Para quantificar a variabilidade de um conjunto de dados ou medidas é que se usam medidas de dispersão. Vamos estudar algumas delas nesta aula.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Para quantificar a variabilidade de um conjunto de dados ou medidas é que se usam medidas de dispersão. Vamos estudar algumas delas nesta aula."

Transcrição

1 Probabldade e Etatítca I Antono Roque Aula Medda de Dperão A medda de tendênca central não ão ufcente para e caracterzar um conjunto de dado. O motvo é que ete varação na natureza, to é, dado que venham de uma mema população não erão empre gua. Além do, memo medda feta de um memo objeto ou ujeto (pene na medda da altura de uma peoa, por eemplo) etarão ujeta à precão do ntrumento de medda, to é, poderão varar dentro do lmte de precão do ntrumento. Para quantfcar a varabldade de um conjunto de dado ou medda é que e uam medda de dperão. Vamo etudar alguma dela neta aula. A Ampltude Total do Dado A ampltude total do dado de uma amotra é a dferença entre o maor e o menor número da amotra. Por eemplo, para o conjunto de valore {, 3, 4,,, 7, 7, 9, 9, 0, } a ampltude total é 0. Já para o htograma abao, a ampltude total do dado é ote que eta ampltude fo calculada como a dferença entre o ponto médo da últma e da prmera clae.

2 Probabldade e Etatítca I Antono Roque Aula A ampltude total do dado dá uma vão groera da varação, ou dperão, do dado. o entanto, em algun cao é jutamente eta vão groera obre dperão que e quer. Por eemplo, uma peoa de féra no eteror e que pretende alugar um carro pode etar ntereada em aber qua o valore mámo e mínmo que uma multa de trânto pode ter no paí para onde ela va. Outro eemplo: o(a) dono(a) de uma loja pode querer aber qual o produto ma caro e qual o ma barato que ele(a) tem à venda. O Devo Médo, o Devo Padrão e a Varânca O devo médo de um conjunto de dado ndca quão dtante em méda etão o dado ndvdua em relação à méda artmétca do grupo. Conderemo a egunte tabela. o do rato Ganho de peo para uma amotra de e rato com deta uplementar Ganho de peo ( ) (grama) ( ) ( ) ( ) A partr do dado da egunda coluna calcula-e a méda ( ). A dferença entre um valor da amotra e a méda do valore da amotra é chamada de devo. O devo do -émo elemento é defndo por empre nula:. A oma do devo do elemento de uma amotra é ( ).. 0

3 Probabldade e Etatítca I Antono Roque Aula Ete fato etá ndcado pela tercera coluna da tabela acma. a quarta coluna etão ltado o valore aboluto do devo. A oma dee valore aboluto dvdda pelo total de dado é o devo médo: DM 8,3 g. Ete reultado quer dzer que, em méda, o dado etão,3 grama afatado do valor médo do grupo, que vale 3 grama. O devo médo é muto pouco uado e ó aparece aqu como artfíco ddátco para ajudar na apreentação de uma medda mlar, eta m batante uada, o devo padrão. Para obter o devo padrão da amotra, omamo o quadrado do devo, ao nvé do eu valore em módulo, e dvdmo o reultado por (-). O valor obtdo é um tpo de méda do quadrado do devo, a qual é chamada de varânca. Como a varânca é uma oma de quadrado, ela é eprea na undade da varável medda ao quadrado (no cao, grama ao quadrado). Para voltarmo à undade orgna da varável medda (em o quadrado), temo que tomar a raz quadrada da varânca. A raz potva da varânca é chamada de devo padrão. A varânca de uma amotra é degnada por e o devo padrão por : ( ) 5 3, grama ; +,79 grama. Para facltar o cálculo, pode-e reecrever a fórmula para o devo padrão atravé da propredade da omatóra: ( ) ( + ) + 3

4 Probabldade e Etatítca I Antono Roque Aula Oberve que eta fórmula para o cálculo do devo padrão requer apena o conhecmento do valore do dado,, e do eu quadrado,. Sendo am, o únco elemento que precam er ltado na tabela de freqüênca ão o valore do dado e o valore do eu quadrado: o do Rato Ganho de Peo ( ) (g) (g ) A partr deta tabela, o cálculo da varânca e do devo padrão é dreto: ( ),79 g. 3, 3, O devo padrão é uma medda de dperão. Quando temo do conjunto de dado e o prmero tem uma varação em torno da méda menor do que a do egundo, o devo padrão do prmero conjunto erá menor que o do egundo conjunto.

5 Probabldade e Etatítca I Antono Roque Aula A manera como o devo padrão mede dperão é ma ou meno a mema do devo médo, to é, medndo o afatamento médo do dado em relação à méda do conjunto. A dferença é que ao tomar o quadrado do devo, o devo padrão faz uma epéce de méda ponderada dee devo, po o devo maore entram na oma com peo maore que o devo menore. O devo padrão, conforme fo defndo, é o chamado devo padrão amotral. Ele é obtdo tomando-e a raz quadrada da dvão da oma do quadrado do devo por (-), o número de elemento na amotra meno um. Ete uma outra defnção de devo padrão, válda para quando etamo trabalhando com uma população, ou eja, com o conjunto total de valore endo etudado. ete cao, o devo padrão populaconal é defndo como a raz quadrada da dvão da oma do quadrado do devo por, o número total de dado na população, ou ( ) σ, σ. ote que, para o cao do devo padrão populaconal, uou-e a letra grega σ (gma) para repreentá-lo. Eta é a convenção adotada em etatítca: o devo padrão populaconal é denotado por σ e o devo padrão amotral é denotado por. De manera geral, ua-e letra do alfabeto grego para repreentar varáve relatva a uma população e letra do alfabeto latno para repreentar varáve relatva a uma amotra (por eemplo, ua-e µ para repreentar a méda de uma população e para repreentar a méda de uma amotra). 5

6 Probabldade e Etatítca I Antono Roque Aula Alguém podera perguntar porque o devo padrão fo defndo de um jeto para amotra e de outro para populaçõe. O motvo para to ó erá vto ma tarde. Por ora, podemo dzer que e quermo etmar o devo padrão de uma população a partr do cálculo do devo padrão de uma amotra retrada da população, o devo padrão da amotra calculado dvdndo-e por (-) erá um melhor etmador do verdadero devo padrão da população, σ, do que era o devo padrão da amotra calculado dvdndo-e por. O Coefcente de Varação Em muto cao é mportante comparar a varabldade relatva de muto conjunto de dado. Ito não pode er feto apena pelo eame do devo padrõe do conjunto de dado, po o conjunto podem conter dado com magntude bem dferente ou undade dferente. Para fazer tal tpo de comparação, é cotume eprear o devo padrão como uma porcentagem da méda artmétca. A varável defnda a partr deta epreão é chamada de coefcente de varação: CV 00 (%). Eemplo: Para um grupo de ndvíduo, a temperatura corporal méda é gual a 3,8 C com devo padrão de 0,7 C e a pulação méda é gual a 78 batda/mn com devo padrão de 9 batda/mn. Portanto, o coefcente de varação para a temperatura e a pulação do ndvíduo ão: 0,7 9 CVtemp. 00 0,7%; CVpulo 00,5% 3,8 78 Vemo então que a varabldade relatva da pulação é bem maor que a varabldade relatva da temperatura. O coefcente de dperão é útl quando e quer analar como a dperão de um conjunto de dado vara no tempo, dado que a méda do dado também vara. Eemplo: Suponhamo que uma pequa tenha do feta comparando-e o aumento no preço de um cafeznho em e dferente bare da cdade entre 994 e 000 e o reultado ejam o dado abao (valore em rea).

7 Probabldade e Etatítca I Antono Roque Aula Bar A B C D E F CV 994 0,30 0,40 0,40 0,50 0,0 0,70 0,48 0,5 30,45% 000 0,0 0,80 0,80,00,0,40 0,97 0,9 30,45% ote que todo o valore dobraram de 994 para 000. O devo padrão para a amotra também dobrou, ndcando que a dperão do valore aumentou. Porém, o preço médo do cafeznho também dobrou, de manera que o coefcente de varação permaneceu contante. Podemo dzer que, de manera aboluta, a dperão do preço do cafeznho dobrou entre 994 e 000; porém, de manera relatva, ela permaneceu contante. O Ecore Padrão Uma medda de dperão relatva uada para caracterzar a varação de um dado em relação à meda é o chamado ecore padrão z, ou mplemente ecore z. Ele dá o devo de um dado em relação à méda meddo em undade de devo padrão. Seja um conjunto de dado com méda e devo padrão. O ecore z do dado é defndo por z. Eemplo: Suponha que do departamento dferente de uma emprea por eemplo, de marketng e de recuro humano façam avalaçõe do eu funconáro. Sejam a nota méda e o devo padrõe da avalaçõe dada abao: Marketng Recuro Humano,5 5, 5 M,4 0, 8 M RH RH Suponha que um funconáro do Departamento de Marketng tenha recebdo nota 8 e que um funconáro do Departamento de Recuro Humano tenha recebdo nota 7. Em termo aboluto, o funconáro do Departamento de Marketng teve nota ma alta, ma em termo relatvo (ou eja, em comparação com o funconáro do eu própro 7

8 Probabldade e Etatítca I Antono Roque Aula departamento) o funconáro do Departamento de Recuro Humano teve um deempenho melhor, conforme atetado pelo ecore z abao: Funconáro do Departamento de Funconáro do Departamento de RH Marketng 8,0,5 7,0 5,5 z FM,07 z FRH, 875,4 0,8 O Devo Padrão para Dado Agrupado Am como no cao do cálculo da méda e da medana, quando ó temo aceo a uma tabela de freqüênca a fórmula para o cálculo do devo padrão paa a er eprea em termo de uma apromação, na qual o ponto médo do ntervalo de clae ão uado como e foem o dado verdadero. Portanto, o que era, paa a er agora: f ( PM ) f PM. Eemplo: Em um etudo para e verfcar a efcáca de um novo anetéco, aplcarame vára doe do anetéco a 8 anma e medram-e o tempo de duração da anetea. O reultado foram colocado na tabela a egur. Calcule o devo padrão do valore. 8

9 Probabldade e Etatítca I Antono Roque Aula Tempo de duração do efeto anetéco (mn) Ponto médo do ntervalo (mn) PM Freqüênca f f ( ) PM f PM 5 0 7,5 7,5 5,5 0 5,5 5 3, ,5 35,5 0 5, ,5 5 37,5 378,5 Soma ,5 Uando a fórmula para o devo padrão para dado agrupado, temo: ` f ( PM ) f PM , ,99 5,83 mn. Eemplo Geral (medda de tendênca central e de dperão): Um etudo para e determnar o perfl da renda do unvertáro paultano reultou na egunte tabela. Faa de Renda Eata Humana Bológca Até al. mínmo 9% 9% 44% a 3 al. mínmo 8% 8% 4% 3 a 5 al. mínmo 9% % % Acma de 5 al. mínmo 4% 38% % Fonte: Perfl Sóco-Econômco do Unvertáro Paulta. Fórum do Joven Empreáro ( Vamo calcular a méda, a medana, a moda e o devo padrão para o unvertáro da área de humana. Deamo o cálculo para o unvertáro da área de eata e bológca como eercíco para caa. 9

10 Probabldade e Etatítca I Antono Roque Aula A prmera coa que devemo fazer para calcular o dado peddo é reecrever a tabela acma colocando a nformação que no nterea, como ponto médo, freqüênca acumulada etc. Devemo notar que a tabela não no dá o número de etudante pequado, ou eja, o valor de. Portanto, não teremo como calcular o devo padrão uando a fórmula para uma amotra, po para to teríamo que conhecer o valor de (-). Porém, e upormo que o número de etudante na amotra fo muto grande to não deverá cauar maore problema, po dvõe por ou por (-) reultarão em valore apromadamente gua. ote que embora o valor de eja deconhecdo, o valore da méda e do devo padrão podem er calculado uando-e a fórmula ecrta em termo da freqüênca relatva f r f/. Outro ponto mportante obre o qual devemo tomar uma decão ante de montar a nova tabela é a defnção de qual erá o ponto médo do últmo ntervalo uado. ote que ete ntervalo fo defndo como acma de 5 al. mínmo. Portanto, ó conhecemo o eu lmte nferor. O lmte uperor, ou eja, a maor renda de um unvertáro, não é fornecdo. Ete é um eemplo em que a ampltude total do dado não fo conderada relevante por quem fez a pequa. o entanto, para calcularmo a méda e o devo padrão temo que ter um valor para o ponto médo do últmo ntervalo. Em um cao como ete, a únca alternatva é etmar um valor para o lmte uperor do últmo ntervalo. Uma tal etmatva requer bom eno, po o valor uperor etmado não pode er eageradamente alto (lembre-e que a méda e o devo padrão ão batante nfluencado por valore muto alto). Para o cao em quetão, vamo uar como lmte uperor do últmo ntervalo o valor de 0 aláro mínmo. Pode er que etam unvertáro com renda acma dete valor (com certeza etem), ma etamo upondo que ele não ão muto e não etamo querendo dar um peo muto grande a ele. Procure fazer, como eercíco para caa, ete memo eercíco uando valore dferente para o lmte uperor do últmo ntervalo; por eemplo 7 aláro mínmo, 0 aláro mínmo e 30 aláro mínmo. Uma vez feta a defnçõe acma, vamo agora montar a tabela de dado para o etudante de humana. 0

11 Probabldade e Etatítca I Antono Roque Aula Faa de P.M. f R f R.Ac. f R P.M. f R (P.M.) Renda (.m.) 0 0,5 0,9 0,9 0,09 0,05 3,0 0,8 0,37 0,3 0, ,0 0, 0,58 0,84 3, ,5 0,38 0,9,85,37 Soma 0,9 4,4 5,50 O valor da méda é o própro valor da oma da coluna de f R P.M.: f R.P.M. 4,4.m. O valor da medana é o valor correpondente à freqüênca relatva acumulada de 0,50. ote, porém, que a coluna de freqüênca acumulada no dá um total de 0,9 (por algum motvo que não etá eplcado no te de onde o dado foram retrado). ete cao, o valor da medana deve correponder à freqüênca acumulada de 0,9/ 0,48. Portanto,.(0,48 0,37) MD ,05 4,05.m. 0, ote que ete valor da medana é, para o cao em quetão, uma medda ma eata de tendênca central do que o valor da méda calculado anterormente. Para calcular a méda, fzemo uma upoção obre o valor do etremo uperor da últma clae, o que pode ter nduzdo algum erro; já para o cálculo da medana, ete valor uperor não teve qualquer nfluênca. A clae modal é a clae de maor freqüênca, ou eja acma de 5.m.. Já o devo padrão pode er calculado pela fórmula: f R.(P.M.) ( f R.P.M. ) 5,50 ( 4,4) 8,3,89.m. 8,3.m.

Para quantificar a variabilidade de um conjunto de dados ou medidas é que se usam medidas de dispersão. Vamos estudar algumas delas nesta aula.

Para quantificar a variabilidade de um conjunto de dados ou medidas é que se usam medidas de dispersão. Vamos estudar algumas delas nesta aula. Etatítca Aplcada à Educação Antono Roque Aula 5 Medda de Dperão A medda de tendênca central não ão ufcente para e caracterzar um conjunto de dado. O motvo é que ete varação na natureza, to é, dado que

Leia mais

PROBABILIDADE E ESTATÍSTICA UNIDADE IV - MEDIDAS DE DISPERSÃO OU VARIAÇÃO

PROBABILIDADE E ESTATÍSTICA UNIDADE IV - MEDIDAS DE DISPERSÃO OU VARIAÇÃO PROBABILIDADE E ESTATÍSTICA UNIDADE IV - MEDIDAS DE DISPERSÃO OU VARIAÇÃO 0 INTRODUÇÃO A medda de varação ou dperão, avalam a dperão ou a varabldade da eqüênca numérca em anále, ão medda que fornecem nformaçõe

Leia mais

www.obconcursos.com.br/portal/v1/carreirafiscal

www.obconcursos.com.br/portal/v1/carreirafiscal www.obconcursos.com.br/portal/v1/carrerafscal Moda Exercíco: Determne o valor modal em cada um dos conjuntos de dados a segur: X: { 3, 4,, 8, 8, 8, 9, 10, 11, 1, 13 } Mo 8 Y: { 10, 11, 11, 13, 13, 13,

Leia mais

UNIDADE IV MEDIDAS DE DISPERSÃO OU VARIAÇÃO

UNIDADE IV MEDIDAS DE DISPERSÃO OU VARIAÇÃO UNIDADE IV MEDIDAS DE DISPERSÃO OU VARIAÇÃO Conteúdo Programátco Cálculo da varânca Cálculo e nterpretação do Devo-padrão VARIÂNCIA E DESVIO-PADRÃO A medda de varação ou dperão, avalam a varabldade da

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso de Admnstração em Gestão Públca Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos uns dos

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso Superor de tecnólogo em Gestão Ambental Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

AULA 4. Segundo Quartil ( Q observações são menores que ele e 50% são maiores.

AULA 4. Segundo Quartil ( Q observações são menores que ele e 50% são maiores. Estatístca Aplcada à Engenhara AULA 4 UNAMA - Unversdade da Amazôna.8 MEDIDA EPARATRIZE ão valores que separam o rol (os dados ordenados) em quatro (quarts), dez (decs) ou em cem (percents) partes guas.

Leia mais

LCE2112 Estatística Aplicada às Ciências Sociais e Ambientais 2010/02. Exemplos de revisão

LCE2112 Estatística Aplicada às Ciências Sociais e Ambientais 2010/02. Exemplos de revisão LCE Etatítca Aplcada à Cêca Soca e Ambeta 00/0 Eemplo de revão Varável Aleatóra Cotíua Eemplo: Para e etudar o comportameto de uma plata típca de dua, a Hydrocotlle p., quato ao eu deevolvmeto, medu-e

Leia mais

Estatística stica Descritiva

Estatística stica Descritiva AULA1-AULA5 AULA5 Estatístca stca Descrtva Prof. Vctor Hugo Lachos Davla oo que é a estatístca? Para mutos, a estatístca não passa de conjuntos de tabelas de dados numércos. Os estatístcos são pessoas

Leia mais

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas PROGRAMA DE PÓS-GRADUAÇÃO EM EGEHARIA DE TRASPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMETO DE EGEHARIA CIVIL ECV DISCIPLIA: TGT41006 FUDAMETOS DE ESTATÍSTICA 3ª AULA: ESTATÍSTICA DESCRITIVA Meddas umércas

Leia mais

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas 3.6. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

Introdução e Organização de Dados Estatísticos

Introdução e Organização de Dados Estatísticos II INTRODUÇÃO E ORGANIZAÇÃO DE DADOS ESTATÍSTICOS 2.1 Defnção de Estatístca Uma coleção de métodos para planejar expermentos, obter dados e organzá-los, resum-los, analsá-los, nterpretá-los e deles extrar

Leia mais

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00)

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00) Bussab&Morettn Estatístca Básca Capítulo 4 Problema. (b) Grau de Instrução Procedênca º grau º grau Superor Total Interor 3 (,83) 7 (,94) (,) (,33) Captal 4 (,) (,39) (,) (,3) Outra (,39) (,7) (,) 3 (,3)

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 16 Prof. Luz Alexandre Peternell CAPÍTULO - Estatístca Descrtva Exercícos Propostos 1) Consderando os dados amostras abaxo, calcular: méda artmétca, varânca, desvo padrão, erro padrão da méda e coefcente

Leia mais

Análise Descritiva com Dados Agrupados

Análise Descritiva com Dados Agrupados Análse Descrtva com Dados Agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas descrtvas

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

IV - Descrição e Apresentação dos Dados. Prof. Herondino

IV - Descrição e Apresentação dos Dados. Prof. Herondino IV - Descrção e Apresentação dos Dados Prof. Herondno Dados A palavra "dados" é um termo relatvo, tratamento de dados comumente ocorre por etapas, e os "dados processados" a partr de uma etapa podem ser

Leia mais

? Isso é, d i= ( x i. . Percebeu que

? Isso é, d i= ( x i. . Percebeu que Etatítca - Devo Padrão e Varânca Preparado pelo Prof. Antono Sale,00 Suponha que tenhamo acompanhado a nota de quatro aluno, com méda 6,0. Aluno A: 4,0; 6,0; 8,0; méda 6,0 Aluno B:,0; 8,0; 8,0; méda 6,0

Leia mais

CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO 2 DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogério Rodrigues

CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO 2 DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogério Rodrigues CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogéro Rodrgues I) TABELA PRIMITIVA E DISTRIBUIÇÃO DE FREQÜÊNCIA : No processo de amostragem, a forma de regstro mas

Leia mais

As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações.

As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações. 1. TABELA DE DISTRIBUIÇÃO DE FREQÜÊNCIA As tabelas resumem as normações obtdas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de normações. As tabelas sem perda de normação

Leia mais

Estatística I Licenciatura MAEG 2006/07

Estatística I Licenciatura MAEG 2006/07 Estatístca I Lcencatura MAEG 006/07 AMOSTRAGEM. DISTRIBUIÇÕES POR AMOSTRAGEM.. Em determnada unversdade verfca-se que 30% dos alunos têm carro. Seleccona-se uma amostra casual smples de 0 alunos. a) Qual

Leia mais

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma Redução dos Dados Júlo Osóro Meddas Característcas da Dstrbução Tendênca Central (Localzação) Varação (Dspersão) Forma 1 Meddas Característcas da Dstrbução Meddas Estatístcas Tendênca Central Dspersão

Leia mais

METROLOGIA E ENSAIOS

METROLOGIA E ENSAIOS METROLOGIA E ENSAIOS Incerteza de Medção Prof. Aleandre Pedott pedott@producao.ufrgs.br Freqüênca de ocorrênca Incerteza da Medção Dstrbução de freqüênca das meddas Erro Sstemátco (Tendênca) Erro de Repettvdade

Leia mais

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos.

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos. Meddas de Dspersão e Assmetra Desvo Médo Varânca Desvo Padrão Meddas de Assmetra Coefcente de Assmetra Exemplos lde 1 de 16 Meddas de Dspersão - Méda ervem para verfcação e representatvdade das meddas

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

Estabilidade para Pequenas Perturbações e Dimensionamento de Estabilizadores. Mestrado em Engenharia Electrotécnica e de Computadores _

Estabilidade para Pequenas Perturbações e Dimensionamento de Estabilizadores. Mestrado em Engenharia Electrotécnica e de Computadores _ Etabldade para Pequena Perturbaçõe e Dmenonamento de Etablzadore Metrado em Engenhara Electrotécnca e de Computadore _ Dnâmca e Etabldade de Stema de Energa J. A. Peça Lope Conceto Teórco Repreentação

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

Introdução à Análise de Dados nas medidas de grandezas físicas

Introdução à Análise de Dados nas medidas de grandezas físicas Introdução à Análse de Dados nas meddas de grandezas físcas www.chem.wts.ac.za/chem0/ http://uregna.ca/~peresnep/ www.ph.ed.ac.uk/~td/p3lab/analss/ otas baseadas nos apontamentos Análse de Dados do Prof.

Leia mais

FAAP APRESENTAÇÃO (1)

FAAP APRESENTAÇÃO (1) ARESENTAÇÃO A Estatístca é uma cênca que organza, resume e smplfca nformações, além de analsá-las e nterpretá-las. odemos dvdr a Estatístca em três grandes campos:. Estatístca Descrtva- organza, resume,

Leia mais

Ecologia Geral Riqueza e Diversidade de Espécies

Ecologia Geral Riqueza e Diversidade de Espécies Ecologa Geral Rqueza e Dverdade de Epéce Prof. Wllam Cota Rodrgue Pó-Doutor em Entomologa/Ecologa Unverdade Severno Sombra Tranparênca Extra I 1 Conceto A dverdade de epéce refere-e à varedade de epéce

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

CAPÍTULO 10 Modelagem e resposta de sistemas discretos

CAPÍTULO 10 Modelagem e resposta de sistemas discretos CAPÍTULO 10 Modelagem e repota de itema dicreto 10.1 Introdução O itema dicreto podem er repreentado, do memo modo que o itema contínuo, no domínio do tempo atravé de uma tranformação, nete cao a tranformada

Leia mais

13 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL

13 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL 3 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL Como vto em amotragem o prmero bmetre, etem fatore que fazem com que a obervação de toda uma população em uma pequa eja mpratcável, muta veze em vrtude

Leia mais

Probabilidade e Estatística. Correlação e Regressão Linear

Probabilidade e Estatística. Correlação e Regressão Linear Probabldade e Estatístca Correlação e Regressão Lnear Correlação Este uma correlação entre duas varáves quando uma delas está, de alguma forma, relaconada com a outra. Gráfco ou Dagrama de Dspersão é o

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

Regressão e Correlação Linear

Regressão e Correlação Linear Probabldade e Estatístca I Antono Roque Aula 5 Regressão e Correlação Lnear Até o momento, vmos técncas estatístcas em que se estuda uma varável de cada vez, estabelecendo-se sua dstrbução de freqüêncas,

Leia mais

Grande Conjuntos de Dados. Organização; Resumo; Apresentação. Amostra ou População. Defeitos em uma linha de produção

Grande Conjuntos de Dados. Organização; Resumo; Apresentação. Amostra ou População. Defeitos em uma linha de produção Prof. Lorí Val, Dr. val@pucr.br http://www.pucr.br/~val/ Grade Cojuto de Dado Orgazação; Reumo; Apreetação. Amotra ou População Defeto em uma lha de produção Lacado Deeho Torto Deeho Torto Lacado Torto

Leia mais

Covariância e Correlação Linear

Covariância e Correlação Linear TLF 00/ Cap. X Covarânca e correlação lnear Capítulo X Covarânca e Correlação Lnear 0.. Valor médo da grandeza (,) 0 0.. Covarânca na propagação de erros 03 0.3. Coecente de correlação lnear 05 Departamento

Leia mais

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma:

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma: Professora Janete Perera Amador 1 8 Meddas Descrtvas Vmos anterormente que um conjunto de dados pode ser resumdo através de uma dstrbução de freqüêncas, e que esta pode ser representada através de uma

Leia mais

Caderno de Exercícios Resolvidos

Caderno de Exercícios Resolvidos Estatístca Descrtva Exercíco 1. Caderno de Exercícos Resolvdos A fgura segunte representa, através de um polígono ntegral, a dstrbução do rendmento nas famílas dos alunos de duas turmas. 1,,75 Turma B

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

37 [C] Verdadeira. Veja justificativa do item [B]. Moda = 8

37 [C] Verdadeira. Veja justificativa do item [B]. Moda = 8 Resposta da questão 1: [C] Calculando:,5 + 10 + 8 + 9,4 + 8 +,4 + x + 7,4 = 8, 8,5 + 10 + 8 + 9,4 + 8 +,4 + x + 7,4 = 5, x = 9,9 Moda = 8 8+ 8 Medana = = 8,5 + 10 + 8 + 9,4 + 8 +,4 + 7,4 Méda das outras

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Constata-se, freqüentemente, a estênca de uma relação entre duas (ou mas) varáves. Se tal relação é de natureza quanttatva, a correlação é o nstrumento adequado para descobrr e medr

Leia mais

Controle Estatístico de Qualidade. Capítulo 8 (montgomery)

Controle Estatístico de Qualidade. Capítulo 8 (montgomery) Controle Estatístco de Qualdade Capítulo 8 (montgomery) Gráfco CUSUM e da Méda Móvel Exponencalmente Ponderada Introdução Cartas de Controle Shewhart Usa apenas a nformação contda no últmo ponto plotado

Leia mais

Confrontando Resultados Experimentais e de Simulação

Confrontando Resultados Experimentais e de Simulação Confrontando Reultado Experimentai e de Simulação Jorge A. W. Gut Departamento de Engenharia Química Ecola Politécnica da Univeridade de São Paulo E mail: jorgewgut@up.br Um modelo de imulação é uma repreentação

Leia mais

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para Objetvos da aula Essa aula objetva fornecer algumas ferramentas descrtvas útes para escolha de uma forma funconal adequada. Por exemplo, qual sera a forma funconal adequada para estudar a relação entre

Leia mais

Introdução aos Conversores CC-CC

Introdução aos Conversores CC-CC INIUO E ELERÔNICA E POÊNCIA epartamento de Engenhara Elétrca Centro ecnológco UNIERIAE FEERAL E ANA CAARINA Introdução ao Converore CCCC Reponável pelo Etudo: Clóv Antôno Petry (INEP/EEL UFC) Orentador:

Leia mais

7. Resolução Numérica de Equações Diferenciais Ordinárias

7. Resolução Numérica de Equações Diferenciais Ordinárias 7. Resolução Numérca de Equações Dferencas Ordnáras Fenômenos físcos em dversas áreas, tas como: mecânca dos fludos, fluo de calor, vbrações, crcutos elétrcos, reações químcas, dentre váras outras, podem

Leia mais

4.1. Medidas de Posição da amostra: média, mediana e moda

4.1. Medidas de Posição da amostra: média, mediana e moda 4. Meddas descrtva para dados quanttatvos 4.1. Meddas de Posção da amostra: méda, medana e moda Consdere uma amostra com n observações: x 1, x,..., x n. a) Méda: (ou méda artmétca) é representada por x

Leia mais

CAPÍTULO 6 - Testes de significância

CAPÍTULO 6 - Testes de significância INF 16 CAPÍTULO 6 - Tete de ignificância Introdução Tete de ignificância (também conhecido como Tete de Hipótee) correpondem a uma regra deciória que no permite rejeitar ou não rejeitar uma hipótee etatítica

Leia mais

Escolha do Consumidor sob condições de Risco e de Incerteza

Escolha do Consumidor sob condições de Risco e de Incerteza 9/04/06 Escolha do Consumdor sob condções de Rsco e de Incerteza (Capítulo 7 Snyder/Ncholson e Capítulo Varan) Turma do Prof. Déco Kadota Dstnção entre Rsco e Incerteza Na lteratura econômca, a prmera

Leia mais

Sistemas de Filas: Aula 5. Amedeo R. Odoni 22 de outubro de 2001

Sistemas de Filas: Aula 5. Amedeo R. Odoni 22 de outubro de 2001 Sstemas de Flas: Aula 5 Amedeo R. Odon 22 de outubro de 2001 Teste 1: 29 de outubro Com consulta, 85 mnutos (níco 10:30) Tópcos abordados: capítulo 4, tens 4.1 a 4.7; tem 4.9 (uma olhada rápda no tem 4.9.4)

Leia mais

Quantas equações existem?

Quantas equações existem? www2.jatai.ufg.br/oj/index.php/matematica Quanta equaçõe exitem? Rogério Céar do Santo Profeor da UnB - FUP profeorrogeriocear@gmail.com Reumo O trabalho conite em denir a altura de uma equação polinomial

Leia mais

Um exemplo de Análise de Covariância. Um exemplo de Análise de Covariância (cont.)

Um exemplo de Análise de Covariância. Um exemplo de Análise de Covariância (cont.) Um exemplo de Análie de Covariância A Regreão Linear e a Análie de Variância etudada até aqui, ão cao particulare do Modelo Linear, que inclui também a Análie de Covariância Em qualquer deta trê ituaçõe

Leia mais

Distribuição de Massa Molar

Distribuição de Massa Molar Químca de Polímeros Prof a. Dr a. Carla Dalmoln carla.dalmoln@udesc.br Dstrbução de Massa Molar Materas Polmércos Polímero = 1 macromolécula com undades químcas repetdas ou Materal composto por númeras

Leia mais

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF)

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF) PMR 40 - Mecânca Computaconal CAPÍTULO VI Introdução ao Método de Elementos Fntos (MEF). Formulação Teórca - MEF em uma dmensão Consderemos a equação abao que representa a dstrbução de temperatura na barra

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

Análise de Variância. Comparação de duas ou mais médias

Análise de Variância. Comparação de duas ou mais médias Análse de Varânca Comparação de duas ou mas médas Análse de varânca com um fator Exemplo Um expermento fo realzado para se estudar dabetes gestaconal. Desejava-se avalar o comportamento da hemoglobna (HbA)

Leia mais

PROVA DE MATEMÁTICA DO VESTIBULAR 2013 DA UNICAMP-FASE 1. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA

PROVA DE MATEMÁTICA DO VESTIBULAR 2013 DA UNICAMP-FASE 1. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA PROVA DE MATEMÁTICA DO VESTIBULAR 03 DA UNICAMP-FASE. PROFA. MARIA ANTÔNIA C. GOUVEIA QUESTÃO 37 A fgura abaxo exbe, em porcentagem, a prevsão da oferta de energa no Brasl em 030, segundo o Plano Naconal

Leia mais

TEXTO PARA DISCUSSÃO N o 1240

TEXTO PARA DISCUSSÃO N o 1240 TEXTO PARA DISCUSSÃO N o 1240 AVALIAÇÃO DE UMA PROXY PARA A IDADE DA FIRMA UTILIZANDO AMOSTRAGEM COMPLEXA Gutavo Cota Patrck Alve Mran Bttencourt Káta Araújo Hélyo Doyle Braíla, dezembro de 2006 TEXTO

Leia mais

Livro para a SBEA (material em construção) Edmundo Rodrigues 9. peneiras

Livro para a SBEA (material em construção) Edmundo Rodrigues 9. peneiras Livro para a SBEA (material em contrução) Edmundo Rodrigue 9 4.1. Análie granulométrica Granulometria, graduação ou compoição granulométrica de um agregado é a ditribuição percentual do eu divero tamanho

Leia mais

= n. Observando a fórmula para a variância, vemos que ela pode ser escrita como, i 2

= n. Observando a fórmula para a variância, vemos que ela pode ser escrita como, i 2 Etatítca II Atoo Roque Aula 4 O Coefcete de Correlação de Pearo O coefcete de correlação de Pearo é baeado a déa de varâca, dada o curo de Etatítca I Como vto aquele curo, quado temo uma amotra compota

Leia mais

Exercícios Resolvidos de Biofísica

Exercícios Resolvidos de Biofísica Exercício Reolvido de Biofíica Faculdade de Medicina da Univeridade de oimbra Exercício Reolvido de Biofíica Metrado ntegrado em Medicina MEMBRNS HOMOGÉNES Exercício 1. Numa experiência com uma membrana

Leia mais

ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de métodos

Leia mais

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS Varável Qualquer característca assocada a uma população Classfcação de varáves Qualtatva { Nomnal sexo, cor dos olhos Ordnal Classe

Leia mais

2 Incerteza de medição

2 Incerteza de medição 2 Incerteza de medção Toda medção envolve ensaos, ajustes, condconamentos e a observação de ndcações em um nstrumento. