Tabela 1 Relações tensão-corrente, tensão-carga e impedância para capacitoers, resistores e indutores.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Tabela 1 Relações tensão-corrente, tensão-carga e impedância para capacitoers, resistores e indutores."

Transcrição

1 Modelagem Maemáica MODELOS MATEMÁTICOS DE CIRCUITOS ELÉTRICOS O circuio equivalene à rede elérica com a quai rabalhamo coniem baicamene em rê componene lineare paivo: reiore, capaciore e induore. A Tabela reume o componene e a relaçõe enre enão e correne e enre enão e carga, ob condiçõe iniciai nula. Tabela Relaçõe enão-correne, enão-carga e impedância para capacioer, reiore e induore. Componene Tenão-correne Correne-enão Tenão-carga Impedância Z() = V()/I() Admiância Y() = I()/V() Noa: ν( ) = V (vol), i( ) = A (ampère), q( ) = Q (coulomb), C = F (farad), R = Ω (ohm), G =(mho), L = H (henrie) A equaçõe de um circuio elérico obedecem à lei de Kirchhoff, que eabelecem: A oma algébrica da diferença de poencial ao logo de um circuio fechado é igual a zero. A oma algébrica da correne em uma junção ou nó é igual a zero. A parir dea relaçõe podemo ecrever a equaçõe diferenciai do circuio. Aplica-e, enão, a Tranformada de Laplace da equaçõe e finalmene e oluciona a Função de Tranferência. Exemplo: Ober a função de ranferência relacionando a enão, V C (), no capacior à enão de enrada, V(), da figura. Figura - Circuio RLC.

2 Reolução: Uilizando a lei de Kirchhoff, oberemo a equação diferencial para o circuio. Somando a enõe ao longo da malha, upondo condiçõe iniciai nula, reula a equação ínegro-diferencial. di() L + Ri() + i( τ) dτ = v() d C 0 Fazendo uma mudança de variável, de correne para carga, uando a relação = reula: i () dq ()/ d d q() dq() L + R + q() = v() d d C A parir da relação enão-carga em um capacior da Tabela : Subiuindo: q () = Cv() C dvc() dvc() LC + RC + v () () C = v d d Aplicando Laplace: ( ) LC + RC + V () = V() Calculando a função de ranferência, Vc()/ V() : C Vc() = LC V() R + + L LC

3 SISTEMAS MECÂNICOS EM TRANSLAÇÃO O iema mecânico obdecem à lei fundamenal onde o omaório de oda a força é igual a zero. Io é conhecido como lei de Newon e pode er dio da eguine forma: a oma da força aplicada deve er igual à oma da força de reação. Iniciaremo arbirando um enido poiivo para o movimeno, por exemplo, para direia. Uando o enido ecolhido como poiivo para o movimeno, deenhamo em primeiro lugar um diagrama de corpo livre, poicionando obre o corpo oda a força que agem obre ele no enido do movimeno ou no enido opoo. Em eguida, uilizamo a lei de Newon para conruir a equação diferencial do movimeno omando a força e igualando a oma a zero. Finalmene, upondo a condiçõe iniciai nula, aplicamo a ranformada de Laplace à equação diferencial, epramo a variávei e chegamo à função de ranferência. A Tabela apreena o elemeno mecânico comun em iema de ranlação como ua relaçõe. Tabela Relaçõe força-velocidade, força-delocameno, e impedância de ranlação de mola, amorecedore e maa. Componene Forçavelocidade Forçadelocameno Impedância Z m ()=F()/X() Mola Amorecedor vicoo Maa Noa: O eguine conjuno de ímbolo e unidade ão uada ao longo dee exo: f ( ) = N (newon), x( ) = m (mero), ν( ) = m/ (mero/egundo), K =N/ m (newon/mero), f ν = N./ m (newon-egundo/ mero), M =kg (quilograma = newon.egundo / mero).

4 Exemplo Ober a função de ranferência, X()/F(), para o iema da figura abaixo: Reolução: Deenhando o diagrama de corpo livre para o iema propoo e arbirando o enido do movimeno para direa, obemo: Uilizando a Lei de Newon ecrevemo a equação diferencial do movimeno. Aplicando Laplace, d x() dx() M + f () () v + Kx = f d d M X() + f X() + KX() = F() v ( M + f + K) X() = F() v. Reolvendo para ober a função de ranferência, X() G () = = F M + f + k () v 3

5 Em iema mecânico, o número neceário de equaçõe de movimeno é igual ao número de movimeno linearmene independene. A independência linear implica que um ono de movimeno em um iema em movimeno pode coninuar a e mover memo e odo o ouro pono forem manido parado. A expreão linearmene independene ambém é conhecida por grau de liberdade. Dea forma podemo ugerir uma pequana equação. [Soma de Impedância]X() = [Soma de força aplicada] Quando uilizando a lei de Newon, omando a força de cada corpo e fazemo a oma igual a zero, o reulado é um iema de equaçõe imulânea do movimeno. Ea equaçõe podem er reolvida em função da variável de aída de ineree a parir da qual e calcula a função de ranferência. Exemplo: Ober a função de ranferência, X ()/F(), para o iema da figura abaixo. Uando o conceio apreenado aneriormene podemo olucionar o exercício por inpeção, ecrevendo a equaçõe de movimeno do iema, em deenhar o diagrama de corpo livre. Soma da impedância Soma da impedância Soma da conecada ao X() X() = força aplicada enre movimeno em x x e x em x e 4

