuja emperaura de fusão é aproximadamene o C. Um pequeno pedaço desse meal, a 0 o C, é colocado em um recipiene

Leia mais

GFI Física por Atividades. Caderno de Trabalhos de Casa

GFI Física por Atividades. Caderno de Trabalhos de Casa GFI00157 - Física por Aividades Caderno de Trabalhos de Casa Coneúdo 1 Cinemáica 4 1.1 Velocidade.............................. 4 1.2 Represenações do movimeno................... 8 1.3 Aceleração em uma

Leia mais

Estando o capacitor inicialmente descarregado, o gráfico que representa a corrente i no circuito após o fechamento da chave S é:

Estando o capacitor inicialmente descarregado, o gráfico que representa a corrente i no circuito após o fechamento da chave S é: PROCESSO SELETIVO 27 2 O DIA GABARITO 1 13 FÍSICA QUESTÕES DE 31 A 45 31. Considere o circuio mosrado na figura abaixo: S V R C Esando o capacior inicialmene descarregado, o gráfico que represena a correne

Leia mais

12 Integral Indefinida

12 Integral Indefinida Inegral Indefinida Em muios problemas, a derivada de uma função é conhecida e o objeivo é enconrar a própria função. Por eemplo, se a aa de crescimeno de uma deerminada população é conhecida, pode-se desejar

Leia mais

Mecânica para Licenciatura em Matemática Agosto de 2013

Mecânica para Licenciatura em Matemática Agosto de 2013 Mecânica para Licenciaura em Maemáica-4313. Agoso de 13 Algarismos significaios Primeira lisa de eercícios 1) Usando uma régua de madeira, ocê mede o comprimeno de uma placa meálica reangular e enconra

Leia mais

F B d E) F A. Considere:

F B d E) F A. Considere: 5. Dois corpos, e B, de massas m e m, respecivamene, enconram-se num deerminado insane separados por uma disância d em uma região do espaço em que a ineração ocorre apenas enre eles. onsidere F o módulo

Leia mais

Cálculo Vetorial - Lista de Exercícios

Cálculo Vetorial - Lista de Exercícios álculo Veorial - Lisa de Exercícios (Organizada pela Profa. Ilka Rebouças). Esboçar o gráfico das curvas represenadas pelas seguines funções veoriais: a) a 4 i j, 0,. d) d i 4 j k,. b) b sen i 4 j cos

Leia mais

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo PROBLEMAS RESOLVIDOS DE FÍSIA Prof. Anderson oser Gaudio Deparameno de Física enro de iências Eaas Universidade Federal do Espírio Sano hp://www.cce.ufes.br/anderson anderson@npd.ufes.br Úlima aualização:

Leia mais

CAPÍTULO III TORÇÃO SIMPLES

CAPÍTULO III TORÇÃO SIMPLES CAPÍTULO III TORÇÃO SIPLES I.INTRODUÇÂO Uma peça esará sujeia ao esforço de orção simples quando a mesma esiver submeida somene a um momeno de orção. Observe-se que raa-se de uma simplificação, pois no

Leia mais

Física Fascículo 01 Eliana S. de Souza Braga

Física Fascículo 01 Eliana S. de Souza Braga Física Fascículo 01 Eliana S. de Souza raga Índice Cinemáica...1 Exercícios... Gabario...6 Cinemáica (Não se esqueça de adoar uma origem dos espaços, uma origem dos empos e orienar a rajeória) M.R.U. =

Leia mais

Dimensões Físicas e Padrões; Gráficos.

Dimensões Físicas e Padrões; Gráficos. FAP151 - Fundamenos de Mecânica. 1ª Lisa de Eercícios. Feereiro de 9. Dimensões Físicas e Padrões; Gráficos. Enregar as soluções dos eercícios 4 e 31 APENAS; regisre odas as eapas necessárias para conseguir

Leia mais

Circuitos Elétricos I EEL420

Circuitos Elétricos I EEL420 Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL420 Coneúdo 1 - Circuios de primeira ordem...1 1.1 - Equação diferencial ordinária de primeira ordem...1 1.1.1 - Caso linear, homogênea, com

