Mecânica da partícula

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Mecânica da partícula"

Transcrição

1 -- Mecânica da parícula Moimenos sob a acção de uma força resulane consane Prof. Luís C. Perna LEI DA INÉRCIA OU ª LEI DE NEWTON LEI DA INÉRCIA Para que um corpo alere o seu esado de moimeno é necessário que a força resulane sobre ele não seja nula. Um corpo em repouso coninuará em repouso e um corpo em moimeno coninuará em moimeno se a resulane das forças que sobre ele acuam for nula. É necessário uma força resulane, para que um corpo alere o seu esado de moimeno. Se a resulane de odas as forças que acuam num corpo for nula, o corpo ou esá em repouso ou em moimeno recilíneo e uniforme.

2 -- Epressão maemáica: r n i i ma A aceleração adquirida por um corpo (considerado parícula maerial) é direcamene proporcional à inensidade da resulane das forças que acuam sobre o corpo (parícula maerial), em a mesma direcção e senido da resulane das forças e é inersamene proporcional à sua massa. LEI DAS ACÇÕES RECÍPROCAS Quando um corpo A eerce uma força sobre um corpo B, ese eerce ambém sobre o primeiro uma força de iual módulo e direcção, mas de senido conrário. A, B B, A As forças de um par acção-reacção êm: o mesmo módulo (inensidade) a mesma direcção senidos oposos

3 -- SERÃO PARES ACÇÃO-REACÇÃO? N ATENÇÃO! O PESO E A REACÇÃO NORMAL QUE ACTUAM SOBRE UM CORPO NÃO ORMAM UM PAR ACÇÃO-REACÇÃO. P As forças de um par acção-reacção êm: o mesmo módulo (inensidade) a mesma direcção senidos oposos ponos de aplicação em corpos disinos PARES ACÇÃO-REACÇÃO? A / B B / A orça que o rapaz (A) eerce na raparia (B). orça aplicada na raparia. orça que a raparia (B) eerce no rapaz (A). orça aplicada no rapaz. A / B B / A Pares acção-reacção ' P e P R e A 3

4 -- Quando um corpo é sujeio a uma força Quando uma força acua num corpo, a aceleração que lhe imprime é ano maior quano menor for a sua massa. Quando um corpo é sujeio a uma força 4

5 -- A seunda lei de Newon As forças são as causas das acelerações. A ª Lei de Newon, eprime a proporcionalidade enre as forças e as acelerações proocadas nos corpos. ma R Quando a força é consane a aceleração do corpo ambém é consane, uma ez que a massa é uma caracerísica do corpo (não aria). Se a aceleração é consane enão a ariação da elocidade ocorre sempre na mesma direcção a direcção da aceleração. A parir da epressão da Lei fundamenal da Dinâmica, define-se newon: A seunda lei de Newon ma R N kms - N (newon) é a inensidade de uma força que, quando aplicada num corpo de massa k, lhe comunica uma aceleração de m/s na sua direcção e senido. 5

6 -- As componenes da força Num moimeno curilíneo, a resulane das forças esá sempre diriida para o inerior da cura. A força pode ser decomposa nas suas componenes: Uma que é perpendicular à rajecória no pono considerado, a componene normal, n. Oura que acua na direcção da elocidade, a componene anencial,. A resulane das forças pode ser escria do seuine modo: ma R As componenes da força a a e a e n n R m( a e a e ) n n R ma e ma e n n Componene relacionada com a ariação ma e R Rn ma e n n do módulo da elocidade. Componene relacionada com a ariação da direcção da elocidade. 6

7 -- Trajecória consoane as orienações da força e da elocidade inicial Moimeno de Projéceis O disparo de um canhão ou de uma espinarda, o moimeno de uma bola de olfe, depois de uma acada e o lançameno do marelo ou do disco, nas proas olímpicas, são apenas aluns eemplos de siuações muio comuns em que se pode obserar o moimeno de um projécil. 7

8 -- Projéceis Mas o que é, de faco, um projécil? É um corpo quando se moe no ar, sob acção duma força consane, iso é, sujeio à força raíica. O moimeno de um projécil caracerizase pela descrição de uma rajecória parabólica, que faz um ânulo com a horizonal. Eses corpos ambém esão sujeios à resisência do ar, mas apenas amos analisar moimenos em que ese efeio possa ser desprezado. Lançameno horizonal O esudo de deerminados moimenos a duas ou rês dimensões, seria muio difícil se não os considerasse-mos como a decomposição de ouros mais simples. E: moimeno de um projécil lançado de um aião ou como o moimeno de uma esfera quando cai duma mesa. Como se faz a decomposição dos dois moimenos? Considera-se um, na direcção horizonal, recilíneo e uniforme, uma ez que nessa direcção, o projécil não esá sujeio a forças. E ouro, na direcção erical, recilíneo e uniformemene ariado, uma ez que seundo essa direcção o projécil esá sujeio à força raíica. 8

9 -- Lançameno horizonal Análise do moimeno seundo o eio dos. Moimeno uniforme: = a = = = Lançameno horizonal Análise do moimeno seundo o eio dos. Moimeno uniformemene acelerado: = - m a = - = - = h ½ 9

10 -- Velocidade seundo o eio dos e dos. Lançameno horizonal As equações paraméricas do moimeno são: ( ) e ( ) h Aenção: As equações paraméricas que descreem o moimeno são deduzidas das equações erais. Se mudarmos o referencial, mudam as condições iniciais do moimeno e as equações são diferenes. É, necessário indicar sempre o referencial adopado.

11 -- Lançameno horizonal Equação da rajecória: A equação da rajecória, num plano O, deermina-se por eliminação do empo,, no sisema consiuído pelas equações paraméricas no referencial considerado: h h h ( ) Esa equação é do ipo b a que é a equação de uma parábola. Lançameno horizonal Tempo de oo: O empo de oo ou empo de queda é o empo de permanência do projécil no ar. No referencial considerado, quando o projécil chea ao solo, é =. Enão, subsiuindo na equação paramérica: h ( ) h h oo h Noa: O empo de oo depende apenas do moimeno na erical: aria com a alura de queda e é independene da elocidade de lançameno.