6 Soma da Soma da impedância Soma da impedância X () conecada ao X () = força aplicada enre x e x movimeno em x em x SISTEMAS MECÂNICO EM ROTAÇÃO A equaçõe caracerizando o iema que apreenam movimeno de roação ão emelhane à do iema com ranlação. Ecrever a equaçõe de conjugado é equivalene a ecrever a equaçõe de força, com o ermo de delocameno, velocidade e aceleração coniderada agora como grandeza angulare. O orque ubiui a força e delocameno angular ubiui delocameno. O ermo aociado à Maa é ubiuído por inércia. O conceio de grau de liberdade ambém coninua válido no iema em roação. O número de pono de movimeno que podem er ubmeido a delocameno angulare, enquano e manêm parado odo o demai, é igual ao número de equaçõe de movimeno nceário para decrever o iema. O elemeno relacionado ao movimeno mecânico em roação ão apreenado na Tabela 3. Tabela 3 Relaçõe orque-velocidade angular, orque-delocameno angular, e impedância de roação de mola, amorecedore vicoo e inércia. Componene Torque - velocidade angular Torque - delocameno angular Impedância Z m () = T() / θ() Mola Amorecedor vicoo Inércia Noa: O eguine conjuno de ímbolo e unidade ão uada ao longo dee livro: T ( ) = N.m (newon.mero), Θ( ) = rad (radiano), ω( ) = rad/ (radiano /egundo), K =N.m /rad (newon.mero / radiano), D ν = N.m./ rad (newon.mero.egundo/ radiano), J =kg.m (quilograma.mero = newon.mero.egundo / radiano). 5

7 Exemplo T() θ Ober a função de ranferência, (), para o iema em roação morado na figura abaixo. O eixo eláico é upeno por meio de mancai em cada uma da exremidade e é ubmeido à orção. Um orque é aplicado à equerda e o delocameno angular é medido à direia. Reolução: Embora a orção ocorra ao longo do eixo, aproximamo o iema admiindo que a orção aua como uma mola concenrada em um pono paricular do eixo, com uma inércia, J, à equerda, e uma inércia J à direia. Uando o princípio da uperpoição noamo que o iema apreena doi grau de liberdade. Dea forma podemo olucionar o problema por inpeção, onde: Soma da Impedância Soma da Impedância Soma do orque coneca ao movimeno θ() θ() = enre θ e θ aplicado em θ em θ Soma da Impedância Soma da Impedância Soma do orque θ() + coneca ao movimeno enre θ e θ θ () = aplicado em θ em θ Ou ainda uilizando o diagrama de corpo livre para cada um do orque. 6

8 Senido Senido Senido Senido Senido Senido E aim obemo a equaçõe do movimeno: θ θ ( J + D + K) () K () = T() () ( ) θ() 0 Kθ + J + D + K = A parir da quai e obém a função de ranferência pedida: θ() K = T() Δ ( J + D+ K K Δ= K ( J + D + K) 7

MODELAGEM MATEMÁTICA DE SISTEMAS

MODELAGEM MATEMÁTICA DE SISTEMAS MODELAGEM MATEMÁTICA DE SISTEMAS O objeivo geral da modelagem maemáica de iema é habiliar o aluno a aplicar méodo cienífico de forma ober um modelo maemáico que decreva o comporameno de um iema fíico,

Leia mais

MODELOS DE SISTEMAS DINÂMICOS. Função de transferência Resposta transiente

MODELOS DE SISTEMAS DINÂMICOS. Função de transferência Resposta transiente MODELOS DE SISTEMS DINÂMICOS Função de ranferência epoa raniene Função de Tranferência Deenvolveremo a função de ranferência de um iema de primeira ordem coniderando o comporameno não eacionário de um

Leia mais

CONCEITOS FUNDAMENTAIS

CONCEITOS FUNDAMENTAIS Projeo eenge - Eng. Elérica Apoila de Siema de Conrole I III- &$3Ì78/,,, CONCEITOS FUNDAMENTAIS 3.- INTODUÇÃO Inicialmene nee capíulo, euda-e o conceio de função de ranferência, o qual é a bae da eoria

Leia mais

Conidere uma rampa plana, inclinada de um ângulo em relação à horizonal, no início da qual enconra-e um carrinho. Ele enão recebe uma pancada que o fa

Conidere uma rampa plana, inclinada de um ângulo em relação à horizonal, no início da qual enconra-e um carrinho. Ele enão recebe uma pancada que o fa Onda acúica ão onda de compreenão, ou eja, propagam-e em meio compreívei. Quando uma barra meálica é golpeada em ua exremidade, uma onda longiudinal propaga-e por ela com velocidade v p. A grandeza E é

Leia mais

Prof. Josemar dos Santos

Prof. Josemar dos Santos Engenharia Mecânica - FAENG Sumário SISTEMAS DE CONTROLE Definições Básicas; Exemplos. Definição; ; Exemplo. Prof. Josemar dos Sanos Sisemas de Conrole Sisemas de Conrole Objeivo: Inroduzir ferramenal

Leia mais

TENSÕES E CORRENTES TRANSITÓRIAS E TRANSFORMADA LAPLACE

TENSÕES E CORRENTES TRANSITÓRIAS E TRANSFORMADA LAPLACE TNSÕS CONTS TANSTÓAS TANSFOMADA D APAC PNCPAS SNAS NÃO SNODAS Degrau de ampliude - É um inal que vale vol para < e vale vol, conane, para >. Ver fig. -a. v (a) (b) v Fig. A fig. -b mora um exemplo da geração

Leia mais

Capacitores e Indutores

Capacitores e Indutores Capaciores e Induores Um capacior é um disposiivo que é capaz de armazenar e disribuir carga elérica em um circuio. A capaciância (C) é a grandeza física associada a esa capacidade de armazenameno da carga

Leia mais

1.Equações do Modelo de Estado de Sistemas Lineares Contínuos

1.Equações do Modelo de Estado de Sistemas Lineares Contínuos 3.Equaçõe do Modelo de Eado de Siema Lineare Conínuo Objecivo: Morar que há um conjuno diverificado de iema que podem er modelado aravé da equaçõe de eado. 4 Eemplo: Supenão magnéica imple u y Um modelo

