Professor: Danilo Dacar

Tamanho: px
Começar a partir da página:

Download "Professor: Danilo Dacar"

Transcrição

1 . (Pucrj 0) Os números a x, a x e a3 x 3 esão em PA. A soma dos 3 números é igual a: é igual a e o raio de cada semicírculo é igual à meade do semicírculo anerior, o comprimeno da espiral é igual a a) 8 b) c) 7 d) e) 30. (Fuves 0) Dadas as sequências an n n, n n cn an an b, e bn d n, definidas para valores ineiros posiivos de bn n, considere as seguines afirmações: I. a n é uma progressão geomérica; II. b n é uma progressão geomérica; III. c n é uma progressão ariméica; IV. d n é uma progressão geomérica. São verdadeiras apenas a) I, II e III. b) I, II e IV. c) I e III. d) II e IV. e) III e IV. 3. (Uece 0) Os números reais posiivos x, y e z são ais que logx, logy, logz formam, nesa ordem, uma progressão ariméica. Nesas condições, podemos concluir aceradamene que enre os números x, y e z exise a relação a) y x z. b) y x z. c) d) z y xy. xz.. (Unicamp 0) Se ( α, α,..., α 3 ) é uma progressão ariméica (PA) cuja soma dos ermos é 78, enão α 7 é igual a a). b) 7. c) 8. d) 9.. (Uece 0) Para qual valor do número ineiro 3 n 0 posiivo n a igualdade é n 0 saisfeia? a) 0. b) 0. c) 0. d) 03.. (Espcex (Aman) 0) Na figura abaixo emos uma espiral formada pela união de infinios semicírculos cujos cenros perencem ao eixo das abscissas. Se o raio do primeiro semicírculo (o maior) a) π. b) π. c) 3 π. d) π. e) π. 7. (Udesc 0) Os números reais a, b e c são ais que a progressão geomérica S {a b, b, 8, } e a progressão ariméica S {c, a b, a c, } possuem razões oposas. Enão, o valor de é a b c igual a: a) 3 b) 0 c) 3 d) e) 0 8. (Unifor 0) Um ciclisa pedala 30km em cincos dias. Cada dia ele pedala 0km a mais do que andou no dia anerior. Assim a disância pedalada pelo ciclisa no primeiro dia foi: a) 3 km b) 0 km c) km d) km 9. (Espcex (Aman) 0) Os números naurais ímpares são disposos como mosra o quadro ª linha ª linha 3 3ª linha 7 9 ª linha ª linha O primeiro elemeno da 3ª linha, na horizonal, é: a) 807 b) 007 c) 307 d) 07 e) (Unicamp 0) Dizemos que uma sequência de números reais não nulos (a, a, a 3, a,...) é uma progressão harmônica se a sequência dos inversos,,,,... é uma progressão ariméica a a a3 a (PA).

2 a) Dada a progressão harmônica,,,..., 9 enconre o seu sexo ermo. b) Sejam a, b e c ermos consecuivos de uma ac progressão harmônica. Verifique que b. a c. (Ucs 0) Uma culura de bacérias inha, no final do primeiro dia, k indivíduos; no final do segundo dia, o dobro de k; no final do erceiro dia, o riplo de k; e, assim, sucessivamene. Se, no final do vigésimo dia, havia 0, 0 indivíduos, qual era o número de indivíduos no final do primeiro dia? a) 0 b), 0 c), 0 d) 0 3 e), 0. (Unicamp 0) O perímero de um riângulo reângulo é igual a,0 m e as medidas dos lados esão em progressão ariméica (PA). A área desse riângulo é igual a a) 3,0 m. b),0 m. c), m. d) 3, m. 3. (Ime 0) Em uma progressão ariméica crescene, a soma de rês ermos consecuivos é S e a soma de seus quadrados é S. Sabe-se que os dois maiores desses rês ermos são raízes da equação x Sx S 0. A razão desa PA é a) b) c) d) 3 e). (Espm 0) A figura abaixo mosra a rajeória de um móvel a parir de um pono A, com BC CD, DE EF, FG GH, HI IJ e assim por diane. c) 80 m d) 9 m e) 00 m. (Unesp 03) A soma dos n primeiros ermos de uma progressão ariméica é dada por 3n n, onde n é um número naural. Para essa progressão, o primeiro ermo e a razão são, respecivamene, a) 7 e. b) e. c) e. d) e 7. e) e 7.. (G - ufpr 03) A quanidade de números ineiros enre 0 e 00 que sejam múliplos dos números 3 e ao mesmo empo é: a) 3. b). c). d) 3. e) (Mackenzie 03) Em uma progressão ariméica o primeiro ermo é e a razão é. Nessa progressão, a média ariméica ponderada enre o erceiro ermo, com peso, e 0% da soma dos cincos primeiros ermos, com peso 3, é a) b) 3 c) d) 7 e) 9 8. (Unesp 03) A sequência dos números n 3 n, n, n 3,, n i, esá definida por ni, ni ni para cada ineiro posiivo i. Deermine o valor de n (Espm 03) Um emprésimo de R$ 0.000,00 foi pago em parcelas mensais, sendo a primeira, de R$.000,00, efeuada 30 dias após e as demais com um acréscimo de 0% em relação à anerior. Pode-se concluir que a axa mensal de juros simples ocorrida nessa ransação foi de aproximadamene: a),78% b),% c) 3,8% d),% e),% Considerando infinia a quanidade desses segmenos, a disância horizonal AP alcançada por esse móvel será de: a) m b) 7 m

3 0. (Fgv 03) Um capial A de R$0.000,00 é aplicado a juros composos, à axa de 0% ao ano; simulaneamene, um ouro capial B, de R$.000,00, ambém é aplicado a juros composos, à axa de 8% ao ano. Uilize a abela abaixo para resolver. x lo 0,3 0, 0, 0,7 0,7 0,8 0,9 0,9 g x Depois de quano empo os monanes se igualam? a) meses. b), meses. c) 3 meses. d) 3, meses. e) meses. 3

4 Gabario: Tem-se que Resposa da quesão : Considerando a P.A. na ordem dada, emos: P.A. (x, x, x 3) y z log y log x logz log y log log x y Uilizando a propriedade de uma P.A, emos: x x 3 Resposa da quesão : x x 8 x 8 9x 3 x [A] y z x y y xz. Logo, a P.A. será (, 8, ). Porano, a soma do rês números será: a a a3 8. Resposa da quesão : [I] Falsa. Tem-se que a n (n ). Logo, como a razão n a n (n 3) a (n ) n não é consane, segue que a n não é uma progressão geomérica. [II] Falsa. De fao, a razão (n ) b n n n n n b n n não é consane. Daí, podemos concluir que b n não é uma progressão geomérica. [III] Verdadeira. A diferença enre quaisquer dois ermos consecuivos da sequência c n é an a n (n ) (n ) (n n ) n n n n n n. Desse modo, c n é uma progressão ariméica de primeiro ermo 3 e razão igual a. n [IV] Verdadeira. De (II), emos dn, que é uma progressão geomérica de primeiro ermo 8 e razão igual a. Resposa da quesão 3: [D] Como α 7 é o ermo médio da progressão ariméica, seguese que 78 α7 3 e, porano, emos α7. Resposa da quesão : Tem-se que n n 3 n 0 0 n 0 n 0 n n 0 n 0 n 0. Resposa da quesão : Comprimeno de uma semicircunferência de raio πr r : π r Logo, a soma pedida será dada por: S π π π π 8... S π ( 8...) S π S π Resposa da quesão 7: Sejam q e r, respecivamene as razões de S e S. De S, vem (a b) c ( a c) b a.

5 Logo, em-se que S {a, a, 8, } e, porano, a q. Em consequência, dado que q e r são a oposas, enconramos r e 8, o que implica em a a 3. Daí, emos b e c, pois b a e a b c. Por conseguine, o valor de a b c é 0. Resposa da quesão 8: Seja n a disância, em quilômeros, pedalada pelo ciclisa no primeiro dia. Dado que o ciclisa pedala 0km a mais do que pedalou no dia anerior, vem n n 0 n 0 n 30 n 0 30 n 0 Resposa da quesão 9: n km. Aé a a linha, emos: () ermos. Porano, o primeiro elemeno da 3ª linha será o 90º número naural ímpar. Enão: a Resposa da quesão 0: a) Se a progressão,,, 9 9 sequência,,, é harmônica, enão a é uma progressão ariméica de razão 9. Daí, seu sexo ermo é dado por a. Em consequência, o resulado pedido é. b) Sabendo que em oda progressão ariméica cada ermo é igual à média ariméica do seu anecessor e do seu sucessor (exceo o primeiro e o úlimo), em-se a c a c b b ac ac b. a c Resposa da quesão : Tem-se que 0 k 0, 0 k, 0. Resposa da quesão : Sejam x, x r e x r as medidas, em meros, dos lados do riângulo, com x, r 0. Aplicando o Teorema de Piágoras, enconramos x 3r. Logo, os lados do riângulo medem 3r, r e r. Sabendo que o perímero do riângulo mede,0 m, vem 3r r r r. Porano, a área do riângulo é igual a 3r r, m. Resposa da quesão 3: Considerando os rês números me P.A. (a r), a e (a r), emos: S (a r) a (a r) 3a S (a r) a (a r) 3a r Logo, x Sx S 0 x 3ax 3a r 0 As raízes da equação são a e (a r). Logo: a a r 3a a r a (a r) 3a r

6 Como a r, emos: r (r r) 3r r 3r r Como r 0, emos: r. Resposa da quesão : Pelo Teorema de Piágoras aplicado no riângulo ABC, enconramos facilmene AC 0 m. Os riângulos ABC, CDE, EFG, são semelhanes por AA. Logo, como a razão de semelhança é igual a CD 3, segue-se que AC 0 m, CE m, AB EG m, consiuem uma progressão geomérica cujo limie da soma dos n primeiros ermos é dado por 0 80 m. 3 Resposa da quesão : P.A.( a, a, a 3, a,...) a S 3.. a a S a 8 a 7 Razão r = 7 =, porano a = e razão r =. Resposa da quesão : MMC(3,) = Múliplos de são múliplos de 3 e de ao mesmo empo. Múliplos de enre 0 e 00 (0, 7,..., 8, 9). 3 n n 3 n Resposa da quesão 7: [D] O erceiro ermo da P.A. será dado por: a 3 = +. = 0 O quino ermo da P.A. será dado por: a = +. = 8 A soma dos cinco primeiros ermos será dada por: S 8 0. Logo, a média M pedida será dada por: 0 3 0, 0 0 M 7. Resposa da quesão 8: Temos nk 3, n k, n k3, n k, nk 7 3 e 7 n k, para odo k naural. Porano, n03 n 333. Resposa da quesão 9: Como as parcelas crescem segundo uma progressão geomérica de razão, e primeiro ermo igual a 000, segue que o monane pago foi de (,) ,0, R$.0,0. Logo, os juros cobrados correspondem a 0, 0000 R$.0,0 e, porano, a axa de juros simples na ransação é igual a 0, 00%,% Resposa da quesão 0: Temos MA 0000 (,) e MB 000 (,8). Logo, Uilizando a fórmula do ermo geral da P.A., emos: 9 = 0 + (n ) (em que n é o número de múliplos de enre 0 e 00)

7 , (,) 000 (,8), log(,) log (log log7 log0) log (0,3 0,8 ) 0,3 0,30 0,. Porano, os monanes se igualarão, aproximadamene, após anos (ou meses). 7

8 8

Professor: Danilo Dacar

Professor: Danilo Dacar Progressão Ariméica e Progressão Geomérica. (Pucrj 0) Os números a x, a x e a x esão em PA. A soma dos números é igual a: a) 8 b) c) 7 d) e) 0. (Fuves 0) Dadas as sequências an n n, n n cn an an b, e b

Leia mais

MATEMÁTICA E SUAS TECNOLOGIAS

MATEMÁTICA E SUAS TECNOLOGIAS 1º SIMULADO ENEM 017 Resposa da quesão 1: MATEMÁTICA E SUAS TECNOLOGIAS Basa aplicar a combinação de see espores agrupados dois a dois, logo: 7! C7,!(7 )! 7 6 5! C7,!5! 7 6 5! C7, 1!5! Resposa da quesão

Leia mais

INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas.

INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas. SIMULADO DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - JULHO DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES de 0 a

Leia mais

Resolução. Caderno SFB Enem

Resolução. Caderno SFB Enem Caderno SFB Enem COMENTÁRIOS EXERCÍCIOS PROPOSTOS 0. Do enunciado, emos: y x k, onde k é a consane de proporcionalidade. Assim: 6 5 k k 50 Logo: y x 50 y 5 50 y 0. Seja L a quanidade de laranjas ransporadas:

Leia mais

NOTAÇÕES. x 2y < 0. A ( ) apenas I. B ( ) apenas I e II. C ( ) apenas II e III. D ( ) apenas I e III. E ( ) todas. . C ( ) [ ] 5, 0 U [1, )

NOTAÇÕES. x 2y < 0. A ( ) apenas I. B ( ) apenas I e II. C ( ) apenas II e III. D ( ) apenas I e III. E ( ) todas. . C ( ) [ ] 5, 0 U [1, ) NOTAÇÕES C é o conjuno dos números complexos R é o conjuno dos números reais N = {,,,} i denoa a unidade imaginária, ou seja, i = - z é o conjugado do número complexo z Se X é um conjuno, P(X) denoa o

Leia mais

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa C. Os números inteiros x e y satisfazem a equação

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa C. Os números inteiros x e y satisfazem a equação Quesão Os números ineiros x e y saisfazem a equação x x y y 5 5.Enãox y é: a) 8 b) 5 c) 9 d) 6 e) 7 alernaiva B x x y y 5 5 x ( ) 5 y (5 ) x y 7 x 6 y 5 5 5 Como x e y são ineiros, pelo Teorema Fundamenal

Leia mais

LISTA DE EXERCÍCIOS 2º ANO GABARITO

LISTA DE EXERCÍCIOS 2º ANO GABARITO º ANO GABARITO Questão Matemática I 8 9 7 a9 = = 7 9 6 a8 = = 6 9 55 a7 = = Portanto, a média aritmética dos últimos termos será dada por: 8 7 6 55 + + + 7 7 M = = = 6 Questão O número de vigas em cada

Leia mais

QUESTÕES DISCURSIVAS. Questão 1. Questão 2. Questão 3. Resposta. Resposta

QUESTÕES DISCURSIVAS. Questão 1. Questão 2. Questão 3. Resposta. Resposta QUESTÕES DISCURSIVAS Quesão a) O piso de uma sala reangular de 00 dm de comprimeno por 0 dm de largura vai ser revesido com placas quadradas, as maiores possíveis. Qual é a área de cada uma? b) Sobre uma

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web Inerbis SuperPro Web 1. O lucro de uma empresa é dado pela expressão maemáica L R C, onde L é o lucro, o cuso da produção e R a receia do produo. Uma fábrica de raores produziu n unidades e verificou que

Leia mais

GABARITO CURSO DE FÉRIAS MATEMÁTICA Professor: Alexandrino Diógenes

GABARITO CURSO DE FÉRIAS MATEMÁTICA Professor: Alexandrino Diógenes Professor: Alexandrino Diógenes EXERCÍCIOS DE SALA 4 5 6 7 8 9 0 E C D D A D E D A D 4 5 6 7 8 9 0 C E D B A B D C B A QUESTÃO Seja a função N : R R, definida por N(n) = an + b, em que N(n) é o número

Leia mais

Função Exponencial 2013

Função Exponencial 2013 Função Exponencial 1 1. (Uerj 1) Um imóvel perde 6% do valor de venda a cada dois anos. O valor V() desse imóvel em anos pode ser obido por meio da fórmula a seguir, na qual V corresponde ao seu valor

Leia mais

35ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase

35ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase ª Olimpíada rasileira de Maemáica GRITO Segunda Fase Soluções Nível Segunda Fase Pare PRTE Na pare serão aribuídos ponos para cada resposa correa e a ponuação máxima para essa pare será. NENHUM PONTO deverá

Leia mais

DISCIPLINA SÉRIE CAMPO CONCEITO

DISCIPLINA SÉRIE CAMPO CONCEITO Log Soluções Reforço escolar M ae máica Dinâmica 4 2ª Série 1º Bimesre DISCIPLINA SÉRIE CAMPO CONCEITO Maemáica 2ª do Ensino Médio Algébrico simbólico Função Logarímica Primeira Eapa Comparilhar Ideias

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática. Primeira Lista de Exercícios MAT 241 Cálculo III

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática. Primeira Lista de Exercícios MAT 241 Cálculo III Universidade Federal de Viçosa Cenro de Ciências Exaas e Tecnológicas Deparameno de Maemáica Primeira Lisa de Exercícios MAT 4 Cálculo III Julgue a veracidade das afirmações abaixo assinalando ( V para

Leia mais

Para Newton, conforme o tempo passa, a velocidade da partícula aumenta indefinidamente. ( )

Para Newton, conforme o tempo passa, a velocidade da partícula aumenta indefinidamente. ( ) Avaliação 1 8/0/010 1) A Primeira Lei do Movimeno de Newon e a Teoria da elaividade esria de Einsein diferem quano ao comporameno de uma parícula quando sua velocidade se aproxima da velocidade da luz

Leia mais

LISTA DE EXERCÍCIOS DE RECUPERAÇÃO 1º TRIMESTRE MATEMÁTICA

LISTA DE EXERCÍCIOS DE RECUPERAÇÃO 1º TRIMESTRE MATEMÁTICA LISTA DE EXERCÍCIOS DE RECUPERAÇÃO 1º TRIMESTRE MATEMÁTICA ALUNO(a): Nº: SÉRIE: 2ª TURMA: UNIDADE: VV JC JP PC DATA: / /2017 Obs.: Esa lisa deve ser enregue resolvida no dia da prova de recuperação. Valor:

Leia mais

Calcule a área e o perímetro da superfície S. Calcule o volume do tronco de cone indicado na figura 1.

Calcule a área e o perímetro da superfície S. Calcule o volume do tronco de cone indicado na figura 1. 1. (Unesp 017) Um cone circular reo de gerariz medindo 1 cm e raio da base medindo 4 cm foi seccionado por um plano paralelo à sua base, gerando um ronco de cone, como mosra a figura 1. A figura mosra

Leia mais

PROVA DE MATEMÁTICA - TURMAS DO

PROVA DE MATEMÁTICA - TURMAS DO PROVA DE MATEMÁTICA - TURMAS DO 3 o ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - JUNHO DE. ELABORAÇÃO: PROFESSORES ADRIANO CARIBÉ E WALTER PORTO. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÃO % dos membros

Leia mais

+ 3.. = + + = =

+ 3.. = + + = = MATEMÁTICA Dois amigos, Alfredo e Bruno, combinam dispuar a posse de um objeo num jogo de "cara ou coroa". Alfredo lança moedas e Bruno moedas, simulaneamene. Vence o jogo e, conseqüenemene, fica com o

Leia mais

Função Logarítmica - Questões Extras

Função Logarítmica - Questões Extras Função Logarímica - uesões Exras Exercícios 1. (Unifor 01) Após acionar um flash de uma câmera, a baeria imediaamene começa a recarregar o capacior do flash, o qual armazena uma carga elérica dada por