Leia mais

CAPÍTULO 4. Vamos partir da formulação diferencial da lei de Newton

CAPÍTULO 4. Vamos partir da formulação diferencial da lei de Newton 9 CPÍTUL 4 DINÂMIC D PRTÍCUL: IMPULS E QUNTIDDE DE MVIMENT Nese capíulo será analsada a le de Newon na forma de negral no domíno do empo, aplcada ao momeno de parículas. Defne-se o conceo de mpulso e quandade

Leia mais

Seção 5: Equações Lineares de 1 a Ordem

Seção 5: Equações Lineares de 1 a Ordem Seção 5: Equações Lineares de 1 a Ordem Definição. Uma EDO de 1 a ordem é dia linear se for da forma y + fx y = gx. 1 A EDO linear de 1 a ordem é uma equação do 1 o grau em y e em y. Qualquer dependência

Leia mais

RELATIVIDADE ESPECIAL

RELATIVIDADE ESPECIAL 1 RELATIVIDADE ESPECIAL AULA N O (paradoos - empo próprio - elocidade momeno) Vamos agora coninuar a er os efeios decorrenes da Transformação de Lorenz com relação às leis da Física, nos diersos sisemas

Leia mais

Capítulo 2: Conceitos Fundamentais sobre Circuitos Elétricos

Capítulo 2: Conceitos Fundamentais sobre Circuitos Elétricos SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA TE041 Circuios Eléricos I Prof. Ewaldo L. M. Mehl Capíulo 2: Conceios Fundamenais sobre Circuios Eléricos 2.1. CARGA ELÉTRICA E CORRENTE ELÉTRICA

Leia mais

Calcule a área e o perímetro da superfície S. Calcule o volume do tronco de cone indicado na figura 1.

Calcule a área e o perímetro da superfície S. Calcule o volume do tronco de cone indicado na figura 1. 1. (Unesp 017) Um cone circular reo de gerariz medindo 1 cm e raio da base medindo 4 cm foi seccionado por um plano paralelo à sua base, gerando um ronco de cone, como mosra a figura 1. A figura mosra

Leia mais

ENGF93 Análise de Processos e Sistemas I

ENGF93 Análise de Processos e Sistemas I ENGF93 Análise de Processos e Sisemas I Prof a. Karen Pones Revisão: 3 de agoso 4 Sinais e Sisemas Tamanho do sinal Ampliude do sinal varia com o empo, logo a medida de seu amanho deve considerar ampliude

Leia mais

Função Exponencial 2013

Função Exponencial 2013 Função Exponencial 1 1. (Uerj 1) Um imóvel perde 6% do valor de venda a cada dois anos. O valor V() desse imóvel em anos pode ser obido por meio da fórmula a seguir, na qual V corresponde ao seu valor

Leia mais

RASCUNHO. a) 120º10 b) 95º10 c) 120º d) 95º e) 110º50

RASCUNHO. a) 120º10 b) 95º10 c) 120º d) 95º e) 110º50 ª QUESTÃO Uma deerminada cidade organizou uma olimpíada de maemáica e física, para os alunos do º ano do ensino médio local. Inscreveramse 6 alunos. No dia da aplicação das provas, consaouse que alunos

Leia mais

Treinamento para Olimpíadas de Física

Treinamento para Olimpíadas de Física www.cursoanglo.com.br Treinameno para Olimpíadas de Física 9º- ano EF AULAS 5 e 6 Em Classe 1. (OBF-1ª- Fase-6) Um rem de carga de 4m de comprimeno, que em a elocidade consane de m/s. gasa 3 s para araessar

Leia mais

Física I -2009/2010. Utilize o modelo de uma partícula (ou seja, represente o corpo cujo movimento está a estudar por uma única partícula)

Física I -2009/2010. Utilize o modelo de uma partícula (ou seja, represente o corpo cujo movimento está a estudar por uma única partícula) Quesões: Física I -9/ 3 a Série - Movimeno unidimensional - Resolução Q -Esboce um diagrama de ponos para cada um dos movimenos unidimensionais abaixo indicados, de acordo com as seguines insruções: Uilize

Leia mais

Funções vetoriais. I) Funções vetoriais a valores reais:

Funções vetoriais. I) Funções vetoriais a valores reais: Funções veoriais I) Funções veoriais a valores reais: f: I R f() R (f 1 n (), f (),..., f n ()) I = inervalo da rea real denominada domínio da função veorial f = {conjuno de odos os valores possíveis de,

