GEOMETRIA DE POSIÇÃO.

Tamanho: px
Começar a partir da página:

Download "GEOMETRIA DE POSIÇÃO."

Transcrição

1 GEMETRI DE SIÇÃ. Geomeia de oição é a pae da Geomeia que euda a deeminação do elemeno geoméico, bem como a poiçõe elaiva e a ineeçõe dee elemeno no epaço. III - o dua ea paalela diina. IV - o dua ea concoene. a) ono -,,, b) Rea - a, b,, c) lano -,,, 1) Elemeno da Geomeia. 2) Deeminação do elemeno. 2a) Deeminação de pono. Um pono fica deeminado : I - elo cuzameno de dua ea concoene. II - elo cuzameno de uma ea com um 2b) Deeminação de ea. Uma ea fica deeminada : I - o doi pono diino. II - o um pono e uma dieção. 3) ombinaçõe do elemeno. (doi a doi) 4) oiçõe elaiva e ineeçõe do elemeno doi a doi. 4a) ono - pono. poiçõe elaiva que doi pono podem aumi ão : I - doi pono ão coincidene. = ( ou ) II - doi pono ão diino. 3a) ono - pono. 3b) ono - ea. 3c) ono - 3d) Rea - ea. 3e) Rea - 3f) lano - 4b) ono - ea. poiçõe elaiva que um pono e uma ea podem aumi ão : I - pono eá conido na ea. = dieção = II - pono eá foa da ea. III - elo cuzameno de doi 4c) ono - poiçõe elaiva que um pono e um plano podem aumi ão : I - pono eá conido no = 2c) Deeminação de Um plano fica deeminado : I - o ê pono diino não colineae. = II - o uma ea e um pono foa dela. II - pono eá foa do =

2 4d) Rea - ea. 1) Rea coplanae. Dua ea ão dia coplanae e exie um plano que a coném. poiçõe elaiva que dua ea coplanae podem aumi ão : I - Dua ea paalela coincidene. II - Dua ea paalela diina. III - Dua ea concoene. Rea pependiculae. (cao paicula de ea concoene) Dua ea concoene ão dia pependiculae e fazem ene i ângulo de 90º. (no plano) 2) Rea evea (ou não coplanae) Dua ea ão dia evea ou não coplanae e não exie um plano que a coném. Rea oogonai. (cao paicula de ea evea) Dua ea evea ão dia oogonai e fazem ene i ângulo de 90º. (no epaço) 4e) Rea - poiçõe elaiva que uma ea e um plano podem aumi ão : I - ea eá conida no II - ea é paalela ao = (ou ) = = = = = III - ea é ecane ou concoene com o é chamado de aço de em. = Rea pependicula ao (cao paicula de ea ecane ao plano) Teoema. Uma ea é pependicula a um plano e é pependicula ou oogonal a dua ea concoene do 4f) lano - poiçõe elaiva que doi plano podem aumi ão : I - Doi plano paalelo coincidene. II - Doi plano paalelo diino. III - Doi plano ecane (ou concoene) lano pependiculae. (cao paicula de plano ecane ou concoene) Teoema. Doi plano ão pependiculae ene i e um dele coném uma ea pependicula ao ouo. = (ou ) = =

3 ojeçõe oogonai ( Somba ) ojeçõe oogonai em. - ojeção oogonal de em. - ojeção oogonal de em. - ojeção oogonal de em. D D F E E = F Diância ene dua ea evea. diância ene dua ea evea é a medida do egmeno que em exemidade na dua ea e que é imulaneamene pependicula a ea ea. Ângulo. Ângulo ene ea e É o ângulo fomado ene a ea e a pojeção oogonal da ea obe o Diância. d Ângulo ene doi É o ângulo fomado po dua ea, uma de cada plano, pependiculae à ineecção do doi plano num memo pono. Ineecção nde e lê Deemina Exie um Um único oincidene Diino Exie e é único Enende-e Um e omene um. oncoene Se cuzam. olineae oplanae Reveo Exie pelo meno um. Têm odo o pono em Têm pelo meno um pono difeene. Exie uma ea que o coném. Exie um plano que o coném. Não exie um plano que o coném. Reponde vedadeio ou falo na queõe abaixo. 001) ( ) pono não em dimenão. 002) ( ) Uma ea coném infinio pono. 003) ( ) Um plano coném infinio pono. 004) ( ) o um pono empe paa uma ea. 005) ( ) Dado doi pono diino, exie e é único o plano que o coném. 006) ( ) Tê pono diino deeminam um 007) ( ) o uma ea paam infinio 008) ( ) Tê pono alinhado ão coplanae. 009) ( ) Tê pono diino e não colineae deeminam um 010) ( ) Todo plano coném infinia ea. 011) ( ) Doi plano que êm uma única ea comum ão ecane. 012) ( ) Um pono epaa uma ea em dua emiea. 013) ( ) Um pono peencene a uma ea epaa ea ea em dua emi-ea. 014) ( ) Uma ea divide um plano em doi emi 015) ( ) Uma ea peencene a um plano, divide ee plano em doi emi- 016) ( ) Qualque plano divide o epaço em doi emi-epaço. 017) ( ) Doi emi-plano ão empe coplanae. 018) ( ) Doi emi-plano opoo ão empe coplanae. 019) ( ) Se doi pono peencem a emi-plano opoo, enão o egmeno que o une inecepa a oigem do doi emi- 020) ( ) Exiem infinio emi-plano de mema oigem. 021) ( ) Tê pono diino não ão colineae. 022) ( ) Dua ea que êm um pono comum ão concoene. 023) ( ) Dua ea que êm um único pono comum ão concoene. 024) ( ) Dua ea diina que êm um pono comum ão concoene. 025) ( ) Uma ea e um pono deeminam um 026) ( ) Uma ea e um pono foa dela deeminam um 027) ( ) Dua ea diina deeminam um 028) ( ) Dua ea paalela deeminam um 029) ( ) Tê ea, dua a dua paalela diina, deeminam ê 030) ( ) Tê ea, dua a dua paalela diina, deeminam um único ou ê 031) ( )Tê ea, dua a dua concoene em pono diino, ão coplanae. 032) ( ) epaço coném infinio pono, infinia ea e infinio 033) ( ) Quao pono diino e não colineae, ão véice de um quadiláeo. 034) ( ) Quao pono diino e não colineae ê a ê, ão véice de um quadiláeo. 035) ( ) Quao pono diino e não coplanae, ê a ê deeminam quao plano diino. 036) ( ) Dua ea paalela diina e um pono foa dela, deeminam um único ou ê 037) ( ) Dua ea concoene e um pono foa dela deeminam ê 038) ( ) Se dua ea não êm pono em comum, enão ela ão evea.