Leia mais

Modelagem Matemática de Sistemas Eletromecânicos

Modelagem Matemática de Sistemas Eletromecânicos Modelagem Matemática de Sistemas Eletromecânicos Estudos e Analogias de modelos de funções de transferências. Prof. Edgar Brito Introdução Os sistemas elétricos são componentes essenciais de muitos sistemas

Leia mais

CONTROLABILIDADE E OBSERVABILIDADE

CONTROLABILIDADE E OBSERVABILIDADE Eduardo obo uoa Cabral CONTROABIIDADE E OBSERVABIIDADE. oiação Em um iema na forma do epaço do eado podem exiir dinâmica que não ão ia pela aída do iema ou não ão influenciada pela enrada do iema. Se penarmo

Leia mais

Circuitos Elétricos I EEL420

Circuitos Elétricos I EEL420 Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL420 Coneúdo 1 - Circuios de primeira ordem...1 1.1 - Equação diferencial ordinária de primeira ordem...1 1.1.1 - Caso linear, homogênea, com

Leia mais

INF Técnicas Digitais para Computação. Conceitos Básicos de Circuitos Elétricos. Aula 3

INF Técnicas Digitais para Computação. Conceitos Básicos de Circuitos Elétricos. Aula 3 INF01 118 Técnicas Digiais para Compuação Conceios Básicos de Circuios Eléricos Aula 3 1. Fones de Tensão e Correne Fones são elemenos aivos, capazes de fornecer energia ao circuio, na forma de ensão e

Leia mais

Representação de Sistemas Dinâmicos Parte I

Representação de Sistemas Dinâmicos Parte I Univeridade Eadual do Oee do Paraná Programa de Pó-graduação em Engenharia de Siema Dinâmico e Energéico Tema da Aula: Rereenação de Siema Dinâmico Pare I Prof. Dr. Carlo Henrique Faria do Sano Eruura

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031 Universidade Federal do io Grande do Sul Escola de Engenharia de Poro Alegre Deparameno de Engenharia Elérica ANÁLISE DE CICUITOS II - ENG43 Aula 5 - Condições Iniciais e Finais de Carga e Descarga em

Leia mais

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL42 Coneúdo 8 - Inrodução aos Circuios Lineares e Invarianes...1 8.1 - Algumas definições e propriedades gerais...1 8.2 - Relação enre exciação

Leia mais

Circuitos Elétricos- módulo F4

Circuitos Elétricos- módulo F4 Circuios léricos- módulo F4 M 014 Correne elécrica A correne elécrica consise num movimeno orienado de poradores de cara elécrica por acção de forças elécricas. Os poradores de cara podem ser elecrões

Leia mais

Aula 04 Representação de Sistemas

Aula 04 Representação de Sistemas Aula 04 Representação de Sistemas Relação entre: Função de Transferência Transformada Laplace da saída y(t) - Transformada Laplace da entrada x(t) considerando condições iniciais nulas. Pierre Simon Laplace,

Leia mais

3 Revisão Teórica dos principais modelos de previsão

3 Revisão Teórica dos principais modelos de previsão Revião Teórica do principai modelo de previão 18 3 Revião Teórica do principai modelo de previão Denre o divero méodo e modelo de previão eine, enconramo aqui o modelo univariado e o modelo com variávei

Leia mais

Movimento Circular I

Movimento Circular I Moimento Circular I Restrições ao moimento: Rotação de corpo rígido; Rotação em torno de um eixo fixo. Estudo: Posição, elocidade e aceleração angular; Grandezas angulares e lineares; Inércia de Rotação

Leia mais

Exercícios de torção livre em seção circular fechada - prof. Valério SA Universidade de São Paulo - USP

Exercícios de torção livre em seção circular fechada - prof. Valério SA Universidade de São Paulo - USP São Paulo, dezembro de 2015. 1) a. Deerminar a dimensão a de modo a se er a mesma ensão de cisalhameno máxima nos rechos B-C e C-D. b. Com al dimensão pede-se a máxima ensão de cisalhameno no recho A-B.

Leia mais

Sistemas de Controle (CON) Modelagem de Sistemas de Rotação e Eletromecânicos

Sistemas de Controle (CON) Modelagem de Sistemas de Rotação e Eletromecânicos Universidade do Estado de Santa Catarina UDESC Centro de Ciências Tecnológicas CCT Departamento de Engenharia Mecânica DEM Sistemas de Controle (CON) Modelagem de Sistemas de Rotação e Eletromecânicos

Leia mais

apresentado: B 10cm 5 cm , (x, y, z) em cm Pede-se: onde elas

apresentado: B 10cm 5 cm , (x, y, z) em cm Pede-se: onde elas 1) Para a peça primáica indeformada da figura abaio foi admiido o campo de deformaçõe apreenado: 5 cm 1cm A B 1cm C ij a b b c,a, (,, ) em cm Para ajuar o modelo, ainda na configuração inicial indeformadaa

Leia mais

CAPITULO 08 RESPOSTA À EXCITAÇÃO SENOIDAL PARA CIRCUI- TOS RL, RC E RLC SOLUÇÃO POR EQUA- ÇÕES DIFERENCIAIS. Prof. SILVIO LOBO RODRIGUES

CAPITULO 08 RESPOSTA À EXCITAÇÃO SENOIDAL PARA CIRCUI- TOS RL, RC E RLC SOLUÇÃO POR EQUA- ÇÕES DIFERENCIAIS. Prof. SILVIO LOBO RODRIGUES CAPITUO 8 ESPOSTA À EXCITAÇÃO SENOIDA PAA CICUI- TOS, C E C SOUÇÃO PO EQUA- ÇÕES DIFEENCIAIS Prof. SIVIO OBO ODIGUES 8. INTODUÇÃO PONTIFÍCIA UNIVESIDADE CATÓICA DO IO GANDE DO SU FACUDADE DE ENGENHAIA

