AULA 4. Produto escalar. Produto escalar definição algébrica. , chamamos de produto. escalar o número real: Notação: u v ou u, v e se lê: u escalar v.

Tamanho: px
Começar a partir da página:

Download "AULA 4. Produto escalar. Produto escalar definição algébrica. , chamamos de produto. escalar o número real: Notação: u v ou u, v e se lê: u escalar v."

Transcrição

1 AULA 4 Prodto escalar Prodto escalar definição algébrica Sejam,, e,, escalar o número real:, chamamos de prodto Notação: o, e se lê: escalar. Eemplos: ) Dados os etores,,3 e 3,4,, calclar: a) =. (-3) (-) = = b) = = (-, 6, ) (-4,, -4) = (-). (-4) (-4) = = ) Dados os etores 4,, e,, 3 e os pontos A(4, -, ) e (3,, -), determinar o alor de tal qe A 5. A A (, 3, 3) A = ( +, -, 6) A 5 4,, (,, 6) 5 4. ( + ) +. (-) + (-). 6 = = 5 3 = 7 7 3

2 Propriedades do prodto escalar: i) ii) w w iii) i) 0 se 0 e 0 se 0 ) Eemplos: ) Sendo,,, demonstre a propriedade ) Resolção:,,,, ) Mostrar qe Resolção: i ii Analogamente, Resola ocê...

3 3) Sendo 4, e 3, calclar 3 4. Resolção: Eercício resolido: Determinar o etor, paralelo ao etor = (, -, 3), tal qe 4. Resolção: Seja,, o etor procrado., temos:,,,, Como 4 (i) Como os etores são paralelos, temos: // O seja, mltiplicando em cr, temos: - = = - - = 3 = - 3 (ii) 3 Logo, sbstitindo as eqações obtidas em (ii) em (i), obtemos: (- ) + 3(- 3) = = = - 4 = 3 = -. 3 = - 6 = = - 9 Logo, 6, 3, 9

4 Prodto escalar definição geométrica Sejam e,etores não paralelos, e o ânglo formado por eles, então temos qe: C A cos; 0 80º Demonstração: Eemplo: Sendo, 3 e 0º o ânglo entre e, calcle. Resolção: cos 3cos0º 3 3

5 Propriedades: sen 90º 80º _ + 0º cos i) 0 cos 0 0º 90º, o seja, é m ânglo agdo. ii) 0 cos 0 90º 80º, o seja, é m ânglo obtso. iii) 0 cos 0 90º, o seja, é m ânglo reto: 0 : condição de ortogonalidade de dois etores Eemplo: Mostrar qe os segintes pares de etores são ortogonais: a),, 3 e 4, 5, =. 4 + (-) = = 0 são ortogonais. b) i e j, 0, 0 0,, 0 i j = = = 0 são ortogonais. Eercícios resolidos: ) Qal o alor de para qe os etores a i j 4k e b i ( ) j 3k sejam ortogonais?

6 Resolção: a b a b 0 (,, -4) (, -, 3) = = 0 - = 0 = - 5 ) Dados os pontos A(m,, 0); (m, m, ) e C(, 3, -), determinar m de modo qe o triânglo C seja retânglo em A. Calclar a área do triânglo. Resolção: Para qe o triânglo C seja retânglo em A, precisamos qe o etor seja ortogonal ao etor : C 80º _ + 0º cos A 0 (-, m, ) ( m,, -) = m + 4m = 0 5m = 5 m = Para calclar a área do triânglo, precisamos das medidas de sa base ( ) e de sa altra ( ):, m,,, ( ) 6 m,, 0,, 0 ( ) 5

7 Logo, b h A a. 3) Determinar o etor, sabendo qe, é ortogonal ao eio, w 6 w i j. Resolção: Seja,, o etor procrado. Como é ortogonal ao eio, tomamos o etor, 0, 0 representante do eio. Portanto, temos: i como i i 0,,, 0, Como w 6, temos: 0,,,, Por ltimo, para determinarmos o alor de, samos o fato de qe : Logo, 0, 3, 4 o 0, 3, 4

8 Cálclo do ânglo entre dois etores: De cos, temos: cos C A Eemplos: ) Calclar o ânglo entre os etores,,4 Resolção: e,, cos Logo, arccos 45º ) Seja o triânglo de értices A(,, 3); (, 0, -) e C(-,, ). Determinar o ânglo interno ao értice. Qal o ânglo eterno ao értice? Resolção: C - A ^ 80 - ^ sen

9 cos ˆ A A A A,, 4 A 6 8 3,, A 8 8 cosˆ Logo, ˆ arccos 57,0º 9 E, portanto, o ânglo eterno ao értice, é: 80º - 57,0º =,98º 3) Sabendo qe o etor = (,, - ) forma ânglo de 60º com o etor determinado pelos pontos A(3,, -) e (4, 0, m),calclar m. Resolção: cos 60º A,, m ( ) ( m ) m m m m 4m 4 m 4m cos 60º m m 4m 6 6 Eleando ambos os membros da eqação ao qadrado, obtemos: 4 m 6. m 4 m m 4m 6 6m 4m 36 m

10 4m m m 8m 4 6m 6m 3 0 ( ) 8m m m 4 4m 36 4) Um etor do espaço forma com os etores i e j ânglos de 60º e 0º respectiamente. Determinar o etor sabendo qe sa norma é. Resolção: Seja,, o etor procrado. Como forma ânglo de 60º com o etor i, 0, 0 cos 60º i i, 0, 0,,, temos: Como forma ânglo de 0º com o etor j 0,, 0 cos 0º j j 0,, 0,,, temos: Por ltimo, para determinarmos o alor de, samos o fato de qe : 4 Logo,,, o,, Obs.: Os ânglos formados entre m etor e os eios coordenados são chamados ânglos diretores.