12 -- Lançameno horizonal Alcance: O alcance é a disância, má, que o projécil percorre na horizonal (seundo a direcção do eio dos ). Calcula-se subsiuindo o alor do empo de oo na equação paramérica: ( ) má oo má h Noa: O alcance depende do moimeno em ambas as direcções: aria com a alura de queda e com a elocidade de lançameno. Tempo de oo e alcance máimo

13 -- Lançameno oblíquo Consideremos, aora, um projécil que é lançado numa direcção que faz um ânulo com a direcção horizonal lançameno oblíquo. Simulação Lançameno oblíquo: nese ipo de lançameno ambém dee ser feio a decomposição do moimeno em dois moimenos, um na erical e ouro na horizonal. Lançameno oblíquo Enão podemos escreer: e e cos sin an 3

14 -- Lançameno oblíquo Considerando o referencial O da fiura emos: Moimeno uniforme seundo o eio dos : a Moimeno uniformemene ariado seundo o eio dos : a Lançameno oblíquo Componenes da aceleração e respecios ráficos Componenes da elocidade e respecios ráficos 4

15 -- 5 Lançameno oblíquo Equações paraméricas do moimeno e respecios ráficos Lançameno oblíquo Equação da rajecória A equação da rajecória obém-se eliminando enre as equações paraméricas. Equação duma parábola

16 -- Lançameno oblíquo Tempo de oo Há um insane em que a elocidade seundo o eio dos se anula e isso aconece quando o projécil aine a alura máima. Enão, = : Tempo que o projécil lea a ainir a h má oo Tempo de oo Lançameno oblíquo Alura máima ainida pelo projécil Se subsiuirmos em O alor do empo que o projécil lea a ainir o pono máimo, em: h má má má má sin má 6

17 -- Lançameno oblíquo Alcance máimo Seundo a direcção do eio dos o moimeno é uniforme, loo: oo cos sin má má má. oo sin cos sin Lançameno oblíquo Alcance máimo Um projécil pode er o mesmo alcance, quando lançado com elocidades de iual módulo mas com ânulos de lançameno complemenares. O alcance é máimo para o ânulo de lançameno de 45º. A alura máima aumena com o ânulo de lançameno para o mesmo. O empo de oo aumena com o ânulo de lançameno para o mesmo. Ver simulação 7

18 -- Conseração da eneria mecânica Se desprezar-mos a resisência do ar o projécil apenas esá sujeio à ineracção raíica que é uma força conseraia, loo há conseração da eneria mecânica. Como deerminar a elocidade num pono da rajecória? B B Conseração da eneria mecânica A Ec m h A E mec A A Ec Ep k Ep A mh h -h A ( ha hb ) B Ec A B Ep m B B m h B B A B ( h A h h A A conseração da eneria permie relacionar a alura e a elocidade B ) 8

velocidade inicial: v 0 ; ângulo de tiro com a horizontal: 0.

velocidade inicial: v 0 ; ângulo de tiro com a horizontal: 0. www.fisicaee.com.br Um projéil é disparado com elocidade inicial iual a e formando um ânulo com a horizonal, sabendo-se que os ponos de disparo e o alo esão sobre o mesmo plano horizonal e desprezando-se

Leia mais

Física e Química A Ficha de trabalho nº 2: Unidade 1 Física 11.º Ano Movimentos na Terra e no Espaço

Física e Química A Ficha de trabalho nº 2: Unidade 1 Física 11.º Ano Movimentos na Terra e no Espaço Física e Química A Ficha de rabalho nº 2: Unidade 1 Física 11.º Ano Moimenos na Terra e no Espaço 1. Um corpo descree uma rajecória recilínea, sendo regisada a sua posição em sucessios insanes. Na abela

Leia mais

Cinemática Vetorial Movimento Retilíneo. Movimento. Mecânica : relaciona força, matéria e movimento

Cinemática Vetorial Movimento Retilíneo. Movimento. Mecânica : relaciona força, matéria e movimento Fisica I - IO Cinemáica Veorial Moimeno Reilíneo Prof. Crisiano Olieira Ed. Basilio Jafe sala crislpo@if.usp.br Moimeno Mecânica : relaciona força, maéria e moimeno Cinemáica : Pare da mecânica que descree

Leia mais

Considere-se a trajectória descrita por um projéctil que foi lançado do ponto O no plano xoy. y v v O

Considere-se a trajectória descrita por um projéctil que foi lançado do ponto O no plano xoy. y v v O Moimento de um projéctil Considere-se a trajectória descrita por um projéctil que foi lançado do ponto no plano. Após o lançamento e considerando a resistência do ar desprezáel, a resultante das forças

Leia mais

F-128 Física Geral I. Aula exploratória-07 UNICAMP IFGW F128 2o Semestre de 2012

F-128 Física Geral I. Aula exploratória-07 UNICAMP IFGW F128 2o Semestre de 2012 F-18 Física Geral I Aula eploraória-07 UNICAMP IFGW username@ii.unicamp.br F18 o Semesre de 01 1 Energia Energia é um conceio que ai além da mecânica de Newon e permanece úil ambém na mecânica quânica,

Leia mais

F-128 Física Geral I. Aula exploratória-02 UNICAMP IFGW

F-128 Física Geral I. Aula exploratória-02 UNICAMP IFGW F-8 Física Geral I Aula eploraória- UNICAMP IFGW username@ifi.unicamp.br Velocidades média e insanânea Velocidade média enre e + Δ - - m Δ Δ ** Se Δ > m > (moimeno à direia, ou no senido de crescimeno

Leia mais

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL Movimeno unidimensional 5 MOVIMENTO UNIDIMENSIONAL. Inrodução Denre os vários movimenos que iremos esudar, o movimeno unidimensional é o mais simples, já que odas as grandezas veoriais que descrevem o

Leia mais

Escola E.B. 2,3 / S do Pinheiro

Escola E.B. 2,3 / S do Pinheiro Escola E.B. 2,3 / S do Pinheiro Ciências Físico Químicas 9º ano Movimenos e Forças 1.º Período 1.º Unidade 2010 / 2011 Massa, Força Gravíica e Força de Ario 1 - A bordo de um vaivém espacial, segue um

Leia mais

FORMULÁRIO DE FÍSICA

FORMULÁRIO DE FÍSICA 1º ano FORMULÁRIO DE FÍSICA Dinâmica de uma paícula maeial Posição, velocidade e aceleação Posição Lei do movimeno Deslocameno Velocidade Aceleação Noma da Aceleação Componenes Tangencial e Nomal da Aceleação

Leia mais

Exercícios 5 Leis de Newton

Exercícios 5 Leis de Newton Exercícios 5 Leis de Newon 1) (UES) Um carro freia bruscamene e o passageiro bae com a cabeça no idro para-brisa. Três pessoas dão a seguine explicação sobre o fao: 1- O carro foi freado, mas o passageiro