4 039) ( ) Se dua ea não êm pono em comum, enão ela ão concoene. 040) ( ) Um pono conido num plano divide ee plano em doi emi- 041) ( ) Uma ea ecane a um plano divide ea plano em doi emi- 042) ( ) Se dua ea não ão coplanae, enão ela ão evea. 043) ( ) Se dua ea ão paalela, enão ela não êm pono em 044) ( ) Dua ea paalela a uma eceia ão paalela ene i. 045) ( ) Dua ea oogonai fomam ângulo eo. 046) ( ) Quao pono não coplanae ão véice de um quadiláeo eveo. 047) ( ) ea que coném a diagonai de um quadiláeo eveo ão ea evea. 048) ( ) Se dua ea diina não ão paalela, enão ão concoene. 049) ( ) Se ê ea ão paalela, enão exie um plano que a coném. 050) ( ) Uma ea e um plano ecane êm um pono 051) ( ) Tê pono não colineae ão empe diino. 052) ( ) Uma ea e um plano paalelo não êm pono 053) ( ) Uma ea eá conida num plano quando ele coincidem. 054) ( ) Se uma ea é paalela a um plano, enão ela é paalela a uma ea do 055) ( ) Se uma ea é paalela a um plano, enão ela é paalela a infinia ea do 056) ( ) Se uma ea é paalela a um plano, enão ela é paalela a oda a ea do 057) ( ) Se uma ea é paalela a um plano, enão ela é evea a uma ea do 058) ( ) Se uma ea é paalela a um plano, enão ela é oogonal a uma única ea do 059) ( ) Se uma ea e um plano ão ecane, enão ela é concoene com infinia ea dee 060) ( ) Se uma ea é paalela a um plano, enão exie no plano uma ea concoene com ela. 061) ( ) Se dua ea ão evea, enão qualque ea que concoe com uma dela concoe com a oua. 062) ( ) Se dua ea diina ão paalela, enão odo plano que coném uma é paalelo ou coném a oua. 063) ( ) Se dua ea ão evea, enão qualque plano que coném uma inecepa a oua. 064) ( ) Se dua ea diina ão paalela a um plano, enão ão paalela ene i. 065) ( ) Dado uma ea e um plano quaique, exie no plano uma ea paalela à ea dada. 066) ( ) Dada dua ea diina quaique, exie um plano que coném uma e é paalelo à oua. 067) ( ) Doi plano ecane êm como ineeção uma ea. 068) ( ) Se doi plano diino êm um pono comum enão ele ão ecane. 069) ( ) Doi plano que êm uma ea comum ão ecane. 070) ( ) Doi plano que êm uma única ea comum ão ecane. 071) ( ) Dua ea evea e uma concoene com a dua, deeminam doi 072) ( ) Doi plano diino ão ecane. 073) ( ) Se doi plano diino ão paalelo ene i, enão uma ea de um dele e uma ea do ouo ão pa-alela ene i ou evea. 074) ( ) Se uma ea é paalela a doi plano ecane, enão ela é paalela à ineeção dee 075) ( ) Se doi plano diino ão paalelo, enãooda ea paalela a um dele é paalela ao ouo. 076) ( ) Se doi plano ão paalelo a uma ea, enãoão paalelo ene i. 077) ( ) Se doi plano diino ão paalelo a um eceio, enão ão paalelo ene i. 078) ( ) Se uma ea é pependicula a um plano, enão é pependicula a uma ea do 079) ( ) Se uma ea é pependicula a um plano, enão é pependicula a oda a ea dee 080) ( ) Se uma ea é pependicula a um plano, enão é pependicula a infinia ea dee 081) ( ) Se uma ea é pependicula a um plano, enão é pependicula ou oogonal a oda a ea do 082) ( ) Uma ea é pependicula a um plano e é pependicula a dua ea dee 083) ( ) Uma ea é pependicula a um plano e é pependicula a dua ea concoene dee 084) ( ) Se uma ea e um plano ão paalelo, enão oda ea pependicula à ea dada é pependicula ao 085) ( ) o um pono dado pode-e conduzi uma única ea pependicula a um plano dado. 086) ( ) Um ea é pependicula a um plano e é pependicula a dua ou mai ea dee 087) ( ) Doi plano pependiculae a um eceio, podem e pependiculae ene i. 088) ( ) Uma condição neceáia paa que uma ea eja pependicula a um plano é que a ea e o plano ejam ecane. 089) ( ) Se dua ea ão pependiculae a um memo plano, enão ela ão paalela ene i. 090) ( ) Se doi plano ão pependiculae a uma mema ea, enão ão paalelo ene i. 091) ( ) Se uma ea é oogonal a dua ea paalela diina, enão ela é paalela ao plano que a coném. 092) ( ) Se uma ea e um plano ão paalelo, enão oda ea pependicula à ea dada é paalela ao 093) ( ) Se uma ea e um plano ão pependiculae, enão oda ea pependicula à ea dada é paalela ao 094) ( ) o um pono dado, exie um único plano pependicula a uma ea dada.

5 095) ( ) Se doi plano ão pependiculae, enão ele ão ecane ene i. 096) ( ) Se doi plano ão ecane, enão ele ão pependiculae. 097) ( ) Uma ea e um plano ecane êm um pono 098) ( ) Se uma ea é paalela a uma ea do plano, enão ela é paalela ao 099) ( ) Dada dua ea evea, exie um plano que coném uma e é pependicula à oua. 100) ( ) Dada dua ea evea, exie um plano que coném a dua ea. 101) ( ) Dada dua ea evea, exie um plano que coném uma e é paalelo à oua. 102) ( ) ineecçõe de doi plano paalelo com um eceio plano, ão ea paalela. 103) ( ) Se um plano coném dua ea concoene e amba paalela a um ouo plano, enão ee plano ão paalelo ene i. 104) ( ) pojeção oogonal de um pono obe um plano é um pono. 105) ( ) pojeção oogonal de uma ea obe um plano é uma ea. 106) ( ) pojeção oogonal de uma ea obe um plano é um pono ou uma ea. 107) ( ) pojeção oogonal de um egmeno obe um plano é um pono ou um egmeno meno que ele. 108) ( ) pojeção oogonal de um quadiláeo plano obe um plano é um quadiláeo. 109) ( ) pojeção oogonal de um quadado obe um plano pode e um iângulo. 110) ( ) pojeção oogonal de um plano obe ouo plano é um plano ou uma ea. GRIT 001 V 002 V 003 V 004 V 005 F 006 F 007 V 008 V 009 V 010 V 011 V 012 F 013 V 014 F 015 V 016 V 017 F 018 V 019 V 020 V 021 F 022 F 023 V 024 V 025 F 026 V 027 F 028 F 029 F 030 V 031 V 032 V 033 F 034 V 035 V 036 V 037 F 038 F 039 F 040 F 041 F 042 V 043 F 044 V 045 V 046 V 047 V 048 F 049 F 050 V 051 V 052 V 053 F 054 V 055 V 056 F 057 V 058 F 059 V 060 F 061 F 062 V 063 F 064 F 065 F 066 F 067 V 068 V 069 F 070 V 071 V 072 F 073 V 074 V 075 F 076 F 077 V 078 V 079 F 080 V 081 V 082 F 083 V 084 F 085 V 086 F 087 V 088 V 089 V 090 V 091 F 092 F 093 F 094 V 095 V 096 F 097 V 098 F 099 F 100 F 101 V 102 V 103 V 104 V 105 F 106 V 107 F 108 F 109 F 110 V

GEOMETRIA PLANA 1 - INTRODUÇÃO 2 - NOÇÕES PRIMITIVAS 3 - NOTAÇÕES 4 - ÂNGULO

GEOMETRIA PLANA 1 - INTRODUÇÃO 2 - NOÇÕES PRIMITIVAS 3 - NOTAÇÕES 4 - ÂNGULO GEOETRI L 1 - ITROUÇÃO Geomeia é uma palava de oigem gega e que ignifica medida de ea. Geomeia, como um do amo da aemáica, euda a figua geoméica e ua popiedade. O conceio peviamene eaelecido, em Geomeia,

Leia mais

Capítulo 1 ATIVIDADES PROPOSTAS PÁG. 14 ATIVIDADES PARA SALA PÁG. 14 GEOMETRIA. Geometria de posição. 2 a série Ensino Médio Livro 1 9.