11 5) Determinar o etor, tal qe: 4 ; é ortogonal ao eio O e forma ânglo de 60º com o etor i e ânglo obtso com j. Resolção: Seja,, o etor procrado. Como é ortogonal ao eio, tomamos o etor 0, 0, representante do eio. Portanto, temos: k como k k 0,, 0, 0, Como forma ânglo de 60º com o etor i, 0, 0 cos 60º i i, 0, 0,, 4, temos: 4 Como forma ânglo obtso (maior qe 90º) com o etor 0,, 0 temos: 0,, 0,, cos 0 j 0 () j, Por ltimo, para determinarmos o alor de, samos o fato de qe 4 : De (), temos qe 3 Logo,, 3, 0

12 Projeção de m etor sobre otro Sejam e etores não nlos e o ânglo entre eles: A q Seja é a projeção ortogonal de sobre. Notação: proj proj Obseração: eja a demonstração dessa fórmla em WINTERLE (000). Eemplos: ) Dados os etores 3, 0, e,,, determinar proj e proj. Resolção: proj 5 3, 0,, 0, 6 5 ( ) , 0, 3, 0, proj ,,,, 4 ( ) ( ) ,,,,

13 ) Sejam os pontos A(-, -, ); (,, ) e C(m, -5, 3). a) Para qe alor de m o triânglo C é retânglo em A? b) Determinar o ponto H, pé da altra relatia ao értice A. Resolção: A H C a) Para qe o triânglo C seja retânglo em A, precisamos qe o etor seja ortogonal ao etor : 0 (3,, -) (m +, - 4, ) = 0 3m = 0 3m = 6 m = b) Para determinarmos o ponto H, precisamos, em primeiro lgar, determinar o etor H qe é a projeção do etor A sobre o etor : A A ( 3,, ) C (0, 6, ) H proj 4 40 A A , 6, 0, 6, 0,, 0,, Como H = H, temos: H = H + 7 0,, 0 0 7,,,, 0 0 H = ( 3) 0 ( ) ( 6) 0, 6, 0 0 ( 6) ( 6)

14 3) Sejam A(,, 3); (m, 3, 5) e C(0, 4, ) értices de m triânglo. Determine: a) O alor de m para qe o triânglo C seja retânglo em A. b) Calclar a medida da projeção do cateto sobre a hipotensa. c) Determinar o ponto H, pé da altra relatia ao értice A. d) Mostrar qe AH. Resolção: A H C a) Para qe o triânglo C seja retânglo em A, precisamos qe o etor seja ortogonal ao etor : 0 (m -,, ) (-, 3, - ) = 0 - m = 0 - m = - 6 m = 3 b) A medida da projeção do cateto sobre a hipotensa é a norma do etor H qe é a projeção do etor A sobre o etor : A A (,, ) C ( 3,, 4) H proj 9 6 Logo, A A 3,, 4,, ( ) ( 3) ( ) ( ) ( 4) 3,, 4 ( 3) ( 3) ( 4) ( 4)

15 H c. c) Como H = H, temos: H = H ,, , 3, 5,, H = d) AH AH 0 De fato: 6, 6 6 6, ,, 4 0 REFERÊNCIAS CAMARGO, Ian de; OULOS, Palo. Geometria Analítica: m tratamento etorial. São Palo: Pearson, 00. STEINRUCHY, Alfredo; WINTERLE, Palo. Geometria Analítica. São Palo: Makron ooks, 987. WINTERLE, Palo. Vetores e Geometria Analítica. São Palo: Makron ooks, 000.

Aula 2: Vetores tratamento algébrico

Aula 2: Vetores tratamento algébrico Ala : Vetores tratamento algébrico Vetores no R e no R Decomposição de etores no plano ( R ) Dados dois etores e não colineares então qalqer etor pode ser decomposto nas direções de e. O problema é determinar

Leia mais

PROF. GILBERTO SANTOS JR VETORES

PROF. GILBERTO SANTOS JR VETORES . Introdção Listas de números Sponha qe os pesos de oito estdantes estão listados abaio: 6,, 4, 4, 78, 4, 6, 9 Podemos denotar todos os alores dessa lista sando apenas m símbolo, por eemplo w, com diferentes

Leia mais

PRODUTOS DE VETORES. Álgebra Linear e Geometria Analítica Prof. Aline Paliga

PRODUTOS DE VETORES. Álgebra Linear e Geometria Analítica Prof. Aline Paliga PRODUTOS DE VETORES Álgebra Linear e Geometria Analítica Prof. Aline Paliga 3.1 PRODUTO ESCALAR Chama-se prodto escalar (o prodto interno sal) de dois vetores =x 1 i + y 1 j+z 1 k e v= x 2 i + y 2 j+z

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOTAS DE AULA Geometria Analítica e Álgebra Linear Vetores no Espaço Professor: Luiz Fernando Nunes, Dr. 019/Sem_01 Índice Vetores no Espaço Tridimensional... 1.1 Definição... 1. Operações com vetores...

Leia mais

ÁLGEBRA LINEAR. Espaços Vetoriais Euclidianos, Produto Interno. Prof. Susie C. Keller

ÁLGEBRA LINEAR. Espaços Vetoriais Euclidianos, Produto Interno. Prof. Susie C. Keller ÁLGEBRA LINEAR Espaços Vetoriais Eclidianos, Prodto Interno Prof. Ssie C. Keller Prodto Interno Prodto interno no espaço etorial V é ma fnção de V V em IR qe a todo par de etores (, ) V V associa m número

Leia mais

( AB ) é o segmento orientado com origem em A e extremidade em B.

( AB ) é o segmento orientado com origem em A e extremidade em B. FUNDÇÃO EDUIONL UNIFID MPOGRNDENSE (FEU) FULDDES INTEGRDS MPO-GRNDENSES (FI) OORDENÇÃO DE MTEMÁTI Estrada da aroba, 685, ampo-grande/rj - Tel: 3408-8450 Sites: www.fec.br, www.sites.google.com/site/feumat

Leia mais

f R e P o D. Vimos que (Po x

f R e P o D. Vimos que (Po x Universidade Salvador UNIFACS Crsos de Engenharia Cálclo IV Proa: Ilka Reboças Freire Cálclo Vetorial Teto 0: Derivada Direcional e Gradiente. A Derivada Direcional Consideremos a nção escalar : D R R

Leia mais

14/03/2013. Cálculo Vetorial. Professor: Wildson Cruz

14/03/2013. Cálculo Vetorial. Professor: Wildson Cruz Estudamos os vetores do ponto de vista geométrico e, no caso, eles eram representados por um segmento de reta orientado. E agora vamos mostrar uma outra forma de representá-los: os segmentos orientados

Leia mais

ÁLGEBRA LINEAR ESPAÇOS VETORIAIS

ÁLGEBRA LINEAR ESPAÇOS VETORIAIS + ÁLGEBRA LINEAR ESPAÇOS VETORIAIS + INTRODUÇÃO n Ao final do séclo XIX, após o estabelecimento das bases matemáticas da teoria de matries, foi obserado pelos matemáticos qe árias entidades matemáticas

Leia mais

Cálculo Vetorial. Geometria Analítica e Álgebra Linear - MA Aula 04 - Vetores. Profa Dra Emília Marques Depto de Matemática

Cálculo Vetorial. Geometria Analítica e Álgebra Linear - MA Aula 04 - Vetores. Profa Dra Emília Marques Depto de Matemática Cálclo Vetorial Estdaremos neste tópico as grandezas etoriais, sas operações, propriedades e aplicações. Este estdo se jstifica pelo fato de, na natreza, se apresentarem 2 tipo de grandezas, as escalares

Leia mais

Geometria Analítica. Prof Marcelo Maraschin de Souza

Geometria Analítica. Prof Marcelo Maraschin de Souza Geometria Analítica Prof Marcelo Maraschin de Souza Vetor Definido por dois pontos Seja o vetor AB de origem no ponto A(x 1, y 1 ) e extremidade no ponto B(x 2, y 2 ). Qual é a expressão algébrica que

Leia mais

Representação de vetores

Representação de vetores UL PSSD Representação de vetores Modo Gráfico: Segmento de reta orientado com a mesma direção e sentido qe o vetor considerado e cjo comprimento é proporcional à magnitde do mesmo. Modo escrito: Letras

Leia mais

n. 12 PRODUTO VETORIAL ou PRODUTO EXTERNO

n. 12 PRODUTO VETORIAL ou PRODUTO EXTERNO n. 12 PRODUTO VETORIAL ou PRODUTO EXTERNO O produto vetorial é uma operação binária sobre vetores em um espaço vetorial. Seu resultado difere do produto escalar por ser também um vetor, ao invés de um

Leia mais

Cálculo 1 4ª Lista de Exercícios Derivadas

Cálculo 1 4ª Lista de Exercícios Derivadas www.matematiqes.com.br Cálclo 4ª Lista de Eercícios Derivadas ) Calclar as derivadas das epressões abaio, sando as fórmlas de derivação: a) y 4 4 d 4 b) f f c) y d d) y R : d df e) 6 f R : 6 d f) 5 y 4

Leia mais

GA3X1 - Geometria Analítica e Álgebra Linear. Definição (Segmentos orientados de mesmo comprimento, direção e sentido):

GA3X1 - Geometria Analítica e Álgebra Linear. Definição (Segmentos orientados de mesmo comprimento, direção e sentido): G3X1 - Geometria nalítica e Álgebra Linear 3 Vetores 3.1 Introdução efinição (Segmento orientado): Um segmento orientado é um par ordenado (,) de pontos do espaço. é a origem e é a etremidade do segmento

Leia mais

Vetores Forças Cap. 2

Vetores Forças Cap. 2 Objetios MECÂNICA - ESTÁTICA Vetores Forças Cap. 2 Mostrar como somar forças e decompô-las em componentes sando a lei do paralelogramo. Expressar a força e a sa localização na forma etorial cartesiana

Leia mais

a) 15,00 b) 15,10 c) 15,70 d) 16,10 e) 17,70

a) 15,00 b) 15,10 c) 15,70 d) 16,10 e) 17,70 RESUMO Dentro das Organizações é comum nos depararmos com gráficos em suas áreas, que nada mais é que uma relação, comparação de duas grandezas ou até mesmo uma função, mas representada graficamente. Para

Leia mais

e um vetor não-nulo Qualquer uma das equações apresentadas acima [destacadas com um retângulo] é denominada equação vetorial da reta.

e um vetor não-nulo Qualquer uma das equações apresentadas acima [destacadas com um retângulo] é denominada equação vetorial da reta. ESTUDO D RET NO ESPÇO R 3 Como já é de nosso conhecimento dois pontos distintos no plano R 2 determinam somente uma reta atraés deles O mesmo acontece no espaço R 3 ssim amos definir como oter e escreer

Leia mais

n. 18 Estudo da reta: ângulo, paralelismo, ortogonalidade, coplanaridade e interseção entre retas Ângulo entre duas retas

n. 18 Estudo da reta: ângulo, paralelismo, ortogonalidade, coplanaridade e interseção entre retas Ângulo entre duas retas n. 18 Estudo da reta: ângulo, paralelismo, ortogonalidade, coplanaridade e interseção entre retas Ângulo entre duas retas Sejam as retas r1, que passa pelo ponto A (x1, y1, z1) e tem a direção de um vetor

Leia mais

Capítulo Aplicações do produto interno

Capítulo Aplicações do produto interno Cálculo - Capítulo 1.4 - Aplicações do produto interno - versão 0/009 1 Capítulo 1.4 - Aplicações do produto interno 1.4.1 - Ortogonalidade entre vetores 1.3.3 - Ângulo entre vetores 1.4. - Projeção ortogonal

Leia mais

8.º Ano de escolaridade 2014/2015

8.º Ano de escolaridade 2014/2015 8.º Ano de escolaridade 2014/2015 A cada período serão acrescidas as alas de avaliação DOMÍNIO ÁLGEBRA (ALG8) NÚMEROS E OPERAÇÕES (NO8) CONTEÚDOS 1. Números reais Tempos previstos (45 min) 22 Distribição

Leia mais

Material Didático do Curso de Engenharia Mecânica da UniEVANGÉLICA

Material Didático do Curso de Engenharia Mecânica da UniEVANGÉLICA Material Didático do Crso de Engenharia Mecânica da UniEVANGÉLICA Disciplina: Cálclo II Docentes: Carlos Edardo Fernandes Cládia Gomes de Olieira Santos Ricardo Wobeto Volme 1 18 Centro Uniersitario de