Leia mais

uma função qualquer com uma variável independente. A derivada de uma função é

uma função qualquer com uma variável independente. A derivada de uma função é Ondas (EE) Análise vecorial. Derivadas parciais.. Derivada de uma função Seja a função f () uma função qualquer com uma variável independene. A derivada de uma função é d d lim 0 Geomericamene, a derivada

Leia mais

GFI00157 - Física por Atividades. Caderno de Trabalhos de Casa

GFI00157 - Física por Atividades. Caderno de Trabalhos de Casa GFI00157 - Física por Aiidades Caderno de Trabalhos de Casa Coneúdo 1 Cinemáica 3 1.1 Velocidade.............................. 3 1.2 Represenações do moimeno................... 7 1.3 Aceleração em uma

Leia mais

Treinamento para Olimpíadas de Física

Treinamento para Olimpíadas de Física www.cursoanglo.com.br Treinameno para Olimpíadas de Física 1ª- /2 ª- série EM AULA 1 CINEMÁTICA ESCALAR 1. INTRODUÇÃO Mecânica: Esudo do moimeno CINEMÁTICA: descrição do moimeno DINÂMICA: causas do moimeno

Leia mais

1. O movimento uniforme de uma partícula tem sua função horária representada no diagrama a seguir: e (m) t (s)

1. O movimento uniforme de uma partícula tem sua função horária representada no diagrama a seguir: e (m) t (s) . O moimeno uniforme de uma parícula em ua função horária repreenada no diagrama a eguir: e (m) - 6 7 - Deerminar: a) o epaço inicial e a elocidade ecalar; a função horária do epaço.. É dado o gráfico

Leia mais

Q = , 03.( )

Q = , 03.( ) PROVA DE FÍSIA 2º ANO - 1ª MENSAL - 2º TRIMESTRE TIPO A 01) Um bloco de chumbo de massa 1,0 kg, inicialmene a 227, é colocado em conao com uma fone érmica de poência consane. Deermine a quanidade de calor

Leia mais

P2 - PROVA DE QUÍMICA GERAL - 07/05/05

P2 - PROVA DE QUÍMICA GERAL - 07/05/05 P - PROVA DE QUÍMICA GERAL - 07/05/05 Nome: Nº de Marícula: Gabario Turma: Assinaura: Quesão Valor Grau Revisão a,0 a,0 3 a,0 4 a,0 5 a,0 Toal 0,0 Consanes: R 8,34 J mol - K - R 0,08 am L mol - K - am

Leia mais

CINÉTICA RADIOATIVA. Introdução. Tempo de meia-vida (t 1/2 ou P) Atividade Radioativa

CINÉTICA RADIOATIVA. Introdução. Tempo de meia-vida (t 1/2 ou P) Atividade Radioativa CIÉTIC RDIOTIV Inrodução Ese arigo em como objeivo analisar a velocidade dos diferenes processos radioaivos, no que chamamos de cinéica radioaiva. ão deixe de anes esudar o arigo anerior sobre radioaividade

Leia mais

Aplicações à Teoria da Confiabilidade

Aplicações à Teoria da Confiabilidade Aplicações à Teoria da ESQUEMA DO CAPÍTULO 11.1 CONCEITOS FUNDAMENTAIS 11.2 A LEI DE FALHA NORMAL 11.3 A LEI DE FALHA EXPONENCIAL 11.4 A LEI DE FALHA EXPONENCIAL E A DISTRIBUIÇÃO DE POISSON 11.5 A LEI

Leia mais

6ROXomR: A aceleração das esferas é a mesma, g (aceleração da gravidade), como demonstrou

6ROXomR: A aceleração das esferas é a mesma, g (aceleração da gravidade), como demonstrou 6ROXomR&RPHQWDGD3URYDGH)VLFD. O sisema inernacional de unidades e medidas uiliza vários prefixos associados à unidade-base. Esses prefixos indicam os múliplos decimais que são maiores ou menores do que

Leia mais

1ªAula do Cap. 07 Energia Cinética e Trabalho

1ªAula do Cap. 07 Energia Cinética e Trabalho ªAula do Cap. 07 Energia Cinética e Trabalho Introdução Trabalho Mecânico e Produto Escalar Energia Cinética Teorema do Trabalho-Energia Cinética Trabalho Realizado por força variável (Integral) Referência:

Leia mais

MATEMÁTICA E SUAS TECNOLOGIAS

MATEMÁTICA E SUAS TECNOLOGIAS 1º SIMULADO ENEM 017 Resposa da quesão 1: MATEMÁTICA E SUAS TECNOLOGIAS Basa aplicar a combinação de see espores agrupados dois a dois, logo: 7! C7,!(7 )! 7 6 5! C7,!5! 7 6 5! C7, 1!5! Resposa da quesão

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar Progressão Ariméica e Progressão Geomérica. (Pucrj 0) Os números a x, a x e a x esão em PA. A soma dos números é igual a: a) 8 b) c) 7 d) e) 0. (Fuves 0) Dadas as sequências an n n, n n cn an an b, e b

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar . (Pucrj 0) Os números a x, a x e a3 x 3 esão em PA. A soma dos 3 números é igual a: é igual a e o raio de cada semicírculo é igual à meade do semicírculo anerior, o comprimeno da espiral é igual a a)

Leia mais

2.7 Derivadas e Taxas de Variação

2.7 Derivadas e Taxas de Variação LIMITES E DERIVADAS 131 2.7 Derivadas e Taas de Variação O problema de enconrar a rea angene a uma curva e o problema de enconrar a velocidade de um objeo envolvem deerminar o mesmo ipo de limie, como

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática. Primeira Lista de Exercícios MAT 241 Cálculo III

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática. Primeira Lista de Exercícios MAT 241 Cálculo III Universidade Federal de Viçosa Cenro de Ciências Exaas e Tecnológicas Deparameno de Maemáica Primeira Lisa de Exercícios MAT 4 Cálculo III Julgue a veracidade das afirmações abaixo assinalando ( V para

Leia mais

AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM

AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM 163 22. PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM 22.1. Inrodução Na Seção 9.2 foi falado sobre os Parâmeros de Core e

Leia mais

5.1 Objectivos. Caracterizar os métodos de detecção de valor eficaz.

5.1 Objectivos. Caracterizar os métodos de detecção de valor eficaz. 5. PRINCÍPIOS DE MEDIÇÃO DE CORRENE, ENSÃO, POÊNCIA E ENERGIA 5. Objecivos Caracerizar os méodos de deecção de valor eficaz. Caracerizar os méodos de medição de poência e energia em correne conínua, correne

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Universidade Esadual do Sudoese da Bahia Dearameno de Ciências Exaas e Naurais.1- Roações, Cenro de Massa e Momeno Física I Prof. Robero Claudino Ferreira Índice 1. Movimeno Circular Uniformemene Variado;.

Leia mais

) quando vamos do ponto P até o ponto Q (sobre a reta) e represente-a no plano cartesiano descrito acima.

) quando vamos do ponto P até o ponto Q (sobre a reta) e represente-a no plano cartesiano descrito acima. ATIVIDADE 1 1. Represene, no plano caresiano xy descrio abaixo, os dois ponos (x 0,y 0 ) = (1,2) e Q(x 1,y 1 ) = Q(3,5). 2. Trace a rea r 1 que passa pelos ponos e Q, no plano caresiano acima. 3. Deermine

Leia mais

FÍSICA - 1 o ANO MÓDULO 15 GRÁFICOS DA CINEMÁTICA

FÍSICA - 1 o ANO MÓDULO 15 GRÁFICOS DA CINEMÁTICA FÍSICA - 1 o ANO MÓDULO 15 GRÁFICOS DA CINEMÁTICA S S S S S S v v S v v S Área S v v v v v v S(m) 2-1 (s) Se a < S Se a > S S S 1 2 3 a a a v v Área v v S S(m) 16 15 1 (s) Como pode cair no enem? (ENEM)

Leia mais

3 LTC Load Tap Change

3 LTC Load Tap Change 54 3 LTC Load Tap Change 3. Inrodução Taps ou apes (ermo em poruguês) de ransformadores são recursos largamene uilizados na operação do sisema elérico, sejam eles de ransmissão, subransmissão e disribuição.

Leia mais

INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas.

INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas. SIMULADO DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - JULHO DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES de 0 a

Leia mais

QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS

QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS QUESTÃO Assinale V (verdadeiro) ou F (falso): () A solução da equação diferencial y y y apresena equilíbrios esacionários quando, dependendo

Leia mais

CIRCUITO RC SÉRIE. max

CIRCUITO RC SÉRIE. max ELETRICIDADE 1 CAPÍTULO 8 CIRCUITO RC SÉRIE Ese capíulo em por finalidade inroduzir o esudo de circuios que apresenem correnes eléricas variáveis no empo. Para ano, esudaremos o caso de circuios os quais

Leia mais

Exercícios 5 Leis de Newton

Exercícios 5 Leis de Newton Exercícios 5 Leis de Newon 1) (UES) Um carro freia bruscamene e o passageiro bae com a cabeça no idro para-brisa. Três pessoas dão a seguine explicação sobre o fao: 1- O carro foi freado, mas o passageiro

Leia mais

3 Na fase inicial da decolagem, um jato parte do repouso com. 4 No instante t 0. Resolução: a) v = v 0

3 Na fase inicial da decolagem, um jato parte do repouso com. 4 No instante t 0. Resolução: a) v = v 0 Tópico 3 Movimeno uniformemene variado 31 Tópico 3 1 É dada a seguine função horária da velocidade escalar de uma parícula em movimeno uniformemene variado: v = 1 + (SI) Deermine: a) a velocidade escalar

Leia mais

REVISÃO. Parte I Capítulos 5 e 6

REVISÃO. Parte I Capítulos 5 e 6 REVISÃO Parte I Capítulos 5 e 6 Força e 1a Lei de Newton Uma partícula sujeita a uma força resultante nula mantém o seu estado de movimento. Se ela estiver em repouso, permanece indefinidamente em repouso;

Leia mais

Capítulo Cálculo com funções vetoriais

Capítulo Cálculo com funções vetoriais Cálculo - Capíulo 6 - Cálculo com funções veoriais - versão 0/009 Capíulo 6 - Cálculo com funções veoriais 6 - Limies 63 - Significado geomérico da derivada 6 - Derivadas 64 - Regras de derivação Uiliaremos

Leia mais

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa C. Os números inteiros x e y satisfazem a equação

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa C. Os números inteiros x e y satisfazem a equação Quesão Os números ineiros x e y saisfazem a equação x x y y 5 5.Enãox y é: a) 8 b) 5 c) 9 d) 6 e) 7 alernaiva B x x y y 5 5 x ( ) 5 y (5 ) x y 7 x 6 y 5 5 5 Como x e y são ineiros, pelo Teorema Fundamenal

Leia mais

S = S S 0 S>0 S<0 S 13 S 23. Mecânica é o ramo da Física que estuda os movimentos. Pode ser dividida em: S(m) 1. CINEMÁTICA ESCALAR.

S = S S 0 S>0 S<0 S 13 S 23. Mecânica é o ramo da Física que estuda os movimentos. Pode ser dividida em: S(m) 1. CINEMÁTICA ESCALAR. Mecânica é o ramo da Física que esuda os movimenos. Pode ser dividida em: Início Final (m) a) Cinemáica: Esuda os movimenos sem se preocupar com as suas causas. b) Dinâmica: Esuda as causas dos movimenos.

Leia mais

Nome: N.º Turma: Suficiente (50% 69%) Bom (70% 89%)

Nome: N.º Turma: Suficiente (50% 69%) Bom (70% 89%) Escola E.B.,3 Eng. Nuno Mergulhão Porimão Ano Leivo 01/013 Tese de Avaliação Escria de Maemáica 9.º ano de escolaridade Duração do Tese: 90 minuos 16 de novembro de 01 Nome: N.º Turma: Classificação: Fraco

Leia mais

UM MÉTODO RÁPIDO PARA ANÁLISE DO COMPORTAMENTO TÉRMICO DO ENROLAMENTO DO ESTATOR DE MOTORES DE INDUÇÃO TRIFÁSICOS DO TIPO GAIOLA

UM MÉTODO RÁPIDO PARA ANÁLISE DO COMPORTAMENTO TÉRMICO DO ENROLAMENTO DO ESTATOR DE MOTORES DE INDUÇÃO TRIFÁSICOS DO TIPO GAIOLA ART643-07 - CD 262-07 - PÁG.: 1 UM MÉTD RÁPID PARA ANÁLISE D CMPRTAMENT TÉRMIC D ENRLAMENT D ESTATR DE MTRES DE INDUÇÃ TRIFÁSICS D TIP GAILA 1 - RESUM Jocélio de Sá; João Robero Cogo; Hécor Arango. objeivo

Leia mais

CORREIOS. Prof. Sérgio Altenfelder

CORREIOS. Prof. Sérgio Altenfelder 15. Uma pessoa preende medir a alura de um edifício baseado no amanho de sua sombra projeada ao solo. Sabendo-se que a pessoa em 1,70m de alura e as sombras do edifício e da pessoa medem 20m e 20cm respecivamene,

Leia mais

Voo Nivelado - Avião a Hélice

Voo Nivelado - Avião a Hélice - Avião a Hélice 763 º Ano da icenciaura em ngenharia Aeronáuica edro. Gamboa - 008. oo de ruzeiro De modo a prosseguir o esudo analíico do desempenho, é conveniene separar as aeronaves por ipo de moor

Leia mais

A Teoria da Relatividade Especial. Prof. Edgard P. M. Amorim Disciplina: FEE º sem/2011.

A Teoria da Relatividade Especial. Prof. Edgard P. M. Amorim Disciplina: FEE º sem/2011. A Teoria da Relaiidade Espeial Prof. Edgard P. M. Amorim Disiplina: FEE º sem/. Inrodução Para definirmos o esado de um sisema físio preisamos: Sisema de referênia: em relação ao quê? Posições e deriadas

Leia mais

CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA

CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA Inrodução Ese arigo raa de um dos assunos mais recorrenes nas provas do IME e do ITA nos úlimos anos, que é a Cinéica Química. Aqui raamos principalmene dos

Leia mais

Introdução às Medidas em Física

Introdução às Medidas em Física Inrodução às Medidas em Física 43152 Elisabeh Maeus Yoshimura emaeus@if.usp.br Bloco F Conjuno Alessandro Vola sl 18 agradecimenos a Nemiala Added por vários slides Conceios Básicos Lei Zero da Termodinâmica

Leia mais

Com base no enunciado e no gráfico, assinale V (verdadeira) ou F (falsa) nas afirmações a seguir.

Com base no enunciado e no gráfico, assinale V (verdadeira) ou F (falsa) nas afirmações a seguir. PROVA DE FÍSICA 2º ANO - 1ª MENSAL - 2º TRIMESTRE TIPO A 01) O gráico a seguir represena a curva de aquecimeno de 10 g de uma subsância à pressão de 1 am. Analise as seguines airmações. I. O pono de ebulição

Leia mais

Experiência IV (aulas 06 e 07) Queda livre

Experiência IV (aulas 06 e 07) Queda livre Experiência IV (aulas 06 e 07) Queda livre 1. Objeivos. Inrodução 3. Procedimeno experimenal 4. Análise de dados 5. Quesões 6. Referências 1. Objeivos Nesa experiência, esudaremos o movimeno da queda de

Leia mais

Mecânica de Sistemas de Partículas Prof. Lúcio Fassarella * 2013 *

Mecânica de Sistemas de Partículas Prof. Lúcio Fassarella * 2013 * Mecânica e Sisemas e Parículas Prof. Lúcio Fassarella * 2013 * 1. A velociae e escape e um planea ou esrela é e nia como seno a menor velociae requeria na superfície o objeo para que uma parícula escape

Leia mais

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON)

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON) TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 8 LIVRO DO NILSON). CONSIDERAÇÕES INICIAIS SÉRIES DE FOURIER: descrevem funções periódicas no domínio da freqüência (ampliude e fase). TRANSFORMADA DE FOURIER:

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tarefa de revisão nº 17 1. Uma empresa lançou um produo no mercado. Esudos efecuados permiiram concluir que a evolução do preço se aproxima do seguine modelo maemáico: 7 se 0 1 p() =, p em euros e em anos.