Leia mais

PROCESSO SELETIVO 2006/2 UNIFAL 2 O DIA GABARITO 1 13 FÍSICA QUESTÕES DE 31 A 45

PROCESSO SELETIVO 2006/2 UNIFAL 2 O DIA GABARITO 1 13 FÍSICA QUESTÕES DE 31 A 45 OCEO EEIVO 006/ UNIF O DI GIO 1 13 FÍIC QUEÕE DE 31 45 31. Uma parícula é sola com elocidade inicial nula a uma alura de 500 cm em relação ao solo. No mesmo insane de empo uma oura parícula é lançada do

Leia mais

Física. Física Módulo 1

Física. Física Módulo 1 Física Módulo 1 Nesa aula... Movimeno em uma dimensão Aceleração e ouras coisinhas O cálculo de x() a parir de v() v( ) = dx( ) d e x( ) x v( ) d = A velocidade é obida derivando-se a posição em relação

Leia mais

ONDAS ELETROMAGNÉTICAS

ONDAS ELETROMAGNÉTICAS LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS A propagação de ondas eleromagnéicas ocorre quando um campo elérico variane no empo produ um campo magnéico ambém variane no empo, que por sua ve produ um campo

Leia mais

Aula - 2 Movimento em uma dimensão

Aula - 2 Movimento em uma dimensão Aula - Moimeno em uma dimensão Física Geral I - F- 18 o semesre, 1 Ilusração dos Principia de Newon mosrando a ideia de inegral Moimeno 1-D Conceios: posição, moimeno, rajeória Velocidade média Velocidade

Leia mais

COMO CONHECER A DISTRIBUIÇÃO DE TEMPERATURA

COMO CONHECER A DISTRIBUIÇÃO DE TEMPERATURA ESUDO DA CONDUÇÃO DE CALOR OBJEIVOS - Deerminar a disribuição de emperaura em um meio - Calcular o fluo de calor usando a Lei de Fourier Aplicações: - Conhecer a ineridade esruural de um meio em aluns

Leia mais

O potencial eléctrico de um condutor aumenta à medida que lhe fornecemos carga eléctrica. Estas duas grandezas são

O potencial eléctrico de um condutor aumenta à medida que lhe fornecemos carga eléctrica. Estas duas grandezas são O ondensador O poencial elécrico de um conduor aumena à medida que lhe fornecemos carga elécrica. Esas duas grandezas são direcamene proporcionais. No enano, para a mesma quanidade de carga, dois conduores

Leia mais

Cálculo Vetorial - Lista de Exercícios

Cálculo Vetorial - Lista de Exercícios álculo Veorial - Lisa de Exercícios (Organizada pela Profa. Ilka Rebouças). Esboçar o gráfico das curvas represenadas pelas seguines funções veoriais: a) a 4 i j, 0,. d) d i 4 j k,. b) b sen i 4 j cos

Leia mais

6ROXomR: A aceleração das esferas é a mesma, g (aceleração da gravidade), como demonstrou

6ROXomR: A aceleração das esferas é a mesma, g (aceleração da gravidade), como demonstrou 6ROXomR&RPHQWDGD3URYDGH)VLFD. O sisema inernacional de unidades e medidas uiliza vários prefixos associados à unidade-base. Esses prefixos indicam os múliplos decimais que são maiores ou menores do que

Leia mais

Treinamento para Olimpíadas de Física

Treinamento para Olimpíadas de Física www.cursoanglo.com.br Treinameno para Olimpíadas de Física 1ª- /2 ª- série EM AULA 1 CINEMÁTICA ESCALAR 1. INTRODUÇÃO Mecânica: Esudo do moimeno CINEMÁTICA: descrição do moimeno DINÂMICA: causas do moimeno

Leia mais

12 Integral Indefinida

12 Integral Indefinida Inegral Indefinida Em muios problemas, a derivada de uma função é conhecida e o objeivo é enconrar a própria função. Por eemplo, se a aa de crescimeno de uma deerminada população é conhecida, pode-se desejar

Leia mais

Física Fascículo 01 Eliana S. de Souza Braga

Física Fascículo 01 Eliana S. de Souza Braga Física Fascículo 01 Eliana S. de Souza raga Índice Cinemáica...1 Exercícios... Gabario...6 Cinemáica (Não se esqueça de adoar uma origem dos espaços, uma origem dos empos e orienar a rajeória) M.R.U. =

Leia mais

S = S S 0 S>0 S<0 S 13 S 23. Mecânica é o ramo da Física que estuda os movimentos. Pode ser dividida em: S(m) 1. CINEMÁTICA ESCALAR.

S = S S 0 S>0 S<0 S 13 S 23. Mecânica é o ramo da Física que estuda os movimentos. Pode ser dividida em: S(m) 1. CINEMÁTICA ESCALAR. Mecânica é o ramo da Física que esuda os movimenos. Pode ser dividida em: Início Final (m) a) Cinemáica: Esuda os movimenos sem se preocupar com as suas causas. b) Dinâmica: Esuda as causas dos movimenos.

Leia mais

18 GABARITO 1 2 O DIA PROCESSO SELETIVO/2005 FÍSICA QUESTÕES DE 31 A 45

18 GABARITO 1 2 O DIA PROCESSO SELETIVO/2005 FÍSICA QUESTÕES DE 31 A 45 18 GABARITO 1 2 O DIA PROCESSO SELETIO/2005 ÍSICA QUESTÕES DE 31 A 45 31. O gálio é um meal cuja emperaura de fusão é aproximadamene o C. Um pequeno pedaço desse meal, a 0 o C, é colocado em um recipiene

Leia mais

Função Exponencial 2013

Função Exponencial 2013 Função Exponencial 1 1. (Uerj 1) Um imóvel perde 6% do valor de venda a cada dois anos. O valor V() desse imóvel em anos pode ser obido por meio da fórmula a seguir, na qual V corresponde ao seu valor

Leia mais

Estando o capacitor inicialmente descarregado, o gráfico que representa a corrente i no circuito após o fechamento da chave S é:

Estando o capacitor inicialmente descarregado, o gráfico que representa a corrente i no circuito após o fechamento da chave S é: PROCESSO SELETIVO 27 2 O DIA GABARITO 1 13 FÍSICA QUESTÕES DE 31 A 45 31. Considere o circuio mosrado na figura abaixo: S V R C Esando o capacior inicialmene descarregado, o gráfico que represena a correne

Leia mais

GFI00157 - Física por Atividades. Caderno de Trabalhos de Casa

GFI00157 - Física por Atividades. Caderno de Trabalhos de Casa GFI00157 - Física por Aiidades Caderno de Trabalhos de Casa Coneúdo 1 Cinemáica 3 1.1 Velocidade.............................. 3 1.2 Represenações do moimeno................... 7 1.3 Aceleração em uma

Leia mais

Curso de Dinâmica das Estruturas 1

Curso de Dinâmica das Estruturas 1 Curso de Dinâica das Esruuras 1 I INTRODUÇÃO 1 O principal objeivo dese curso é apresenar eodologias para analisar ensões e deslocaenos desenvolvidos por u dado sisea esruural quando o eso esá sujeio à

Leia mais

APLICAÇÕES NA DINÂMICA5

APLICAÇÕES NA DINÂMICA5 APLICAÇÕES NA DINÂMICA5 Gil da Costa Marques 5.1 Introdução 5. O Moimento uniforme 5.3 O moimento uniformemente ariado 5.4 O problema eral 5.5 Equações básicas do moimento 5.6 Trajetória do projétil 5.7

Leia mais

Experiências para o Ensino de Queda Livre

Experiências para o Ensino de Queda Livre Universidade Esadual de Campinas Insiuo de Física Gleb Waagin Relaório Final da disciplina F 69A - Tópicos de Ensino de Física I Campinas, de juno de 7. Experiências para o Ensino de Queda Livre Aluno:

Leia mais

Em que medida as forças estão relacionadas com o movimento?

Em que medida as forças estão relacionadas com o movimento? Em que medida as forças estão relacionadas com o movimento? 02-20092009 1 Será que são necessárias forças para manter um corpo em movimento? Se a Força resultante for nula E o corpo está em Repouso E o

Leia mais

Termodinâmica Espontânea = tem tendência a evoluir. Cinética Velocidade = probabilidade de dar produtos. Gº r = 2.84 kj/mol

Termodinâmica Espontânea = tem tendência a evoluir. Cinética Velocidade = probabilidade de dar produtos. Gº r = 2.84 kj/mol AULA CNÉTCA QUÍMCA 1- RELAÇÃO CNÉTCA/EQULÍBRO 2- VELOCDADE DE UMA REACÇÃO 3- REACÇÕES ELEMENTARES. MOLECULARDADE 4- TEORA COLSONAL. DEPENDÊNCA DA TEMPERATURA 5- APROXMAÇÃO EXPERMENTAL. ORDEM DE UMA REACÇÃO.

Leia mais

CURSO PROFISSIONAL FÍSICA. F = m a MÓDULO 1 FORÇAS E MOVIMENTOS. Prof: Marília Pacheco Ano lectivo

CURSO PROFISSIONAL FÍSICA. F = m a MÓDULO 1 FORÇAS E MOVIMENTOS. Prof: Marília Pacheco Ano lectivo CURSO PROFISSIONAL FÍSICA F = m a MÓDULO 1 FORÇAS E MOVIMENTOS Prof: Marília Pacheco Ano lectivo 2013-14 ÍNDICE 1. A FÍSICA ESTUDA A INTERACÇÃO ENTRE CORPOS... 2 1.1 INTERACÇÕES FUNDAMENTAIS... 2 FORÇAS...

Leia mais

Análise de Circuitos Dinâmicos no Domínio do Tempo

Análise de Circuitos Dinâmicos no Domínio do Tempo Teoria dos ircuios e Fundamenos de Elecrónica Análise de ircuios Dinâmicos no Domínio do Tempo Teresa Mendes de Almeida TeresaMAlmeida@is.ul.p DEE Área ienífica de Elecrónica T.M.Almeida IST-DEE- AElecrónica

Leia mais

Duas opções de trajetos para André e Bianca. Percurso 1( Sangiovanni tendo sorteado cara e os dois se encontrando no ponto C): P(A) =

Duas opções de trajetos para André e Bianca. Percurso 1( Sangiovanni tendo sorteado cara e os dois se encontrando no ponto C): P(A) = RESOLUÇÃO 1 A AVALIAÇÃO UNIDADE II -016 COLÉGIO ANCHIETA-BA PROFA. MARIA ANTÔNIA C. GOUVEIA ELABORAÇÃO e PESQUISA: PROF. ADRIANO CARIBÉ e WALTER PORTO. QUESTÃO 01. Três saélies compleam suas respecivas

Leia mais

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo PROBLEMAS RESOLVIDOS DE FÍSIA Prof. Anderson oser Gaudio Deparameno de Física enro de iências Eaas Universidade Federal do Espírio Sano hp://www.cce.ufes.br/anderson anderson@npd.ufes.br Úlima aualização:

Leia mais

Queda Livre e Lançamentos no Espaço

Queda Livre e Lançamentos no Espaço LOGO FQA Queda Livre e Lançamentos no Espaço (Com resistência do ar desprezável) Queda Livre de Objetos A queda livre é o movimento de um objeto que se desloca livremente, unicamente sob a influência da

Leia mais

CIRCUITO RC SÉRIE. max

CIRCUITO RC SÉRIE. max ELETRICIDADE 1 CAPÍTULO 8 CIRCUITO RC SÉRIE Ese capíulo em por finalidade inroduzir o esudo de circuios que apresenem correnes eléricas variáveis no empo. Para ano, esudaremos o caso de circuios os quais

Leia mais

velocidade inicial da bola: v 0; altura da borda do telhado: H,; ângulo de inclinação do telhado: θ.

velocidade inicial da bola: v 0; altura da borda do telhado: H,; ângulo de inclinação do telhado: θ. Uma bola rola sobre o telhado de uma casa até cair pela beirada com velocidade v 0. Sendo a altura do ponto de onde a bola cai iuala H e o ânulo de inclinação do telhado, com a vertical, iual a θ, calcule:

Leia mais

projecto de postos de transformação

projecto de postos de transformação ARTGO TÉCNCO 17 Henrique Ribeiro da Silva Dep. de Engenharia Elecroécnica (DEE) do nsiuo Superior de Engenharia do Poro (SEP) projeco de posos de ransformação {.ª Pare - Cálculo dos Conduores} Apesar de