Capítulo 1 ATIVIDADES PROPOSTAS PÁG. 14 ATIVIDADES PARA SALA PÁG. 14 GEOMETRIA. Geometria de posição. 2 a série Ensino Médio Livro 1 9. Reoluçõe 01 a) Poulado, poi o poulado ão conaaçõe que não neceiam e compovada paa que ejam conideada vedadeia. ) Pono, ea e plano. c) Teoema. 0 apíulo 1 Geomeia de poição TIIS PR SL PÁG. 14 omo o polongameno

Leia mais

F, V, V, F, V, F, V, V

F, V, V, F, V, F, V, V GOMTRI Reoluçõe apíulo 1 Geomeia de poição TIIS PR SL PÁG. 14 01 a) Poulado, poi o poulado ão conaaçõe que não neceiam e compovada paa que ejam conideada vedadeia. b) Pono, ea e plano. c) Teoema. 0 omo

Leia mais

Ângulo é a figura formada pela união dos pontos de duas semirretas com origem no mesmo ponto.

Ângulo é a figura formada pela união dos pontos de duas semirretas com origem no mesmo ponto. uo de linguagem maemáica Pofeo Renao Tião Ângulo Ângulo é a figua fomada pela união do pono de dua emiea com oigem no memo pono. = ou implemene. Q P é o véice, e ão o lado e é a medida do ângulo. P peence

Leia mais

MATEMÁTICA LIVRO 4 Geometria de Posição Capítulo 1 Retas e Planos no Espaço

MATEMÁTICA LIVRO 4 Geometria de Posição Capítulo 1 Retas e Planos no Espaço MATEMÁTICA LIVRO 4 Geomeia de Posição Capíulo 1 Reas e Planos no Espaço GEOMETRIA DE POSIÇÃO POSTULADOS POSTULADO DA EXISTÊNCIA Exisem: pono, ea e plano A C s B β Numa ea, ou foa dela, exisem infinios

Leia mais

MATEMÁTICA. Módulo 28. Frente IV - Caderno 07. Paralelismo e Perpendicularismo no Espaço Página 229

MATEMÁTICA. Módulo 28. Frente IV - Caderno 07. Paralelismo e Perpendicularismo no Espaço Página 229 MATEMÁTICA Fene IV - Cadeno 07 Módulo 28 Paalelismo e Pependiculaismo no Espaço Página 229 GEOMETRIA DE POSIÇÃO POSTULADOS POSTULADO DA EXISTÊNCIA Exisem: pono, ea e plano A C s B Numa ea, ou foa dela,

Leia mais

MATEMÁTICA. Módulo 28. Frente IV -Caderno 07. Paralelismoe Perpendicularismono Espaço Página 229

MATEMÁTICA. Módulo 28. Frente IV -Caderno 07. Paralelismoe Perpendicularismono Espaço Página 229 MATEMÁTICA Fene IV -Cadeno 07 Módulo 28 Paalelismoe Pependiculaismono Espaço Página 229 GEOMETRIA DE POSIÇÃO POSTULADOS POSTULADO DA EXISTÊNCIA Exisem: pono, ea e plano A C s B Numa ea, ou foa dela, exisem

Leia mais

MATEMÁTICA. Retas e Planos no Espaço. Geometria de Posição Capítulo 1 LIVRO 4

MATEMÁTICA. Retas e Planos no Espaço. Geometria de Posição Capítulo 1 LIVRO 4 MATEMÁTICA LIVRO 4 Geomeia de Posição Capíulo 1 Reas e Planos no Espaço GEOMETRIA DE POSIÇÃO POSTULADOS POSTULADO DA EXISTÊNCIA Exisem: pono, ea e plano A C s B β Numa ea, ou foa dela, exisem infinios

Leia mais

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 1. Retas Cortadas por uma Transversal. Oitavo Ano

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 1. Retas Cortadas por uma Transversal. Oitavo Ano Maeial Teóico - Módulo Elemeno áico de Geomeia Plana - Pae 1 Rea oada po uma Tanveal Oiavo no uo: Pof. Ulie Lima Paene Revio: Pof. nonio aminha M. Neo 1 Rea coada po uma anveal Sejam e dua ea iuada em

Leia mais

ENGENHARIA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 2ª LISTA DE EXERCÍCIOS. (Atualizada em abril de 2009)

ENGENHARIA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 2ª LISTA DE EXERCÍCIOS. (Atualizada em abril de 2009) ENGENHARIA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Pofesso : Humbeo Anônio Baun d Azevedo ª LISTA DE EXERCÍCIOS (Aualizada em abil de 009 1 Dados A (1, 0, -1, B (, 1,, C (1, 3, 4 e D (-3, 0, 4 Deemina: a

Leia mais

SEMELHANÇA DE TRIÂNGULOS

SEMELHANÇA DE TRIÂNGULOS SLHÇ TRIÂGULOS 1. SGTOS PROPORIOIS Quao egmeno,,, GH,, nea odem, ão popocionai quando ua medida, omada numa mema unidade, fomaem uma popoção. Indicação: ( Lê-e: eá paa GH aim como eá paa GH ) emplo: Veifica

Leia mais

Geometria de Posição. Continuação. Prof. Jarbas

Geometria de Posição. Continuação. Prof. Jarbas Geometia de Poição Continuação Pof. Jaba POSIÇÕES RELATIVAS ENTRE DUAS RETAS NO ESPAÇO O que ão eta coplanae? São eta contida num memo plano. O que ão eta evea? São eta que não etão contida num memo plano.

Leia mais

Exercícios propostos

Exercícios propostos Eecícios poposos 01 Esceva uma equação da ea nos casos a segui a) passa pelo pono P(, 1,) e em a dieção do veo u (,1,1 ) b) passa pelos ponos A(1,, 1) e B(0,,) 0 Veifique, em cada um dos iens abaio, se

Leia mais

ATIVIDADES PROPOSTAS PÁG. 14 ATIVIDADES PARA SALA PÁG. 14. Capítulo 1 GEOMETRIA. Geometria de posição. 2? a série Ensino Médio Livro?

ATIVIDADES PROPOSTAS PÁG. 14 ATIVIDADES PARA SALA PÁG. 14. Capítulo 1 GEOMETRIA. Geometria de posição. 2? a série Ensino Médio Livro? GOMTRI Reoluçõe píulo 1 Geomei de poição TIIS PR SL PÁG. 14 01 ) Pouldo, poi o pouldo ão conçõe que não neceim e compovd p que ejm conided veddei. b) Pono, e e plno. c) Teoem. 0 omo o polongmeno é infinio

Leia mais

Plano de Aulas. Matemática. Módulo 18 Introdução à geometria espacial

Plano de Aulas. Matemática. Módulo 18 Introdução à geometria espacial lno de ul Memáic Módulo 18 Inodução à geomei epcil Reolução do eecício popoo Reomd do conceio ÍTULO 1 1 ) Não. b) Sim. O ê pono deeminm o plno que o conêm. c) Não peence. d) Infinio pono. O pono, e I e

Leia mais

EOREMA DE TALES. Assim, um feixe de paralelas determina, em duas transversais quaisquer, segmentos proporcionais. Exemplo: Quanto vale x?

EOREMA DE TALES. Assim, um feixe de paralelas determina, em duas transversais quaisquer, segmentos proporcionais. Exemplo: Quanto vale x? EOREMA DE TALES Se um feixe de paalela deemina egmeno conguene obe uma anveal, enão ee feixe deemina egmeno conguene obe qualque oua anveal. Aim, um feixe de paalela deemina, em dua anveai quaique, egmeno

Leia mais

TEOREMA DE TALES PROF. JOÃO BATISTA

TEOREMA DE TALES PROF. JOÃO BATISTA PROF. JOÃO BATISTA TEOREMA DE TALES Se um feie de paalela deemina egmeno conguene obe uma anveal, enão ee feie deemina egmeno conguene obe qualque oua anveal. Aim, um feie de paalela deemina, em dua anveai

Leia mais

GEOMETRIA. Noções básicas de Geometria que deves reter:

GEOMETRIA. Noções básicas de Geometria que deves reter: Noçõe báica de Geometia que deve ete: nte de iniciae qualque tabalho geomético, deve conhece o conjunto de intumento que deveá te empe: lgun cuidado a te: 1 Mante égua e equado limpo. 2 Não ua x-acto ou

Leia mais

01- A figura ABCD é um quadrado de lado 2 cm e ACE um triângulo equilátero. Calcule a distância entre os vértices B e E.

