Tipos de Processos Estocásticos

Tamanho: px
Começar a partir da página:

Download "Tipos de Processos Estocásticos"

Transcrição

1 Mesrado em Finanças e Economia Empresarial EPGE - FGV Derivaivos Pare 7: Inrodução ao álculo Diferencial Esocásico Derivaivos - Alexandre Lowenkron Pág. 1 Tipos de Processos Esocásicos Qualquer variável cua mudança de valor ao é incera é dia uma variável aleaória. Um processo esocásico é uma sequência de variáveis aleaórias. Tempo discreo; variáveis discreas Árvores Mulinomiais Tempo discreo; variáveis conínuas VARs equações de diferença Tempo conínuo; variáveis discreas Tempo conínuo; variáveis conínuas Equações Diferenciais Esocásicas Mais realisa Podemos usar o arcabouço de cálculo que facilia a nossa vida para chegarmos em fórmulas fechadas Mas como há incereza emos que ver o que muda nas conas álculo esocásico! Derivaivos - Alexandre Lowenkron Pág. 1

2 Processos Markovianos Num processo de Markov movimenos fuuros numa variável depende apenas de onde esamos agora não de oda a hisória que nos roxe aé aqui EP 1 /P EP 1 / P P -1 P - e pensarmos em ermos de árvores um processo Markoviano esaria numa árvore recombinane. um processo não-markoviano esaria numa árvore não-recombinane. Vamos assumir que o processo esocásico do preço de uma ação é Markoviano. Em paricular vamos assumir que o processo esocásico dos reornos é um Processo de Wiener Movimeno Browniano. eus incremenos são normais não-correlacionados ompaível com a hipoese de eficiência de mercado e muio próximo das caracerísicas empíricas observadas. Derivaivos - Alexandre Lowenkron Pág. 3 Processo esocásico em empo conínuo: Exemplo Preço de uma ação hoe é $4 Variável conínua nua em empo discreo: Ao fim de um ano considera-se que ela erá disribuição de probabilidade φ41 onde φµ é a disribuição normal com média µ e desvio padrão. Perguna: Qual a disribuição de probabilidade do preço da ação ao final de anos? ½ ano? ¼ ano? ano? Tirando limie definimos uma variável conínua em empo conínuo. Derivaivos - Alexandre Lowenkron Pág. 4

3 Variâncias & Desvios Padrões Em processos de Markov mudanças em períodos sucessivos de empo são independenes Isso significa que as médias e as variâncias são adiivas. Mas desvios padrões não são adiivos: raiz quadrado da soma! Derivaivos - Alexandre Lowenkron Pág. 5 Processo de Wiener ou Brownian Moion onsideremos uma variável z cuo valor muda coninuamene A mudança num pequeno inervalo de empo é z Tal variável segue um precesso de Wiener ou Brownian Moion se: 1. z ε onde ε e' φ1. Os valores de z para quaisquer períodos disinos sem inerseção de empo são independenes Propriedades do Processo de Wiener Média de [z T z ] é Variância de [z T z ] é T Desvio Padrão de [z T z ] é T Derivaivos - Alexandre Lowenkron Pág. 6 3

4 Processo de Wiener generalizado No processo aé aqui apresenado a média da axa de drif mudança esperada por unidade de empo é zero e a variância é 1. Podemos generalizar... O processo de Wiener Generalizado em média não nula e variância diferene de 1. Derivaivos - Alexandre Lowenkron Pág. 7 Generalized Wiener Processes Variável x segue um proceso de Wiener generalizado com drif a e a axa de variância de b enão: dxa db dz Variação esperada média em x no inervalo de empo T: at Variância da variação em x no inervalo de empo T: b T Desvio padrão da variação em x no inervalo T é: b T Derivaivos - Alexandre Lowenkron Pág. 8 4

5 Processo Esocásico de Wiener Generalizado em Tempo onínuo Derivaivos - Alexandre Lowenkron Pág. 9 Processo de Iô Vamos formalizar melhor a definição: Precessos de Iô Na realidade nem o drif nem a difusão precisam ser consanes no empo. Versão discrea do processo generalizado: X k1 -X k µ k1 k k k1 k [z k1 z k ] X k1 -X k µ k1 k k k1 k z k omeçando em processo é markoviano emos: X k X k 1 µ X k 1 X z Derivaivos - Alexandre Lowenkron Pág. 1 5

6 Processo de Iô e Inegral de Iô Para chegar em empo conínuo: Tomamos o limie k A úlima expressão se orna: X X µ X ds X s Ese úlimo ermo é a inegral de Iô. Precisamos saber como manipular a a inegral de Iô para apreçar derivaivos. Usualmene a noação uilizada para descrever al processo é: s dz dx µ X d X dz s Derivaivos - Alexandre Lowenkron Pág. 11 Por que usar um processo de Iô e não um processo de Wiener para modelar a dinâmica do preço de uma ação? Impliciamene se usássemos o processo de Wiener Generalizado esaríamos forçando que a mudança no preço das ações permanecesse consane. Pelo menos a variação do preço da ação deve ser proporcional ao nível do preço daqui a um empo. Um exemplo do mais simples dos processos de Iô a serem ulizados: d µ d dz Noe que o drif não é consane: Nem a difusão: µ Derivaivos - Alexandre Lowenkron Pág. 1 6

7 Obervação: imulação de Mone arlo de um processo de Iô Podemos discreizar o processo para enender o que ele significa. µ ε ea T 1 ano e vamos dividir o ano em 1 inervalos. uponha µ.14.. om os 1 inervalos:.1 Podemos ober N raeórias para os processos soreando valores ε normais 1 e usar em 34 imulação de Mone arlo 4 imulações.14. ε Tendência Traeória 1 Traeória Traeória 3 Traeória Derivaivos - Alexandre Lowenkron Pág álculo Diferencial Esocásico e o Lemma de Iô OK enão agora emos um modelo para o processo de uma ação ou qualquer aivo em empo conínuo. Bom por duas razões: Hipóese razoável para o processo de do preço da ações choques que aleram o preço como noícias sobre a firma e sobre a economia são conínuos e imprevisíveis. Respeira a hipóese dos mercados eficienes. Nos permie uilizar o insrumenal de álculo Diferencial Mas as ferramenas de álculo em que ser adapadas para raar a pare esocásica da equação.. Em paricular sabendo a lei de movimeno de como podemos achar a lei de movimeno de um derivaivo que dependa do aivo? Usando os resulados do Lema de Iô. Derivaivos - Alexandre Lowenkron Pág. 14 7