Leia mais

XXXI OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXXI OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXXI OLIMPÍ RSILEIR E MTEMÁTI PRIMEIR FSE NÍVEL Ensino Médio RITO RITO NÍVEL 6 E 6 7 7 E 9 9 5 0 E 5 0 E 5 ada quesão da Primeira Fase vale pono. Toal de ponos no Nível 5 ponos. guarde a pulicação da Noa

Leia mais

1) Verifique quais das sentenças dadas correspondem à lei de uma função exponencial. x

1) Verifique quais das sentenças dadas correspondem à lei de uma função exponencial. x 9ª LISTA DE EXERCÍCIOS DE INFORMÁTICA E BIOESTATÍSTICA CURSO: FARMÁCIA PROFESSOR: LUIZ CELONI ASSUNTO: FUNÇÃO EXPONENCIAL, LOGARÍTMICA E APLICAÇÕES ) Verifique quais das senenças dadas correspondem à lei

Leia mais

Duas opções de trajetos para André e Bianca. Percurso 1( Sangiovanni tendo sorteado cara e os dois se encontrando no ponto C): P(A) =

Duas opções de trajetos para André e Bianca. Percurso 1( Sangiovanni tendo sorteado cara e os dois se encontrando no ponto C): P(A) = RESOLUÇÃO 1 A AVALIAÇÃO UNIDADE II -016 COLÉGIO ANCHIETA-BA PROFA. MARIA ANTÔNIA C. GOUVEIA ELABORAÇÃO e PESQUISA: PROF. ADRIANO CARIBÉ e WALTER PORTO. QUESTÃO 01. Três saélies compleam suas respecivas

Leia mais

Matemática e suas Tecnologias

Matemática e suas Tecnologias Maemáica A. c Seja x o valor pago pelas 79 cabeças de gado. Assim cada uma das 7 cabeças foi vendida por Maemáica e suas Tecnologias Resoluções ENEM x. Meses depois o 7 valor ganho com as 9 cabeças resanes

Leia mais

RASCUNHO. a) 120º10 b) 95º10 c) 120º d) 95º e) 110º50

RASCUNHO. a) 120º10 b) 95º10 c) 120º d) 95º e) 110º50 ª QUESTÃO Uma deerminada cidade organizou uma olimpíada de maemáica e física, para os alunos do º ano do ensino médio local. Inscreveramse 6 alunos. No dia da aplicação das provas, consaouse que alunos

Leia mais

Questão 1 Questão 2. Resposta. Resposta

Questão 1 Questão 2. Resposta. Resposta Quesão Quesão Dois amigos, Alfredo e Bruno, combinam dispuar a posse de um objeo num jogo de cara coroa. Alfredo lança moedas e Bruno moedas, simulaneamene. Vence o jogo e, conseqüenemene, fica com o objeo,

Leia mais

Notas de aula - profa Marlene - função logarítmica 1

Notas de aula - profa Marlene - função logarítmica 1 Noas de aula - profa Marlene - função logarímica Inrodução U - eparameno de Maemáica Aplicada (GMA) NOTAS E AULA - CÁLCULO APLICAO I - PROESSORA MARLENE unção Logarímica e unção Eponencial No Ensino Médio

Leia mais

CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA

CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA Inrodução Ese arigo raa de um dos assunos mais recorrenes nas provas do IME e do ITA nos úlimos anos, que é a Cinéica Química. Aqui raamos principalmene dos

Leia mais

está localizado no cruzamento da i-ésima linha com a j-ésima coluna.

está localizado no cruzamento da i-ésima linha com a j-ésima coluna. MATRIZES 1. DEFINIÇÕES As marizes são frequenemene usadas para organizar dados, como uma abela indexada. Por exemplo, as noas dos alunos de uma escola podem ser disposas numa mariz cujas colunas correspondem

Leia mais

4a. Lista de Exercícios

4a. Lista de Exercícios UFPR - Universidade Federal do Paraná Deparameno de Maemáica Prof. José Carlos Eidam CM4 - Cálculo I - Turma C - / 4a. Lisa de Eercícios Inegrais impróprias. Decida quais inegrais impróprias abaio são

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 20. Palavras-chaves: derivada,derivada direcional, gradiente

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 20. Palavras-chaves: derivada,derivada direcional, gradiente Assuno: Derivada direcional UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 20 Palavras-chaves: derivada,derivada direcional, gradiene Derivada Direcional Sejam z = fx, y) uma função e x

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 2º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Inrodução ao Cálculo Diferencial II TPC nº 9 Enregar em 4 2 29. Num loe de bolbos de úlipas a probabilidade de que

Leia mais

MATEMÁTICA. Prof. Favalessa REVISÃO GERAL

MATEMÁTICA. Prof. Favalessa REVISÃO GERAL MATEMÁTICA Prof. Favalessa REVISÃO GERAL. Em um cero grupo de pessoas, 40 falam inglês, 3 falam espanhol, 0 falam francês, falam inglês e espanhol, 8 falam inglês e francês, 6 falam espanhol e francês,

Leia mais

) quando vamos do ponto P até o ponto Q (sobre a reta) e represente-a no plano cartesiano descrito acima.

) quando vamos do ponto P até o ponto Q (sobre a reta) e represente-a no plano cartesiano descrito acima. ATIVIDADE 1 1. Represene, no plano caresiano xy descrio abaixo, os dois ponos (x 0,y 0 ) = (1,2) e Q(x 1,y 1 ) = Q(3,5). 2. Trace a rea r 1 que passa pelos ponos e Q, no plano caresiano acima. 3. Deermine

Leia mais

Universidade Federal de Viçosa DEPARTAMENTO DE MATEMÁTICA MAT Cálculo Dif. e Int. I PRIMEIRA LISTAA

Universidade Federal de Viçosa DEPARTAMENTO DE MATEMÁTICA MAT Cálculo Dif. e Int. I PRIMEIRA LISTAA Universidde Federl de Viços DEPARTAMENTO DE MATEMÁTICA MAT - Cálculo Dif e In I PRIMEIRA LISTAA Memáic básic Professors: Gbriel e Crin Simplifique: ) b ) 9 c ) d ) ( 9) e ) 79 f ) g ) ) ) i j ) Verddeiro

Leia mais

Análise Matemática II

Análise Matemática II Análise Maemáica II Exame/Tese 3 - de Junho de 5 Licenciaura em Eng. Informáica e de Compuadores Nome: Número: Exame: Todas as pergunas Tese: Pergunas 5, 6, 7, 8 e 9 Indique na erceira coluna da abela