01- A figura ABCD é um quadrado de lado 2 cm e ACE um triângulo equilátero. Calcule a distância entre os vértices B e E. PROFESSOR: Macelo Soae NO E QUESTÕES - MTEMÁTI - 1ª SÉRIE - ENSINO MÉIO ============================================================================================= GEOMETRI Pae 1 01- figua é um quadado

Leia mais

BANCO DE QUESTÕES - GEOMETRIA - 8º ANO - ENSINO FUNDAMENTAL

BANCO DE QUESTÕES - GEOMETRIA - 8º ANO - ENSINO FUNDAMENTAL PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - GEOMETRIA - 8º ANO - ENSINO FUNDAMENTAL ============================================================================ 01- Sabendo que //, dê a medida

Leia mais

Unidade 3 Geometria: triângulos

Unidade 3 Geometria: triângulos Sugeõe de ividde Unidde 3 Geomei: iângulo 8 MTEMÁTI 1 Memáic 1. No iângulo egui você deve deemin: ) medid do ângulo ; b) medid do ângulo ; c) medid do ângulo z; d) medid do ângulo eeno o ângulo z. 120

Leia mais

PARNAMIRIM - RN. Data: / / 2016

PARNAMIRIM - RN. Data: / / 2016 PARNAMIRIM - RN Aluno (a) Nº: 8º ano Tuma: Daa: / / 2016 NOTA: Eecício de evião de maemáica II Timee Pofeo (a): Joeane Fenande Agoa vamo coloca em páica o eu conhecimeno maemáico e udo o que eudamo em

Leia mais

suur 03) (UPE 2007) Na figura abaixo a reta tangencia, em N, o círculo que passa por L, suur

suur 03) (UPE 2007) Na figura abaixo a reta tangencia, em N, o círculo que passa por L, suur Eta Geometia Plana Pof Eweton Paiva 01) (UFF 007) fim de elaboa um elemento de ua oba de ate, um eculto ua um pedaço de aame e contói uma cicunfeência, confome mota a figua P b) Pove que med(» ) med( E»

Leia mais

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO 2011-2012 Geometia no Epaço NOME: Nº TURMA: Geometia é o amo da Matemática que etuda a popiedade e a elaçõe ente ponto, ecta,

Leia mais

Seu pé direito nas melhores faculdades. a) Indicando os montantes finais possuídos por Carlos, Luís e Sílvio por C, L e S, respectivamente, temos:

Seu pé direito nas melhores faculdades. a) Indicando os montantes finais possuídos por Carlos, Luís e Sílvio por C, L e S, respectivamente, temos: Seu pé dieio na melhoe faculdade. FUVEST/00 a Fae TEÁTI 0. alo, Luí e Sílvio inham, juno, 00 mil eai paa invei po um ano. alo ecolheu uma aplicação que endia ao ano. Luí, uma que endia 0% ao ano. Sílvio

Leia mais

GEOMETRIA ESPACIAL DE POSIÇÃO. - Ponto: - Reta: - Plano: - Espaço: Dois pontos distintos determinam uma reta. ou. Posições Relativas

GEOMETRIA ESPACIAL DE POSIÇÃO. - Ponto: - Reta: - Plano: - Espaço: Dois pontos distintos determinam uma reta. ou. Posições Relativas GEOMETRIA ESPACIAL DE POSIÇÃO Conceitos Pimitivos: - Ponto: - Reta: - Plano: - Espaço: A B Postulados de Existência: Existem infinitos pontos, infinitas etas, infinitos planos e um único espaço. Algumas

Leia mais

17. (PUC-SP)Se a 16. 19. (GV) Se x 3200000 e y 0, 00002, calcule o valor do produto x. y.

17. (PUC-SP)Se a 16. 19. (GV) Se x 3200000 e y 0, 00002, calcule o valor do produto x. y. Um navio dipõe de eeva uficiente paa alimenta homen duante dia, ma ecebe obevivente de um naufágio eeva de alimento daão paa no máimo quanto dia? LIST 0 XRÍIOS GOMTRI PLN PROF ROGRINHO º nino Médio (Razão

Leia mais

DINÂMICA Dinâmica Cinemática Dinâmica Movimento rectilíneo Movimento Curvilíneo 11-1

DINÂMICA Dinâmica Cinemática Dinâmica Movimento rectilíneo Movimento Curvilíneo 11-1 DINÂMICA A Dinâmica inclui: - Cinemáica (Kinemaic): eudo da geomeia do moimeno. A Cinemáica é uilizada paa elaciona o delocameno, a elocidade, a aceleação e o empo, em elação com a caua do moimeno. - Dinâmica

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV O cuinho que mai apova na GV FGV Adminiação Pova Objeiva 03/dezembo/006 MATEMÁTICA 0. Se um auomóvel cua hoje R$ 45 000,00 e a cada ano ofe uma devaloização de 4%, o eu valo, em eai, daqui a dez ano, pode

Leia mais

Onde sentar no cinema?

Onde sentar no cinema? Onde ena no cinema? Felipe Vieia 1 felipemae@gmail.com im como muia áea da maemáica, poblema de exemo maximização ou minimização de uma cea vaiável) ão eudado á muio empo. Ee poblema, que êm deafiado maemáico

Leia mais

ESPAÇO VETORIAL REAL DE DIMENSÃO FINITA

ESPAÇO VETORIAL REAL DE DIMENSÃO FINITA EPÇO ETORIL REL DE DIMENÃO FINIT Defnção ejam um conjuno não ao o conjuno do númeo ea R e dua opeaçõe bnáa adção e mulplcação po ecala : : R u a u a é um Epaço eoal obe R ou Epaço eoal Real ou um R-epaço

Leia mais

Matemática. Atividades. complementares. FUNDAMENTAL 8-º ano. Este material é um complemento da obra Matemática 8. uso escolar. Venda proibida.

Matemática. Atividades. complementares. FUNDAMENTAL 8-º ano. Este material é um complemento da obra Matemática 8. uso escolar. Venda proibida. 8 ENSINO FUNMENTL 8-º ano Matemática tividade complementae Ete mateial é um complemento da oba Matemática 8 Paa Vive Junto. Repodução pemitida omente paa uo ecola. Venda poibida. Samuel aal apítulo 6 Ete

Leia mais

Geometria plana. Resumo teórico e exercícios.

