Análise Matemática IV

Tamanho: px
Começar a partir da página:

Download "Análise Matemática IV"

Transcrição

1 Análie Maemáica IV Problema para a Aula Práica Semana. Calcule a ranformada de Laplace e a regiõe de convergência da funçõe definida em 0 pela expreõe eguine: a f = cha b f = ena Reolução: a Aendendo a que c f = e a cob d f = en cha = ea + e a 2 e à linearidade da Tranformada de Laplace, em-e Vio e em-e que L{cha} = L{ ea + e a } = 2 2 = 2 a + = + a L{e a } = a L{e a } = + a L{cha} = b Aendendo a que para n N e e, > 0 L{e a } + L{e a } 2 a 2 Re > a Re > a 2 a 2 e Re > a em-e que Vio em-e d n d n L{f} = n L{ n f} L{ ena} = d d L{ena} = d a d 2 + a = 2 L{ena} = L{ ena} = 2 + a 2 e Re > 0 2a 2 + a 2 2 e Re > 0 2a 2 + a 2 2

2 Análie Maemáica IV 2 c Aendendo a que em-e que L{e a f} = L{f} a L{e a cob} = L{cob} a = válido para Re a > 0, ou eja, Re > a. d Vio não e coneguir calcular, por primiivação, o inegral { en } L = 0 en e d a a 2 + b 2 eremo que uilizar uma da propriedade da Tranformada de Laplace. Aim endo, noe-e que d L d { en, inegrando em } { = L en } = L{en } = 2 + { en } L = arcg + c Para calcular o valor conane, conideramo a equação anerior no cao epecial = 0: É conhecido que c = π 2 e 0 en en d = c d = π { en } L = arcg + π 2 2. Calcule a invera da Tranformada de Laplace de a 2 2 b Reolução: c d + 4 a Para calcular a invera da Tranformada de Laplace, vamo eparar a função em fracçõe imple, io é 2 = = A 2 + B + C Calculando a conane, em-e enão que 2 = D + 2

3 Análie Maemáica IV 3 É óbvio que Por ouro lado, vio = L{e } 2 = d d e + = L{e } = d d L{e } mai uma vez por aplicação da propriedade, eremo e de modo análogo e conclui que Finalmene b Noe-e que 2 = L{e } + 2 = L{e } 2 = { 2 4 L e + e + e + e } L = e + e + e + e = 0 2 = 9 ou 2 = = = A + B C + D Calculando a conane, em-e enão que = = 3 L{en } L{en 3} L 6 = en en 3 4 c Mai uma vez eparando em fraçõe imple = = = 3L{e 2 } + 2L{e 3 } d Noe-e que + 4 = 3 + L = e2 + 2e 3 = 6 d d + 3 d 3 d 3 + = 3 2 = 6 d 2 d d 3 L{e } d 3

4 Análie Maemáica IV 4 e por aplicação de Enão + 4 = 6 3 L{ 3 e } L = e 3. Uilizando a Tranformada de Laplace reolva o eguine problema de valor inicial: a y y 6y = 0, y0 =, y 0 = b y + ω 2 y = co2, ω 2 0, y0 =, y 0 = 0 c y + 2y + 2y = h, y0 = 0, y 0 = endo { e π < 2π h = 0 e 0 < π e 2π Reolução: a Para a reolução do problema de valor inicial, iremo uilizar a propriedade que em como conequência imediaa L{f } = f0 + L{f} 2 L{f } = f 0 f0 + 2 L{f} Aplicando a Tranformada de Laplace a ambo o membro da equação, uilizando 2 e denoando Y = L{y}, obem-e y 0 y0 + 2 Y y0 + Y 6Y = 0 2 6Y + 2 = 0 onde uilizámo o faco de y0 = y 0 =. Enão Y = = = 4L{e 2 } + L{e 3 } 3 5 a olução do PVI é y = 4e 2 + e 3 5 b Aplicando a Tranformada de Laplace a ambo o membro da equação, uilizando 2 e denoando Y = L{y}, obém-e y 0 y0 + 2 Y + ω 2 Y = onde uilizámo o faco de y0 = e y 0 = 0. Enão Y = ω 2 Y = ω ω H + H 2 2 S Não há dúvida que H 2 = L{co ω}

5 Análie Maemáica IV 5 Relaivamene a H, é fundamenal noar que o reulado depende do valor de ω. Se ω 2 4 enão, decompondo H em fracçõe imple: H = ω ω 2 Aim: H = { } L{co 2} L{co ω} = L co 2 co ω ω 2 4 ω 2 4 Logo, a olução do PVI no cao ω 2 4 ou eja, ω 2 e ω 2 é: Se ω = 2 ou ω = 2, enão: H = y = co ω + co 2 co ω ω = 2 e mai uma vez por aplicação de, em-e Finalmene a olução do PVI nee cao é: Nee cao ocorre reonância. d = d H = 4 L{ en 2} y = en 2 + co 2 4 d d 2 L{en 2} c Aplicando a Tranformada de Laplace a ambo o membro da equação, uilizando 2 e denoando Y = L{y}, obem-e y 0 y0 + 2 Y + 2 y0 + Y + 2Y = e π e 2π Y = e π e 2π onde uilizámo o faco de y0 = 0 e y 0 =. Enão Y = e π e 2π H + H 2 S + H 3 Para calcular a Tranformada de Laplace invera de H 3 poderemo uilizar um do doi méodo eguine:

6 Análie Maemáica IV 6 i Noe-e que endo Uilizando a propriedade podemo concluir ii Aendendo a que H 3 = H = 2 + podemo eparar em fraçõe imple = H + = L{en } L{e a f} = L{f} + a 3 H 3 = L{en } + = L{e en } = 0 = + i ou = i = A + i + B i = 2i + i i = L{e +i } L{e i } 2i = 2i L{e e i e i } = L{e en } Por ouro lado, para calcular a invera da Tranformada de Laplace de H e H 2 podemo uilizar a propriedade: L{H af a} = e a L{f} 4 Noe-e que = onde uilizámo a propriedade 3. Enão: = 2 L{} 2 L{e co } L{e en } H = e π L{ 2 2 e co e en } = L{H π 2 2 e π co π e π en π }

7 Análie Maemáica IV 7 onde uilzámo a propriedade 4. De igual modo e mora que H 2 = e 2π = e 2π = e 2π L{ 2 2 e co e en } = L{H 2π 2 2 e 2π co 2π e 2π en 2π } Finalmene a olução do PVI é y = H π e π co + e π en H 2π 2 2 e 2π co e 2π en + e en 4. Deigna-e por δ a diribuição de Dirac com upore na origem. Uilizando a ranformada de Laplace, reolva o eguine problema de valor inicial: a y + 2y + 2y = δ π, y0 =, y 0 = 0 b y + y = δ π δ 2π, y0 = 0, y 0 = 0 c y + y = δ π co, y0 = 0, y 0 = Reolução: a Aplicando a Tranformada de Laplace a ambo o membro da equação, uilizando 2 e denoando Y = L{y}, obem-e y 0 y0 + 2 Y + 2 y0 + Y + 2Y = L{δ π} o que é equivalene a Y 2 = e π onde uilizámo o faco de y0 =, y 0 = 0 e L{δ 0 } = e 0, 0 > 0 Enão 2 + Y = e π H + H 2 S Por méodo análogo ao uilizado na alínea c do problema 3: H = Uilizando a propriedade 4: = L{e co + e en } H 2 S = e π L{e en } = L{H πe π en π} = L{ H πe π en }

8 Análie Maemáica IV 8 Finalmene a olução do PVI é y = e co + en H πe π en b Aplicando a Tranformada de Laplace a ambo o membro da equação, uilizando 2 e denoando Y = L{y}, obem-e o que é equivalene a y 0 y0 + 2 Y + Y = L{δ π δ 2π} 2 + Y = e π e 2π onde uilizámo o faco de y0 = 0, y 0 = 0 e L{δ 0 } = e 0, 0 > 0 Enão Y = e π 2 + e 2π 2 + H + H 2 S, ulizando a propriedade 4 e H = e π L{en } = L{H π en π} H 2 = e 2π L{en } = L{H 2π en 2π} Finalmene a olução do PVI é y = H π en H 2π en c Aplicando a Tranformada de Laplace a ambo o membro da equação, uilizando 2 e denoando Y = L{y}, obem-e o que é equivalene a y 0 y0 + 2 Y + Y = L{δ π co } 2 + Y = e π onde uilizámo o faco de y0 = 0, y 0 = e Enão Finalmene, a olução do PVI é δ 0 f d = f 0 Y = 2 + e π 2 + = L{en } e π L{en } = L{en } L{H π en π} y = en + H π en

TENSÕES E CORRENTES TRANSITÓRIAS E TRANSFORMADA LAPLACE

TENSÕES E CORRENTES TRANSITÓRIAS E TRANSFORMADA LAPLACE TNSÕS CONTS TANSTÓAS TANSFOMADA D APAC PNCPAS SNAS NÃO SNODAS Degrau de ampliude - É um inal que vale vol para < e vale vol, conane, para >. Ver fig. -a. v (a) (b) v Fig. A fig. -b mora um exemplo da geração

Leia mais

A transformada de Laplace pode ser usada para resolver equações diferencias lineares com coeficientes constantes, ou seja, equações da forma

A transformada de Laplace pode ser usada para resolver equações diferencias lineares com coeficientes constantes, ou seja, equações da forma Introdução A tranformada de Laplace pode er uada para reolver equaçõe diferencia lineare com coeficiente contante, ou eja, equaçõe da forma ay + by + cy = ft), para a, b, c R Para io, a equação diferencial

Leia mais

Edital Nº. 04/2009-DIGPE 10 de maio de 2009

Edital Nº. 04/2009-DIGPE 10 de maio de 2009 Caderno de Prova CONTROLE DE PROCESSOS Edial Nº. /9-DIPE de maio de 9 INSTRUÇÕES ERAIS PARA A REALIZAÇÃO DA PROVA Ue apena canea eferográfica azul ou prea. Ecreva o eu nome compleo e o número do eu documeno

Leia mais

v t Unidade de Medida: Como a aceleração é dada pela razão entre velocidade e tempo, dividi-se também suas unidades de medida.

v t Unidade de Medida: Como a aceleração é dada pela razão entre velocidade e tempo, dividi-se também suas unidades de medida. Diciplina de Fíica Aplicada A / Curo de Tecnólogo em Geão Ambienal Profeora M. Valéria Epíndola Lea. Aceleração Média Já imo que quando eamo andando de carro em muio momeno é neceário reduzir a elocidade,

Leia mais

CONTROLE LINEAR I. Parte A Sistemas Contínuos no Tempo PROF. DR. EDVALDO ASSUNÇÃO PROF. DR. MARCELO C. M. TEIXEIRA -2013-

CONTROLE LINEAR I. Parte A Sistemas Contínuos no Tempo PROF. DR. EDVALDO ASSUNÇÃO PROF. DR. MARCELO C. M. TEIXEIRA -2013- CONTROLE LINEAR I Pare A Siema Conínuo no Tempo PROF. DR. EDVALDO ASSUNÇÃO PROF. DR. MARCELO C. M. TEIXEIRA -03- AGRADECIMENTOS O auore deejam agradecer ao aluno Pierre Goebel, que em uma arde de verão

Leia mais

Acção da neve: quantificação de acordo com o EC1

Acção da neve: quantificação de acordo com o EC1 Acção da neve: quanificação de acordo com o EC1 Luciano Jacino Iniuo Superior de Engenharia de Liboa Área Deparamenal de Engenharia Civil Janeiro 2014 Índice 1 Inrodução... 1 2 Zonameno do erriório...

Leia mais

Quantas equações existem?

Quantas equações existem? www2.jatai.ufg.br/oj/index.php/matematica Quanta equaçõe exitem? Rogério Céar do Santo Profeor da UnB - FUP profeorrogeriocear@gmail.com Reumo O trabalho conite em denir a altura de uma equação polinomial

Leia mais

CONTROLE POR REALIMENTAÇÃO DOS ESTADOS SISTEMAS SERVOS

CONTROLE POR REALIMENTAÇÃO DOS ESTADOS SISTEMAS SERVOS CONTROLE POR REALIMENTAÇÃO DOS ESTADOS SISTEMAS SERVOS. Moivaçõe Como vio o Regulado de Eado maném o iema em uma deeminada condição de egime pemanene, ou eja, ena mane o eado em uma dada condição eacionáia.

Leia mais

CONTROLABILIDADE E OBSERVABILIDADE

CONTROLABILIDADE E OBSERVABILIDADE Eduardo obo uoa Cabral CONTROABIIDADE E OBSERVABIIDADE. oiação Em um iema na forma do epaço do eado podem exiir dinâmica que não ão ia pela aída do iema ou não ão influenciada pela enrada do iema. Se penarmo

Leia mais

Equações Diferenciais Ordinárias Lineares

Equações Diferenciais Ordinárias Lineares Equações Diferenciais Ordinárias Lineares 67 Noções gerais Equações diferenciais são equações que envolvem uma função incógnia e suas derivadas, além de variáveis independenes Aravés de equações diferenciais

Leia mais

TRANSFORMADA DE LAPLACE. Revisão de alguns: Conceitos Definições Propriedades Aplicações

TRANSFORMADA DE LAPLACE. Revisão de alguns: Conceitos Definições Propriedades Aplicações TRANSFORMADA DE LAPLACE Revião de algun: Conceito Deiniçõe Propriedade Aplicaçõe Introdução A Tranormada de Laplace é um método de tranormar equaçõe dierenciai em equaçõe algébrica mai acilmente olucionávei

Leia mais

Associação de Professores de Matemática PROPOSTA DE RESOLUÇÃO DO EXAME DE MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS (PROVA 835) 2013 2ªFASE

Associação de Professores de Matemática PROPOSTA DE RESOLUÇÃO DO EXAME DE MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS (PROVA 835) 2013 2ªFASE Aociação de Profeore de Matemática Contacto: Rua Dr. João Couto, n.º 7-A 1500-36 Liboa Tel.: +351 1 716 36 90 / 1 711 03 77 Fax: +351 1 716 64 4 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

Transformada de Laplace

Transformada de Laplace Capítulo 8 Transformada de Laplace A transformada de Laplace permitirá que obtenhamos a solução de uma equação diferencial ordinária de coeficientes constantes através da resolução de uma equação algébrica.

Leia mais

12 Integral Indefinida

12 Integral Indefinida Inegral Indefinida Em muios problemas, a derivada de uma função é conhecida e o objeivo é enconrar a própria função. Por eemplo, se a aa de crescimeno de uma deerminada população é conhecida, pode-se desejar

Leia mais

Mecânica dos Fluidos. Aula 8 Introdução a Cinemática dos Fluidos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos. Aula 8 Introdução a Cinemática dos Fluidos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Aula 8 Inrodução a Cinemáica dos Fluidos Tópicos Abordados Nesa Aula Cinemáica dos Fluidos. Definição de Vazão Volumérica. Vazão em Massa e Vazão em Peso. Definição A cinemáica dos fluidos é a ramificação

Leia mais

Aula 4 Modelagem de sistemas no domínio da frequência Prof. Marcio Kimpara

Aula 4 Modelagem de sistemas no domínio da frequência Prof. Marcio Kimpara FUDAMETOS DE COTROLE E AUTOMAÇÃO Aula 4 Modelagem de itema no domínio da requência Pro. Marcio impara Unieridade Federal de Mato Groo do Sul Sitema mecânico tranlação Elemento Força deloc. tempo Laplace

Leia mais

Integração por substituição (mudança de variável)

Integração por substituição (mudança de variável) M@plus Inegrais Inegrais Pare II IV. Técnicas de inegração Quando o inegral (definido ou indefinido) não é imediao ou quase imediao, recorremos a ouras écnicas de inegração. Inegração por subsiuição (mudança

Leia mais

Aula 7 Resposta no domínio do tempo - Sistemas de segunda ordem

Aula 7 Resposta no domínio do tempo - Sistemas de segunda ordem FUNDAMENTOS DE CONTROLE E AUTOMAÇÃO Aula 7 Repota no domínio do tempo - Sitema de egunda ordem Prof. Marcio Kimpara Univeridade Federal de Mato Groo do Sul Sitema de primeira ordem Prof. Marcio Kimpara

Leia mais

Tabela 1 Relações tensão-corrente, tensão-carga e impedância para capacitoers, resistores e indutores.

Tabela 1 Relações tensão-corrente, tensão-carga e impedância para capacitoers, resistores e indutores. Modelagem Maemáica MODELOS MATEMÁTICOS DE CIRCUITOS ELÉTRICOS O circuio equivalene à rede elérica com a quai rabalhamo coniem baicamene em rê componene lineare paivo: reiore, capaciore e induore. A Tabela

Leia mais

AVALIAÇÃO DE DESEMPENHO

AVALIAÇÃO DE DESEMPENHO AVALIAÇÃO DE DESEMPENHO Itrodução Aálie o domíio do tempo Repota ao degrau Repota à rampa Repota à parábola Aálie o domíio da freqüêcia Diagrama de Bode Diagrama de Nyquit Diagrama de Nichol Eta aula EM

Leia mais

Competências/ Objetivos Especifica(o)s

Competências/ Objetivos Especifica(o)s Tema B- Terra em Tranformação Nº previta Materiai Contituição do mundo material Relacionar apecto do quotidiano com a Química. Reconhecer que é enorme a variedade de materiai que no rodeiam. Identificar

Leia mais

Sistemas não-lineares de 2ª ordem Plano de Fase

Sistemas não-lineares de 2ª ordem Plano de Fase EA93 - Pro. Von Zuben Sisemas não-lineares de ª ordem Plano de Fase Inrodução o esudo de sisemas dinâmicos não-lineares de a ordem baseia-se principalmene na deerminação de rajeórias no plano de esados,

Leia mais

Teoria da Comunicação. Prof. Andrei Piccinini Legg Aula 09

Teoria da Comunicação. Prof. Andrei Piccinini Legg Aula 09 Teoria da Comuniação Pro. Andrei Piinini Legg Aula 09 Inrodução Sabemos que a inormação pode ser ransmiida aravés da modiiação das araerísias de uma sinusóide, hamada poradora do sinal de inormação. Se

Leia mais

Equações Diferenciais (GMA00112) Resolução de Equações Diferenciais por Séries e Transformada de Laplace

Equações Diferenciais (GMA00112) Resolução de Equações Diferenciais por Séries e Transformada de Laplace Equaçõe Diferenciai GMA Reolução de Equaçõe Diferenciai por Série e Tranformada de Laplace Roberto Tocano Couto tocano@im.uff.br Departamento de Matemática Aplicada Univeridade Federal Fluminene Niterói,

Leia mais

Resolução de Equações Diferenciais Ordinárias por Série de Potências e Transformada de Laplace

Resolução de Equações Diferenciais Ordinárias por Série de Potências e Transformada de Laplace Reolução de Equaçõe Diferenciai Ordinária por Série de Potência e Tranformada de Laplace Roberto Tocano Couto rtocano@id.uff.br Departamento de Matemática Aplicada Univeridade Federal Fluminene Niterói,

Leia mais

Professora FLORENCE. Resolução:

Professora FLORENCE. Resolução: 1. (FEI-SP) Qual o valor, em newton, da reultante da força que agem obre uma maa de 10 kg, abendo-e que a mema poui aceleração de 5 m/? Reolução: F m. a F 10. 5 F 50N. Uma força contante F é aplicada num

Leia mais

Exemplos de equações diferenciais

Exemplos de equações diferenciais Transformadas de Laplace - EDO's Prof. E.T.Galante Denição. Uma equação diferencial é uma equação na qual: a incógnita é uma função; há ao menos uma derivada da função incógnita. Antes de mais nada, vamos

Leia mais

Um exemplo de Análise de Covariância. Um exemplo de Análise de Covariância (cont.)

Um exemplo de Análise de Covariância. Um exemplo de Análise de Covariância (cont.) Um exemplo de Análie de Covariância A Regreão Linear e a Análie de Variância etudada até aqui, ão cao particulare do Modelo Linear, que inclui também a Análie de Covariância Em qualquer deta trê ituaçõe

Leia mais

Comportamento Assintótico de Convoluções e Aplicações em EDP

Comportamento Assintótico de Convoluções e Aplicações em EDP Comporameno Assinóico de Convoluções e Aplicações em EDP José A. Barrionuevo Paulo Sérgio Cosa Lino Deparameno de Maemáica UFRGS Av. Beno Gonçalves 9500, 9509-900 Poro Alegre, RS, Brasil. 2008 Resumo Nese

Leia mais

Exercícios Resolvidos de Biofísica

Exercícios Resolvidos de Biofísica Exercício Reolvido de Biofíica Faculdade de Medicina da Univeridade de oimbra Exercício Reolvido de Biofíica Metrado ntegrado em Medicina MEMBRNS HOMOGÉNES Exercício 1. Numa experiência com uma membrana

Leia mais

Curso de preparação para a prova de matemática do ENEM Professor Renato Tião

Curso de preparação para a prova de matemática do ENEM Professor Renato Tião Porcenagem As quaro primeiras noções que devem ser assimiladas a respeio do assuno são: I. Que porcenagem é fração e fração é a pare sobre o odo. II. Que o símbolo % indica que o denominador desa fração

Leia mais

a) Calcule a força medida pelo dinamômetro com a chave aberta, estando o fio rígido em equilíbrio.

a) Calcule a força medida pelo dinamômetro com a chave aberta, estando o fio rígido em equilíbrio. UJ MÓDULO III DO PISM IÊNIO - POA DE ÍSICA PAA O DESENOLIMENO E A ESPOSA DAS QUESÕES, SÓ SEÁ ADMIIDO USA CANEA ESEOGÁICA AZUL OU PEA. Na olução da proa, ue, uando neeário, g = /, = 8 /, e = 9 - kg, π =.

Leia mais

Digifort Standard Solução intermediária para instalação de até 32 câmeras

Digifort Standard Solução intermediária para instalação de até 32 câmeras Digifort Standard Solução intermediária para intalação de até 32 câmera A verão Standard fornece o recuro ideai para o monitoramento local e remoto de até 32 câmera por ervidor e por er a verão intermediária

Leia mais

CAPÍTULO 5: CISALHAMENTO

CAPÍTULO 5: CISALHAMENTO Curo de Engenaria Civil Univeridade Eadual de Maringá Cenro de Tecnologia Deparameno de Engenaria Civil CAPÍTULO 5: CSALHAMENTO 5. Tenõe de Cialameno em iga o Flexão Hipóee Báica: a) A enõe de cialameno

Leia mais

Equações Simultâneas. Aula 16. Gujarati, 2011 Capítulos 18 a 20 Wooldridge, 2011 Capítulo 16

Equações Simultâneas. Aula 16. Gujarati, 2011 Capítulos 18 a 20 Wooldridge, 2011 Capítulo 16 Equações Simulâneas Aula 16 Gujarai, 011 Capíulos 18 a 0 Wooldridge, 011 Capíulo 16 Inrodução Durane boa pare do desenvolvimeno dos coneúdos desa disciplina, nós nos preocupamos apenas com modelos de regressão

Leia mais

Um Modelo de Encaminhamento Hierárquico Multi-Objectivo em Redes MPLS, com Duas Classes de Serviço

Um Modelo de Encaminhamento Hierárquico Multi-Objectivo em Redes MPLS, com Duas Classes de Serviço Um Modelo de Encaminhamento Hierárquico Multi-Objectivo em Rede MPLS, com Dua Clae de Serviço Rita Girão Silva a,c (Tee de Doutoramento realizada ob upervião de Profeor Doutor Joé Craveirinha a,c e Profeor

Leia mais

CURSO DE ENGENHARIA DO AMBIENTE FÍSICA E QUÍMICA DA ATMOSFERA

CURSO DE ENGENHARIA DO AMBIENTE FÍSICA E QUÍMICA DA ATMOSFERA CURSO DE ENGENHARIA DO AMBIENE FÍSICA E QUÍMICA DA AMOSFERA Ano Lectivo 2004/2005 Época Epecial: 17/10/2005 I (4.8 valore) Atribua a cada uma da afirmaçõe eguinte, em jutificar, uma da claificaçõe: Verdadeiro

Leia mais

ESPAÇO VETORIAL REAL DE DIMENSÃO FINITA

ESPAÇO VETORIAL REAL DE DIMENSÃO FINITA EPÇO ETORIL REL DE DIMENÃO FINIT Defnção ejam um conjuno não ao o conjuno do númeo ea R e dua opeaçõe bnáa adção e mulplcação po ecala : : R u a u a é um Epaço eoal obe R ou Epaço eoal Real ou um R-epaço

Leia mais

Transformada inversa de Laplace

Transformada inversa de Laplace Sinai e Siema - 6 Tranformada invera de Laplace Já foi ará apreenada a expreão que define a ranformada invera de Laplace. Ee inegral pode er de reolução complicada. Exiem méodo expedio de ober a ranformada