Leia mais

Lista de Exercícios 1

Lista de Exercícios 1 Universidade Federal de Ouro Preo Deparameno de Maemáica MTM14 - CÁLCULO DIFERENCIAL E INTEGRAL III Anônio Silva, Edney Oliveira, Marcos Marcial, Wenderson Ferreira Lisa de Exercícios 1 1 Para cada um

Leia mais

Lista de exercícios Logaritmos Prof: Maurício. Ensino Médio 3º ano classe: Nome:, nº data: /05/18. f(x) x 4 e g(x) 1 log1

Lista de exercícios Logaritmos Prof: Maurício. Ensino Médio 3º ano classe: Nome:, nº data: /05/18. f(x) x 4 e g(x) 1 log1 Lisa de eercícios Logarimos Prof: Maurício Ensino Médio º ano classe: Nome:, nº daa: /0/8.. (Espce (Aman) 08) A curva do gráfico abaio represena a função y log magniudes superiores a 8.0, foi idealizada

Leia mais

CORREIOS. Prof. Sérgio Altenfelder

CORREIOS. Prof. Sérgio Altenfelder 15. Uma pessoa preende medir a alura de um edifício baseado no amanho de sua sombra projeada ao solo. Sabendo-se que a pessoa em 1,70m de alura e as sombras do edifício e da pessoa medem 20m e 20cm respecivamene,

Leia mais

FATO Medicina. Lista Complementar Física - MRU / MRUV( Prof.º Elizeu) 5,0 m s, e a maior. 5 km e 10 km, sua velocidade foi 30 km h. 10 km totais.

FATO Medicina. Lista Complementar Física - MRU / MRUV( Prof.º Elizeu) 5,0 m s, e a maior. 5 km e 10 km, sua velocidade foi 30 km h. 10 km totais. FATO Medicina Lisa Complemenar Física - MRU / MRUV( Prof.º Elizeu) 0. (Efomm 07) Um rem deve parir de uma esação A e parar na esação B, disane 4 km de A. A aceleração e a desaceleração podem ser, no máximo,

Leia mais

EXERCICIOS DE APROFUNDAMENTO MATEMÁTICA LOGARITMOS 2015

EXERCICIOS DE APROFUNDAMENTO MATEMÁTICA LOGARITMOS 2015 EXERCICIOS DE APROFUNDAMENTO MATEMÁTICA LOGARITMOS 05. (Ia 05) Considere as seguines afirmações sobre números reais: I. Se a expansão decimal de x é infinia e periódica, enão x é um número racional. II..

Leia mais

Física 1. 2 a prova 21/10/2017. Atenção: Leia as recomendações antes de fazer a prova.

Física 1. 2 a prova 21/10/2017. Atenção: Leia as recomendações antes de fazer a prova. Física 1 2 a prova 21/1/217 Aenção: Leia as recomendações anes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do carão de resposas. 2- Leia os enunciados com aenção. 3- Analise sua resposa.

Leia mais

Exercícios sobre o Modelo Logístico Discreto

Exercícios sobre o Modelo Logístico Discreto Exercícios sobre o Modelo Logísico Discreo 1. Faça uma abela e o gráfico do modelo logísico discreo descrio pela equação abaixo para = 0, 1,..., 10, N N = 1,3 N 1, N 0 = 1. 10 Solução. Usando o Excel,

Leia mais

Lista de Função Exponencial e Logarítmica Pré-vestibular Noturno Professor: Leandro (Pinda)

Lista de Função Exponencial e Logarítmica Pré-vestibular Noturno Professor: Leandro (Pinda) Lisa de Função Eponencial e Logarímica Pré-vesibular Nourno Professor: Leandro (Pinda) 1. (Ueg 018) O gráfico a seguir é a represenação da 1 função f() log a b 3. (Epcar (Afa) 017) A função real f definida

Leia mais

02 A prova pode ser feita a lápis. 03 Proibido o uso de calculadoras e similares. 04 Duração: 2 HORAS. SOLUÇÃO:

02 A prova pode ser feita a lápis. 03 Proibido o uso de calculadoras e similares. 04 Duração: 2 HORAS. SOLUÇÃO: UNIVERSIDADE FEDERAL DE ITAJUBÁ FUNDAMENTOS DE MATEMÁTICA PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR 9/6/ CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES: Prova sem consula

Leia mais

Portanto, o comprimento total de vigas necessárias para fazer a sequência completa de grades, em metros, foi de

Portanto, o comprimento total de vigas necessárias para fazer a sequência completa de grades, em metros, foi de 1. (Unesp 016) A figura indica o padrão de uma sequência de grades, feitas com vigas idênticas, que estão dispostas em posição horizontal e vertical. Cada viga tem 0,5 m de comprimento. O padrão da sequência

Leia mais

Lista de exercícios 3. September 15, 2016

Lista de exercícios 3. September 15, 2016 ELE-3 Inrodução a Comunicações Lisa de exercícios 3 Sepember 5, 6. Enconre a ransformada de Hilber x() da onda quadrada abaixo. Esboce o especro de x() j x(). [ ] x() = Π ( n). n=. Um sinal em banda passane

Leia mais

Lista de Exercícios de Cálculo 3 Módulo 2 - Quarta Lista - 02/2016

Lista de Exercícios de Cálculo 3 Módulo 2 - Quarta Lista - 02/2016 Lisa de Exercícios de Cálculo 3 Módulo 2 - Quara Lisa - 02/2016 Pare A 1. Deermine as derivadas das funções abaixo com relação as suas respecivas variáveis. (a) f(x, y) = 3x 3 2x 2 y + xy (b) g(x, y) =

Leia mais

Problemas de vestibular funções exponenciais e logaritmos

Problemas de vestibular funções exponenciais e logaritmos Problemas de vesibular funções exponenciais e logarimos Professor Fiore Segue lisa com problemas envolvendo funções exponenciais reirados de vesibulares e concursos. Para resolvê-los pode ser necessário

Leia mais

CONCURSO PÚBLICO EDITAL Nº 06/2010. Professor do Magistério do Ensino Básico, Técnico e Tecnológico DISCIPLINA / ÁREA. Matemática.