Leia mais

5.1 Objectivos. Caracterizar os métodos de detecção de valor eficaz.

5.1 Objectivos. Caracterizar os métodos de detecção de valor eficaz. 5. PRINCÍPIOS DE MEDIÇÃO DE CORRENE, ENSÃO, POÊNCIA E ENERGIA 5. Objecivos Caracerizar os méodos de deecção de valor eficaz. Caracerizar os méodos de medição de poência e energia em correne conínua, correne

Leia mais

Esquema: Dados: v água 1520m. Fórmulas: Pede-se: d. Resolução:

Esquema: Dados: v água 1520m. Fórmulas: Pede-se: d. Resolução: Queda Livre e Movimeno Uniformemene Acelerado Sergio Scarano Jr 1906/013 Exercícios Proposo Um navio equipado com um sonar preende medir a profundidade de um oceano. Para isso, o sonar emiiu um Ulra-Som

Leia mais

Ondas I Física 2 aula 10 2 o semestre, 2012

Ondas I Física 2 aula 10 2 o semestre, 2012 Ondas I Física aula 10 o semesre, 01 Ondas mecânicas Ondas são oscilações que se deslocam em um meio, mas que não carregam maéria. As ondas podem percorrer grandes disâncias, mas o meio em um moimeno apenas

Leia mais

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Dinâmicos

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Dinâmicos Análise de Projecos ESAPL / IPVC Criérios de Valorização e Selecção de Invesimenos. Méodos Dinâmicos Criério do Valor Líquido Acualizado (VLA) O VLA de um invesimeno é a diferença enre os valores dos benefícios

Leia mais

1. O movimento uniforme de uma partícula tem sua função horária representada no diagrama a seguir: e (m) t (s)

1. O movimento uniforme de uma partícula tem sua função horária representada no diagrama a seguir: e (m) t (s) . O moimeno uniforme de uma parícula em ua função horária repreenada no diagrama a eguir: e (m) - 6 7 - Deerminar: a) o epaço inicial e a elocidade ecalar; a função horária do epaço.. É dado o gráfico

Leia mais

Agrupamento de Escolas da Senhora da Hora

Agrupamento de Escolas da Senhora da Hora Agrupamento de Escolas da Senhora da Hora Curso Profissional de Técnico de Multimédia Informação Prova da Disciplina de Física - Módulo: 1 Forças e Movimentos; Estática Modalidade da Prova: Escrita Ano

Leia mais

AULA 02 MOVIMENTO. 1. Introdução

AULA 02 MOVIMENTO. 1. Introdução AULA 02 MOVIMENTO 1. Inrodução Esudaremos a seguir os movimenos uniforme e uniformemene variado. Veremos suas definições, equações, represenações gráficas e aplicações. Faremos o esudo de cada movimeno

Leia mais

Amplificadores de potência de RF

Amplificadores de potência de RF Amplificadores de poência de RF Objeivo: Amplificar sinais de RF em níveis suficienes para a sua ransmissão (geralmene aravés de uma anena) com bom rendimeno energéico. R g P e RF P CC Amplificador de

Leia mais

Universidade do Estado do Rio de Janeiro Instituto de Matemática e Estatística Econometria

Universidade do Estado do Rio de Janeiro Instituto de Matemática e Estatística Econometria Universidade do Esado do Rio de Janeiro Insiuo de Maemáica e Esaísica Economeria Variável dummy Regressão linear por pares Tese de hipóeses simulâneas sobre coeficienes de regressão Tese de Chow professorjfmp@homail.com

Leia mais

A Teoria da Relatividade Especial. Prof. Edgard P. M. Amorim Disciplina: FEE º sem/2011.

A Teoria da Relatividade Especial. Prof. Edgard P. M. Amorim Disciplina: FEE º sem/2011. A Teoria da Relaiidade Espeial Prof. Edgard P. M. Amorim Disiplina: FEE º sem/. Inrodução Para definirmos o esado de um sisema físio preisamos: Sisema de referênia: em relação ao quê? Posições e deriadas

Leia mais

Equações Diferenciais Ordinárias Lineares

Equações Diferenciais Ordinárias Lineares Equações Diferenciais Ordinárias Lineares 67 Noções gerais Equações diferenciais são equações que envolvem uma função incógnia e suas derivadas, além de variáveis independenes Aravés de equações diferenciais

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Universidade Esadual do Sudoese da Bahia Dearameno de Ciências Exaas e Naurais.1- Roações, Cenro de Massa e Momeno Física I Prof. Robero Claudino Ferreira Índice 1. Movimeno Circular Uniformemene Variado;.

Leia mais

Tipos de forças fundamentais na Natureza

Tipos de forças fundamentais na Natureza Tipos de Forças Tipos de forças fundamentais na Natureza Existem quatro tipos de interações/forças fundamentais na Natureza que atuam entre partículas a uma certa distância umas das outras: Gravitacional

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar Progressão Ariméica e Progressão Geomérica. (Pucrj 0) Os números a x, a x e a x esão em PA. A soma dos números é igual a: a) 8 b) c) 7 d) e) 0. (Fuves 0) Dadas as sequências an n n, n n cn an an b, e b

Leia mais

Resumo. Sinais e Sistemas Sinais e Sistemas. Sinal em Tempo Contínuo. Sinal Acústico

Resumo. Sinais e Sistemas Sinais e Sistemas. Sinal em Tempo Contínuo. Sinal Acústico Resumo Sinais e Sisemas Sinais e Sisemas lco@is.ul.p Sinais de empo conínuo e discreo Transformações da variável independene Sinais básicos: impulso, escalão e exponencial. Sisemas conínuos e discreos

Leia mais

Adaptado de O Prisma e o Pêndulo as dez mais belas experiências científicas, p. 52, Crease, R. (2006)

Adaptado de O Prisma e o Pêndulo as dez mais belas experiências científicas, p. 52, Crease, R. (2006) PROVA MODELO GRUPO I Arisóeles inha examinado corpos em moimeno e inha concluído, pelo modo como os corpos caem denro de água, que a elocidade de um corpo em queda é uniforme, proporcional ao seu peso,

Leia mais

Escola Secundária de Casquilhos FQA11 - APSA1 - Unidade 1- Correção

Escola Secundária de Casquilhos FQA11 - APSA1 - Unidade 1- Correção Escola Secundária de Casquilhos FQA11 - APSA1 - Unidade 1- Correção / GRUPO I (Exame 2013-2ª Fase) 1. (B) 2. 3. 3.1. Para que a intensidade média da radiação solar seja 1,3 x 10 3 Wm -2 é necessário que

Leia mais

Cap.7 IMPULSO, TRABALHO E ENERGIA

Cap.7 IMPULSO, TRABALHO E ENERGIA Impulso: Resula de uma força que acua num corpo durane um curo período de empo. Exemplos de impulsos: Colisão ou impaco de corpos. Quedas acidenais (podem provocar danos em pessoas idosas, acima dos 65

Leia mais

4 Modelagem e metodologia de pesquisa

4 Modelagem e metodologia de pesquisa 4 Modelagem e meodologia de pesquisa Nese capíulo será apresenada a meodologia adoada nese rabalho para a aplicação e desenvolvimeno de um modelo de programação maemáica linear misa, onde a função-objeivo,

Leia mais

ESPELHOS ESFÉRICOS - INTERMEDIÁRIO

ESPELHOS ESFÉRICOS - INTERMEDIÁRIO ESPELHOS ESFÉRICOS - INTERMEDIÁRIO A Equipe SEI selecionou exercícios de concursos sobre espelhos esféricos, para que você possa aprimorar seus conhecimentos. Os exercícios selecionados são de nível intermediário.

Leia mais

Dulce Godinho

Dulce Godinho Leis Newton lgumas situações lgumas situações resolvidas com as leis de Newton celeração de um corpo que se move ao longo de um plano horizontal sem atrito Forças que actuam no corpo Peso do corpo P força

Leia mais

GGE RESPONDE - VESTIBULAR ITA 2011 (FÍSICA)

GGE RESPONDE - VESTIBULAR ITA 2011 (FÍSICA) GGE ESPONDE - ESIUA IA (FÍSIA) FÍSIA - // aso necessário, use os seuines aos: Aceleração a raiae = m/s elociae e som o ar = m/s Densiae a áua =, /cm omprimeno e ona méio a luz = 57 nm. Um problema clássico

Leia mais

ELECTRÓNICA DE POTÊNCIA II

ELECTRÓNICA DE POTÊNCIA II E.N.I.D.H. Deparameno de Radioecnia APONTAMENTOS DE ELECTRÓNICA DE POTÊNCIA II (Capíulo 2) José Manuel Dores Cosa 2000 42 ÍNDICE Inrodução... 44 CAPÍTULO 2... 45 CONVERSORES COMUTADOS DE CORRENTE CONTÍNUA...

Leia mais

MOVIMENTOS CIRCULARES EXERCÍCIOS AVANÇADOS RESOLVIDOS

MOVIMENTOS CIRCULARES EXERCÍCIOS AVANÇADOS RESOLVIDOS MOVIMENTOS CIRCULRES EXERCÍCIOS VNÇDOS RESOLVIDOS Equipe SEI, pensando em você, preparou este artio com exercícios resolvidos sobre movimentos circulares. ons estudos! 1. (F 009) Uma pessoa, brincando

Leia mais

Um estudo de Cinemática

Um estudo de Cinemática Um esudo de Cinemáica Meu objeivo é expor uma ciência muio nova que raa de um ema muio anigo. Talvez nada na naureza seja mais anigo que o movimeno... Galileu Galilei 1. Inrodução Nese exo focaremos nossa

Leia mais

FORÇA e INTERAÇÕES. Forças de contacto Quando uma força envolve o contacto direto entre dois corpos

FORÇA e INTERAÇÕES. Forças de contacto Quando uma força envolve o contacto direto entre dois corpos FORÇA e INTERAÇÕES Forças de contacto Quando uma força envolve o contacto direto entre dois corpos Forças de longo alcance Acuam mesmo quando os corpos não estão em contacto, como por exemplo as forças

Leia mais

Campo magnético variável

Campo magnético variável Campo magnéico variável Já vimos que a passagem de uma correne elécrica cria um campo magnéico em orno de um conduor aravés do qual a correne flui. Esa descobera de Orsed levou os cienisas a desejaram

Leia mais

Transmissão de calor

Transmissão de calor UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenhaia ansmissão de calo 3º ano Pof D. Engº Joge Nhambiu Aula. Equação difeencial de condução de calo Equação difeencial de condução de calo Dedução da equação

Leia mais

Econometria Semestre

Econometria Semestre Economeria Semesre 00.0 6 6 CAPÍTULO ECONOMETRIA DE SÉRIES TEMPORAIS CONCEITOS BÁSICOS.. ALGUMAS SÉRIES TEMPORAIS BRASILEIRAS Nesa seção apresenamos algumas séries econômicas, semelhanes às exibidas por

Leia mais

v t Unidade de Medida: Como a aceleração é dada pela razão entre velocidade e tempo, dividi-se também suas unidades de medida.

v t Unidade de Medida: Como a aceleração é dada pela razão entre velocidade e tempo, dividi-se também suas unidades de medida. Diciplina de Fíica Aplicada A / Curo de Tecnólogo em Geão Ambienal Profeora M. Valéria Epíndola Lea. Aceleração Média Já imo que quando eamo andando de carro em muio momeno é neceário reduzir a elocidade,

Leia mais

Unidade 14 Conservação da Quantidade de Movimentos. Forças internas e externas Sistemas mecanicamente isolados Colisões

Unidade 14 Conservação da Quantidade de Movimentos. Forças internas e externas Sistemas mecanicamente isolados Colisões Unidade 14 Conseração da Quantidade de Moimentos Forças internas e externas Sistemas mecanicamente isolados Colisões Introdução Quando descreemos a atuação de uma força, podemos fazê-lo dizendo que essa

Leia mais

Pontão Sul Brasília Lighting Design: Sandra Barbato

Pontão Sul Brasília Lighting Design: Sandra Barbato Foo: Paulo MacDowell Ponão Sul Brasília Lighing Design: Sandra Barbao 50 p o n o d e v i s a Morro Dois Irmãos (esq) e Palácio Guanabara, ambos no Rio de Janeiro, receberam iluminação especial. Foos: Lula

Leia mais

Aplicações das Leis de Newton Fernanda Dalpiaz Curso Técnico em Administração IFRS Rio Grande do Sul, Osório, Brasil

Aplicações das Leis de Newton Fernanda Dalpiaz Curso Técnico em Administração IFRS Rio Grande do Sul, Osório, Brasil Aplicações das Leis de Newton Fernanda Dalpiaz Curso Técnico em Administração IFRS Rio Grande do Sul, Osório, Brasil 1. Introdução Esse trabalho irá apresentar as Leis de Newton e as suas aplicações. As

Leia mais

RESSALTO HIDRÁULICO Nome: nº

RESSALTO HIDRÁULICO Nome: nº RESSALTO HIDRÁULICO Nome: nº O ressalo hidráulico é um dos fenômenos imporanes no campo da hidráulica. Ele foi primeiramene descrio por Leonardo da Vinci e o primeiro esudo experimenal foi crediado a Bidone

Leia mais

UM MÉTODO RÁPIDO PARA ANÁLISE DO COMPORTAMENTO TÉRMICO DO ENROLAMENTO DO ESTATOR DE MOTORES DE INDUÇÃO TRIFÁSICOS DO TIPO GAIOLA

UM MÉTODO RÁPIDO PARA ANÁLISE DO COMPORTAMENTO TÉRMICO DO ENROLAMENTO DO ESTATOR DE MOTORES DE INDUÇÃO TRIFÁSICOS DO TIPO GAIOLA ART643-07 - CD 262-07 - PÁG.: 1 UM MÉTD RÁPID PARA ANÁLISE D CMPRTAMENT TÉRMIC D ENRLAMENT D ESTATR DE MTRES DE INDUÇÃ TRIFÁSICS D TIP GAILA 1 - RESUM Jocélio de Sá; João Robero Cogo; Hécor Arango. objeivo

Leia mais

Mecânica de Sistemas de Partículas Prof. Lúcio Fassarella * 2013 *

Mecânica de Sistemas de Partículas Prof. Lúcio Fassarella * 2013 * Mecânica e Sisemas e Parículas Prof. Lúcio Fassarella * 2013 * 1. A velociae e escape e um planea ou esrela é e nia como seno a menor velociae requeria na superfície o objeo para que uma parícula escape

Leia mais

Física. Resolução das atividades complementares. F5 Cinemática vetorial

Física. Resolução das atividades complementares. F5 Cinemática vetorial Resolução das aiidades complemenares Física F Cinemáica eorial p. 9 (Uniau-SP) Dois objeos enconram-se em moimeno em relação a um obserador inercial O. s rajeórias são reilíneas de mesma direção e as elocidades

Leia mais

Integração por substituição (mudança de variável)

Integração por substituição (mudança de variável) M@plus Inegrais Inegrais Pare II IV. Técnicas de inegração Quando o inegral (definido ou indefinido) não é imediao ou quase imediao, recorremos a ouras écnicas de inegração. Inegração por subsiuição (mudança

Leia mais

Biofísica II Turma de Biologia FFCLRP USP Prof. Antônio Roque Biologia de Populações 2 Modelos não-lineares. Modelos Não-Lineares

Biofísica II Turma de Biologia FFCLRP USP Prof. Antônio Roque Biologia de Populações 2 Modelos não-lineares. Modelos Não-Lineares Modelos Não-Lineares O modelo malhusiano prevê que o crescimeno populacional é exponencial. Enreano, essa predição não pode ser válida por um empo muio longo. As funções exponenciais crescem muio rapidamene

Leia mais

Universidade Federal do Pampa UNIPAMPA. Fluidos Hidrostática e Hidrodinâmica

Universidade Federal do Pampa UNIPAMPA. Fluidos Hidrostática e Hidrodinâmica Uniersidade Federal do Pampa UNIPAMPA Fluidos Hidrostática e Hidrodinâmica - HIDRODINÂMICA - HIDRODINÂMICA CARACTERÍSTICAS DO ESCOAMENTO Quando um fluido está em moimento seu fluxo ou escoamento pode ser:

Leia mais

ESTUDO DO MOVIMENTO UNIFORMEMENTE ACELERADO DETERMINAÇÃO DA ACELERAÇÃO DA GRAVIDADE

ESTUDO DO MOVIMENTO UNIFORMEMENTE ACELERADO DETERMINAÇÃO DA ACELERAÇÃO DA GRAVIDADE TRABALHO PRÁTICO Nº 1 ESTUDO DO MOVIMENTO UNIFORMEMENTE ACELERADO DETERMINAÇÃO DA ACELERAÇÃO DA GRAVIDADE Objecivo - Preende-se esudar o movimeno recilíneo e uniformemene acelerado medindo o empo gaso

Leia mais

Questão 30. Questão 32. Questão 31. alternativa E. alternativa D. alternativa A

Questão 30. Questão 32. Questão 31. alternativa E. alternativa D. alternativa A Quesão 30 Um sólido branco apresena as seguines propriedades: I. É solúvel em água. II. Sua solução aquosa é conduora de correne elérica. III. Quando puro, o sólido não conduz correne elérica. IV. Quando

Leia mais

Matemática. Funções polinomiais. Ensino Profissional. Caro estudante. Maria Augusta Neves Albino Pereira António Leite Luís Guerreiro M.

Matemática. Funções polinomiais. Ensino Profissional. Caro estudante. Maria Augusta Neves Albino Pereira António Leite Luís Guerreiro M. Ensino Profissional Maria Augusa Neves Albino Pereira Anónio Leie Luís Guerreiro M. Carlos Silva Maemáica Funções polinomiais Revisão cienífica Professor Douor Jorge Nuno Silva Faculdade de Ciências da

Leia mais

Física A Extensivo V. 4

Física A Extensivo V. 4 Extensivo V. 4 Exercícios 01) 01. Falso. F r = 0 MRU 0. Verdadeiro. 04. Verdadeiro. Aceleração centrípeta ou radial. 08. Falso. As forças são iguais em módulo. 16. Verdadeiro. 3. Falso. A ação nunca anula

Leia mais

As leis de Newton e suas aplicações

As leis de Newton e suas aplicações INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA E TECNOLOGIA PARAÍBA Campus Princesa Isabel As leis de Newton e suas aplicações Disciplina: Física Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este

Leia mais

Física moderna. Relatividade galileana. Relatividade galileana. Relatividade o que significa? Relatividade o que significa?

Física moderna. Relatividade galileana. Relatividade galileana. Relatividade o que significa? Relatividade o que significa? Relatividade galileana Física moderna Relatividade galileana Maio, 2011 Caldas da Rainha Luís Perna Relatividade o que significa? O observador junto à árvore diz: o comboio move-se para a frente com velocidade

Leia mais

É a parte da mecânica que descreve os movimentos, sem se preocupar com suas causas.

É a parte da mecânica que descreve os movimentos, sem se preocupar com suas causas. 1 INTRODUÇÃO E CONCEITOS INICIAIS 1.1 Mecânca É a pare da Físca que esuda os movmenos dos corpos. 1. -Cnemáca É a pare da mecânca que descreve os movmenos, sem se preocupar com suas causas. 1.3 - Pono

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Cinemática I. Bruno Conde Passos Engenharia Civil João Victor Engenharia Civil

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Cinemática I. Bruno Conde Passos Engenharia Civil João Victor Engenharia Civil CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Cinemática I Bruno Conde Passos Engenharia Civil João Victor Engenharia Civil Cinemática Na cinemática vamos estudar os movimentos sem levar em consideração

Leia mais

2 Descrição do movimento de um ponto material no espaço e no tempo

2 Descrição do movimento de um ponto material no espaço e no tempo 2 Descrição do movimento de um ponto material no espaço e no tempo 2.1. Num instante t i um corpo parte de um ponto x i num movimento de translação a uma dimensão, com módulo da velocidade v i e aceleração

Leia mais

DENOMINADORES: QUAIS SÃO? COMO SE CALCULAM?

DENOMINADORES: QUAIS SÃO? COMO SE CALCULAM? DENOMINADORES: QUAIS SÃO? COMO SE CALCULAM? POPULAÇÃO SOB OBSERVAÇÃO A idade e o sexo da população inscria nas lisas dos médicos paricipanes é conhecida. A composição dessas lisas é acualizada no final

Leia mais

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo POLEMAS ESOLVIDOS DE FÍSICA Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Eatas Universidade Federal do Espírito Santo http://www.cce.ufes.br/anderson anderson@npd.ufes.br Última

Leia mais

2 Energia em movimentos

2 Energia em movimentos 2 Energia em movimentos Lei da conservação de energia Se se considerar todas as contribuições energéticas, macroscópicas e microscópicas, total p macroscópica c macroscópica Sistema isolado 2 Sistemas

Leia mais

3. Representaç ão de Fourier dos Sinais

3. Representaç ão de Fourier dos Sinais Sinais e Sisemas - 3. Represenaç ão de Fourier dos Sinais Nese capíulo consideramos a represenação dos sinais como uma soma pesada de exponenciais complexas. Dese modo faz-se uma passagem do domínio do

Leia mais

Nome: Nº: Turma: Os exercícios a seguir foram retirados do livro Aulas de Física, volume I, da Editora Atual.

Nome: Nº: Turma: Os exercícios a seguir foram retirados do livro Aulas de Física, volume I, da Editora Atual. Física 2ª Lei de Newton I 2 os anos Hugo maio/12 Nome: Nº: Turma: Os exercícios a seguir foram retirados do livro Aulas de Física, volume I, da Editora Atual. 1. Aplica-se uma força F de intensidade 20

Leia mais

PEA LABORATÓRIO DE INSTALAÇÕES ELÉTRICAS I CONDUTORES E DISPOSITIVOS DE PROTEÇÃO (CDP_EA)

PEA LABORATÓRIO DE INSTALAÇÕES ELÉTRICAS I CONDUTORES E DISPOSITIVOS DE PROTEÇÃO (CDP_EA) PEA 40 - LAORAÓRO DE NSALAÇÕES ELÉRCAS CONDUORES E DSPOSVOS DE PROEÇÃO (CDP_EA) RELAÓRO - NOA... Grupo:...... Professor:...Daa:... Objeivo:..... MPORANE: Em odas as medições, o amperímero de alicae deverá

Leia mais

Exemplos de aplicação das leis de Newton e Conservação da Energia

Exemplos de aplicação das leis de Newton e Conservação da Energia Exemplos de aplicação das leis de Newton e Conservação da Energia O Plano inclinado m N Vimos que a força resultante sobre o bloco é dada por. F r = mg sin α i Portanto, a aceleração experimentada pelo

Leia mais

Lista de Exercícios n o.1. 1) O diodo do circuito da Fig. 1(a) se comporta segundo a característica linearizada por partes da Fig 1(b). I D (ma) Fig.

Lista de Exercícios n o.1. 1) O diodo do circuito da Fig. 1(a) se comporta segundo a característica linearizada por partes da Fig 1(b). I D (ma) Fig. Universidade Federal da Bahia EE isposiivos Semiconduores ENG C41 Lisa de Exercícios n o.1 1) O diodo do circuio da Fig. 1 se compora segundo a caracerísica linearizada por pares da Fig 1. R R (ma) 2R

Leia mais

5.3 Escalonamento FCFS (First-Come, First Served)

5.3 Escalonamento FCFS (First-Come, First Served) c prof. Carlos Maziero Escalonameno FCFS (Firs-Come, Firs Served) 26 5.3 Escalonameno FCFS (Firs-Come, Firs Served) A forma de escalonameno mais elemenar consise em simplesmene aender as arefas em sequência,

Leia mais

Prof. A.F.Guimarães Questões Cinemática 7 Lançamentos Questão 2

Prof. A.F.Guimarães Questões Cinemática 7 Lançamentos Questão 2 Questão Prof. A.F.Guimarães Questões Cinemática 7 Lançamentos Questão (UFCE) A fiura a seuir mostra a trajetória da bola lançada pelo oleiro Dida, no tiro de meta. Desprezando o efeito do ar, um estudante

Leia mais

O Método do Tubo de Trajetórias para a Equação de Convecção. Parte I: Formulação

O Método do Tubo de Trajetórias para a Equação de Convecção. Parte I: Formulação O Méodo do Tubo de Trajeórias para a Equação de Convecção. Pare I: Formulação Luciana P. M. Pena Laboraório de Ciências Maemáicas, (LCMAT/CCT), Universidade Esadual do Nore Fluminense Darcy Ribeiro - UENF

Leia mais

LANÇAMENTOS NO VÁCUO. I) RESUMO DE LANÇAMENTOS NO VÁCUO (VERTICAL, QUEDA LIVRE, OBLIQUO E HORIZONTAL )

LANÇAMENTOS NO VÁCUO.  I) RESUMO DE LANÇAMENTOS NO VÁCUO (VERTICAL, QUEDA LIVRE, OBLIQUO E HORIZONTAL ) LANÇAMENTOS NO VÁCUO www.nilsong.com.br I) RESUMO DE LANÇAMENTOS NO VÁCUO (VERTICAL, QUEDA LIVRE, OBLIQUO E HORIZONTAL ) São os movimentos onde só cosndera-se atuando no móvel apenas a força de gravidade

Leia mais