Leia mais

ESTUDO DINÂMICO DA PRESSÃO EM VASOS SEPARADORES VERTICAIS GÁS-LÍQUIDO UTILIZADOS NO PROCESSAMENTO PRIMÁRIO DE PETRÓLEO

ESTUDO DINÂMICO DA PRESSÃO EM VASOS SEPARADORES VERTICAIS GÁS-LÍQUIDO UTILIZADOS NO PROCESSAMENTO PRIMÁRIO DE PETRÓLEO ESTUDO DINÂMICO DA PRESSÃO EM VASOS SEPARADORES VERTICAIS GÁS-LÍQUIDO UTILIZADOS NO PROCESSAMENTO PRIMÁRIO DE PETRÓLEO Thale Cainã do Santo Barbalho 1 ; Álvaro Daniel Tele Pinheiro 2 ; Izabelly Laria Luna

Leia mais

Índices Físicos ÍNDICES

Índices Físicos ÍNDICES Ínice Fíico ÍNDICES = volume oal a amora; = volume a fae ólia a amora; = volume a fae líquia; a = volume a fae aoa; v = volume e vazio a amora = a + ; = peo oal a amora ; a = peo a fae aoa a amora; = peo

Leia mais

Seção 5: Equações Lineares de 1 a Ordem

Seção 5: Equações Lineares de 1 a Ordem Seção 5: Equações Lineares de 1 a Ordem Definição. Uma EDO de 1 a ordem é dia linear se for da forma y + fx y = gx. 1 A EDO linear de 1 a ordem é uma equação do 1 o grau em y e em y. Qualquer dependência

Leia mais

Método de integração por partes

Método de integração por partes Maemáica - 8/9 - Inegral de nido 77 Méodo de inegração or ares O méodo de inegração or ares é aenas uma "radução", em ermos de inegrais, do méodo de rimiivação or ares. Sejam f e g duas funções de nidas

Leia mais

Quanto maior for o número de questões passadas estudadas por vocês, maior será a probabilidade de APROVAÇÃO no concurso. ANÁLISE COMBINATÓRIA

Quanto maior for o número de questões passadas estudadas por vocês, maior será a probabilidade de APROVAÇÃO no concurso. ANÁLISE COMBINATÓRIA Prezados concursandos!!! Muita paz e tranqüilidade para todos!!! Nesta reta final de preparação para o concurso do próximo dia 4 Mai 009, comento mais algumas questões de raciocínio lógico matemático cobradas

Leia mais

CAPÍTULO 10 Modelagem e resposta de sistemas discretos

CAPÍTULO 10 Modelagem e resposta de sistemas discretos CAPÍTULO 10 Modelagem e repota de itema dicreto 10.1 Introdução O itema dicreto podem er repreentado, do memo modo que o itema contínuo, no domínio do tempo atravé de uma tranformação, nete cao a tranformada

Leia mais

Vestibular 2013 2 a fase Gabarito Física

Vestibular 2013 2 a fase Gabarito Física etibular 203 2 a fae Gabarito Fíica Quetão 0 (alor: 5 ponto) Cálculo da variação da quantidade de movimento A velocidade inicial no momento do impacto erá a velocidade final da queda Aplicando conervação

Leia mais

Universidade Federal de Lavras

Universidade Federal de Lavras Universidade Federal de Lavras Deparameno de Ciências Exaas Prof. Daniel Furado Ferreira 8 a Lisa de Exercícios Disribuição de Amosragem 1) O empo de vida de uma lâmpada possui disribuição normal com média

Leia mais

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON)

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON) TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 8 LIVRO DO NILSON). CONSIDERAÇÕES INICIAIS SÉRIES DE FOURIER: descrevem funções periódicas no domínio da freqüência (ampliude e fase). TRANSFORMADA DE FOURIER:

Leia mais

PROPOSTA DE RESOLUÇÃO DO EXAME DE MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS (PROVA 835) ªFASE

PROPOSTA DE RESOLUÇÃO DO EXAME DE MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS (PROVA 835) ªFASE PROPOSTA DE RESOLUÇÃO DO EXAME DE MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS (PROVA 835) 013 ªFASE 1. 1.1. Aplicando o método de Hondt, o quociente calculado ão o eguinte: Lita A B C D Número de voto 13 1035

Leia mais

= + 3. h t t. h t t. h t t. h t t MATEMÁTICA

= + 3. h t t. h t t. h t t. h t t MATEMÁTICA MAEMÁICA 01 Um ourives possui uma esfera de ouro maciça que vai ser fundida para ser dividida em 8 (oio) esferas menores e de igual amanho. Seu objeivo é acondicionar cada esfera obida em uma caixa cúbica.

Leia mais

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SÃO PAULO CEFET SP

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SÃO PAULO CEFET SP Diciplina: Mecânica do Fluido Aplicada Lita de Exercício Reolvido Profeor: 1 de 11 Data: 13/0/08 Caruo 1. Um menino, na tentativa de melhor conhecer o fundo do mar, pretende chegar a uma profundidade de

Leia mais

Capítulo 5: Análise através de volume de controle

Capítulo 5: Análise através de volume de controle Capítulo 5: Análie atravé de volume de controle Volume de controle Conervação de maa Introdução Exite um fluxo de maa da ubtância de trabalho em cada equipamento deta uina, ou eja, na bomba, caldeira,

Leia mais

Aula 9.1 Conteúdo: Geradores elétricos, geradores químicos e força eletromotriz. Receptores, motores elétricos e força contra eletromotriz.

Aula 9.1 Conteúdo: Geradores elétricos, geradores químicos e força eletromotriz. Receptores, motores elétricos e força contra eletromotriz. Aula 9.1 Conteúdo: Geradores elétricos, geradores químicos e força eletromotriz. Receptores, motores elétricos e força contra eletromotriz. Habilidades: Compreender a função dos geradores e receptores

Leia mais

Prof. Josemar dos Santos

Prof. Josemar dos Santos Engenharia Mecânica - FAENG Sumário SISTEMAS DE CONTROLE Definições Básicas; Exemplos. Definição; ; Exemplo. Prof. Josemar dos Sanos Sisemas de Conrole Sisemas de Conrole Objeivo: Inroduzir ferramenal

Leia mais

Lider. ança. para criar e gerir conhecimento. }A liderança é um fator essencial para se alcançar o sucesso também na gestão do conhecimento.

Lider. ança. para criar e gerir conhecimento. }A liderança é um fator essencial para se alcançar o sucesso também na gestão do conhecimento. Liderança para criar e gerir conhecimento Lider ança para criar e gerir conhecimento }A liderança é um fator eencial para e alcançar o uceo também na getão do conhecimento.~ 48 R e v i t a d a ES P M janeiro

Leia mais

Estrutura geral de um sistema com realimentação unitária negativa, com um compensador (G c (s) em série com a planta G p (s).

Estrutura geral de um sistema com realimentação unitária negativa, com um compensador (G c (s) em série com a planta G p (s). 2 CONTROLADORES PID Introdução Etrutura geral de um itema com realimentação unitária negativa, com um compenador (G c () em érie com a planta G p (). 2 Controladore PID 2. Acção proporcional (P) G c ()

Leia mais

U N I V E R S I D A D E F E D E R A L D O P A R A N Á L E T Í C I A M A R I A G R O B É R I O

U N I V E R S I D A D E F E D E R A L D O P A R A N Á L E T Í C I A M A R I A G R O B É R I O U N I V E R S I D A D E F E D E R A L D O P A R A N Á L E T Í C I A M A R I A G R O B É R I O A B O R T O : U M A Q U E S T Ã O M O R A L, L E G A L, C U L T U R A L E E C O N Ô M I C A C U R I T I B A

Leia mais

MOVIMENTOS VERTICAIS NO VÁCUO

MOVIMENTOS VERTICAIS NO VÁCUO Diciplina de Fíica Aplicada A 1/ Curo de Tecnólogo em Getão Ambiental Profeora M. Valéria Epíndola Lea MOVIMENTOS VERTICAIS NO VÁCUO Agora etudaremo o movimento na direção verticai e etaremo deprezando

Leia mais

5 Cálculo do Diâmetro e Espaçamento entre Estribos Utilizando a Formulação Proposta

5 Cálculo do Diâmetro e Espaçamento entre Estribos Utilizando a Formulação Proposta 5 Cácuo do Diâmero e Epaçameno enre Erio Uiizando a Formuação ropoa 5.1. Inrodução Nee capíuo apreena-e um criério para o cácuo do diâmero e epaçameno enre erio aravé da formuação propoa e comparam-e o

Leia mais

Filtros Analógicos Ativos

Filtros Analógicos Ativos Filtro Analógico Ativo Topologia Sallen-Key FPB Prof. láudio A. Fleury onteúdo. Introdução. Filtro Paa-Baixa de a. Ordem 3. Mudança de Ecala 4. Filtro Paa-Alta de a. Ordem 5. Filtro Paa-Faixa e ejeita-faixa

Leia mais

4. SINAL E CONDICIONAMENTO DE SINAL

4. SINAL E CONDICIONAMENTO DE SINAL 4. SINAL E CONDICIONAMENO DE SINAL Sumário 4. SINAL E CONDICIONAMENO DE SINAL 4. CARACERÍSICAS DOS SINAIS 4.. Período e frequência 4..2 alor médio, valor eficaz e valor máximo 4.2 FILRAGEM 4.2. Circuio

Leia mais

Projecto de Filtros Digitais IIR

Projecto de Filtros Digitais IIR Sistemas de Processamento Digital Engenharia de Sistemas e Informática Ficha 7 2005/2006 4.º Ano/ 2.º Semestre Projecto de Filtros Digitais IIR Projecto de Filtros IIR O projecto de filtros IIR digitais

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire Univridad Salvador UNIFACS Curo d Engnharia Método Matmático Alicado / Cálculo Avançado / Cálculo IV Profa: Ilka Rbouça Frir A Tranformada d Lalac Txto 3: Dlocamnto obr o ixo t. A Função Dgrau Unitário.

Leia mais

UMA ABORDAGEM GLOBAL PARA O PROBLEMA DE CARREGAMENTO NO TRANSPORTE DE CARGA FRACIONADA

UMA ABORDAGEM GLOBAL PARA O PROBLEMA DE CARREGAMENTO NO TRANSPORTE DE CARGA FRACIONADA UMA ABORDAGEM GLOBAL PARA O PROBLEMA DE CARREGAMENTO NO TRANSPORTE DE CARGA FRACIONADA Benjamin Mariotti Feldmann Mie Yu Hong Chiang Marco Antonio Brinati Univeridade de São Paulo Ecola Politécnica da

Leia mais

MESTRADO EM QUALIDADE E SEGURANÇA ALIMENTAR EM RESTAURAÇÃO - ANO LECTIVO 2010/2011. Plano de aulas

MESTRADO EM QUALIDADE E SEGURANÇA ALIMENTAR EM RESTAURAÇÃO - ANO LECTIVO 2010/2011. Plano de aulas MESTRADO EM QUALIDADE E SEGURANÇA ALIMENTAR EM RESTAURAÇÃO ANO LECTIVO 2010/2011 Plano de aulas Gestão de Alimentos e 2 de Novembro a 20 de Dezembro Frequências 6 e 15 e 20 de Dezembro restauração 3 de

Leia mais

PARNAMIRIM - RN. Data: / / 2016

PARNAMIRIM - RN. Data: / / 2016 PARNAMIRIM - RN Aluno (a) Nº: 8º ano Tuma: Daa: / / 2016 NOTA: Eecício de evião de maemáica II Timee Pofeo (a): Joeane Fenande Agoa vamo coloca em páica o eu conhecimeno maemáico e udo o que eudamo em

Leia mais

A EDUCAÇÃO BRASILEIRA NAS ÚLTIMAS DÉCADAS: OBSTÁCULOS E METAS DENTRO E FORA DA ESCOLA

A EDUCAÇÃO BRASILEIRA NAS ÚLTIMAS DÉCADAS: OBSTÁCULOS E METAS DENTRO E FORA DA ESCOLA 329 A EDUCAÇÃO BRASILEIRA NAS ÚLTIMAS DÉCADAS: OBSTÁCULOS E METAS DENTRO E FORA DA ESCOLA BRAZILIAN EDUCATION IN LAST DECADES: BARRIERS AND GOALS INSIDE AND OUTSIDE SCHOOL 1 t r a v e i a e d. 1 0 i n

Leia mais

Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales. Teorema de Tales - Parte I. Nono Ano do Ensino Fundamental

Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales. Teorema de Tales - Parte I. Nono Ano do Ensino Fundamental Maerial Teórico - Módulo de Semelhança de Triângulo e Teorema de Tale Teorema de Tale - are I Nono no do Enino Fundamenal rof. Marcelo Mende de Oliveira rof. nonio aminha M. Neo oral da OME 1 Razão de

Leia mais

Experimento. Guia do professor. O método de Monte Carlo. Governo Federal. Ministério da Educação. Secretaria de Educação a Distância

Experimento. Guia do professor. O método de Monte Carlo. Governo Federal. Ministério da Educação. Secretaria de Educação a Distância Análise de dados e probabilidade Guia do professor Experimeno O méodo de Mone Carlo Objeivos da unidade 1. Apresenar um méodo ineressane e simples que permie esimar a área de uma figura plana qualquer;.