CONCURSO PÚBLICO EDITAL Nº 06/2010. Professor do Magistério do Ensino Básico, Técnico e Tecnológico DISCIPLINA / ÁREA. Matemática. CONCURSO PÚBLICO EDITAL Nº 6/ Professor do Magisério do Ensino Básico, Técnico e Tecnológico DISCIPLINA / ÁREA Maemáica Caderno de Provas Quesões Objeivas INSTRUÇÕES: - Aguarde auorização para abrir o

Leia mais

LISTA DE EXERCÍCIOS DE RECUPERAÇÃO 1º TRIMESTRE MATEMÁTICA

LISTA DE EXERCÍCIOS DE RECUPERAÇÃO 1º TRIMESTRE MATEMÁTICA LISTA DE EXERCÍCIOS DE RECUPERAÇÃO º TRIMESTRE MATEMÁTICA ALUNO(a): Nº: SÉRIE: ª TURMA: UNIDADE: VV JC JP PC DATA: / /08 Obs.: Esa lisa deve ser enregue resolvida no dia da prova de Recuperação. Valor:

Leia mais

x x9 8 + x13 1 cos (t) t f(x) = (a) Manipulando algebricamente a expressão da soma: 8 + x12 (t) dt = 1 t 4 dt 4 ln 1

x x9 8 + x13 1 cos (t) t f(x) = (a) Manipulando algebricamente a expressão da soma: 8 + x12 (t) dt = 1 t 4 dt 4 ln 1 Turma A Quesão : (3,5 ponos Insiuo de Maemáica e Esaísica da USP MAT455 - Cálculo Diferencial e Inegral IV para Engenharia a. Prova - o. Semesre 3-4//3 (a Obenha uma expressão da série abaixo e o respecivo

Leia mais

Exercícios de torção livre em seção circular fechada - prof. Valério SA Universidade de São Paulo - USP

Exercícios de torção livre em seção circular fechada - prof. Valério SA Universidade de São Paulo - USP São Paulo, dezembro de 2015. 1) a. Deerminar a dimensão a de modo a se er a mesma ensão de cisalhameno máxima nos rechos B-C e C-D. b. Com al dimensão pede-se a máxima ensão de cisalhameno no recho A-B.

Leia mais

Antes de mais nada, é importante notar que isso nem sempre faz sentido do ponto de vista biológico.

Antes de mais nada, é importante notar que isso nem sempre faz sentido do ponto de vista biológico. O modelo malusiano para empo conínuo: uma inrodução não rigorosa ao cálculo A dinâmica de populações ambém pode ser modelada usando-se empo conínuo, o que é mais realisa para populações que se reproduzem

Leia mais

P IBpm = C+ I+ G+X F = = b) Despesa Nacional. PNBpm = P IBpm+ RF X = ( ) = 59549

P IBpm = C+ I+ G+X F = = b) Despesa Nacional. PNBpm = P IBpm+ RF X = ( ) = 59549 Capíulo 2 Soluções: Medição da Acividade Económica Exercício 24 (PIB pelaópica da despesa) i. Usando os valores da abela que consa do enunciado, a solução das várias alíneas é imediaa, basando para al

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

Escola Secundária da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo de 2003/04 Funções exponencial e logarítmica

Escola Secundária da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo de 2003/04 Funções exponencial e logarítmica Escola Secundária da Sé-Lamego Ficha de Trabalho de Maemáica Ano Lecivo de 003/04 Funções eponencial e logarímica - º Ano Nome: Nº: Turma: 4 A função P( ) = 500, 0, é usada para deerminar o valor de um

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tarefa de revisão nº 17 1. Uma empresa lançou um produo no mercado. Esudos efecuados permiiram concluir que a evolução do preço se aproxima do seguine modelo maemáico: 7 se 0 1 p() =, p em euros e em anos.

Leia mais

Lista de Exercícios nº 3 - Parte IV

Lista de Exercícios nº 3 - Parte IV DISCIPLINA: SE503 TEORIA MACROECONOMIA 01/09/011 Prof. João Basilio Pereima Neo E-mail: joaobasilio@ufpr.com.br Lisa de Exercícios nº 3 - Pare IV 1ª Quesão (...) ª Quesão Considere um modelo algébrico

Leia mais

SOLUÇÃO PRATIQUE EM CASA

SOLUÇÃO PRATIQUE EM CASA SOLUÇÃO PRATIQUE EM CASA SOLUÇÃO PC1. [C] No eixo horizonal, o movimeno é uniforme com velocidade consane o empo, podemos calculá-la. Δs 60 m vh vh vh 15 m s Δ 4 s Com o auxílio da rionomeria e com a velocidade

Leia mais

Física A Extensivo V. 1

Física A Extensivo V. 1 Física A Exensio V. 1 Exercícios 01) 01. Falsa. Não exise repouso absoluo. 0. Falsa. Não exise moimeno absoluo. 04. Verdadeira. 08. Verdadeira. x x F xi 50 10 40 m 16. Falsa. Não necessariamene; ele pode

Leia mais

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática A B C D E A B C D E. Avaliação da Aprendizagem em Processo Prova do Aluno 3 a série do Ensino Médio

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática A B C D E A B C D E. Avaliação da Aprendizagem em Processo Prova do Aluno 3 a série do Ensino Médio AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Maemáica a série do Ensino Médio Turma EM GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO o Bimesre de 6 Daa / / Escola Aluno A B C D E 6 7 9 A B C D E Avaliação

Leia mais

PARTE 12 DERIVADAS DIRECIONAIS

PARTE 12 DERIVADAS DIRECIONAIS PARTE DERIVADAS DIRECIONAIS. Inrodução Dada uma função f : Dom(f) R n R X = (x, x,..., x n ) f(x) = f(x, x,..., x n ), vimos que a derivada parcial de f com respeio à variável x i no pono X 0, (X 0 ),

Leia mais

Teoremas Básicos de Equações a Diferenças Lineares

Teoremas Básicos de Equações a Diferenças Lineares Teoremas Básicos de Equações a Diferenças Lineares (Chiang e Wainwrigh Capíulos 17 e 18) Caracerização Geral de Equações a diferenças Lineares: Seja a seguine especificação geral de uma equação a diferença

Leia mais

Física A Extensivo V. 1

Física A Extensivo V. 1 Física A Exensio V. 1 Exercícios 01) 44 0) E. 01. Falsa. Não exise repouso absoluo. 0. Falsa. Não exise moimeno absoluo. 04. Verdadeira. 08. Verdadeira. x F xi 50 10 40 m 16. Falsa. Não necessariamene;

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

5 de fevereiro de x 2 y

5 de fevereiro de x 2 y P 2 - Gabario 5 de fevereiro de 2018 Quesão 1 (1.5). Considere x 2 y g(x, y) = (x, y + x 2 ) e f (x, y) = x 4, se (x, y) = (0, 0) + y2. 0, se (x, y) = (0, 0) Mosre que: (a) f e g admiem odas as derivadas

Leia mais

Cálculo Vetorial - Lista de Exercícios

Cálculo Vetorial - Lista de Exercícios álculo Veorial - Lisa de Exercícios (Organizada pela Profa. Ilka Rebouças). Esboçar o gráfico das curvas represenadas pelas seguines funções veoriais: a) a 4 i j, 0,. d) d i 4 j k,. b) b sen i 4 j cos

Leia mais

Capítulo 3 Derivada. 3.1 Reta Tangente e Taxa de Variação

Capítulo 3 Derivada. 3.1 Reta Tangente e Taxa de Variação Inrodução ao Cálculo Capíulo Derivada.1 Rea Tangene e Taxa de Variação Exemplo nr. 1 - Uma parícula caminha sobre uma rajeória qualquer obedecendo à função horária: s() 5 + (s em meros, em segundos) a)

Leia mais

Grupo de exercícios I - Geometria plana- Professor Xanchão

Grupo de exercícios I - Geometria plana- Professor Xanchão Grupo de exercícios I - Geometria plana- 1. (G1 - ifce 01) Na figura abaixo, R, S e T são pontos sobre a circunferência de centro O. Se x é o número real, tal que a = 5x e b = 3x + 4 são as medidas dos

Leia mais

CAPÍTULO 10 DERIVADAS DIRECIONAIS

CAPÍTULO 10 DERIVADAS DIRECIONAIS CAPÍTULO 0 DERIVADAS DIRECIONAIS 0. Inrodução Dada uma função f : Dom(f) R n R X = (x, x,..., x n ) f(x) = f(x, x,..., x n ), vimos que a derivada parcial de f com respeio à variável x i no pono X 0, (X

Leia mais

Modelos Não-Lineares

Modelos Não-Lineares Modelos ão-lineares O modelo malhusiano prevê que o crescimeno populacional é exponencial. Enreano, essa predição não pode ser válida por um empo muio longo. As funções exponenciais crescem muio rapidamene

Leia mais

Questões sobre derivadas. 1. Uma partícula caminha sobre uma trajetória qualquer obedecendo à função horária 2

Questões sobre derivadas. 1. Uma partícula caminha sobre uma trajetória qualquer obedecendo à função horária 2 Quesões sobre deriadas. Uma parícula caminha sobre uma rajeória qualquer obedecendo à função horária s ( = - + 0 ( s em meros e em segundos. a Deermine a lei de sua elocidade em função do empo. b Deermine

Leia mais

Definição 0.1. Define se a derivada direcional de f : R n R em um ponto X 0 na direção do vetor unitário u como sendo: df 0) = lim t 0 t (1)

Definição 0.1. Define se a derivada direcional de f : R n R em um ponto X 0 na direção do vetor unitário u como sendo: df 0) = lim t 0 t (1) Cálculo II - B profs.: Heloisa Bauzer Medeiros e Denise de Oliveira Pino 1 2 o semesre de 2017 Aulas 11/12 derivadas de ordem superior/regra da cadeia gradiene e derivada direcional Derivadas direcionais

Leia mais

Circuitos Elétricos I EEL420

Circuitos Elétricos I EEL420 Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL420 Coneúdo 1 - Circuios de primeira ordem...1 1.1 - Equação diferencial ordinária de primeira ordem...1 1.1.1 - Caso linear, homogênea, com

Leia mais

MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2013/2014. EIC0014 FÍSICA II 2o ANO 1 o SEMESTRE

MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2013/2014. EIC0014 FÍSICA II 2o ANO 1 o SEMESTRE MESTRADO NTEGRADO EM ENG. NFORMÁTCA E COMPUTAÇÃO 2013/2014 EC0014 FÍSCA 2o ANO 1 o SEMESTRE Nome: Duração 2 horas. Prova com consula de formulário e uso de compuador. O formulário pode ocupar apenas uma

Leia mais

Grupo I (Cotação: 0 a 3.6 valores: uma resposta certa vale 1.2 valores e uma errada valores)

Grupo I (Cotação: 0 a 3.6 valores: uma resposta certa vale 1.2 valores e uma errada valores) INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO Esaísica II - Licenciaura em Gesão Época de Recurso 6//9 Pare práica (quesões resposa múlipla) (7.6 valores) Nome: Nº Espaço reservado para a classificação (não

Leia mais

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL42 Coneúdo 8 - Inrodução aos Circuios Lineares e Invarianes...1 8.1 - Algumas definições e propriedades gerais...1 8.2 - Relação enre exciação

Leia mais

BANCO DE QUESTÕES TURMA PM-PE PROGRESSÃO ARITMÉTRICA E GEOMÉTRICA

BANCO DE QUESTÕES TURMA PM-PE PROGRESSÃO ARITMÉTRICA E GEOMÉTRICA 01. (UNESP 016) A figura indica o padrão de uma sequência de grades, feitas com vigas idênticas, que estão dispostas em posição horizontal e vertical. Cada viga tem 0,5 m de comprimento. O padrão da sequência

Leia mais

QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS

QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS QUESTÃO Assinale V (verdadeiro) ou F (falso): () A solução da equação diferencial y y y apresena equilíbrios esacionários quando, dependendo

Leia mais

SISTEMAS DE EQUAÇÕES A DIFERENÇAS LINEARES

SISTEMAS DE EQUAÇÕES A DIFERENÇAS LINEARES 8//7 SISTEMAS DE EQUAÇÕES A DIFERENÇAS LINEARES Teorema: Considere o seguine sisema de k equações a diferenças lineares de primeira ordem, homogêneo: x a x a x... a x k k x a x a x... a x k k x a x a x...

Leia mais

PROVA PARA OS ALUNOS DO 1o. ANO DO ENSINO MÉDIO. 15 a ORMUB/2007 OLIMPÍADA REGIONAL DE MATEMÁTICA PROVA PARA OS ALUNOS DO 1º ANO DO ENSINO MÉDIO

PROVA PARA OS ALUNOS DO 1o. ANO DO ENSINO MÉDIO. 15 a ORMUB/2007 OLIMPÍADA REGIONAL DE MATEMÁTICA PROVA PARA OS ALUNOS DO 1º ANO DO ENSINO MÉDIO 5 a ORMUB/7 OLIMPÍADA REGIONAL DE MATEMÁTICA PROVA PARA OS ALUNOS DO º ANO DO ENSINO MÉDIO NOME: ESCOLA: CIDADE: INSTRUÇÕES AVALIAÇÃO Ese caderno coném 5 (cinco) quesões. A solução de cada quesão, bem