Geometria plana. Resumo teórico e exercícios. eomei pln. eumo eóico e eecício. 3º olegil / uo enivo. uo - Luc cvio de Sou (Jec) elção d ul. Págin ul 01 - onceio inicii... 0 ul 0 - Pono noávei de um iângulo... 18 ul 03 - onguênci de iângulo... 8 ul

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 08/03/14 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 08/03/14 PROFESSOR: MALTEZ RSOLUÇÃO VLIÇÃO MTMÁTI o NO O NSINO MÉIO T: 08/03/14 PROFSSOR: MLTZ QUSTÃO 01 Na figua, a eta e ão pependiculae e a eta m e n ão paalela. m 0º n ntão a medida do ângulo, em gau, é igual a: 0º m alteno

Leia mais

ESPAÇO VETORIAL REAL DE DIMENSÃO FINITA

ESPAÇO VETORIAL REAL DE DIMENSÃO FINITA EPÇO ETORIL REL DE DIMENÃO FINIT Defnção ejam um conjuno não vao o conjuno do númeo ea R e dua opeaçõe bnáa adção e mulplcação po ecala : : R v u a v u v a v é um Epaço eoal obe R ou Epaço eoal Real ou

Leia mais

Material Teórico - Módulo de Geometria Anaĺıtica 1. Paralelismo e Perpendicularidade. Terceiro Ano - Médio

Material Teórico - Módulo de Geometria Anaĺıtica 1. Paralelismo e Perpendicularidade. Terceiro Ano - Médio Mateial Teóico - Módulo de Geometia naĺıtica 1 Paalelimo e Pependiculaidade Teceio no - Médio uto: Pof ngelo Papa Neto Revio: Pof ntonio aminha M Neto 1 Reta paalela Na aula obe a equação da eta vimo que,

Leia mais

). c) Por três pontos não colineares passam três retas não simultaneamente (P 3

). c) Por três pontos não colineares passam três retas não simultaneamente (P 3 Resolução das atividades complementaes Matemática M7 Geometia p. 6 Sejam tês pontos distintos, e não colineaes no espaço. a) Quantas etas passam po? infinitas b) Quantas etas passam po e po? uma única

Leia mais

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 6- º ano. Este material é um complemento da obra Matemática 6. uso escolar. Venda proibida.

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 6- º ano. Este material é um complemento da obra Matemática 6. uso escolar. Venda proibida. 6 ENSINO FUNDMENTL 6- º ano Matemática tividades complementaes Este mateial é um complemento da oba Matemática 6 Paa Vive Juntos. Repodução pemitida somente paa uso escola. Venda poibida. Samuel Casal

Leia mais

Material Teórico - Módulo de Geometria Espacial 1 - Fundamentos. Pontos, Retas e Planos - Parte 1. Terceiro Ano do Ensino Médio

Material Teórico - Módulo de Geometria Espacial 1 - Fundamentos. Pontos, Retas e Planos - Parte 1. Terceiro Ano do Ensino Médio ateial Teóico - ódulo de Geometia Epacial 1 - Fundamento Ponto, Reta e Plano - Pate 1 Teceio Ano do Enino édio Auto: Pof. Angelo Papa Neto Revio: Pof. Antonio Caminha 1 Axioma da geometia no epaço Em noo

Leia mais

Material Teórico - Módulo de Geometria Espacial 1 - Fundamentos. Pontos, Retas e Planos - Parte 1. Terceiro Ano do Ensino Médio

Material Teórico - Módulo de Geometria Espacial 1 - Fundamentos. Pontos, Retas e Planos - Parte 1. Terceiro Ano do Ensino Médio ateial Teóico - ódulo de Geometia Epacial 1 - Fundamento Ponto, Reta e Plano - Pate 1 Teceio Ano do Enino édio Auto: Pof. Angelo Papa Neto Revio: Pof. Antonio Caminha 1 Axioma da geometia no epaço Em noo

Leia mais

AT4 DESENHO GEOMÉTRICO SEQUÊNCIA DE CONSTRUÇÕES GEOMÉTRICAS

AT4 DESENHO GEOMÉTRICO SEQUÊNCIA DE CONSTRUÇÕES GEOMÉTRICAS L M NNI MINTL a U/USa epatamento de ngenhaia ivil da USa xpessão áfica paa ngenhaia T4 SN MÉTI SQUÊNI NSTUÇÕS MÉTIS ste texto teóico apesenta uma séie de constuções geométicas () que são consideadas básicas.

Leia mais

Vestibular 2ª Fase Resolução das Questões Discursivas

Vestibular 2ª Fase Resolução das Questões Discursivas Vesibula ª Fase Resolução das Quesões Discusivas São apesenadas abaixo possíveis soluções paa as quesões poposas Nessas esoluções buscou-se jusifica as passagens visando uma melho compeensão do leio Quesão

Leia mais

Campo magnético criado por uma corrente eléctrica e Lei de Faraday

Campo magnético criado por uma corrente eléctrica e Lei de Faraday Campo magnéico ciado po uma coene elécica e Lei de Faaday 1.Objecivos (Rev. -007/008) 1) Esudo do campo magnéico de um conjuno de espias (bobine) pecoidas po uma coene elécica. ) Esudo da lei de indução

Leia mais

Desenho Geométrico 9º ano Prof. Jorge Marcelo. Lugares Geométricos

Desenho Geométrico 9º ano Prof. Jorge Marcelo. Lugares Geométricos Desenho Geoético 9º ano of. Joge Macelo Lugaes Geoéticos Luga Geoético é o conjunto de pontos, de u eso plano, que possue a esa popiedade. Estudaeos aqui aqueles que são consideados os cindo pincipais

Leia mais

4 Descrição de permutadores

4 Descrição de permutadores Aponameno de Pemuadoe de alo Equipameno émico 005 João Luí oe Azevedo 4 ecição de pemuadoe Nea ecção vão deceve-e o pincipai ipo de pemuadoe de calo de conaco indieco com anfeência dieca, ou eja, equipameno

Leia mais

ATIVIDADES PARA SALA PÁG. 50

ATIVIDADES PARA SALA PÁG. 50 GTI esoluções apítulo ojeções, ângulos e distâncias estacando o tiângulo, tem-se o 8 0 TIIS SL ÁG. 0 0 0 onte luminosa cm 7 cm 4 7 I. = 7 + II. tg = = 6 49 = + d = 76 4 7 = = = 4 + d 4 + d = 48 d = d 4

Leia mais

Matemática B Extensivo V. 6

Matemática B Extensivo V. 6 Matemática Etensivo V. 6 Eecícios ) Seja: + e s a eta pependicula a : omo s, temos: m s m s Logo, a equação da eta s é dada po: m ( ) ( ) ( ) + + + ) + + Temos ainda: m + + m m omo as etas acima são paalelas,

Leia mais

Testes Propostos de Geometria Plana: Ângulos

Testes Propostos de Geometria Plana: Ângulos u de Matemática Tete Ppt de Gemetia Plana: Ângul 01. Sejam, e epectivamente a medida d cmplement, uplement e eplement d ângul de 40, têm-e 05. i ângul adjacente ã cmplementae. ntã, ângul fmad pela bietize

Leia mais

Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 8º - Ensino Fundamental Professores: Marcus e Weslei

Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 8º - Ensino Fundamental Professores: Marcus e Weslei Áea de Diciplina: Ano: 8º - Enino Fundamental Pofeoe: Macu e Welei Atividade paa Etudo Autônomo Data: 0 / 5 / 09 Cao(a) aluno(a), O momento de evião deve e vito como opotunidade de econtui conhecimento

Leia mais

Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 8º - Ensino Fundamental Professores: Marcus e Wuledson

Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 8º - Ensino Fundamental Professores: Marcus e Wuledson Cao(a) aluno(a), O momento de evião deve e vito como opotunidade de econtui conhecimento neceáio à continuação do poceo de apendizagem. Natualmente, a ealização dea atividade eigiá de você um envolvimento

Leia mais

Linhas de Campo Magnético

Linhas de Campo Magnético Linha de Campo Magnético Popiedade da Linha de Campo Magnético Não há evidência expeimental de monopolo magnético (pólo iolado) Etutua magnética mai imple: dipolo magnético Linha de Campo Magnético ão

Leia mais

1 2 9, i n c i s o I I, d a C F ; e a r t i g o 5 º, i n c i s o V, a l í n e a s a e

1 2 9, i n c i s o I I, d a C F ; e a r t i g o 5 º, i n c i s o V, a l í n e a s a e P O R T A R I A n 2 0 1, d e 1 8 d e j u l h o d e 2 0 1 3. A P r o c u r a d o r a d a R e p ú b l i c a q u e e s t a s u b s c r e v e, e m e x e r c í c i o n a P r o c u r a d o r i a d a R e p ú

Leia mais

UFJF CONCURSO VESTIBULAR 2012 REFERÊNCIA DE CORREÇÃO DA PROVA DE MATEMÁTICA. e uma das raízes é x = 1

UFJF CONCURSO VESTIBULAR 2012 REFERÊNCIA DE CORREÇÃO DA PROVA DE MATEMÁTICA. e uma das raízes é x = 1 UFJF ONURSO VESTIULR REFERÊNI DE ORREÇÃO D PROV DE MTEMÁTI 4 Questão Seja P( = ax + bx + cx + dx + e um polinômio com coeficientes eais em que b = e uma das aízes é x = Sabe-se que a < b < c < d < e fomam

Leia mais

Exercícios resolvidos

Exercícios resolvidos Excícios solvidos 1 Um paallpípdo ABCDEFGH d bas ABCD m volum igual a 9 unidads Sabndo-s qu A (1,1,1), B(2,1,2), C(1,2,2), o véic E pnc à a d quação : x = y = 2 z (AE, i) é agudo Dmin as coodnadas do véic

Leia mais

CONTROLE POR REALIMENTAÇÃO DOS ESTADOS SISTEMAS SERVOS

CONTROLE POR REALIMENTAÇÃO DOS ESTADOS SISTEMAS SERVOS CONTROLE POR REALIMENTAÇÃO DOS ESTADOS SISTEMAS SERVOS. Moivaçõe Como vio o Regulado de Eado maném o iema em uma deeminada condição de egime pemanene, ou eja, ena mane o eado em uma dada condição eacionáia.

Leia mais

A NATUREZA DO HORIZONTE DE EVENTOS - BURACOS NEGROS DE SCHWARZSCHILD. Rafaello Virgilli 1

A NATUREZA DO HORIZONTE DE EVENTOS - BURACOS NEGROS DE SCHWARZSCHILD. Rafaello Virgilli 1 A NATUREZA DO HORIZONTE DE EVENTOS - BURACOS NEGROS DE SCHWARZSCHILD Rafaello Vigilli 1 Resumo Ese abalho discoe sobe a solução de Schwazchild paa as equações de Einsein, em paicula sobe o hoizone de evenos.

Leia mais

singular GEOMETRIA ANALÍTICA 2º E.M. Tarde Colégio Técnico Noturno Profª Liana (Lista de exercícios elaborada pelo professor DANRLEY)

singular GEOMETRIA ANALÍTICA 2º E.M. Tarde Colégio Técnico Noturno Profª Liana (Lista de exercícios elaborada pelo professor DANRLEY) 1 singula GEOMETRIA ANALÍTICA 2º E.M. Tade Colégio Técnico Notuno Pofª Liana (Lista de eecícios elaboada pelo pofesso DANRLEY) SISTEMA CARTESIANO ORTOGONAL 2 1) Indique a que quadante petence cada ponto:

Leia mais

CAPÍTULO 7. Exercícios 7.3. Ft () Gt () (t 2 sen t 2t, 6 t 3, t 2 3 sen t). 2. Sejam r r r r r r r r. 3. Sejam r r r r. Exercícios 7.

CAPÍTULO 7. Exercícios 7.3. Ft () Gt () (t 2 sen t 2t, 6 t 3, t 2 3 sen t). 2. Sejam r r r r r r r r. 3. Sejam r r r r. Exercícios 7. CAPTULO 7 Execícios 7 Sejam F () (, sen, ) e G () (,, ) a) F () G () (, sen, ) (,, ) sen d) i j F () G () sen ( sen ) i ( 6) j ( sen ) F () G () ( sen, 6, sen ) Sejam () ij e x () i j i j () x () ( ) i

Leia mais

Introdução. capítulo 1. Objetivos de aprendizagem

Introdução. capítulo 1. Objetivos de aprendizagem capítulo 1 Intodução Neste capítulo, apesentamos os entes geométicos fundamentais a sabe, o ponto, a eta e o plano e conceitos elacionados que condicionam a compeensão do estante deste livo. Objetivos

Leia mais

Campo Gravítico da Terra

Campo Gravítico da Terra Campo Gavítico da ea 1. Condiçõe de medição eodéica O intumento com que ão efectuada a mediçõe eodéica, obe a upefície da ea, etão ujeito à foça da avidade. Paa pode intepeta coectamente o eultado da mediçõe,

Leia mais

Física 1 Unidade 03 Cinemática em 2 e 3 dimensões Prof. Hamilton José Brumatto - DCET/UESC

Física 1 Unidade 03 Cinemática em 2 e 3 dimensões Prof. Hamilton José Brumatto - DCET/UESC Física 1 Unidade 03 Cinemáica em e 3 dimensões Pof. Hamilon José Bumao - DCET/UESC Gandeas da Cinemáica Posição Deslocameno Velocidade média Velocidade insanânea Aceleação média Aceleação insanânea Moimenos

Leia mais

Matemática. 8 o ano. Caderno 1

Matemática. 8 o ano. Caderno 1 Matemática 8 o ano adeno 1 Módulo 1 1 Em elação ao infogáfico apeentado a egui, eponda ao que e pede. Fonte: Folha de S.Paulo, 6, 9 ma. 2014. a) Qual é a fonte da pequia? b) Qual é o aunto cental dee infogáfico?

Leia mais

)25d$0$*1e7,&$62%5( &21'8725(6

)25d$0$*1e7,&$62%5( &21'8725(6 73 )5d$0$*1e7,&$6%5( &1'875(6 Ao final deste capítulo você deveá se capaz de: ½ Explica a ação de um campo magnético sobe um conduto conduzindo coente. ½ Calcula foças sobe condutoes pecoidos po coentes,

Leia mais

A S N O V A S R E G R A S D E F A C T U R A Ç Ã O

A S N O V A S R E G R A S D E F A C T U R A Ç Ã O i I N F O R M A Ç Ã O F I S C A L N º 3 J a n e i r o 2 0 1 3 A S N O V A S R E G R A S D E F A C T U R A Ç Ã O N o s e g u i m e n t o d a L e i d o O r ç a m e n t o d o E s t a d o p a r a 2 0 1 2 e,

Leia mais

MATEMÁTICA A - 11o Ano Geometria - Declive e inclinação Propostas de resolução

MATEMÁTICA A - 11o Ano Geometria - Declive e inclinação Propostas de resolução MTEMÁTI - o no Geometia - Declive e inclinação Popota de eolução Eecício de eame e tete intemédio. omo a tangente é pependicula ao aio, a eta é pependicula à eta, ou eja, declive da eta é o imético do

Leia mais

. B(x 2, y 2 ). A(x 1, y 1 )

. B(x 2, y 2 ). A(x 1, y 1 ) Estudo da Reta no R 2 Condição de alinhamento de três pontos: Sabemos que por dois pontos distintos passa uma única reta, ou seja, dados A(x 1, y 1 ) e B(x 2, y 2 ), eles estão sempre alinhados. y. B(x

Leia mais

REDES DE NOVA GERAÇÃO. m a i o r q u a l i d a d e, m a i s r a p i d e z, mais inovação;

REDES DE NOVA GERAÇÃO. m a i o r q u a l i d a d e, m a i s r a p i d e z, mais inovação; R E D E S D E N O V A G E R A Ç Ã O D E S A F I O e O P O R T U N I D A D E A P D C, 3 1 D E M A R Ç O D E 2 0 0 9 A S O N A E C O M A C R E D I T A Q U E A S R d N G S Ã O U M A O P O R T U N I D A D

Leia mais

CONSTRUÇÕES FUNDAMENTAIS

CONSTRUÇÕES FUNDAMENTAIS COLÉGIO EDRO II Camp RELENGO II Diciplina: DESENHO ª Séie (EM) of. Sonia Sá CONSTRUÇÕES FUNDMENTIS São contçõe báica feita com axílio do intmento de Deenho. Taçado de RLELS e ERENDICULRES com pa de ESQUDROS

Leia mais

b) A área sombreada (S) é igual à área do setor AOM subtraída da área do triângulo ODC e da área do setor DCM do círculo de centro C.

b) A área sombreada (S) é igual à área do setor AOM subtraída da área do triângulo ODC e da área do setor DCM do círculo de centro C. 13 Geometia I - GRITO VLIÇÃO - 01/ Questão 1. (pontuação: ) o seto O de cento O, aio O = 3 e ângulo O = 60 o está inscita uma cicunfeência como mosta a figua. a) alcule o aio dessa cicunfeência. b) alcule

Leia mais

ARMAZÉNS GERAIS ASPECTOS LEGAIS, VANTAGENS E SERVIÇOS

ARMAZÉNS GERAIS ASPECTOS LEGAIS, VANTAGENS E SERVIÇOS ARMAZÉNS GERAIS ASPECTOS LEGAIS, VANTAGENS E SERVIÇOS D i r e t o r E x e c u t i v o d a T O P L O G P o r R o d o l p h o C a r i b e A r m a z é n s g e r a i s s ã o e s t a b e l e c i m e n t o s

Leia mais

Circunferência e círculo

Circunferência e círculo Cicunfeência e cículo evolução da humanidade foi aceleada po algumas descobetas e invenções. Ente elas, podemos cita a impensa de Johannes Gutenbeg (1400-1468), na lemanha, po volta de 1450, que pemitiu

Leia mais

EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: ÂNGULOS 3 a SÉRIE ENSINO MÉDIO

EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: ÂNGULOS 3 a SÉRIE ENSINO MÉDIO EXERÍIS E REVISÃ MTEMÁTI II NTEÚ: ÂNGULS 3 a SÉRIE ENSIN MÉI ======================================================================= 1) ois ângulos consecutivos Ô e Ô são tais que a medida do pimeio ecede

Leia mais

AS EQUAÇÕES DE MAXWELL E AS ONDAS ELETROMAGNÉTICAS

AS EQUAÇÕES DE MAXWELL E AS ONDAS ELETROMAGNÉTICAS A QUAÇÕ D MAXWLL A ONDA LTROMAGNÉTICA 1.1 A QUAÇÕ D MAXWLL Todos os poblemas de eleicidade e magneismo podem se esolvidos a pai das equações de Mawell: v 1. Lei de Gauss: φ. nda ˆ. Lei de Gauss paa o magneismo:

Leia mais

1. O movimento uniforme de uma partícula tem sua função horária representada no diagrama a seguir: e (m) t (s)

1. O movimento uniforme de uma partícula tem sua função horária representada no diagrama a seguir: e (m) t (s) . O moimeno uniforme de uma parícula em ua função horária repreenada no diagrama a eguir: e (m) - 6 7 - Deerminar: a) o epaço inicial e a elocidade ecalar; a função horária do epaço.. É dado o gráfico

Leia mais

NOTAS DE AULA ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA RETAS E PLANOS ERON E ISABEL

NOTAS DE AULA ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA RETAS E PLANOS ERON E ISABEL NOTAS DE AULA ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA RETAS E PLANOS ERON E ISABEL SALVADOR BA 7 EQUAÇÃO VETORIAL DA RETA EQUAÇÕES DA RETA DEF: Qualque eto não nulo paalelo a uma eta chama-e eto dieto dea

Leia mais

BLOCO Nº 2 JORNAIS, BOLETINS, PANFLETOS D a N º 1. H i n o N a c i o n a l e H i n o d a I n t e r n a c i o n a l? 0 1 C U T N a c i o n a l 2. M o d i f i c a ç õ e s d o E s t a t u t o p r o p o s

Leia mais

Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr.

Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr. UC - Goiás Cuso: Engenhaia Civil Disciplina: ecânica Vetoial Copo Docente: Geisa ies lano de Aula Leitua obigatóia ecânica Vetoial paa Engenheios, 5ª edição evisada, edinand. Bee, E. Russell Johnston,

Leia mais

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano Escola Secundáia/ da Sé-Lamego Ficha de Tabalho de Matemática Ano Lectivo 00/04 Geometia - Revisões º Ano Nome: Nº: Tuma: A egião do espaço definida, num efeencial otonomado, po + + = é: [A] a cicunfeência

Leia mais

II NÚMEROS RACIONAIS NÃO NEGATIVOS 3. FRAÇÕES DECIMAIS. PERCENTAGENS SIMPLIFICAÇÃO DE FRAÇÕES. FRAÇÃO IRREDUTÍVEL 42

II NÚMEROS RACIONAIS NÃO NEGATIVOS 3. FRAÇÕES DECIMAIS. PERCENTAGENS SIMPLIFICAÇÃO DE FRAÇÕES. FRAÇÃO IRREDUTÍVEL 42 ÍNDIE I NÚMEROS NTURIS 1. NÚMEROS NTURIS 4 2. DIÇÃO E SUTRÇÃO 6 3. MULTIPLIÇÃO 8 4. DIVISÃO 10 5. MÚLTIPLOS E DIVISORES 12 6. EXPRESSÕES LGÉRIS E PROLEMS 14 7. RITÉRIOS DE DIVISIILIDDE POR 2, 3, 4, 5,

Leia mais

5. Transformada de Laplace

5. Transformada de Laplace Sinai e Siema - 5. Tanfomada de Laplace A Tanfomada de Laplace é uma impoane feamena paa a eolução de equaçõe difeenciai. Também é muio úil na epeenação e análie de iema. É uma anfomação que faz um mapeameno

Leia mais

CÂMARA MUNICIPAL DE SANTO ANTÔNIO DA PLATINA - PR

CÂMARA MUNICIPAL DE SANTO ANTÔNIO DA PLATINA - PR JANEIRO 75 0 75 2 73 1440 0 1440 104 1336 7 0 7 5 2 119 0 119 1 118 293 0 293 11 282 225 0 225 5 220 2 0 2 0 2 116 0 116 4 112 Página 1 de 12 FEVEREIRO 73 0 73 2 71 1336 0 1336 385 951 2 0 2 2 0 118 0

Leia mais

CÂMARA MUNICIPAL DE SANTO ANTÔNIO DA PLATINA - PR. Planilha Controle de Estoque - Materiais de Limpeza - 2013 ESTOQUE ANTERIOR

CÂMARA MUNICIPAL DE SANTO ANTÔNIO DA PLATINA - PR. Planilha Controle de Estoque - Materiais de Limpeza - 2013 ESTOQUE ANTERIOR JANEIRO 20 0 20 1 19 13 0 13 0 13 0 5 5 0 5 16 0 16 1 15 17 0 17 0 17 5 0 5 2 3 20 0 20 2 18 107 0 107 5 102 59 0 59 1 58 23 0 23 1 22 215 0 215 7 208 60 0 60 1 59 5 0 5 0 5 5 0 5 1 4 Página 1 de 12 FEVEREIRO

Leia mais

5 Estudo analítico de retas e planos

5 Estudo analítico de retas e planos GA3X1 - Geometia Analítica e Álgeba Linea 5 Estudo analítico de etas e planos 5.1 Equações de eta Definição (Veto dieto de uma eta): Qualque veto não-nulo paalelo a uma eta chama-se veto dieto dessa eta.