Leia mais

Digifort Professional A solução ideal para empresas que necessitam o gerenciamento de até 64 câmeras

Digifort Professional A solução ideal para empresas que necessitam o gerenciamento de até 64 câmeras Digifort Profeional A olução ideal para emprea que neceitam o gerenciamento de até 64 câmera A verão Profeional fornece o melhore recuro para o monitoramento local e remoto de até 64 câmera por ervidor,

Leia mais

Controle Servo e Regulatório

Controle Servo e Regulatório ontrole Sero e Regulatório Outro Proeo de Searação Prof a Ninoka Bojorge Deartamento de Engenharia Químia e de Petróleo U Sitema de mitura de orrente, w 2, w 2 Relembrando Exemlo da aula anterior A, w

Leia mais

Electrónica /2007

Electrónica /2007 6/7 FEUP/DEEC 4º/MIEEC Vítor Grade Tavare Aula 4: Filtro umário: Função de Aroimação: Butterorth. Chebyhev. Beel. Filtro Elítico. Caracterítica marcante do dierente iltro. Tranormação de requência. O Problema

Leia mais

OPÇÕES FINANCEIRAS - Exame

OPÇÕES FINANCEIRAS - Exame OPÇÕES FINANCEIRAS - Exame (esolução) /4/6 . (a) Aendendo a que e aplicando o lema de Iô a ln S, enão ST ln q S ds ( q) S d + S d ~ W ; Z T + d W ~ u ; () sendo : T. Na medida de pobabilidade Q, o valo

Leia mais

1. O movimento uniforme de uma partícula tem sua função horária representada no diagrama a seguir: e (m) t (s)

1. O movimento uniforme de uma partícula tem sua função horária representada no diagrama a seguir: e (m) t (s) . O moimeno uniforme de uma parícula em ua função horária repreenada no diagrama a eguir: e (m) - 6 7 - Deerminar: a) o epaço inicial e a elocidade ecalar; a função horária do epaço.. É dado o gráfico

Leia mais

XLVI Pesquisa Operacional na Gestão da Segurança Pública

XLVI Pesquisa Operacional na Gestão da Segurança Pública PROBLEMA DE CORTE UNIDIMENSIONAL COM SOBRAS APROVEITÁVEIS: RESOLUÇÃO DE UM MODELO MATEMÁTICO Adriana Cherri Departamento de Matemática, Faculdade de Ciência, UNESP, Bauru adriana@fc.unep.br Karen Rocha

Leia mais

Digifort Enterprise A mais completa solução Digifort para monitoramento de câmeras e alarmes.

Digifort Enterprise A mais completa solução Digifort para monitoramento de câmeras e alarmes. Digifort Enterprie A mai completa olução Digifort para monitoramento de câmera e alarme. A verão Enterprie é o pacote que compreende todo o recuro diponívei para o Sitema Digifort, oferecendo total gerenciamento

Leia mais

Métodos Matemáticos para Gestão da Informação

Métodos Matemáticos para Gestão da Informação Métodos Matemáticos para Gestão da Informação Aula 05 Taxas de variação e função lineares III Dalton Martins dmartins@gmail.com Bacharelado em Gestão da Informação Faculdade de Informação e Comunicação

Leia mais

MODELAGEM ECONOMÉTRICA TEMPORAL DOS ÍNDICES INCC E IGPM: UMA EXPLICAÇÃO PARA A REDUÇÃO DAS DIMENSÕES DOS IMÓVEIS E O AUMENTO DOS SEUS PREÇOS

MODELAGEM ECONOMÉTRICA TEMPORAL DOS ÍNDICES INCC E IGPM: UMA EXPLICAÇÃO PARA A REDUÇÃO DAS DIMENSÕES DOS IMÓVEIS E O AUMENTO DOS SEUS PREÇOS MODELAGEM ECONOMÉTRICA TEMPORAL DOS ÍNDICES INCC E IGPM: UMA EXPLICAÇÃO PARA A REDUÇÃO DAS DIMENSÕES DOS IMÓVEIS E O AUMENTO DOS SEUS PREÇOS ARTIGO Luiz Paulo Lope Fávero Merando em Adminiração de Emprea

Leia mais

8 Equações de Estado

8 Equações de Estado J. A. M. Felippe de Souza 8 Equaçõe de Etado 8 Equaçõe de Etado 8. Repreentação por Variávei de Etado Exemplo 4 Exemplo 8. 4 Exemplo 8. 6 Exemplo 8. 6 Exemplo 8.4 8 Matriz na forma companheira Exemplo

Leia mais

Apostila de SINAIS E SISTEMAS

Apostila de SINAIS E SISTEMAS Apotila de SINAIS E SISTEMAS Álvaro Luiz Stelle (PhD) DAELN CPGEI CEFET PR Março de 5 I PREFÁCIO Eta apotila tem como objetivo dar ao leitor um embaamento teórico da Tranformada de Laplace, de Fourier

Leia mais

= T B. = T Bloco A: F = m. = P Btang. s P A. 3. b. P x. Bloco B: = 2T s T = P B 2 s. s T = m 10 B 2. De (I) e (II): 6,8 m A. s m B

= T B. = T Bloco A: F = m. = P Btang. s P A. 3. b. P x. Bloco B: = 2T s T = P B 2 s. s T = m 10 B 2. De (I) e (II): 6,8 m A. s m B eolução Fíica FM.9 1. e Com bae na tabela, obervamo que o atleta etá com 5 kg acima do peo ideal. No gráfico, temo, para a meia maratona: 1 kg,7 min 5 kg x x,5 min. Na configuração apreentada, a força

Leia mais

CAPÍTULO 1 REPRESENTAÇÃO E CLASSIFICAÇÃO DE SISTEMAS. Sistema monovariável SISO = Single Input Single Output. s 1 s 2. ... s n

CAPÍTULO 1 REPRESENTAÇÃO E CLASSIFICAÇÃO DE SISTEMAS. Sistema monovariável SISO = Single Input Single Output. s 1 s 2. ... s n 1 CAPÍTULO 1 REPREENTAÇÃO E CLAIFICAÇÃO DE ITEMA 1.1. Represenação de ssemas 1.1.1. semas com uma enrada e uma saída (IO) e sema monovarável IO = ngle Inpu ngle Oupu s e = enrada s = saída = ssema 1.1..

Leia mais

Formatação de fonte. Teorema da amostragem

Formatação de fonte. Teorema da amostragem Formatação de ote 1 Teorema da amotragem Do aalógico para o digital A amotragem (itatâea) de um ial ou orma de oda aalógica é o proceo pelo qual o ial paa a er repreetado por um cojuto dicreto de úmero.

Leia mais

Considere as seguintes expressões que foram mostradas anteriormente:

Considere as seguintes expressões que foram mostradas anteriormente: Demontração de que a linha neutra paa pelo centro de gravidade Foi mencionado anteriormente que, no cao da flexão imple (em eforço normal), a linha neutra (linha com valore nulo de tenõe normai σ x ) paa

Leia mais

1 s. Propriedades da transformada de Laplace A seguir apresentam-se algumas propriedades importantes da transformada de Laplace:

1 s. Propriedades da transformada de Laplace A seguir apresentam-se algumas propriedades importantes da transformada de Laplace: Secção 6 Tranformada de aplace (Farlow: Capítulo 5) Definição Tranformada de aplace A tranformada de aplace é, baicamente, um operador matemático que tranforma uma função numa outra Ea operação é definida

Leia mais

I - O Desafio BM&FBOVESPA acontecerá em duas etapas, a ser realizadas nas dependências da B M&FBOVESPA, a seguir descritas.

I - O Desafio BM&FBOVESPA acontecerá em duas etapas, a ser realizadas nas dependências da B M&FBOVESPA, a seguir descritas. Desafio BM&FBOVESPA - Manual do Participante CARACTERÍSTICAS DA COMPETIÇÃO I - O Desafio BM&FBOVESPA acontecerá em duas etapas, a ser realizadas nas dependências da B M&FBOVESPA, a seguir descritas. II

Leia mais

1.1 TRANSFORMADA DE LAPLACE

1.1 TRANSFORMADA DE LAPLACE Revião de Tranformada de Laplace - Cenro Federal de Educação Tecnológica do Paraná. TRANSFORMADA DE LAPLACE Daa de impreão (verão): 5 de janeiro de 5, :38:8 documeno compoo com LATEXε uando L Y X. A Tranformada

Leia mais

Mecânica dos Fluidos (MFL0001) CAPÍTULO 4: Equações de Conservação para Tubo de Corrente

Mecânica dos Fluidos (MFL0001) CAPÍTULO 4: Equações de Conservação para Tubo de Corrente Mecânica do Fluido (MFL000) Curo de Engenharia Civil 4ª fae Prof. Dr. Doalcey Antune Ramo CAPÍTULO 4: Equaçõe de Conervação ara Tubo de Corrente Fonte: Bitafa, Sylvio R. Mecânica do Fluido: noçõe e alicaçõe.

Leia mais

Apresentação da Disciplina

Apresentação da Disciplina Apresentação da Disciplina Edmar José do Nascimento (Análise de Sinais e Sistemas) http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do São Francisco Colegiado de Engenharia Elétrica

Leia mais

Matemática / Física. Figura 1. Figura 2

Matemática / Física. Figura 1. Figura 2 Matemática / Fíica SÃO PAULO: CAPITAL DA VELOCIDADE Diveo título foam endo atibuído à cidade de São Paulo duante eu mai de 00 ano de fundação, como, po exemplo, A cidade que não pode paa, A capital da

Leia mais

Sistemas de Equações Diferenciais Lineares

Sistemas de Equações Diferenciais Lineares Capítulo 9 Sistemas de Equações Diferenciais Lineares Agora, estamos interessados em estudar sistemas de equações diferenciais lineares de primeira ordem: Definição 36. Um sistema da linear da forma x

Leia mais

01- A figura ABCD é um quadrado de lado 2 cm e ACE um triângulo equilátero. Calcule a distância entre os vértices B e E.

01- A figura ABCD é um quadrado de lado 2 cm e ACE um triângulo equilátero. Calcule a distância entre os vértices B e E. PROFESSOR: Macelo Soae NO E QUESTÕES - MTEMÁTI - 1ª SÉRIE - ENSINO MÉIO ============================================================================================= GEOMETRI Pae 1 01- figua é um quadado

Leia mais

Função definida por várias sentenças

Função definida por várias sentenças Ese caderno didáico em por objeivo o esudo de função definida por várias senenças. Nese maerial você erá disponível: Uma siuação que descreve várias senenças maemáicas que compõem a função. Diversas aividades

Leia mais

O Sacrifício da Cruz

O Sacrifício da Cruz O Sacrifício da ruz 6 ø 4 4 Intenso q = 61 9. r. r m b sus4 6 Ó. m Œ. r J 1.u ø. r o - lho pa - ra_o céu, bus - M7.. can - do com - preen-der o sa - cri - fí - cio do Sal - va - dor em meu lu - gar ø ø

Leia mais

Transformadas de Laplace

Transformadas de Laplace Transformadas de Laplace Notas de aulas - material compilado no dia 6 de Maio de 23 Computação, Engenharia Elétrica e Engenharia Civil Prof. Ulysses Sodré ii Copyright c 22 Ulysses Sodré. Todos os direitos

Leia mais

Boletim Técnico. Autorização de Exames Web. Produto : TOTVS SST Web Chamado : P119SSTWEB/REQ-2 Data da publicação : 07/05/13

Boletim Técnico. Autorização de Exames Web. Produto : TOTVS SST Web Chamado : P119SSTWEB/REQ-2 Data da publicação : 07/05/13 Autorização de Exame Web Produto : TOTVS SST Web 11.9.0.0 Chamado : P119SSTWEB/REQ-2 Data da publicação : 07/05/13 Paí(e) : Brail Banco() de Dado : Oracle Eta melhoria depende de execução da atualização

Leia mais

3. Representaç ão de Fourier dos Sinais

3. Representaç ão de Fourier dos Sinais Sinais e Sisemas - 3. Represenaç ão de Fourier dos Sinais Nese capíulo consideramos a represenação dos sinais como uma soma pesada de exponenciais complexas. Dese modo faz-se uma passagem do domínio do

Leia mais

Confrontando Resultados Experimentais e de Simulação

Confrontando Resultados Experimentais e de Simulação Confrontando Reultado Experimentai e de Simulação Jorge A. W. Gut Departamento de Engenharia Química Ecola Politécnica da Univeridade de São Paulo E mail: jorgewgut@up.br Um modelo de imulação é uma repreentação

Leia mais