Leia mais

CIRCUITO RC SÉRIE. max

CIRCUITO RC SÉRIE. max ELETRICIDADE 1 CAPÍTULO 8 CIRCUITO RC SÉRIE Ese capíulo em por finalidade inroduzir o esudo de circuios que apresenem correnes eléricas variáveis no empo. Para ano, esudaremos o caso de circuios os quais

Leia mais

Sistemas de Controle 1

Sistemas de Controle 1 Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 1 Cap2 - Modelagem no Domínio de Frequência Prof. Dr. Marcos Lajovic Carneiro Sistemas de Controle 1 Prof. Dr. Marcos

Leia mais

1.1 TRANSFORMADA DE LAPLACE

1.1 TRANSFORMADA DE LAPLACE Revião de Tranformada de Laplace - Cenro Federal de Educação Tecnológica do Paraná. TRANSFORMADA DE LAPLACE Daa de impreão (verão): 5 de janeiro de 5, :38:8 documeno compoo com LATEXε uando L Y X. A Tranformada

Leia mais

Transformada de Laplace

Transformada de Laplace Sinai e Sitema - Tranformada de Laplace A Tranformada de Laplace é uma importante ferramenta para a reolução de equaçõe diferenciai. Também é muito útil na repreentação e análie de itema. É uma tranformação

Leia mais

CONHECIMENTOS ESPECÍFICOS» CONTROLE E PROCESSOS INDUSTRIAIS (PERFIL 02) «

CONHECIMENTOS ESPECÍFICOS» CONTROLE E PROCESSOS INDUSTRIAIS (PERFIL 02) « IFPB» oncuro Público Profeor Efeio de Enino Báico, Técnico e Tecnológico» Edial Nº 36/ ONHEIMENTOS ESPEÍFIOS» ONTOE E POESSOS INDUSTIAIS PEFI «Oberação: Preupoo uilizado no âmbio da queõe de a : - hae

Leia mais

PROCESSO SELETIVO O DIA GABARITO 2 13 FÍSICA QUESTÕES DE 31 A 45

PROCESSO SELETIVO O DIA GABARITO 2 13 FÍSICA QUESTÕES DE 31 A 45 PROCESSO SELETIVO 27 2 O DIA GABARITO 2 13 FÍSICA QUESTÕES DE 31 A 45 31. No circuio abaixo, uma fone de resisência inerna desprezível é ligada a um resisor R, cuja resisência pode ser variada por um cursor.

Leia mais

Física I. Oscilações - Resolução

Física I. Oscilações - Resolução Quetõe: Fíica I Ocilaçõe - Reolução Q1 - Será que a amplitude eacontantenafae de um ocilador, podem er determinada, e apena for epecificada a poição no intante =0? Explique. Q2 - Uma maa ligada a uma mola

Leia mais

Comecemos escrevendo a forma geral de uma equação diferencial de ordem n, 1 inear e invariante no tempo, , b i

Comecemos escrevendo a forma geral de uma equação diferencial de ordem n, 1 inear e invariante no tempo, , b i 3 6 ADL aula 2 Função de Transferência Comecemos escrevendo a forma geral de uma equação diferencial de ordem n, 1 inear e invariante no tempo, onde c(t) é a saída, r(t) é a entrada e os a i, b i e a forma

Leia mais

6.1: Transformada de Laplace

6.1: Transformada de Laplace 6.: Tranformada de Laplace Muio problema práico da engenharia envolvem iema mecânico ou elérico ob ação de força deconínua ou de impulo. Para ee ipo de problema, o méodo vio em Equaçõe Diferenciai I, ão

Leia mais

F B d E) F A. Considere:

F B d E) F A. Considere: 5. Dois corpos, e B, de massas m e m, respecivamene, enconram-se num deerminado insane separados por uma disância d em uma região do espaço em que a ineração ocorre apenas enre eles. onsidere F o módulo

Leia mais

Lista de Exercícios 1

Lista de Exercícios 1 Universidade Federal de Ouro Preo Deparameno de Maemáica MTM14 - CÁLCULO DIFERENCIAL E INTEGRAL III Anônio Silva, Edney Oliveira, Marcos Marcial, Wenderson Ferreira Lisa de Exercícios 1 1 Para cada um

Leia mais

Teoria de Controle. Helio Voltolini

Teoria de Controle. Helio Voltolini Teoria de Controle Helio Voltolini Conteúdo programático Introdução aos sistemas de controle; Modelagem matemática de sistemas dinâmicos; Resposta transitória de sistemas de controle; Estabilidade dos

Leia mais

8.6 A corrente de deslocamento e as equações de Maxwell

8.6 A corrente de deslocamento e as equações de Maxwell 8.6 A correne de delocameno e a equaçõe de Maxwell Michael Faraday decobriu uma da dua lei báica que regem o fenômeno não eacionário do eleromagneimo. Nela aparece uma derivada emporal do campo magnéico.

Leia mais

3. TRANSFORMADA DE LAPLACE. Prof. JOSÉ RODRIGO DE OLIVEIRA

3. TRANSFORMADA DE LAPLACE. Prof. JOSÉ RODRIGO DE OLIVEIRA 3 TRNSFORMD DE LPLCE Prof JOSÉ RODRIGO DE OLIVEIR CONCEITOS BÁSICOS Númro complxo: ond α β prncm ao nº rai Módulo fa d um númro complxo Torma d Eulr: b a an a co co n n Prof Joé Rodrigo CONCEITOS BÁSICOS

Leia mais

Capítulo 2: Conceitos Fundamentais sobre Circuitos Elétricos

Capítulo 2: Conceitos Fundamentais sobre Circuitos Elétricos SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA TE041 Circuios Eléricos I Prof. Ewaldo L. M. Mehl Capíulo 2: Conceios Fundamenais sobre Circuios Eléricos 2.1. CARGA ELÉTRICA E CORRENTE ELÉTRICA

Leia mais

CAPÍTULO 8. v G G. r G C. Figura Corpo rígido C com centro de massa G.

CAPÍTULO 8. v G G. r G C. Figura Corpo rígido C com centro de massa G. 7 CÍTULO 8 DINÂMIC DO MOVIMENTO LNO DE COROS RÍIDOS IMULSO E QUNTIDDE DE MOVIMENTO Nese capíulo será analisada a lei de Newon apresenada nua ra fora inegral. Nesa fora inegra-se a lei de Newon dada por

Leia mais

Aluno Data Curso / Turma Professor

Aluno Data Curso / Turma Professor Apostila Modelagem e Simulação de Sistemas Dinâmicos Aluno Data Curso / Turma Professor 24/10/09 Engenharia Industrial Mecânica / 2006-1 MODELAGEM MATEMÁTICA DE SISTEMAS DINÂMICOS Everton Farina, Eng.º

Leia mais

Amplificadores de potência de RF

Amplificadores de potência de RF Amplificadores de poência de RF Objeivo: Amplificar sinais de RF em níveis suficienes para a sua ransmissão (geralmene aravés de uma anena) com bom rendimeno energéico. R g P e RF P CC Amplificador de

Leia mais

1. O movimento uniforme de uma partícula tem sua função horária representada no diagrama a seguir: e (m) t (s)

1. O movimento uniforme de uma partícula tem sua função horária representada no diagrama a seguir: e (m) t (s) . O moimeno uniforme de uma parícula em ua função horária repreenada no diagrama a eguir: e (m) - 6 7 - Deerminar: a) o epaço inicial e a elocidade ecalar; a função horária do epaço.. É dado o gráfico

Leia mais

Função de Transferência

Função de Transferência Diciplina: TEQ0- CONTROLE DE PROCESSOS Função de Tranferência Prof a Ninoka Bojorge Deparameno de Engenharia Química e de Peróleo UFF Sumário Função de Tranferência. Inrodução Definição Vanagen Propriedade

Leia mais

Halliday & Resnick Fundamentos de Física

Halliday & Resnick Fundamentos de Física Halliday & Resnick Fundamentos de Física Mecânica Volume 1 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica,

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Universidade Esadual do Sudoese da Bahia Dearameno de Ciências Exaas e Naurais.1- Roações, Cenro de Massa e Momeno Física I Prof. Robero Claudino Ferreira Índice 1. Movimeno Circular Uniformemene Variado;.

Leia mais

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara Insiuo de Física USP Física V - Aula 6 Professora: Mazé Bechara Aula 6 Bases da Mecânica quânica e equações de Schroedinger. Aplicação e inerpreações. 1. Ouros posulados da inerpreação de Max-Born para

Leia mais

Seção 5: Equações Lineares de 1 a Ordem

Seção 5: Equações Lineares de 1 a Ordem Seção 5: Equações Lineares de 1 a Ordem Definição. Uma EDO de 1 a ordem é dia linear se for da forma y + fx y = gx. 1 A EDO linear de 1 a ordem é uma equação do 1 o grau em y e em y. Qualquer dependência

Leia mais

CAPÍTULO III TORÇÃO SIMPLES

CAPÍTULO III TORÇÃO SIMPLES CAPÍTULO III TORÇÃO SIPLES I.INTRODUÇÂO Uma peça esará sujeia ao esforço de orção simples quando a mesma esiver submeida somene a um momeno de orção. Observe-se que raa-se de uma simplificação, pois no

Leia mais

Conceitos Básicos Circuitos Resistivos

Conceitos Básicos Circuitos Resistivos Conceios Básicos Circuios esisivos Elecrónica 005006 Arnaldo Baisa Elecrónica_biomed_ef Circuio Elécrico com uma Baeria e uma esisência I V V V I Lei de Ohm I0 V 0 i0 Movimeno Das Pás P >P P >P Líquido

Leia mais

3 LTC Load Tap Change

3 LTC Load Tap Change 54 3 LTC Load Tap Change 3. Inrodução Taps ou apes (ermo em poruguês) de ransformadores são recursos largamene uilizados na operação do sisema elérico, sejam eles de ransmissão, subransmissão e disribuição.

Leia mais

INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS

INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS Gil da Cosa Marques Fundamenos de Maemáica I.1 Inrodução. Equações Diferenciais Lineares.3 Equações Lineares de Primeira ordem.3.1 Equações de Primeira ordem não homogêneas

Leia mais

Análise Matemática IV

Análise Matemática IV Análie Maemáica IV Problema para a Aula Práica Semana. Calcule a ranformada de Laplace e a regiõe de convergência da funçõe definida em 0 pela expreõe eguine: a f = cha b f = ena Reolução: a Aendendo a

Leia mais

CONTROLE LINEAR I. Parte A Sistemas Contínuos no Tempo PROF. DR. EDVALDO ASSUNÇÃO PROF. DR. MARCELO C. M. TEIXEIRA -2013-

CONTROLE LINEAR I. Parte A Sistemas Contínuos no Tempo PROF. DR. EDVALDO ASSUNÇÃO PROF. DR. MARCELO C. M. TEIXEIRA -2013- CONTROLE LINEAR I Pare A Siema Conínuo no Tempo PROF. DR. EDVALDO ASSUNÇÃO PROF. DR. MARCELO C. M. TEIXEIRA -03- AGRADECIMENTOS O auore deejam agradecer ao aluno Pierre Goebel, que em uma arde de verão

Leia mais

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON)

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON) TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 8 LIVRO DO NILSON). CONSIDERAÇÕES INICIAIS SÉRIES DE FOURIER: descrevem funções periódicas no domínio da freqüência (ampliude e fase). TRANSFORMADA DE FOURIER:

Leia mais

1 s. Propriedades da transformada de Laplace A seguir apresentam-se algumas propriedades importantes da transformada de Laplace:

1 s. Propriedades da transformada de Laplace A seguir apresentam-se algumas propriedades importantes da transformada de Laplace: Secção 6 Tranformada de aplace (Farlow: Capítulo 5) Definição Tranformada de aplace A tranformada de aplace é, baicamente, um operador matemático que tranforma uma função numa outra Ea operação é definida

Leia mais

Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales. Teorema de Tales - Parte I. Nono Ano do Ensino Fundamental

Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales. Teorema de Tales - Parte I. Nono Ano do Ensino Fundamental Maerial Teórico - Módulo de Semelhança de Triângulo e Teorema de Tale Teorema de Tale - are I Nono no do Enino Fundamenal rof. Marcelo Mende de Oliveira rof. nonio aminha M. Neo 1 Razão de egmeno ara organizar

Leia mais

2.6 - Conceitos de Correlação para Sinais Periódicos

2.6 - Conceitos de Correlação para Sinais Periódicos .6 - Conceios de Correlação para Sinais Periódicos O objeivo é o de comparar dois sinais x () e x () na variável empo! Exemplo : Considere os dados mosrados abaixo y 0 x Deseja-se ober a relação enre x

Leia mais

MOVIMENTO OSCILATÓRIO

MOVIMENTO OSCILATÓRIO MOVIMENTO OSCILATÓRIO 1.0 Noções da Teoria da Elasticidade A tensão é o quociente da força sobre a área aplicada (N/m²): As tensões normais são tensões cuja força é perpendicular à área. São as tensões

Leia mais

Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales. Teorema de Tales - Parte I. Nono Ano do Ensino Fundamental

Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales. Teorema de Tales - Parte I. Nono Ano do Ensino Fundamental Maerial Teórico - Módulo de Semelhança de Triângulo e Teorema de Tale Teorema de Tale - are I Nono no do Enino Fundamenal rof. Marcelo Mende de Oliveira rof. nonio aminha M. Neo oral da OME 1 Razão de

Leia mais

REPRESENTAÇÃO DE SISTEMAS DINÂMICOS NA FORMA DO ESPAÇO DOS ESTADOS

REPRESENTAÇÃO DE SISTEMAS DINÂMICOS NA FORMA DO ESPAÇO DOS ESTADOS REPRESENTAÇÃO DE SISTEMAS DINÂMICOS NA FORMA DO ESPAÇO DOS ESTADOS. Espaço dos estados Representação da dinâmica de um sistema de ordem n usando n equações diferenciais de primeira ordem. Sistema é escrito

Leia mais

Problema Inversor CMOS

Problema Inversor CMOS Problema nersor CMS NMS: V = ol K = 30 μa/v PMS: V = ol K = 30 μa/v A figura represena um inersor CMS em que os dois ransísores apresenam caracerísicas siméricas A ensão de alimenação ale V =5 ol ) Sabendo

Leia mais

4 CER Compensador Estático de Potência Reativa

4 CER Compensador Estático de Potência Reativa 68 4 ompensador Esáico de Poência Reaiva 4.1 Inrodução ompensadores esáicos de poência reaiva (s ou Saic var ompensaors (Ss são equipamenos de conrole de ensão cuja freqüência de uso em aumenado no sisema

Leia mais

Introdução à Decomposição de Dantzig-Wolfe. Manuel António Matos

Introdução à Decomposição de Dantzig-Wolfe. Manuel António Matos Inrodução à Decompoição de Danzig-Wolfe Manuel Anónio Mao FEUP 994 índice. Inrodução... 2. Noação... 3. Decrição geral... 4. Deenvolvimeno...2 5. Algorimo...5 5.. Noação...5 5.2. Solução báica inicial...5

Leia mais

Energia envolvida na passagem de corrente elétrica

Energia envolvida na passagem de corrente elétrica Eletricidade Supercondutividade Baixando-se a temperatura dos metais a sua resistividade vai diminuindo Em alguns a resistividade vai diminuindo com a temperatura, mas não se anula Noutros a resistividade

Leia mais

1. Movimento Harmônico Simples

1. Movimento Harmônico Simples Física Oscilações 1. Movimento Harmônico Simples Vamos analisar inicialmente a situação em que há um corpo de massa m, preso a uma mola de constante elástica K que realiza oscilações em torno de seu ponto

Leia mais

Lista 7. Campo magnético, força de Lorentz, aplicações

Lista 7. Campo magnético, força de Lorentz, aplicações Lista 7 Campo magnético, força de Lorentz, aplicações Q28.1) Considere a equação da força magnética aplicada sobre uma partícula carregada se movendo numa região com campo magnético: F = q v B. R: Sim,

Leia mais

Experiência 05: TRANSITÓRIO DE SISTEMAS RC

Experiência 05: TRANSITÓRIO DE SISTEMAS RC ( ) Prova ( ) Prova Semestral ( ) Exercícios ( ) Prova Modular ( ) Segunda Chamada ( ) Exame Final ( ) Prática de Laboratório ( ) Aproveitamento Extraordinário de Estudos Nota: Disciplina: Turma: Aluno

Leia mais

UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto de Física Gleb Wataghin F o semestre Fernando Sato Prova 3 (Gabarito) - Diurno - 23/06/2008

UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto de Física Gleb Wataghin F o semestre Fernando Sato Prova 3 (Gabarito) - Diurno - 23/06/2008 UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto de Física Gleb Wataghin F 18-1 o semestre 008 - Fernando Sato Prova 3 (Gabarito) - Diurno - 3/06/008 Problema 1: No esquema da figura abaixo, uma bala (com massa

Leia mais

Edital Nº. 04/2009-DIGPE 10 de maio de 2009

Edital Nº. 04/2009-DIGPE 10 de maio de 2009 Caderno de Prova CONTROLE DE PROCESSOS Edial Nº. /9-DIPE de maio de 9 INSTRUÇÕES ERAIS PARA A REALIZAÇÃO DA PROVA Ue apena canea eferográfica azul ou prea. Ecreva o eu nome compleo e o número do eu documeno

Leia mais

Motores de Indução Trifásicos Parte I

Motores de Indução Trifásicos Parte I Motore de Indução Trifáico Parte I 1 Tópico da Aula de Hoje Neceidade de etudar o motore, do ponto de vita de eficiência energética Conceito báico envolvendo o funcionamento do motore de indução trifáico

Leia mais

TRANSFORMADA DE LAPLACE. Revisão de alguns: Conceitos Definições Propriedades Aplicações

TRANSFORMADA DE LAPLACE. Revisão de alguns: Conceitos Definições Propriedades Aplicações TRANSFORMADA DE LAPLACE Revião de algun: Conceito Deiniçõe Propriedade Aplicaçõe Introdução A Tranormada de Laplace é um método de tranormar equaçõe dierenciai em equaçõe algébrica mai acilmente olucionávei

Leia mais

Confiabilidade e Taxa de Falhas

Confiabilidade e Taxa de Falhas Prof. Lorí Viali, Dr. hp://www.pucrs.br/fama/viali/ viali@pucrs.br Definição A confiabilidade é a probabilidade de que de um sisema, equipameno ou componene desempenhe a função para o qual foi projeado

Leia mais

UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA CONTROLE E AUTOMAÇÃO. Professor Leonardo Gonsioroski

UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA CONTROLE E AUTOMAÇÃO. Professor Leonardo Gonsioroski UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA CONTROLE E AUTOMAÇÃO Definiçõe O gráfico do Lugar geométrico da raíze, conite no deenho de todo o valore que o pólo de malha fechada de uma função

Leia mais

Física I Prova 2 25/10/2014

Física I Prova 2 25/10/2014 Nota Física I Prova 5/10/014 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 6 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 8 questões

Leia mais

Modelos Variáveis de Estado

Modelos Variáveis de Estado Modelos Variáveis de Estado Introdução; Variáveis de Estados de Sistemas Dinâmicos; Equação Diferencial de Estado; Função de Transferência a partir das Equações de Estados; Resposta no Domínio do Tempo

Leia mais

ENGF93 Análise de Processos e Sistemas I

ENGF93 Análise de Processos e Sistemas I ENGF93 Análise de Processos e Sisemas I Prof a. Karen Pones Revisão: 3 de agoso 4 Sinais e Sisemas Tamanho do sinal Ampliude do sinal varia com o empo, logo a medida de seu amanho deve considerar ampliude

Leia mais

Vibrações e Dinâmica das Máquinas Aula - Cinemática. Professor: Gustavo Silva

Vibrações e Dinâmica das Máquinas Aula - Cinemática. Professor: Gustavo Silva Vibrações e Dinâmica das Máquinas Aula - Cinemática Professor: Gustavo Silva 1 Cinemática do Movimento Plano de um Corpo Rígido 1 Movimento de um corpo rígido; 2 Translação; 3 Rotação em torno de um eixo

Leia mais

DINÂMICA APLICADA. Livro Texto adotado: Dinâmica: Mecânica para Engenheiros R.C. Hibbeler.

DINÂMICA APLICADA. Livro Texto adotado: Dinâmica: Mecânica para Engenheiros R.C. Hibbeler. DINÂMICA APLICADA Livro Texto adotado: Dinâmica: Mecânica para Engenheiros R.C. Hibbeler. Samuel Sander de Carvalho Samuel.carvalho@ifsudestemg.edu.br Juiz de Fora MG Introdução: Objetivo: Desenvolver

Leia mais

O Movimento Harmônico Simples

O Movimento Harmônico Simples O Movimento Harmônico Simples Bibliografia e Figuras: Halliday, Resnick e Walker, vol 2 8 a ed, Cap 15. Todo o movimento que se repete em intervalos regulares é chamado de movimento periódico ou movimento

Leia mais

Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas

Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas Sinais e Sisemas Série de Fourier Renao Dourado Maia Universidade Esadual de Mones Claros Engenharia de Sisemas Inrodução A Série e a Inegral de Fourier englobam um dos desenvolvimenos maemáicos mais produivos

Leia mais

CAPITULO 01 DEFINIÇÕES E PARÂMETROS DE CIRCUITOS. Prof. SILVIO LOBO RODRIGUES

CAPITULO 01 DEFINIÇÕES E PARÂMETROS DE CIRCUITOS. Prof. SILVIO LOBO RODRIGUES CAPITULO 1 DEFINIÇÕES E PARÂMETROS DE CIRCUITOS Prof. SILVIO LOBO RODRIGUES 1.1 INTRODUÇÃO PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA FENG Desinase o primeiro capíulo

Leia mais

Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino*

Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino* ROTAÇÃO Física Geral I (1108030) - Capítulo 07 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 25 Translação e Rotação Sumário Definições, variáveis da rotação e notação vetorial Rotação com aceleração angular

Leia mais

Teoremas Básicos de Equações a Diferenças Lineares

Teoremas Básicos de Equações a Diferenças Lineares Teoremas Básicos de Equações a Diferenças Lineares (Chiang e Wainwrigh Capíulos 17 e 18) Caracerização Geral de Equações a diferenças Lineares: Seja a seguine especificação geral de uma equação a diferença

Leia mais

18 GABARITO 1 2 O DIA PROCESSO SELETIVO/2005 FÍSICA QUESTÕES DE 31 A 45

18 GABARITO 1 2 O DIA PROCESSO SELETIVO/2005 FÍSICA QUESTÕES DE 31 A 45 18 GABARITO 1 2 O DIA PROCESSO SELETIO/2005 ÍSICA QUESTÕES DE 31 A 45 31. O gálio é um meal cuja emperaura de fusão é aproximadamene o C. Um pequeno pedaço desse meal, a 0 o C, é colocado em um recipiene