8 Expansão de Taylor Podemos usar a expansão de Taylor e para chegar a lei de movimeno de ½ ½ Em cálculo usual para pequenas variações odos os ermos de ordem superior d d dd d 3 d 3 ec.. poderiam ser ignorados. No enano agora em d há ermos esocásicos dw que não podem ser desconsiderados Derivaivos - Alexandre Lowenkron Pág. 15 Isomeria de Iô Em cálculo diferencial esocásico não podemos ignorar os ermos aleaórios de ordem. Inuição: d em mordem de grandeza d dw em ordem de grandeza dw dw em ordem de grandeza da variância de dw! Ou sea em ordem de grandeza d. Porano a regra que vamos usar será: d d. dw dw. d dw d Derivaivos - Alexandre Lowenkron Pág. 16 8

9 9 Derivaivos - Alexandre Lowenkron Pág. 17 Lema de Iô Usando o fao que só podemos ignorar ermos cruzados e de ordem superior a a expansão de Taylor fica: ubsiuindo para a expressão de como um processo de Iô. ubsiuindo na fórmula anerior ½ d d d d dz d d µ d dw d dw d d dw d d Io de isomeria pela mas ½ µ µ µ Derivaivos - Alexandre Lowenkron Pág. 18 Lema de Iô hegamos assim na formula final do Lema de Iô: Em paricular para o movimeno geomérico Browniano. o Lema de Iô fica: dz d d µ dw d d ½ µ dw d d µ ½

10 Lema de Iô mulidimensional e ivermos um processo que dependa de mais de um faor esocásico dz1 dz ec. e supusermos ainda que a correlação enre dzi e dz é ρi a isomeria de Iô será ausada para d d. dw i dw i. d i dw i d dw i dw ρ d i i i E enão usamos esa regra na expansão de Taylor mulivariada: d d d1 d... 1 ½ d1 ½ d... 1 d1 d... 1 Derivaivos - Alexandre Lowenkron Pág. 19 Exemplos Primeiro vamos resolver para o preço do aivo supondo a formulação geomérica para a dinâmica do aivo mas supondo que não há o ermo esocásico: d µd ou sea T s A forma geral da solução de um processo geomérico será exponencial como esa. Agora vamos usar os resulados do lema de Iô para provar o conrário. Que se o preço de um aivo segue uma disribuição log-normal al que e αtwt onde WT é normal T T d s µ s ds s e µ T Derivaivos - Alexandre Lowenkron Pág. 1

11 Vamos definir X αtwt e sabemos : mas e Exemplos Ou sea se emos d µd dw o resulado será: T e XT X dx αd dw f f d d dx X X d e X αd dw 1 d α d dw Onde XT é normal N[ µ-1/ T T ] Dizemos que T é lognormal. Queremos saber d fx.lema de Iô!! f 1/ dx X 1/ e X d Derivaivos - Alexandre Lowenkron Pág. 1 Exemplos 1. O preço de um fuuro de ação vence ndo em T G e r T dg µ r G d G dz. G ln dg µ d dz Derivaivos - Alexandre Lowenkron Pág. 11

Tipos de Processos Estocásticos

Tipos de Processos Estocásticos Mesrado em Finanças e Economia Empresarial EPGE - FGV Derivaivos Pare 6: Inrodução ao Cálculo Diferencial Esocásico Derivaivos - Alexandre Lowenkron Pág. 1 Tipos de Processos Esocásicos Qualquer variável

Leia mais

Mestrado em Finanças e Economia Empresarial EPGE - FGV. Derivativos

Mestrado em Finanças e Economia Empresarial EPGE - FGV. Derivativos Mesrado em Finanças e Economia Empresarial EPGE - FGV Derivaivos Pare : Renda Fixa Derivaivos - Alexandre Lowenkron Pág. Esruura a Termo das Taxas de Juros (curva de rendimeno Derivaivos - Alexandre Lowenkron

Leia mais

Aplicações à Teoria da Confiabilidade

Aplicações à Teoria da Confiabilidade Aplicações à Teoria da ESQUEMA DO CAPÍTULO 11.1 CONCEITOS FUNDAMENTAIS 11.2 A LEI DE FALHA NORMAL 11.3 A LEI DE FALHA EXPONENCIAL 11.4 A LEI DE FALHA EXPONENCIAL E A DISTRIBUIÇÃO DE POISSON 11.5 A LEI

Leia mais

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL42 Coneúdo 8 - Inrodução aos Circuios Lineares e Invarianes...1 8.1 - Algumas definições e propriedades gerais...1 8.2 - Relação enre exciação

Leia mais

Antes de mais nada, é importante notar que isso nem sempre faz sentido do ponto de vista biológico.

Antes de mais nada, é importante notar que isso nem sempre faz sentido do ponto de vista biológico. O modelo malusiano para empo conínuo: uma inrodução não rigorosa ao cálculo A dinâmica de populações ambém pode ser modelada usando-se empo conínuo, o que é mais realisa para populações que se reproduzem

Leia mais

Seção 5: Equações Lineares de 1 a Ordem

Seção 5: Equações Lineares de 1 a Ordem Seção 5: Equações Lineares de 1 a Ordem Definição. Uma EDO de 1 a ordem é dia linear se for da forma y + fx y = gx. 1 A EDO linear de 1 a ordem é uma equação do 1 o grau em y e em y. Qualquer dependência

Leia mais

MÉTODOS PARAMÉTRICOS PARA A ANÁLISE DE DADOS DE SOBREVIVÊNCIA

MÉTODOS PARAMÉTRICOS PARA A ANÁLISE DE DADOS DE SOBREVIVÊNCIA MÉTODOS PARAMÉTRICOS PARA A ANÁLISE DE DADOS DE SOBREVIVÊNCIA Nesa abordagem paramérica, para esimar as funções básicas da análise de sobrevida, assume-se que o empo de falha T segue uma disribuição conhecida