Leia mais

4 Produto de vetores. 4.1 Produto Escalar. GA3X1 - Geometria Analítica e Álgebra Linear

4 Produto de vetores. 4.1 Produto Escalar. GA3X1 - Geometria Analítica e Álgebra Linear 4 Produto de vetores 4.1 Produto Escalar Definição (Medida angular): Sejam u e vetores não-nulos. Chama-se medida angular entre u e a medida θ do ângulo PÔQ, sendo (O,P) e (O,Q), respectivamente, representantes

Leia mais

Aprendizagens Académicas

Aprendizagens Académicas AGRUPAMENTO DE ESCOLAS DE SÃO LOURENÇO VALONGO Departamento de Matemática e Ciências Experimentais Matemática 3º Ciclo 2016/2017 PERFIL DE APRENDIZAGENS ESPECÍFICAS 8º ANO O perfil do alno foi definido

Leia mais

MECÂNICA GERAL VETORES POSIÇÃO E FORÇA

MECÂNICA GERAL VETORES POSIÇÃO E FORÇA MECÂNICA GERAL VETORES POSIÇÃO E FORÇA Prof. Dr. Daniel Caetano 2019-1 Objetivos Recordar o conceito de vetor posição Recordar o conceito de vetor força Recordar as operações vetoriais no plano Atividade

Leia mais

LISTA EXTRA DE EXERCÍCIOS MAT /I

LISTA EXTRA DE EXERCÍCIOS MAT /I LISTA EXTRA DE EXERCÍCIOS MAT 008/I. Dados os vetores v = (0,, 3), v = (-, 0, 4) e v 3 = (, -, 0), efetuar as operações indicadas: (a) v 3-4v R.: (4,-,-6) (b) v -3v +v 3 R.: (3,0,-6). Determine: (a) x,

Leia mais

AULA Exercícios. DETERMINAR A EXPRESSÃO GERAL E A MATRIZ DE UMA TL CONHECIDAS AS IMAGENS DE UMA BASE DO

AULA Exercícios. DETERMINAR A EXPRESSÃO GERAL E A MATRIZ DE UMA TL CONHECIDAS AS IMAGENS DE UMA BASE DO Note bem: a leitra destes apontamentos não dispensa de modo algm a leitra atenta da bibliografia principal da cadeira Chama-se a atenção para a importância do trabalho pessoal a realizar pelo alno resolvendo

Leia mais

PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE 23 ANOS

PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE 23 ANOS PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE ANOS Ano Lectivo: 009 / 00 Folha de Escola onde se realiza esta prova: Data: 6 / 0 / 009 Prova: MATEMÁTICA Nome do Candidato: Docente(s): Docmento de Identificação

Leia mais

CVGA Edezio 1. k e v = x2. u, v = u v = x 1 x 2 + y 1 y 2 + z 1 z 2

CVGA Edezio 1. k e v = x2. u, v = u v = x 1 x 2 + y 1 y 2 + z 1 z 2 CVGA Edezio 1 Cálculo Vetorial e Geometria Analítica Produto de Vetores Produto Escalar (ou Interno) Chama-se produto escalar (ou produto interno usual) de dois vetores x 1 i + y1 j + z1 k e x2 i + y2

Leia mais

Profª Cristiane Guedes VETORES. Cristianeguedes.pro.br/cefet

Profª Cristiane Guedes VETORES. Cristianeguedes.pro.br/cefet VETORES Cristinegedesprobr/cefet Espço R 3 Exercício: Sej P m prlelepípedo com fces prlels os plnos coordendos Sbendo qe A = () e B = (345) são dois dos ses értices determine os otros értices 3 Distânci

Leia mais

Engenharia Civil/Mecânica Cálculo 3-3º semestre de 2012 Profa Gisele A.A. Sanchez

Engenharia Civil/Mecânica Cálculo 3-3º semestre de 2012 Profa Gisele A.A. Sanchez Engenhara Cvl/Mecânca Cálclo - º semestre de 01 Proa Gsele A.A. Sanchez 4ª ala: Dervadas Dreconas e Gradente Gradentes e dervadas dreconas de nções com das varáves As dervadas parcas de ma nção nos dão

Leia mais

Curso de Análise Matricial de Estruturas 1

Curso de Análise Matricial de Estruturas 1 Crso de Análise Matricial de Estrtras IV MÉODO DA IIDEZ IV. Solção eral A modelagem de m sistema estrtral para sa resolção através do método da rigidez deve preferencialmente apretar m número de coordenadas

Leia mais

Lista de Exercícios de Cálculo 3 Primeira Semana

Lista de Exercícios de Cálculo 3 Primeira Semana Lista de Exercícios de Cálculo 3 Primeira Semana Parte A 1. Se v é um vetor no plano que está no primeiro quadrante, faz um ângulo de π/3 com o eixo x positivo e tem módulo v = 4, determine suas componentes.

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Matemática A. O ANO DE ESCOLARIDADE Dração: 90 mitos Data: Cadero (é permitido o so de calcladora) Na resposta aos ites de escolha múltipla, selecioe a opção correta. Escreva, a folha de respostas, o úmero

Leia mais

P L A N O D E E N S I N O. CARGA HORÁRIA TOTAL: 72 h/a TEORIA: 72 h/a PRÁTICA: 0

P L A N O D E E N S I N O. CARGA HORÁRIA TOTAL: 72 h/a TEORIA: 72 h/a PRÁTICA: 0 P L A N O D E E N S I N O DEPARTAMENTO: Matemática DISCIPLINA: Geometria Analítica PROFESSORA: Viviane Maria Beuter SIGLA: GAN0001 CARGA HORÁRIA TOTAL: 72 h/a TEORIA: 72 h/a PRÁTICA: 0 CURSO(S): Engenharia

Leia mais

Observe as retas a, b, c e d. Elas formam um feixe de retas paralelas.