Leia mais

As cargas das partículas 1, 2 e 3, respectivamente, são:

As cargas das partículas 1, 2 e 3, respectivamente, são: 18 GAB. 1 2 O DIA PROCSSO SLTIVO/2006 FÍSICA QUSTÕS D 31 A 45 31. A figura abaixo ilusra as rajeórias de rês parículas movendo-se unicamene sob a ação de um campo magnéico consane e uniforme, perpendicular

Leia mais

Curso de Engenharia de Petróleo Disciplina: Nota: Rubrica

Curso de Engenharia de Petróleo Disciplina: Nota: Rubrica Curso de Engenharia de Petróleo Disciplina: Nota: Rubrica Coordenador Professor: Rudson R Alves Aluno: Turma: ET2M Semestre: 1 sem/2014 Valor: 10,0 p tos Data: 26/06/2014 Avaliação: 2 a Bimestral INSTRUÇÕES

Leia mais

Se no terminal b do circuito for conectado um terceiro componente, como na figura abaixo, os resistores R 1 e R 2 não estarão mais em série.

Se no terminal b do circuito for conectado um terceiro componente, como na figura abaixo, os resistores R 1 e R 2 não estarão mais em série. Circuitos em Série Um circuito consiste em um número qualquer de elementos unidos por seus terminais, com pelo menos um caminho fechado através do qual a carga possa fluir. Dois elementos de circuitos

Leia mais

Determinação dos Parâmetros do Motor de Corrente Contínua

Determinação dos Parâmetros do Motor de Corrente Contínua Laboratório de Máquinas Elétricas: Alunos: Professor: Leonardo Salas Maldonado Determinação dos Parâmetros do Motor de Corrente Contínua Objetivo: Ensaiar o motor de corrente contínua em vazio; Determinar

Leia mais

António Costa. Paulo Roma Cavalcanti

António Costa. Paulo Roma Cavalcanti Inrodção à Compação Gráfica Geomeria Adapação: Aoria: João alo ereira Anónio Cosa Cladio Esperança alo Roma Caalcani onos e Vecores (2D) ono: Denoa posição no plano ( Vecor: Denoa deslocameno, iso é, incli

Leia mais

DINÂMICA APLICADA. Livro Texto adotado: Dinâmica: Mecânica para Engenheiros R.C. Hibbeler.

DINÂMICA APLICADA. Livro Texto adotado: Dinâmica: Mecânica para Engenheiros R.C. Hibbeler. DINÂMICA APLICADA Livro Texto adotado: Dinâmica: Mecânica para Engenheiros R.C. Hibbeler. Samuel Sander de Carvalho Samuel.carvalho@ifsudestemg.edu.br Juiz de Fora MG Introdução: Objetivo: Desenvolver

Leia mais

Mini_Lista11: Rotação de Corpos Rígidos: Eixo Fixo

Mini_Lista11: Rotação de Corpos Rígidos: Eixo Fixo Mini_Lista11: Rotação de Corpos Rígidos: Eixo Fixo Lembrete 11.1 Em equações rotacionais, deve usar ângulos expressos em radianos. Lembrete 11.2 Na resolução de problemas de rotação, deve especificar um

Leia mais

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula Aula 3 010 Movimento Harmônico Simples: Exemplos O protótipo físico do movimento harmônico simples (MHS) visto nas aulas passadas um corpo de massa m preso a uma mola executando vibrações de pequenas amplitudes

Leia mais

CAPÍTULO 3 DINÂMICA DA PARTÍCULA: TRABALHO E ENERGIA

CAPÍTULO 3 DINÂMICA DA PARTÍCULA: TRABALHO E ENERGIA CAPÍLO 3 DINÂMICA DA PARÍCLA: RABALHO E ENERGIA Neste capítulo será analisada a lei de Newton numa de suas formas integrais, aplicada ao movimento de partículas. Define-se o conceito de trabalho e energia

Leia mais

Noções de Espectro de Freqüência

Noções de Espectro de Freqüência MINISTÉRIO DA EDUCAÇÃO - Campus São José Curso de Telecomunicações Noções de Especro de Freqüência Marcos Moecke São José - SC, 6 SUMÁRIO 3. ESPECTROS DE FREQÜÊNCIAS 3. ANÁLISE DE SINAIS NO DOMÍNIO DA

Leia mais

I m k m r (3,5) 3000.(3) kg.m. Como d d d 3,697sen d

I m k m r (3,5) 3000.(3) kg.m. Como d d d 3,697sen d Capítulo 17 - Exercícios 17.65) Os passageiros, a gôndola e a estrutura de balanço ilustrados abaixo têm uma massa total de 50 Mg (ton.), com centro de massa em e raio de giração kb 3,5 m. Adicionalmente,

Leia mais

Mecânica da partícula

Mecânica da partícula -- Mecânica da parícula Moimenos sob a acção de uma força resulane consane Prof. Luís C. Perna LEI DA INÉRCIA OU ª LEI DE NEWTON LEI DA INÉRCIA Para que um corpo alere o seu esado de moimeno é necessário

Leia mais

LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 17:42. Jason Alfredo Carlson Gallas, professor titular de física teórica,

LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 17:42. Jason Alfredo Carlson Gallas, professor titular de física teórica, LISTA 3 - Prof. Jason Gallas, DF UFPB 0 de Junho de 203, às 7:42 Exercícios Resolvidos de Física Básica Jason Alfredo Carlson Gallas, professor titular de física teórica, Doutor em Física pela Universidade

Leia mais

As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um

As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um alto-falante, ou de um instrumento de percussão. Um terremoto

Leia mais

Sistemas de Controle 1

Sistemas de Controle 1 Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 1 Cap2 - Modelagem no Domínio de Frequência Prof. Dr. Marcos Lajovic Carneiro Sistemas de Controle 1 Prof. Dr. Marcos

Leia mais