Leia mais

Séries de Tempo. José Fajardo. Agosto EBAPE- Fundação Getulio Vargas

Séries de Tempo. José Fajardo. Agosto EBAPE- Fundação Getulio Vargas Séries de Tempo Inrodução José Faardo EBAPE- Fundação Geulio Vargas Agoso 0 José Faardo Séries de Tempo . Por quê o esudo de séries de empo é imporane? Primeiro, porque muios dados econômicos e financeiros

Leia mais

6 Processos Estocásticos

6 Processos Estocásticos 6 Processos Esocásicos Um processo esocásico X { X ( ), T } é uma coleção de variáveis aleaórias. Ou seja, para cada no conjuno de índices T, X() é uma variável aleaória. Geralmene é inerpreado como empo

Leia mais

3 Modelos de Markov Ocultos

3 Modelos de Markov Ocultos 23 3 Modelos de Markov Oculos 3.. Processos Esocásicos Um processo esocásico é definido como uma família de variáveis aleaórias X(), sendo geralmene a variável empo. X() represena uma caracerísica mensurável

Leia mais

Quinta aula. Ifusp, agosto de Equação de Langevin Movimento browniano

Quinta aula. Ifusp, agosto de Equação de Langevin Movimento browniano Dinâmica Esocásica Quina aula Ifusp, agoso de 16 Equação de Langevin Movimeno browniano Bibliografia: Dinâmica esocásica e irreversibilidade, T. Tomé e M. J. de Oliveira, Edusp, 14 Capíulo 3 Tânia Tomé

Leia mais

Processos de Markov. Processos de Markov com tempo discreto Processos de Markov com tempo contínuo. com tempo discreto. com tempo contínuo

Processos de Markov. Processos de Markov com tempo discreto Processos de Markov com tempo contínuo. com tempo discreto. com tempo contínuo Processos de Markov Processos sem memória : probabilidade de X assumir um valor fuuro depende apenas do esado aual (desconsidera esados passados). P(X n =x n X =x,x 2 =x 2,...,X n- =x n- ) = P(X n =x n

Leia mais

5 de fevereiro de x 2 y

5 de fevereiro de x 2 y P 2 - Gabario 5 de fevereiro de 2018 Quesão 1 (1.5). Considere x 2 y g(x, y) = (x, y + x 2 ) e f (x, y) = x 4, se (x, y) = (0, 0) + y2. 0, se (x, y) = (0, 0) Mosre que: (a) f e g admiem odas as derivadas

Leia mais

4 Metodologia Proposta para o Cálculo do Valor de Opções Reais por Simulação Monte Carlo com Aproximação por Números Fuzzy e Algoritmos Genéticos.

4 Metodologia Proposta para o Cálculo do Valor de Opções Reais por Simulação Monte Carlo com Aproximação por Números Fuzzy e Algoritmos Genéticos. 4 Meodologia Proposa para o Cálculo do Valor de Opções Reais por Simulação Mone Carlo com Aproximação por Números Fuzzy e Algorimos Genéicos. 4.1. Inrodução Nese capíulo descreve-se em duas pares a meodologia

Leia mais

3 Processos Estocásticos

3 Processos Estocásticos 3 Processos Esocásicos Um processo esocásico pode ser definido como uma seqüência de variáveis aleaórias indexadas ao empo e ambém a evenos. É uma variável que se desenvolve no empo de maneira parcialmene

Leia mais

Teoremas Básicos de Equações a Diferenças Lineares

Teoremas Básicos de Equações a Diferenças Lineares Teoremas Básicos de Equações a Diferenças Lineares (Chiang e Wainwrigh Capíulos 17 e 18) Caracerização Geral de Equações a diferenças Lineares: Seja a seguine especificação geral de uma equação a diferença

Leia mais

Dinâmica Estocástica. Aula 9. Setembro de Equação de Fokker-Planck Solução estacionária

Dinâmica Estocástica. Aula 9. Setembro de Equação de Fokker-Planck Solução estacionária Dinâmica Esocásica Aula 9 Seembro de 015 Solução esacionária Bibliograia Capíulo 4 T. Tomé e M de Oliveira Dinâmica Esocásica e Irreversibilidade Úlima aula 1 Dedução da equação de Fokker-lanck Esudo da

Leia mais

*UiILFRGH&RQWUROH(:0$

*UiILFRGH&RQWUROH(:0$ *UiILFRGH&RQWUROH(:$ A EWMA (de ([SRQHQWLDOO\:HLJKWHGRYLQJ$YHUDJH) é uma esaísica usada para vários fins: é largamene usada em méodos de esimação e previsão de séries emporais, e é uilizada em gráficos

Leia mais

Capítulo 4. Propriedades dos Estimadores de Mínimos Quadrados

Capítulo 4. Propriedades dos Estimadores de Mínimos Quadrados Capíulo 4 Propriedades dos Esimadores de Mínimos Quadrados Hipóeses do Modelo de Regressão Linear Simples RS1. y x e 1 RS. Ee ( ) 0 E( y ) 1 x RS3. RS4. var( e) var( y) cov( e, e ) cov( y, y ) 0 i j i

Leia mais

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc.