Leia mais

Funções de Várias Variáveis (FVV) UFABC, 2019-Q1

Funções de Várias Variáveis (FVV) UFABC, 2019-Q1 Funções de Várias Variáveis (FVV UFABC, 2019-Q1 Peer Hazard Prova 1 B 19:00hs, 25 de março, Sala A002, Bloco Bea, SBC Duração: 90 minuos Aviso: É erminanemene proibido consular qualquer maerial ou colega,

Leia mais

Escola Secundária com 3º Ciclo D. Dinis Curso Profissional de Técnico de Apoio à Gestão Desportiva

Escola Secundária com 3º Ciclo D. Dinis Curso Profissional de Técnico de Apoio à Gestão Desportiva Escola Secundária com 3º Ciclo D. Dinis Curso Profissional de Técnico de Apoio à Gesão Desporiva Tarefa 3 Módulo 1 A 1. Na figura esá represenada uma função afim f. Sabe-se que: A imagem de -1 é 5; O zero

Leia mais

Física C Extensivo V. 7

Física C Extensivo V. 7 Física C Exensivo V. 7 Resolva Aula 6 Aula 8 6.01) C 6.0) E 8.01) D 8.0) 60º 7.01) B 7.0) E F m = µ 0 π F m = µ 0 π F m = µ 0 π. i i 1.. l d. I. I. l d. I. l d Aula 7 l = 50 cm l,5 m a) φ 1 = B 1. A. cos

Leia mais

Gabarito: 1 3r 4r 5r 6 r. 2. 3r 4r ,5 m. 45 EG m, constituem uma. AA' AP 8km. Resposta da questão 1: [C]

Gabarito: 1 3r 4r 5r 6 r. 2. 3r 4r ,5 m. 45 EG m, constituem uma. AA' AP 8km. Resposta da questão 1: [C] Gabarito: Resposta da questão 1: [C] Sejam x, x r e x r as medidas, em metros, dos lados do triângulo, com x, r 0. Aplicando o Teorema de Pitágoras, encontramos x r. Logo, os lados do triângulo medem r,

Leia mais

Só no ELITE você encontra: Simulados semanais/quinzenais; A maior carga horária. Os melhores professores!

Só no ELITE você encontra: Simulados semanais/quinzenais; A maior carga horária. Os melhores professores! CONCURSO ITA 9 O ELITE CURITIBA aprova mais porque em qualidade seriedade e profissionalismo como lemas Confira nossos resulados e comprove porque emos mais a oferecer IME 9: Do SUL ineiro foram 8 aprovados

Leia mais

Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica

Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica Exercícios de Aprofudameto Matemática Progressão Aritmética e b. (Fuvest 05) Dadas as sequêcias a 4 4, b, c a a e d, b defiidas para valores iteiros positivos de, cosidere as seguites afirmações: I. a

Leia mais

Aplicações à Teoria da Confiabilidade

Aplicações à Teoria da Confiabilidade Aplicações à Teoria da ESQUEMA DO CAPÍTULO 11.1 CONCEITOS FUNDAMENTAIS 11.2 A LEI DE FALHA NORMAL 11.3 A LEI DE FALHA EXPONENCIAL 11.4 A LEI DE FALHA EXPONENCIAL E A DISTRIBUIÇÃO DE POISSON 11.5 A LEI

Leia mais

Funções vetoriais. I) Funções vetoriais a valores reais:

Funções vetoriais. I) Funções vetoriais a valores reais: Funções veoriais I) Funções veoriais a valores reais: f: I R f() R (f 1 n (), f (),..., f n ()) I = inervalo da rea real denominada domínio da função veorial f = {conjuno de odos os valores possíveis de,

Leia mais

F B d E) F A. Considere:

F B d E) F A. Considere: 5. Dois corpos, e B, de massas m e m, respecivamene, enconram-se num deerminado insane separados por uma disância d em uma região do espaço em que a ineração ocorre apenas enre eles. onsidere F o módulo

Leia mais

Séries de Fourier de Senos e de Cossenos de Índices Ímpares

Séries de Fourier de Senos e de Cossenos de Índices Ímpares Séries de Fourier de Senos e de Cossenos de Índices Ímpares Reginaldo J. Sanos Deparameno de Maemáica-ICEx Universidade Federal de Minas Gerais hp://www.ma.ufmg.br/~regi 26 de seembro de 21 2 Análogo ao

Leia mais

Progressão Aritmética

Progressão Aritmética Progressão Aritmética 1. (G1 - cftrj 14) Disponha os números 1,,, 4,, 6, 7, 8 e 9 nas casas do tabuleiro abaixo de modo que: o número 9 ocupe a casa central, os números da primeira linha sejam todos ímpares

Leia mais

5 0,5. d d ,6 3. v Δt 0,03s Δt 30ms. 3. Gabarito: Lista 01. Resposta da questão 1: [D]

5 0,5. d d ,6 3. v Δt 0,03s Δt 30ms. 3. Gabarito: Lista 01. Resposta da questão 1: [D] Gabario: Lisa 01 Resposa da quesão 1: [D] Seja v 1 a velocidade média desenvolvida por Juliana nos reinos: ΔS1 5 v 1 v1 10 km h. Δ1 0,5 Para a corrida, a velocidade deverá ser reduzida em 40%. Enão a velocidade

Leia mais

Plano de Aulas. Matemática. Módulo 17 Estatística

Plano de Aulas. Matemática. Módulo 17 Estatística Plano de Aulas Maemáica Módulo 17 Esaísica Resolução dos exercícios proposos Reomada dos conceios CAPÍTULO 1 1 População: 1, milhão de habianes da cidade. Amosra: 8.00 pessoas enrevisadas. 2 Variáveis

Leia mais

! " # $ % & ' # % ( # " # ) * # +

!  # $ % & ' # % ( #  # ) * # + / G 6 a Aula 2006.09.25 AMIV! # & ' # # # * # + 6. Equações de Cauchy Riemann em coordenadas polares. Analiicidade e derivada do logarimo Com objecivo de deduzir a analiicidade do logarimo complexo, vamos

Leia mais

Capítulo Cálculo com funções vetoriais

Capítulo Cálculo com funções vetoriais Cálculo - Capíulo 6 - Cálculo com funções veoriais - versão 0/009 Capíulo 6 - Cálculo com funções veoriais 6 - Limies 63 - Significado geomérico da derivada 6 - Derivadas 64 - Regras de derivação Uiliaremos

Leia mais

Matemática e suas Tecnologias

Matemática e suas Tecnologias Maemáica 7A. b A frase A caa página erminaa, mais rápio eu lia a próima! iz que a velociae e leiura sempre aumena. O único gráfico que poe represenar o número e páginas lias em função o empo é o a alernaiva

Leia mais