Observe as retas a, b, c e d. Elas formam um feixe de retas paralelas. TEOREMA DE TALES CONTEÚDO Teorema de Tales AMPLIANDO SEUS CONHECIMENTOS Observe as retas a, b, c e d. Elas formam m feixe de retas paralelas. A retas f e g são retas transversais a esse feixe. Saiba mais

Leia mais

n. 9 VERSOR_EXPRESSÃO CARTESIANA_PARALELISMO_COPLANARIDADE_ COLINEARIDADE Como o versor é um vetor unitário, temos que v = 1

n. 9 VERSOR_EXPRESSÃO CARTESIANA_PARALELISMO_COPLANARIDADE_ COLINEARIDADE Como o versor é um vetor unitário, temos que v = 1 n. 9 VERSOR_EXPRESSÃO CARTESIANA_PARALELISMO_COPLANARIDADE_ COLINEARIDADE Definição Dado um vetor u 0, chama-se versor do vetor u, um vetor unitário, paralelo e de mesmo sentido que u. Logo, se considerarmos

Leia mais

Determinante Introdução. Algumas Propriedades Definição Algébrica Equivalências Propriedades Fórmula Matriz

Determinante Introdução. Algumas Propriedades Definição Algébrica Equivalências Propriedades Fórmula Matriz ao erminante Área e em R 2 O qe é? Qais são sas propriedades? Como se calcla (Qal é a fórmla o algoritmo para o cálclo)? Para qe sere? A = matriz. P paralelogramo com arestas e. + A é a área (com sinal)

Leia mais

Álgebra Linear e Geometria Analítica. Rectas no plano, no espaço e em IR n Planos no espaço e em IR n

Álgebra Linear e Geometria Analítica. Rectas no plano, no espaço e em IR n Planos no espaço e em IR n Álgebra Linear e Geometria Analítica Rectas no plano, no espaço e em IR n Planos no espaço e em IR n Em geometria eclidiana: pontos definem ma recta o ponto e a direcção da recta o seja: ponto vector (

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOTS DE UL Geometria nalítica e Álgebra Linear utoalores e utoetores rofessor: Lui Fernando Nunes Dr 9/Sem_ Índice 8 utoalores e utoetores 8 Determinação dos autoalores e autoetores 8 Diagonaliação de

Leia mais

Credenciamento Portaria MEC 3.613, de D.O.U

Credenciamento Portaria MEC 3.613, de D.O.U Credenciamento Portaria MEC 3.613, de 08.11.2004 - D.O.U. 09.11.2004. MATEMÁTICA, LICENCIATURA / Geometria Analítica Unidade de aprendizagem Organizando a matemática e a vida através de linhas e colunas

Leia mais

Álgebra Linear e Geometria Analítica. 10ª aula

Álgebra Linear e Geometria Analítica. 10ª aula Álgbra Linar Gomtria Analítica 0ª ala Vctors no plano Vctors no spaço Vctors m R n ( +, + ) (, ) (, ) (k,k ) k (, ) Prodto intrno (, ); (, ). + Prodto intrno norma (, ); (, ). + +. Prodto intrno m

Leia mais

Álgebra Linear e Geometria Analítica. Vectores no plano, no espaço e em IR n

Álgebra Linear e Geometria Analítica. Vectores no plano, no espaço e em IR n Álgbra Linar Gomtria Analítica Vctors no plano, no spaço m IR n ( +, + ) (, ) (, ) (k,k ) k (, ) Prodto intrno (, ); (, ). + Prodto intrno norma (, ); (, ). + +. Prodto intrno m IR n (,,, 4..., n );

Leia mais

PRIMITIVAS 1. INTRODUÇÃO

PRIMITIVAS 1. INTRODUÇÃO Material de apoio referente ao tópico: Integrais Módlo I. Adaptado de: Prof. Dr. José Donizetti Lima por Prof. Dra. Dayse Regina Batists.. INTRODUÇÃO PRIMITIVAS Em mitos problemas, embora a derivada de

Leia mais

MATEMÁTICA 10º A T 2

MATEMÁTICA 10º A T 2 Escola Secndária lfredo Reis Silveira no lectivo 008/009 MTEMÁTIC 0º T Ficha de Trabalho Eqação Vectorial e redzida de ma recta Eqação Vectorial da Recta Dado m ponto e m vector não nlo, podemos definir

Leia mais

COMPUTAÇÃO GRÁFICA NOTAS COMPLEMENTARES

COMPUTAÇÃO GRÁFICA NOTAS COMPLEMENTARES Uniersidade Estadal do Oeste do Paraná - UNIOESTE Centro de Ciências Eatas e Tecnológicas - CCET Crso de Ciência da Comptação COMPUTAÇÃO GRÁFICA NOTAS COMPLEMENTARES CASCAVEL - PR 9 SUMÁRIO PRINCÍPIOS

Leia mais

com 3 Incógnitas A interseção do plano paralelo ao plano yz, passando por P, com o eixo x determina a coordenada x.

com 3 Incógnitas A interseção do plano paralelo ao plano yz, passando por P, com o eixo x determina a coordenada x. Interpretação Geométrica de Sistemas Lineares com 3 Incógnitas Reginaldo J. Santos Departamento de Matemática Instituto de Ciências Eatas Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi

Leia mais

Transformações Geométricas 3D

Transformações Geométricas 3D Transformações Geométricas 3D Introdução Transformações 3D são uma etensão dos métodos 2D, incluindo-se a coordenada Z. Especificação de vetores em 3D translação: vetor de translação 3D escalonamento:

Leia mais

Derivada. Aula 09 Cálculo Diferencial. Professor: Éwerton Veríssimo

Derivada. Aula 09 Cálculo Diferencial. Professor: Éwerton Veríssimo Derivada Ala 09 Cálclo Dierencial Proessor: Éwerton Veríssimo Derivada: Conceito Físico Taa de Variação A dosagem de m medicamento pode variar conorme o tempo de tratamento do paciente. O desgaste das

Leia mais

TRANSFORMAÇÕES LINEARES

TRANSFORMAÇÕES LINEARES 1 TRANSFORMAÇÕES LINEARES Cristianeguedes.pro.br/cefet Transformação Linear 2 Definição: Sejam U e V dois espaços vetoriais reais. Uma função T (ou aplicação) é denominada Transformação Linear de U em

Leia mais

Capítulo 3 Comportamento mecânico dos materiais = = = =

Capítulo 3 Comportamento mecânico dos materiais = = = = apítlo omportamento mecânico dos materiais Problema Uma peça prismática de comprimento L e secção transversal rectanglar de altra 0cm e largra 0cm foi sjeita ao ensaio de tracção. variação de comprimento

Leia mais

n. 20 EQUAÇÃO GERAL DO PLANO O plano π pode ser definido como o conjunto de todos os pontos P (x, y, z) do

n. 20 EQUAÇÃO GERAL DO PLANO O plano π pode ser definido como o conjunto de todos os pontos P (x, y, z) do n. 20 EQUAÇÃO GERAL DO PLANO Seja A (x 1, y 1, z 1 ) um ponto que pertence ao plano π e n = a i + b j + c k, sendo n (0, 0, 0) um vetor ortogonal ao plano. O plano π pode ser definido como o conjunto de

Leia mais

Aula Distância entre duas retas paralelas no espaço. Definição 1. Exemplo 1

Aula Distância entre duas retas paralelas no espaço. Definição 1. Exemplo 1 Aula 1 Sejam r 1 = P 1 + t v 1 t R} e r 2 = P 2 + t v 2 t R} duas retas no espaço. Se r 1 r 2, sabemos que r 1 e r 2 são concorrentes (isto é r 1 r 2 ) ou não se intersectam. Quando a segunda possibilidade

Leia mais

Respostas sem justificativas não serão aceitas. Além disso, não é permitido o uso de aparelhos eletrônicos. e 1 x. x ln x = lim

Respostas sem justificativas não serão aceitas. Além disso, não é permitido o uso de aparelhos eletrônicos. e 1 x. x ln x = lim UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL - 08. A VERIFICAÇÃO DE APRENDIZAGEM Nome Legível RG CPF Respostas sem jstificativas

Leia mais

JOSÉ ROBERTO RIBEIRO JÚNIOR. 9 de Outubro de 2017

JOSÉ ROBERTO RIBEIRO JÚNIOR. 9 de Outubro de 2017 9 de Outubro de 2017 Vetores Ferramenta matemática que é utilizada nas seguintes disciplinas dos cursos de Engenharia: Física; Mecânica Resistência dos materiais Fenômenos do transporte Consideremos um

Leia mais

n. 15 ÁREA DE UM TRIÂNGULO Logo, a área do triângulo é obtida calculando-se a metade da área do S = 1 2

n. 15 ÁREA DE UM TRIÂNGULO Logo, a área do triângulo é obtida calculando-se a metade da área do S = 1 2 n. 15 ÁREA DE UM TRIÂNGULO Do cálculo da área do paralelogramo temos: S ABCD = u x v Logo, a área do triângulo é obtida calculando-se a metade da área do paralelogramo, portanto S ABC = 1 u x v Assim,

Leia mais

n. 17 ESTUDO DA RETA: equações Uma direção e um ponto determinam uma reta Dois pontos determinam uma reta

n. 17 ESTUDO DA RETA: equações Uma direção e um ponto determinam uma reta Dois pontos determinam uma reta n. 17 ESTUDO DA RETA: equações Uma direção e um ponto determinam uma reta Dois pontos determinam uma reta Equação geral de uma reta Para determinar a equação geral de uma reta utilizamos os conceitos relacionados

Leia mais

Aula 31 Funções vetoriais de uma variável real

Aula 31 Funções vetoriais de uma variável real MÓDULO 3 - AULA 31 Aula 31 Funções vetoriais de uma variável real Objetivos Conhecer as definições básicas de funções vetoriais de uma variável real. Aprender a parametrizar curvas simples. Introdução

Leia mais

Ementa. Guia Curricular. Bibliografia. Mecânica Geral II Notas de AULA 1 - Teoria Prof. Dr. Cláudio S. Sartori

Ementa. Guia Curricular. Bibliografia. Mecânica Geral II Notas de AULA 1 - Teoria Prof. Dr. Cláudio S. Sartori ecânica Geral II Notas de UL 1 - Teoria Prof. Dr. láudio S. Sartori Ementa SISTES DE FRÇS PLIS EQUIVLENTES. EQUILÍRI D PRTÍUL. EQUILÍRI DE RPS RÍGIDS. TRELIÇS PLNS E ESPIIS. RIENTR E RREGENT DISTRIUÍD.

Leia mais

MÉTODOS DE INTEGRAÇÃO

MÉTODOS DE INTEGRAÇÃO ÁLULO DIFERENIL E INTEGRL MÉTODOS DE INTEGRÇÃO Nem todas as integrais são imediatas segndo o formlário dado, porém algns métodos simples ajdam a obter as primitivas das fnções qe não têm integração imediata.

Leia mais

1 Geometria Analítica Plana

1 Geometria Analítica Plana UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria

Leia mais

Espaços e Subespaços Vetoriais

Espaços e Subespaços Vetoriais Espaços e Sbespaços Vetoriais Uniersidade Crzeiro do Sl www.crzeirodosl.ed.br Espaços e Sbespaços Vetoriais Unidade - Espaços e Sbespaços Vetoriais MATERIAL TEÓRICO Responsáel pelo Conteúdo: Prof. Ms.

Leia mais

P L A N O D E E N S I N O. CARGA HORÁRIA TOTAL: 72 h/a TEORIA: 72 h/a PRÁTICA: 0

P L A N O D E E N S I N O. CARGA HORÁRIA TOTAL: 72 h/a TEORIA: 72 h/a PRÁTICA: 0 P L A N O D E E N S I N O DEPARTAMENTO: Matemática PROFESSORA: Katiani da Conceição Loureiro katiani.loureiro@udesc.br DISCIPLINA: Geometria Analítica SIGLA: GAN 0001 CARGA HORÁRIA TOTAL: 72 h/a TEORIA:

Leia mais

Geometria Analítica - Retas e Planos

Geometria Analítica - Retas e Planos Geometria Analítica - Retas e Planos Cleide Martins DMat - UFPE Turmas E1 e E3 Cleide Martins (DMat - UFPE) Ângulos Turmas E1 e E3 1 / 10 Objetivos 1 Estudar ângulos entre retas, entre planos e entre retas

Leia mais

Disciplina: Álgebra Linear e Geometria Analítica

Disciplina: Álgebra Linear e Geometria Analítica Disciplina: Álgebra Linear e Geometria Analítica Vigência: a partir de 2002/1 Período letivo: 1 semestre Carga horária Total: 60 h Código: S7221 Ementa: Geometria Analítica: O Ponto, Vetores, A Reta, O

Leia mais

Exemplos. representado a seguir, temos que: são positivas. são negativas. i

Exemplos. representado a seguir, temos que: são positivas. são negativas. i 6 Prodto Vetoral Para defnrmos o prodto etoral entre dos etores é ndspensáel dstngrmos o qe são bases postas e bases negatas Para sso consderemos ma base do espaço { } e m obserador Este obserador dee

Leia mais

Álgebra Linear e Geometria Analítica

Álgebra Linear e Geometria Analítica Álgebra Linear e Geometria Analítica Engenharia Electrotécnica Escola Superior de Tecnologia de Viseu www.est.ip.pt/paginaspessoais/lucas lucas@mat.est.ip.pt 007/008 Álgebra Linear e Geometria Analítica

Leia mais

Produto Vetorial e Produto misto

Produto Vetorial e Produto misto Álgebr Liner e Vetores Prodto Vetoril e Prodto Misto Prodto Vetoril e Prodto misto Introdção Mtries e Determinntes Prodto Vetoril Definição Proprieddes Interpretção Geométric Prodto Misto André Lis Lpolli

Leia mais

TESTE N.º 3 Proposta de resolução

TESTE N.º 3 Proposta de resolução Caderno 1 1. Opção A) TESTE N.º 3 Proposta de resolção Sabemos qe cosα,senα, cosα0 e senα0, pois está no segndo qadrante. Então, a base do triânglo é igal a 2senα e a altra é igal a 1cosα1cosα. Logo, a

Leia mais

Notas de aula prática de Mecânica dos Solos II (parte 5)

Notas de aula prática de Mecânica dos Solos II (parte 5) 1 Notas de ala prática de Mecânica dos Solos II (parte 5) Hélio Marcos Fernandes Viana Conteúdo da ala prática Exercícios relacionados à porcentagem de adensamento, em ma profndidade específica de ma camada

Leia mais

2 - Derivadas parciais

2 - Derivadas parciais 8 - ervadas parcas Sea por eemplo: Estma-se qe a prodção semanal de ma ábrca sea dada pela nção Q 00 500 ndades onde representa o número de operáros qalcados e representa o número dos não-qalcados. Atalmente

Leia mais

Geometria Analítica: Cônicas

Geometria Analítica: Cônicas Geometria Analítica: Cônicas 1 Geometria Analítica: Cônicas 1. Parábola Definição: Considere em um plano uma reta d e um ponto F não pertencente à d. Parábola é o lugar geométrico formado pelo conjunto

Leia mais

PARTE I VETORES, ÁLGEBRA VETORIAL E APLICAÇÕES CONTEÚDOS

PARTE I VETORES, ÁLGEBRA VETORIAL E APLICAÇÕES CONTEÚDOS PARTE I VETORES, ÁLGEBRA VETORIAL E APLICAÇÕES CONTEÚDOS Vetores m poco de história Grandezas etoriais Segmentos orientados Eqipolência e propriedades Vetor Representação analítica de m etor Operações

Leia mais

1 Vetores no Plano e no Espaço

1 Vetores no Plano e no Espaço 1 Vetores no Plano e no Espaço Definimos as componentes de um vetor no espaço de forma análoga a que fizemos com vetores no plano. Vamos inicialmente introduzir um sistema de coordenadas retangulares no

Leia mais

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS CONSELHO DE GRADUAÇÃO

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS CONSELHO DE GRADUAÇÃO DISCIPLINA: GEOMETRIA ANALÍTICA E ÁLGEBRA VETORIAL CÓDIGO: 2DB.004 VALIDADE: Início: 01/2013 Término: Eixo: Matemática Carga Horária: Total: 75 horas/ 90 horas-aula Semanal: 06 aulas Créditos: 6 Modalidade:

Leia mais

TÓPICOS. Exercícios. Determinando a matriz escalonada reduzida equivalente

TÓPICOS. Exercícios. Determinando a matriz escalonada reduzida equivalente Note bem: a leitra destes apontamentos não dispensa de modo algm a leitra atenta da bibliografia principal da cadeira Chama-se a atenção para a importância do trabalho pessoal a realizar pelo alno resolvendo

Leia mais

UNIVERSIDADE PRESBITERIANA MACKENZIE

UNIVERSIDADE PRESBITERIANA MACKENZIE Unidade Universitária Escola de Engenharia Curso Engenharia Mecânica Disciplina Geometria Analítica e Vetores Professor(es) Solange dos Santos Nieto Eneida Pescadinha Carga horária Teoria: 04 Prática:

Leia mais

Análise Vetorial. Capítulo Sejam os dois segmentos de reta AB e CD, com AB = B A tal que:

Análise Vetorial. Capítulo Sejam os dois segmentos de reta AB e CD, com AB = B A tal que: Capítulo 1 Análise etorial 1.1 ejam os dois segmentos de reta AB e CD, com AB = B A e CD = D C, tal que: AB = î 2ĵ ˆk CD = 3î 6ĵ 3ˆk Para verificar que AB e CD são paralelos basta verificar que AB CD =

Leia mais

Revisões de Geometria Descritiva

Revisões de Geometria Descritiva Revisões de Geometria Descritiva Projeção de Pontos Projeção de 2 Pontos numa reta proj. Hor., Frontal e simétricos Representação da reta Pontos Notáveis Percurso da reta, Visibilidades e Invisibilidade

Leia mais

Planos e espaços coordenados e vetores

Planos e espaços coordenados e vetores Planos e espaços coordenados e vetores Sadao Massago 2011-05-05 a 2014-03-14 Sumário 1 Coordenadas no plano e no espaço 1 2 A distância entre dois pontos 3 3 vetor 4 4 soma e produto por escalar 7 5 produto

Leia mais

ESPAÇOS VETORIAIS EUCLIDIANOS

ESPAÇOS VETORIAIS EUCLIDIANOS ESPAÇOS VETORIAIS EUCLIDIANOS Produto interno em espaços vetoriais Estamos interessados em formalizar os conceitos de comprimento de um vetor e ângulos entre dois vetores. Esses conceitos permitirão uma

Leia mais

n. 19 Estudo da reta: vetor normal, posições relativas, intersecção, sistemas de equações

n. 19 Estudo da reta: vetor normal, posições relativas, intersecção, sistemas de equações n. 19 Estudo da reta: vetor normal, posições relativas, intersecção, sistemas de equações Vetor normal (ortogonal) a uma reta - R plano: (x, y) Considere a reta r do plano cartesiano, de equação ax + by

Leia mais

Composição de movimentos. P(x,y) y(t) x(t) descoberta de Galileu

Composição de movimentos. P(x,y) y(t) x(t) descoberta de Galileu Composição de movimentos P(,) (t) O (t) X descoberta de Galile Uma grande parte da discssão qe sege visa o caso particlar em qe temos m movimento nma direção X e otro na direção Y, e no qal o qe acontece

Leia mais

P L A N O D E E N S I N O. CARGA HORÁRIA TOTAL: 72 h/a TEORIA: 72 h/a PRÁTICA: 0

P L A N O D E E N S I N O. CARGA HORÁRIA TOTAL: 72 h/a TEORIA: 72 h/a PRÁTICA: 0 P L A N O D E E N S I N O DEPARTAMENTO: Matemática PROFESSORA: Ivanete Zuchi Siple DISCIPLINA: Álgebra I SIGLA: ALG1001 CARGA HORÁRIA TOTAL: 72 h/a TEORIA: 72 h/a PRÁTICA: 0 CURSO(S): turma não exclusiva

Leia mais

ISEP LEI AMATA - 1S. 2009/10 CÁLCULO DIFERENCIAL EM IR

ISEP LEI AMATA - 1S. 2009/10 CÁLCULO DIFERENCIAL EM IR ISEP LEI AMATA - S. 9/ CÁLCULO DIFERENCIAL EM IR Cálclo Dierencial em IR Derivaa e ma nção nm ponto Q Q As rectas PQ, PQ epq 3 são rectas secantes à crva. P Q 3 t A recta t é tangente à crva no ponto P.

Leia mais

MATEMÁTICA A - 11o Ano Geometria - Produto escalar Propostas de resolução

MATEMÁTICA A - 11o Ano Geometria - Produto escalar Propostas de resolução MTEMÁTI - 11o no Geometria - Produto escalar Propostas de resolução Eercícios de eames e testes intermédios 1. omo para qualquer ponto P da circunferência de diâmetro [RS] o ângulo RP Q é reto, então para

Leia mais

Processo de ortogonalização de Gram-Schmidt. Mudança de Base. Doherty Andrade. DMA - F67 - Sala 205

Processo de ortogonalização de Gram-Schmidt. Mudança de Base. Doherty Andrade. DMA - F67 - Sala 205 DMA - F67 - Sala 205 e-mail:doherty@uem.br Em muitas situações trabalhar com uma base particular de V 3 pode simplificar o trabalho. Dado uma base β = { u 1, u 2, u 3 } e outra base β = { w 1, w 2, w 3

Leia mais

f (x) Antiderivadas de f (x) ; 3 8x ; 8

f (x) Antiderivadas de f (x) ; 3 8x ; 8 INTEGRAIS Definição: Uma fnção F é ma antierivaa e f em m intervalo I se F' ) f ) para too em I Chamaremos tamém F ) ma antierivaa e f ) eterminação e F, o F ), é chamao ANTIDIFERENCIAÇÃO O processo e

Leia mais

CÁLCULO I. 1 Teorema do Confronto. Objetivos da Aula

CÁLCULO I. 1 Teorema do Confronto. Objetivos da Aula CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Ala n o 07: Teorema do Confronto. Limite Fndamental Trigonométrico. Teorema do Valor Intermediário.

Leia mais

Derivada Direcional e gradiente no plano

Derivada Direcional e gradiente no plano Dervada Dreconal e gradente no plano Sea m campo escalar no plano descrto por ma nção derencável a das varáves. Assm se =(,, então é o valor do campo escalar no ponto P=(,.Sea L ma reta no plano. Qando

Leia mais

aula Vetores no plano e no espaço tridimensional Geometria Analítica e Números Complexos Autores Cláudio Carlos Dias Neuza Maria Dantas

aula Vetores no plano e no espaço tridimensional Geometria Analítica e Números Complexos Autores Cláudio Carlos Dias Neuza Maria Dantas D I S C I P L I N A Geometria Analítica e Números Compleos Vetores no plano e no espaço tridimensional Autores Cláudio Carlos Dias Neuza Maria Dantas aula 10 Goerno Federal Presidente da República Luiz

Leia mais

Capítulo O espaço R n

Capítulo O espaço R n Cálculo - Capítulo 1. - O espaço R n - versão 0/009 1 Capítulo 1. - O espaço R n 1..1 - Espaço R 3 1.. - Espaço R n Vamos, agora, generaliar o conceito de um espaço R primeiro para R 3 e depois para R

Leia mais

Universidade Tecnológica Federal do Paraná Câmpus Campo Mourão Departamento de Matemáica

Universidade Tecnológica Federal do Paraná Câmpus Campo Mourão Departamento de Matemáica Universidade Tecnológica ederal do Paraná âmpus ampo Mourão epartamento de Matemáica 1. Verdadeiro ou falso? GX1 - Geometria nalítica e Álgebra Linear Lista de xercícios: Produto de Vetores Prof. Lilian

Leia mais

Material Teórico - Módulo: Vetores em R 2 e R 3. Módulo e Produto Escalar - Parte 1. Terceiro Ano - Médio

Material Teórico - Módulo: Vetores em R 2 e R 3. Módulo e Produto Escalar - Parte 1. Terceiro Ano - Médio Material Teórico - Módulo: Vetores em R 2 e R 3 Módulo e Produto Escalar - Parte 1 Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 1 Módulo de um vetor O módulo

Leia mais