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc. ECONOMETRIA Prof. Paricia Maria Borolon, D. Sc. Séries Temporais Fone: GUJARATI; D. N. Economeria Básica: 4ª Edição. Rio de Janeiro. Elsevier- Campus, 2006 Processos Esocásicos É um conjuno de variáveis

Leia mais

Mestrado em Finanças e Economia Empresarial EPGE - FGV. Derivativos

Mestrado em Finanças e Economia Empresarial EPGE - FGV. Derivativos Mesrado em Finanças e Economia Empresarial EPGE - FGV Derivaivos Pare 8: Derivaivos mais complexos: Tíulos com risco de crédio, Opções Americanas, sobre Índices, sobre Moedas, sobre Fuuros, com Duplo Indexador,

Leia mais

Movimento unidimensional. Prof. DSc. Anderson Cortines IFF campus Cabo Frio MECÂNICA GERAL

Movimento unidimensional. Prof. DSc. Anderson Cortines IFF campus Cabo Frio MECÂNICA GERAL Movimeno unidimensional Prof. DSc. Anderson Corines IFF campus Cabo Frio MECÂNICA GERAL 218.1 Objeivos Ter uma noção inicial sobre: Referencial Movimeno e repouso Pono maerial e corpo exenso Posição Diferença

Leia mais

Características dos Processos ARMA

Características dos Processos ARMA Caracerísicas dos Processos ARMA Aula 0 Bueno, 0, Capíulos e 3 Enders, 009, Capíulo. a.6 Morein e Toloi, 006, Capíulo 5. Inrodução A expressão geral de uma série emporal, para o caso univariado, é dada

Leia mais

2 Processos Estocásticos de Reversão à Média para Aplicação em Opções Reais

2 Processos Estocásticos de Reversão à Média para Aplicação em Opções Reais Processos Esocásicos de Reversão à Média para Aplicação em Opções Reais Resumo Ese capíulo analisa alguns méodos usados na deerminação da validade de diferenes processos esocásicos para modelar uma variável

Leia mais

Modelos Não-Lineares

Modelos Não-Lineares Modelos ão-lineares O modelo malhusiano prevê que o crescimeno populacional é exponencial. Enreano, essa predição não pode ser válida por um empo muio longo. As funções exponenciais crescem muio rapidamene

Leia mais

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL Movimeno unidimensional 5 MOVIMENTO UNIDIMENSIONAL. Inrodução Denre os vários movimenos que iremos esudar, o movimeno unidimensional é o mais simples, já que odas as grandezas veoriais que descrevem o

Leia mais

Modelos BioMatemáticos

Modelos BioMatemáticos Modelos BioMaemáicos hp://correio.fc.ul.p/~mcg/aulas/biopop/ edro J.N. Silva Sala 4..6 Deparameno de Biologia Vegeal Faculdade de Ciências da Universidade de Lisboa edro.silva@fc.ul.p Genéica opulacional

Leia mais

Lista de exercícios 3. September 15, 2016

Lista de exercícios 3. September 15, 2016 ELE-3 Inrodução a Comunicações Lisa de exercícios 3 Sepember 5, 6. Enconre a ransformada de Hilber x() da onda quadrada abaixo. Esboce o especro de x() j x(). [ ] x() = Π ( n). n=. Um sinal em banda passane

Leia mais

4a. Lista de Exercícios

4a. Lista de Exercícios UFPR - Universidade Federal do Paraná Deparameno de Maemáica Prof. José Carlos Eidam CM4 - Cálculo I - Turma C - / 4a. Lisa de Eercícios Inegrais impróprias. Decida quais inegrais impróprias abaio são

Leia mais

3 Referencial teórico

3 Referencial teórico 3 Referencial eórico 3.1. Teoria das Opções Reais As opções reais propiciam uma análise das flexibilidades caracerísicas de deerminado projeo para que, conforme esa análise, um gerene enha um insrumeno

Leia mais

Apreçamento de Renda Variável usando abordagem não-determinística

Apreçamento de Renda Variável usando abordagem não-determinística GV INVEST 8 Apreçameno de Renda Variável sando abordagem não-deerminísica Aplicando-se ma abordagem não deerminísica para se separar as parcelas de cro e longo prazos na definição do preço da ação, concli-se

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 2º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Inrodução ao Cálculo Diferencial II TPC nº 9 Enregar em 4 2 29. Num loe de bolbos de úlipas a probabilidade de que

Leia mais

Aplicação. Uma famosa consultoria foi contratada por uma empresa. que, entre outras coisas, gostaria de entender o processo

Aplicação. Uma famosa consultoria foi contratada por uma empresa. que, entre outras coisas, gostaria de entender o processo Aplicação Uma famosa consuloria foi conraada por uma empresa que, enre ouras coisas, gosaria de enender o processo gerador relacionado às vendas de deerminado produo, Ainda, o conraane gosaria que a empresa

Leia mais

Grupo I (Cotação: 0 a 3.6 valores: uma resposta certa vale 1.2 valores e uma errada valores)

Grupo I (Cotação: 0 a 3.6 valores: uma resposta certa vale 1.2 valores e uma errada valores) INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO Esaísica II - Licenciaura em Gesão Época de Recurso 6//9 Pare práica (quesões resposa múlipla) (7.6 valores) Nome: Nº Espaço reservado para a classificação (não

Leia mais

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara Insiuo de Física USP Física V - Aula 6 Professora: Mazé Bechara Aula 6 Bases da Mecânica quânica e equações de Schroedinger. Aplicação e inerpreações. 1. Ouros posulados da inerpreação de Max-Born para

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar Progressão Ariméica e Progressão Geomérica. (Pucrj 0) Os números a x, a x e a x esão em PA. A soma dos números é igual a: a) 8 b) c) 7 d) e) 0. (Fuves 0) Dadas as sequências an n n, n n cn an an b, e b

Leia mais

Econometria Semestre

Econometria Semestre Economeria Semesre 00.0 6 6 CAPÍTULO ECONOMETRIA DE SÉRIES TEMPORAIS CONCEITOS BÁSICOS.. ALGUMAS SÉRIES TEMPORAIS BRASILEIRAS Nesa seção apresenamos algumas séries econômicas, semelhanes às exibidas por

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar . (Pucrj 0) Os números a x, a x e a3 x 3 esão em PA. A soma dos 3 números é igual a: é igual a e o raio de cada semicírculo é igual à meade do semicírculo anerior, o comprimeno da espiral é igual a a)

Leia mais

Tabela: Variáveis reais e nominais

Tabela: Variáveis reais e nominais Capíulo 1 Soluções: Inrodução à Macroeconomia Exercício 12 (Variáveis reais e nominais) Na abela seguine enconram se os dados iniciais do exercício (colunas 1, 2, 3) bem como as soluções relaivas a odas

Leia mais

Capítulo Cálculo com funções vetoriais

Capítulo Cálculo com funções vetoriais Cálculo - Capíulo 6 - Cálculo com funções veoriais - versão 0/009 Capíulo 6 - Cálculo com funções veoriais 6 - Limies 63 - Significado geomérico da derivada 6 - Derivadas 64 - Regras de derivação Uiliaremos