Leia mais

Confiabilidade e Taxa de Falhas

Confiabilidade e Taxa de Falhas Prof. Lorí Viali, Dr. hp://www.pucrs.br/fama/viali/ viali@pucrs.br Definição A confiabilidade é a probabilidade de que de um sisema, equipameno ou componene desempenhe a função para o qual foi projeado

Leia mais

RELATIVIDADE ESPECIAL

RELATIVIDADE ESPECIAL RELATIVIDADE ESPECIAL AULA N O ( Quadriveores - Velocidade relaivísica - Tensores ) Vamos ver um eemplo de uma lei que é possível na naureza, mas que não é uma lei da naureza. Duas parículas colidem no

Leia mais

Desenvolvimento de um sistema instrumentado para ensaios de filtração em batelada

Desenvolvimento de um sistema instrumentado para ensaios de filtração em batelada Desenvolvimeno de um sisema insrumenado para ensaios de ilração em baelada Pedro Tersiguel de Oliveira Bolsisa de Iniciação Cieníica, Engenharia ecânica, UFRJ Claudio L. Schneider Orienador, Engenheiro

Leia mais

dr = ( t ) k. Portanto,

dr = ( t ) k. Portanto, Aplicações das Equações Diferenciais de ordem (Evaporação de uma goa) Suponha que uma goa de chuva esférica evapore numa aa proporcional à sua área de superfície Se o raio original era de mm e depois de

Leia mais

RÁPIDA INTRODUÇÃO À FÍSICA DAS RADIAÇÕES Simone Coutinho Cardoso & Marta Feijó Barroso UNIDADE 3. Decaimento Radioativo

RÁPIDA INTRODUÇÃO À FÍSICA DAS RADIAÇÕES Simone Coutinho Cardoso & Marta Feijó Barroso UNIDADE 3. Decaimento Radioativo Decaimeno Radioaivo RÁPIDA ITRODUÇÃO À FÍSICA DAS RADIAÇÕES Simone Couinho Cardoso & Mara Feijó Barroso Objeivos: discuir o que é decaimeno radioaivo e escrever uma equação que a descreva UIDADE 3 Sumário

Leia mais

Escola E.B. 2,3 / S do Pinheiro

Escola E.B. 2,3 / S do Pinheiro Escola E.B. 2,3 / S do Pinheiro Ciências Físico Químicas 9º ano Movimenos e Forças 1.º Período 1.º Unidade 2010 / 2011 Massa, Força Gravíica e Força de Ario 1 - A bordo de um vaivém espacial, segue um

Leia mais

Relatividade especial Capítulo 37

Relatividade especial Capítulo 37 Relaiidade espeial Capíulo 37 º Posulado: s leis da físia são as mesmas em odos os refereniais ineriais. º Posulado: eloidade da luz no áuo em o mesmo alor em odas as direções e em odos os refereniais

Leia mais

Circuitos Elétricos- módulo F4

Circuitos Elétricos- módulo F4 Circuios léricos- módulo F4 M 014 Correne elécrica A correne elécrica consise num movimeno orienado de poradores de cara elécrica por acção de forças elécricas. Os poradores de cara podem ser elecrões

Leia mais

ONDAS ELETROMAGNÉTICAS

ONDAS ELETROMAGNÉTICAS LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS A propagação de ondas eleromagnéicas ocorre quando um campo elérico variane no empo produ um campo magnéico ambém variane no empo, que por sua ve produ um campo

Leia mais

FORÇA E MOVIMENTO Leis de Newton

FORÇA E MOVIMENTO Leis de Newton PROF. OSCAR FORÇA E MOVIMENTO Leis de Newton Qual é o fator responsável pela sensação de perigo para alguém que está no último carro de uma montanha russa? Uma força aceleração. atuando sobre o quilograma

Leia mais

INF Técnicas Digitais para Computação. Conceitos Básicos de Circuitos Elétricos. Aula 3

INF Técnicas Digitais para Computação. Conceitos Básicos de Circuitos Elétricos. Aula 3 INF01 118 Técnicas Digiais para Compuação Conceios Básicos de Circuios Eléricos Aula 3 1. Fones de Tensão e Correne Fones são elemenos aivos, capazes de fornecer energia ao circuio, na forma de ensão e

Leia mais

Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) - Professores: João Arruda e Henriette Righi

Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) - Professores: João Arruda e Henriette Righi Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) - Professores: João Arruda e Henriee Righi LISTA DE EXERCÍCIOS # 1 Aenção: Aualize seu adobe, ou subsiua os quadrados por negaivo!!! 1) Deermine

Leia mais