Leia mais

MATEMÁTICA - 3o ciclo

MATEMÁTICA - 3o ciclo MATEMÁTICA - o ciclo Função afim e equação da eta ( o ano) Eecício de pova nacionai e tete intemédio. No efeencial otogonal e monomético, de oigem no ponto, da figua ao lado, etão epeentada a eta e. A

Leia mais

E nds. Electrostática. int erior. 1.4 Teorema de Gauss (cálculo de Campos). Teorema de Gauss.

E nds. Electrostática. int erior. 1.4 Teorema de Gauss (cálculo de Campos). Teorema de Gauss. lectomagnetismo e Óptica LTI+L 1ºSem 1 13/14 Pof. J. C. Fenandes http://eo-lec lec-tagus.ist.utl.pt/ lectostática 1.4 Teoema de Gauss (cálculo de Campos). ρ dv = O integal da densidade de caga dá a caga

Leia mais

O sistema constituído por um número infinito de partículas é vulgarmente designado por sólido.

O sistema constituído por um número infinito de partículas é vulgarmente designado por sólido. Capíulo CINEMÁTIC DE UM SISTEM DE PRTÍCULS. INTRODUÇÃO Po sisema de paículas, ou sisema de ponos maeiais, designa-se um conjuno finio ou infinio de paículas, de al modo que a disância ene qualque dos seus

Leia mais

Mecânica dos Fluidos 1 Capítulo 2. Luis Fernando Azevedo Laboratório de Engenharia de Fluidos DEM/PUC-Rio

Mecânica dos Fluidos 1 Capítulo 2. Luis Fernando Azevedo Laboratório de Engenharia de Fluidos DEM/PUC-Rio Mecânica dos Fluidos 1 Capíulo 2 Luis Fenando Azevedo Laboaóio de Engenhaia de Fluidos DEM/PUC-Rio A hipóese do meio conínuo Uma eoia complea paa o movimeno de fluidos deveia leva em consideação a esuua

Leia mais

Credenciamento Portaria MEC 3.613, de D.O.U

Credenciamento Portaria MEC 3.613, de D.O.U edenciamento Potaia ME 3.63, de 8..4 - D.O.U. 9..4. MATEMÁTIA, LIENIATURA / Geometia Analítica Unidade de apendizagem Geometia Analítica em meio digital Pof. Lucas Nunes Ogliai Quest(iii) - [8/9/4] onteúdos

Leia mais

Fazer: 2, 4, 6, 9, 12, 16, 18, 29, 33 e 35. y 60º. a) do ângulo de 27º 31 é. Geometria plana PARFOR

Fazer: 2, 4, 6, 9, 12, 16, 18, 29, 33 e 35. y 60º. a) do ângulo de 27º 31 é. Geometria plana PARFOR Geometia plana PRFOR Faze: 2, 4, 6, 9, 12, 16, 18, 29, 33 e 35. 1. Calcule o valo de e obevando a figua abaio: a) b) 3 15º 60º 5 15º 4 + 5º 2. Calcule a medida de na eguinte figua: a) b) 3 5º 3 + 20º +

Leia mais

Transmissão de calor

Transmissão de calor UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenhaia ansmissão de calo 3º ano Pof D. Engº Joge Nhambiu Aula. Equação difeencial de condução de calo Equação difeencial de condução de calo Dedução da equação

Leia mais

Caderno 2: 75 minutos. Tolerância: 15 minutos. Não é permitido o uso de calculadora.

Caderno 2: 75 minutos. Tolerância: 15 minutos. Não é permitido o uso de calculadora. Eame Final Nacional de Matemática A Pova 635 Época Especial Ensino Secundáio 018 1.º Ano de Escolaidade Deceto-Lei n.º 139/01, de 5 de julho Duação da Pova (Cadeno 1 + Cadeno ): 150 minutos. Toleância:

Leia mais

Ondas EM na interface de dielétricos

Ondas EM na interface de dielétricos Oda M a iefae de dieléio iuo de Fíia da USP Pof. Mafedo H. Tabaik quaçõe de Maxwell o váuo um meio om e ( ( Tabaik (3 4393-FUSP Tabaik (3 4393-FUSP ( quaçõe de Maxwell a foma iegal um meio om e d q d φ.

Leia mais

MAT1514 Matemática na Educação Básica

MAT1514 Matemática na Educação Básica MAT54 Matemática na Educação Básica TG7 Uma Intodução ao Cálculo de olumes Gabaito Demonste que o volume de um bloco etangula cujas medidas das aestas são númeos acionais é o poduto das tês dimensões esposta:

Leia mais

Aula 7 Círculos. Objetivos. Apresentar as posições relativas entre dois círculos. Determinar a medida de um ângulo inscrito.

Aula 7 Círculos. Objetivos. Apresentar as posições relativas entre dois círculos. Determinar a medida de um ângulo inscrito. ículos MÓDUL 1 - UL 7 ula 7 ículos bjetivos pesenta as posições elativas ente etas e cículos. pesenta as posições elativas ente dois cículos. Detemina a medida de um ângulo inscito. Intodução cículo é

Leia mais

Principais fórmulas. Capítulo 3. Desvio padrão amostral de uma distribuição de frequência: Escore padrão: z = Valor Média Desvio padrão σ

Principais fórmulas. Capítulo 3. Desvio padrão amostral de uma distribuição de frequência: Escore padrão: z = Valor Média Desvio padrão σ Picipais fómulas De Esaísica aplicada, 4 a edição, de Laso e Fabe, 00 Peice Hall Capíulo Ampliude dos dados Lagua da classe úmeo de classes (Aedode paa cima paa o póimo úmeo coveiee Poo médio (Limie ifeio

Leia mais

Objetivo Estudo do efeito de sistemas de forças não concorrentes.

Objetivo Estudo do efeito de sistemas de forças não concorrentes. Univesidade edeal de lagoas Cento de Tecnologia Cuso de Engenhaia Civil Disciplina: Mecânica dos Sólidos 1 Código: ECIV018 Pofesso: Eduado Nobe Lages Copos Rígidos: Sistemas Equivalentes de oças Maceió/L

Leia mais

ESTUDO DAS CURVAS EM R 3

ESTUDO DAS CURVAS EM R 3 Auor: JORGE MAUEL MOEIRO LOPES ESUDO DAS CURVAS EM R - Uma inrodução - Licenciaura em Maemáica «rabalho cieníico apreenado no ISE como requiio parcial para a obenção do grau de Licenciaura em Maemáica

Leia mais

Escoamentos Compressíveis. Capítulo 06 Forma diferencial das equações de conservação para escoamentos invíscidos

Escoamentos Compressíveis. Capítulo 06 Forma diferencial das equações de conservação para escoamentos invíscidos Escoamenos Compessíveis Capíulo 06 Foma difeencial das equações de consevação paa escoamenos invíscidos 6. Inodução A análise de poblemas na dinâmica de fluidos eque ês passos iniciais: Deeminação de um

Leia mais

PROCESSO SELETIVO UFES 2013

PROCESSO SELETIVO UFES 2013 UNIESIDADE FEDEAL DO ESPÍIO SANO OMISSÃO OODENADOA DO ESIBULA POESSO SELEIO UFES 0 As bacas laboaoas sam ob a maioia os caiaos sosas como as u sgum No ao aa a coção as ovas ouas sosas ambém oão s cosiaas

Leia mais

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 1. Conceitos Geométricos Básicos. Oitavo Ano. Prof. Ulisses Lima Parente

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 1. Conceitos Geométricos Básicos. Oitavo Ano. Prof. Ulisses Lima Parente Mateial Teóico - Módulo Elemento áico de Geometia Plana - Pate 1 Conceito Geomético áico itavo no Pof. Ulie Lima Paente 1 Conceito pimitivo ideia de ponto, eta e plano apaecem natualmente quando obevamo

Leia mais