Leia mais

4 Filtro de Kalman. 4.1 Introdução

4 Filtro de Kalman. 4.1 Introdução 4 Filro de Kalman Ese capíulo raa da apresenação resumida do filro de Kalman. O filro de Kalman em sua origem na década de sessena, denro da área da engenharia elérica relacionado à eoria do conrole de

Leia mais

4 O modelo econométrico

4 O modelo econométrico 4 O modelo economérico O objeivo desse capíulo é o de apresenar um modelo economérico para as variáveis financeiras que servem de enrada para o modelo esocásico de fluxo de caixa que será apresenado no

Leia mais

2 Referencial teórico 2.1. Modelo de Black

2 Referencial teórico 2.1. Modelo de Black Referencial eórico.1. Moelo e Black O moelo e Black (1976), uma variação o moelo e Black & Scholes B&S (1973), não só é amplamene uilizao no apreçameno e opções européias e fuuros e commoiies, ínices ec.,

Leia mais

Escola de Pós-Graduação em Economia da Fundação Getulio Vargas (EPGE/FGV) Macroeconomia I / Professor: Rubens Penha Cysne. Lista de Exercícios 4

Escola de Pós-Graduação em Economia da Fundação Getulio Vargas (EPGE/FGV) Macroeconomia I / Professor: Rubens Penha Cysne. Lista de Exercícios 4 Escola de Pós-Graduação em Economia da Fundação Geulio Vargas (EPGE/FGV) Macroeconomia I / 207 Professor: Rubens Penha Cysne Lisa de Exercícios 4 Gerações Superposas em Tempo Conínuo Na ausência de de

Leia mais

FUNDAÇÃO GETÚLIO VARGAS ESCOLA DE ECONOMIA DE SÃO PAULO GUILHERME K. P. DE AGUIRRE MODELOS DINÂMICOS DE HEDGING: UM ESTUDO SOBRE A VOLATILIDADE

FUNDAÇÃO GETÚLIO VARGAS ESCOLA DE ECONOMIA DE SÃO PAULO GUILHERME K. P. DE AGUIRRE MODELOS DINÂMICOS DE HEDGING: UM ESTUDO SOBRE A VOLATILIDADE FUNDAÇÃO GETÚLIO ARGA ECOLA DE ECONOMIA DE ÃO PAULO GUILHERME K. P. DE AGUIRRE MODELO DINÂMICO DE HEDGING: UM ETUDO OBRE A OLATILIDADE ÃO PAULO 01 GUILHERME K. P. DE AGUIRRE MODELO DINÂMICO DE HEDGING:

Leia mais

3 Metodologia 3.1. O modelo

3 Metodologia 3.1. O modelo 3 Meodologia 3.1. O modelo Um esudo de eveno em como obeivo avaliar quais os impacos de deerminados aconecimenos sobre aivos ou iniciaivas. Para isso são analisadas as diversas variáveis impacadas pelo

Leia mais

Avaliação de Opções Asiáticas

Avaliação de Opções Asiáticas Universidade de Lisboa Faculdade de Ciências Deparameno de Maemáica ISCTE Business School Insiuo Universiário de Lisboa Deparameno de Finanças Avaliação de Opções Asiáicas Mesrado em Maemáica Financeira

Leia mais

Introdução aos Sinais

Introdução aos Sinais UNIVASF Análise de Sinais e Sisemas Inrodução aos Sinais Prof. Rodrigo Ramos godoga@gmail.com Classificação de Sinais Sinais Sinais geralmene ransporam informações a respeio do esado ou do comporameno

Leia mais

EXAME DE ESTATÍSTICA AMBIENTAL 1ª Época (v1)

EXAME DE ESTATÍSTICA AMBIENTAL 1ª Época (v1) Nome: Aluno nº: Duração: horas LICENCIATURA EM CIÊNCIAS DE ENGENHARIA - ENGENHARIA DO AMBIENTE EXAME DE ESTATÍSTICA AMBIENTAL ª Época (v) I (7 valores) Na abela seguine apresena-se os valores das coordenadas

Leia mais

Cálculo do valor em risco dos ativos financeiros da Petrobrás e da Vale via modelos ARMA-GARCH

Cálculo do valor em risco dos ativos financeiros da Petrobrás e da Vale via modelos ARMA-GARCH Cálculo do valor em risco dos aivos financeiros da Perobrás e da Vale via modelos ARMA-GARCH Bruno Dias de Casro 1 Thiago R. dos Sanos 23 1 Inrodução Os aivos financeiros das companhias Perobrás e Vale

Leia mais

Exercícios sobre o Modelo Logístico Discreto

Exercícios sobre o Modelo Logístico Discreto Exercícios sobre o Modelo Logísico Discreo 1. Faça uma abela e o gráfico do modelo logísico discreo descrio pela equação abaixo para = 0, 1,..., 10, N N = 1,3 N 1, N 0 = 1. 10 Solução. Usando o Excel,

Leia mais

Instituto de Física USP. Física Moderna. Aula 23. Professora: Mazé Bechara

Instituto de Física USP. Física Moderna. Aula 23. Professora: Mazé Bechara Insiuo de Física USP Física Moderna Aula 3 Professora: Mazé Bechara Aula 3 Bases da Mecânica quânica e equações de Schroedinger: para odos os esados e para esados esacionários. Aplicação e inerpreações.

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 20. Palavras-chaves: derivada,derivada direcional, gradiente

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 20. Palavras-chaves: derivada,derivada direcional, gradiente Assuno: Derivada direcional UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 20 Palavras-chaves: derivada,derivada direcional, gradiene Derivada Direcional Sejam z = fx, y) uma função e x

Leia mais

12 Integral Indefinida

12 Integral Indefinida Inegral Indefinida Em muios problemas, a derivada de uma função é conhecida e o objeivo é enconrar a própria função. Por eemplo, se a aa de crescimeno de uma deerminada população é conhecida, pode-se desejar

Leia mais

Fluxos de Caixa Independentes no Tempo Média e Variância do Valor Presente Uso da Distribuição Beta Fluxos de Caixa Dependentes no Tempo Fluxos de

Fluxos de Caixa Independentes no Tempo Média e Variância do Valor Presente Uso da Distribuição Beta Fluxos de Caixa Dependentes no Tempo Fluxos de Cap. 6 - Análise de Invesimenos em Siuação de Risco Fluxos de Caixa Independenes no Tempo Média e Variância do Valor Presene Uso da Disribuição Bea Fluxos de Caixa Dependenes no Tempo Fluxos de caixa com

Leia mais

A entropia de uma tabela de vida em previdência social *

A entropia de uma tabela de vida em previdência social * A enropia de uma abela de vida em previdência social Renao Marins Assunção Leícia Gonijo Diniz Vicorino Palavras-chave: Enropia; Curva de sobrevivência; Anuidades; Previdência Resumo A enropia de uma abela

Leia mais

2.6 - Conceitos de Correlação para Sinais Periódicos

2.6 - Conceitos de Correlação para Sinais Periódicos .6 - Conceios de Correlação para Sinais Periódicos O objeivo é o de comparar dois sinais x () e x () na variável empo! Exemplo : Considere os dados mosrados abaixo y 0 x Deseja-se ober a relação enre x

Leia mais

4 Modelos teóricos para a ETTJ

4 Modelos teóricos para a ETTJ 4 Modelos eóricos para a ETTJ 4.1. Inrodução No capíulo 3, descrevemos e eemplificamos a ETTJ observada e alguns conceios a ela relacionados. Nesa seção, vamos descrever a eoria por rás dos modelos da

Leia mais

Circuitos elétricos oscilantes. Circuito RC

Circuitos elétricos oscilantes. Circuito RC Circuios eléricos oscilanes i + - Circuio C Processo de carga do capacior aé V c =. Como C /V c a carga de euilíbrio é C. Como variam V c, i e durane a carga? Aplicando a Lei das Malhas no senido horário

Leia mais

Séries de Fourier de Senos e de Cossenos de Índices Ímpares

Séries de Fourier de Senos e de Cossenos de Índices Ímpares Séries de Fourier de Senos e de Cossenos de Índices Ímpares Reginaldo J. Sanos Deparameno de Maemáica-ICEx Universidade Federal de Minas Gerais hp://www.ma.ufmg.br/~regi 26 de seembro de 21 2 Análogo ao

Leia mais

Capítulo 11. Corrente alternada

Capítulo 11. Corrente alternada Capíulo 11 Correne alernada elerônica 1 CAPÍULO 11 1 Figura 11. Sinais siméricos e sinais assiméricos. -1 (ms) 1 15 3 - (ms) Em princípio, pode-se descrever um sinal (ensão ou correne) alernado como aquele

Leia mais

2.Black & Scholes, Martingais, e Cálculo de Ito

2.Black & Scholes, Martingais, e Cálculo de Ito .Blak & holes Maringais e Cálulo de Io. Blak & holes Formula por repliação.. Movimeno Browniano e Equações Difereniais Esoásias.. Correção Browniana Calulo de Io e a Disribuição do Preço da Ação..3 Careira

Leia mais

3 Definições. 3.1 Processos Estocásticos e Processo de Wiener

3 Definições. 3.1 Processos Estocásticos e Processo de Wiener 25 3 Definições 3.1 Processos Estocásticos e Processo de Wiener Um processo estocástico corresponde a uma variável que evolui no decorrer do tempo de forma incerta ou aleatória. O preço de uma ação negociada

Leia mais

3 Retorno, Marcação a Mercado e Estimadores de Volatilidade

3 Retorno, Marcação a Mercado e Estimadores de Volatilidade eorno, Marcação a Mercado e Esimadores de Volailidade 3 3 eorno, Marcação a Mercado e Esimadores de Volailidade 3.. eorno de um Aivo Grande pare dos esudos envolve reorno ao invés de preços. Denre as principais

Leia mais

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON)

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON) TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 8 LIVRO DO NILSON). CONSIDERAÇÕES INICIAIS SÉRIES DE FOURIER: descrevem funções periódicas no domínio da freqüência (ampliude e fase). TRANSFORMADA DE FOURIER:

Leia mais

3 Uma metodologia para validação estatística da análise técnica: a busca pela homogeneidade

3 Uma metodologia para validação estatística da análise técnica: a busca pela homogeneidade 3 Uma meodologia para validação esaísica da análise écnica: a busca pela homogeneidade Ese capíulo em como objeivo apresenar uma solução para as falhas observadas na meodologia uilizada por Lo e al. (2000)

Leia mais

Universidade Federal de Lavras

Universidade Federal de Lavras Universidade Federal de Lavras Deparameno de Esaísica Prof. Daniel Furado Ferreira 11 a Teoria da Decisão Esaísica 1) Quais são os erros envolvidos nos eses de hipóeses? Explique. 2) Se ao realizar um

Leia mais

QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS

QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS QUESTÃO Assinale V (verdadeiro) ou F (falso): () A solução da equação diferencial y y y apresena equilíbrios esacionários quando, dependendo

Leia mais

O Modelo de Black & Scholes

O Modelo de Black & Scholes O Moelo e Blak & holes Premissas Básias O preço a ação segue um movimeno browniano geomério. Venas a esobero são permiias. Não há usos e ransações ou axas. Não há pagamenos e ivienos urane a exisênia o

Leia mais

DEMOGRAFIA. Assim, no processo de planeamento é muito importante conhecer a POPULAÇÃO porque:

DEMOGRAFIA. Assim, no processo de planeamento é muito importante conhecer a POPULAÇÃO porque: DEMOGRAFIA Fone: Ferreira, J. Anunes Demografia, CESUR, Lisboa Inrodução A imporância da demografia no planeameno regional e urbano O processo de planeameno em como fim úlimo fomenar uma organização das

Leia mais

Análise e Processamento de BioSinais

Análise e Processamento de BioSinais Análise e Processameno de BioSinais Mesrado Inegrado em Engenaria Biomédica Faculdade de Ciências e Tecnologia Slide Análise e Processameno de BioSinais MIEB Adapado dos slides S&S de Jorge Dias Tópicos:

Leia mais

IV. METODOLOGIA ECONOMÉTRICA PROPOSTA PARA O CAPM CONDICIONAL A Função Máxima Verosimilhança e o Algoritmo de Berndt, Hall, Hall e Hausman

IV. METODOLOGIA ECONOMÉTRICA PROPOSTA PARA O CAPM CONDICIONAL A Função Máxima Verosimilhança e o Algoritmo de Berndt, Hall, Hall e Hausman IV. MEODOLOGIA ECONOMÉRICA PROPOSA PARA O CAPM CONDICIONAL 4.1. A Função Máxima Verosimilhança e o Algorimo de Bernd, Hall, Hall e Hausman A esimação simulânea do CAPM Condicional com os segundos momenos

Leia mais

5.1. Filtragem dos Estados de um Sistema Não-Linear Unidimensional. Considere-se o seguinte MEE [20] expresso por: t t

5.1. Filtragem dos Estados de um Sistema Não-Linear Unidimensional. Considere-se o seguinte MEE [20] expresso por: t t 5 Esudo de Casos Para a avaliação dos algorimos online/bach evolucionários proposos nese rabalho, foram desenvolvidas aplicações em problemas de filragem dos esados de um sisema não-linear unidimensional,

Leia mais

Cap. 6 - Análise de Investimentos em Situação de Risco

Cap. 6 - Análise de Investimentos em Situação de Risco Cap. 6 - Análise de Invesimenos em Siuação de Risco Fluxos de Caixa Independenes no Tempo Média e Variância do Presene Uso da Disribuição Bea Fluxos de Caixa Dependenes no Tempo Fluxos de caixa com Dependência

Leia mais

Mestrado em Finanças e Economia Empresarial EPGE - FGV. Derivativos

Mestrado em Finanças e Economia Empresarial EPGE - FGV. Derivativos Mestrado em Finanças e Economia Empresarial EPGE - FGV Derivativos Parte 5: Apreçamento de Opções: método binomial Derivativos - Alexandre Lowenkron Pág. Fundamentos de apreçamento: vetor de preços de

Leia mais

Capítulo 3 Processos de Renovamento

Capítulo 3 Processos de Renovamento Licenciaura em Maemáica Aplicada e Compuação PROCESSOS ESTOCÁSTICOS 22/3 Soluções da Colecânea de Exercícios Capíulo 3 Processos de Renovameno Exercício 31 Usando a definição de empo de paragem para uma

Leia mais

yy + (y ) 2 = 0 Demonstração. Note que esta EDO não possui a variável independente e assim faremos a mudança de variável

yy + (y ) 2 = 0 Demonstração. Note que esta EDO não possui a variável independente e assim faremos a mudança de variável UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL 4-018.1 1A VERIFICAÇÃO DE APRENDIZAGEM - PARTE Nome Legível Turma RG CPF Resposas sem

Leia mais

Capítulo 2: Conceitos Fundamentais sobre Circuitos Elétricos

Capítulo 2: Conceitos Fundamentais sobre Circuitos Elétricos SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA TE041 Circuios Eléricos I Prof. Ewaldo L. M. Mehl Capíulo 2: Conceios Fundamenais sobre Circuios Eléricos 2.1. CARGA ELÉTRICA E CORRENTE ELÉTRICA

Leia mais

4 Modelo de fatores para classes de ativos

4 Modelo de fatores para classes de ativos 4 Modelo de aores para classes de aivos 4.. Análise de esilo baseado no reorno: versão original (esáica A análise de esilo baseada no reorno é um procedimeno esaísico que visa a ideniicar as ones de riscos

Leia mais

Notas de aula - profa Marlene - função logarítmica 1

Notas de aula - profa Marlene - função logarítmica 1 Noas de aula - profa Marlene - função logarímica Inrodução U - eparameno de Maemáica Aplicada (GMA) NOTAS E AULA - CÁLCULO APLICAO I - PROESSORA MARLENE unção Logarímica e unção Eponencial No Ensino Médio

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

figura 1 Vamos encontrar, em primeiro lugar, a velocidade do som da explosão (v E) no ar que será dada pela fórmula = v

figura 1 Vamos encontrar, em primeiro lugar, a velocidade do som da explosão (v E) no ar que será dada pela fórmula = v Dispara-se, segundo um ângulo de 6 com o horizone, um projéil que explode ao aingir o solo e oue-se o ruído da explosão, no pono de parida do projéil, 8 segundos após o disparo. Deerminar a elocidade inicial

Leia mais

Aula 6 Geração de Grades

Aula 6 Geração de Grades Universidade Federal do ABC Aula 6 Geração de Grades EN34 Dinâmica de Fluidos Compuacional TRANSFORMAÇÕES DE COORDENADAS Grade de ponos discreos A abordagem de diferenças finias apresenada aé agora, que

Leia mais

2. Referencial teórico

2. Referencial teórico Referencial eórico 1 Processos esocásicos De acordo com Hull (1998) qualquer variável cujo valor mude de maneira incera com o empo segue um processo esocásico Muias variáveis subjacenes a projeos podem

Leia mais

Notação Equações de Maxwell Caracterização de Ondas Electromagnéticas Escrita em valores instantâneos e em Amplitudes Complexas Propagação no ar, em

Notação Equações de Maxwell Caracterização de Ondas Electromagnéticas Escrita em valores instantâneos e em Amplitudes Complexas Propagação no ar, em Revisão de Conceios Fundamenais Noação quações de Maxwell Caracerização de Ondas lecromagnéicas scria em valores insanâneos e em Ampliudes Complexas Propagação no ar, em Meios Dielécricos e em Meios Conduores

Leia mais

Introdução às Medidas em Física

Introdução às Medidas em Física Inrodução às Medidas em Física 43152 Elisabeh Maeus Yoshimura emaeus@if.usp.br Bloco F Conjuno Alessandro Vola sl 18 agradecimenos a Nemiala Added por vários slides Conceios Básicos Lei Zero da Termodinâmica

Leia mais

Circuitos Elétricos I EEL420

Circuitos Elétricos I EEL420 Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL420 Coneúdo 1 - Circuios de primeira ordem...1 1.1 - Equação diferencial ordinária de primeira ordem...1 1.1.1 - Caso linear, homogênea, com

Leia mais

Fábio Luiz de Oliveira Bezerra 1 Av. Prof. Moraes Rego, 1235 Cidade Universitária CEP: Recife/PE Brasil

Fábio Luiz de Oliveira Bezerra 1 Av. Prof. Moraes Rego, 1235 Cidade Universitária CEP: Recife/PE Brasil AVALIAÇÃO DA ESTIMATIVA DO RISCO DE MERCADO DE AÇÕES E OPÇÕES DE COMPRA DA PETROBRÁS UTILIZANDO A METODOLOGIA VALUE AT RISK (VaR) COM SIMULAÇÃO DE MONTE CARLO Fábio Luiz de Oliveira Bezerra Av. Prof. Moraes

Leia mais

2 Conceitos Básicos. 2.1 Alguns Conceitos Básicos de Mercado Futuro

2 Conceitos Básicos. 2.1 Alguns Conceitos Básicos de Mercado Futuro Conceios Básicos.1 Alguns Conceios Básicos de Mercado Fuuro Uma operação de mercado Fuuro pode ser enendida basicamene como um compromisso de compra ou venda de deerminado aivo em cera daa fuura, sendo

Leia mais

Funções vetoriais. I) Funções vetoriais a valores reais:

Funções vetoriais. I) Funções vetoriais a valores reais: Funções veoriais I) Funções veoriais a valores reais: f: I R f() R (f 1 n (), f (),..., f n ()) I = inervalo da rea real denominada domínio da função veorial f = {conjuno de odos os valores possíveis de,

Leia mais

Cinemática em uma dimensão. o Posição, deslocamento velocidade, aceleração. o Movimento com aceleração constante, o Queda livre

Cinemática em uma dimensão. o Posição, deslocamento velocidade, aceleração. o Movimento com aceleração constante, o Queda livre Cinemáica em uma dimensão o Posição, deslocameno velocidade, aceleração. o Movimeno com aceleração consane, o Queda livre Mecânica( Dinâmica! é! o! esudo! do! movimeno! de! um! corpo! e! da! relação!dese!movimeno!com!conceios!lsicos!como!força!

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ADMINISTRAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM ADMINISTRAÇÃO DISSERTAÇÃO DE MESTRADO

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ADMINISTRAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM ADMINISTRAÇÃO DISSERTAÇÃO DE MESTRADO UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ADMINISTRAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM ADMINISTRAÇÃO DISSERTAÇÃO DE MESTRADO NEGOCIAÇÃO ORIENTADA À VOLATILIDADE DE OPÇÕES SOBRE TAXA DE CÂMBIO DE

Leia mais

III Congresso da Sociedade Portuguesa de Estatística Guimarães, 26 a 28 Junho 1995

III Congresso da Sociedade Portuguesa de Estatística Guimarães, 26 a 28 Junho 1995 1 III Congresso da Sociedade Poruguesa de Esaísica Guimarães, 26 a 28 Junho 1995 Políicas Ópimas e Quase-Ópimas de Inspecção de um Sisema Sujeio a Falhas Cláudia Nunes, João Amaral Deparameno de Maemáica,

Leia mais

Definição 0.1. Define se a derivada direcional de f : R n R em um ponto X 0 na direção do vetor unitário u como sendo: df 0) = lim t 0 t (1)

Definição 0.1. Define se a derivada direcional de f : R n R em um ponto X 0 na direção do vetor unitário u como sendo: df 0) = lim t 0 t (1) Cálculo II - B profs.: Heloisa Bauzer Medeiros e Denise de Oliveira Pino 1 2 o semesre de 2017 Aulas 11/12 derivadas de ordem superior/regra da cadeia gradiene e derivada direcional Derivadas direcionais

Leia mais

UNIVERSIDADE ESTADUAL DE MONTES CLAROS CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE CIÊNCIAS DA COMPUTAÇÃO

UNIVERSIDADE ESTADUAL DE MONTES CLAROS CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE CIÊNCIAS DA COMPUTAÇÃO UNIVERSIDADE ESTADUAL DE MONTES CLAROS CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE CIÊNCIAS DA COMPUTAÇÃO DISCIPLINA: SINAIS E SISTEMAS PROFESSOR: RENATO DOURADO MAIA EXEMPLOS RESOLVIDOS AULA

Leia mais

EXAME DE ESTATÍSTICA AMBIENTAL 2ª Época (V1)

EXAME DE ESTATÍSTICA AMBIENTAL 2ª Época (V1) Nome: Aluno nº: Duração: horas LICENCIATURA EM CIÊNCIAS DE ENGENHARIA - ENGENHARIA DO AMBIENTE EXAME DE ESTATÍSTICA AMBIENTAL ª Época (V) I (7 valores) Na abela seguine apresena-se os valores das coordenadas

Leia mais

5 Erro de Apreçamento: Custo de Transação versus Convenience Yield

5 Erro de Apreçamento: Custo de Transação versus Convenience Yield 5 Erro de Apreçameno: Cuso de Transação versus Convenience Yield A presene seção em como objeivo documenar os erros de apreçameno implício nos preços eóricos que eviam oporunidades de arbiragem nos conraos

Leia mais

Problema de controle ótimo com equações de estado P-fuzzy: Programação dinâmica

Problema de controle ótimo com equações de estado P-fuzzy: Programação dinâmica Problema de conrole óimo com equações de esado P-fuzzy: Programação dinâmica Michael Macedo Diniz, Rodney Carlos Bassanezi, Depo de Maemáica Aplicada, IMECC, UNICAMP, 1383-859, Campinas, SP diniz@ime.unicamp.br,

Leia mais

Dinâmica e previsão de preços de commodities agrícolas com o filtro de Kalman

Dinâmica e previsão de preços de commodities agrícolas com o filtro de Kalman Flávio Pinheiro Corsini Dinâmica e previsão de preços de commodiies agrícolas com o filro de Kalman Trabalho de Formaura apresenado à Escola Poliécnica da Universidade de São Paulo para a obenção do Diploma

Leia mais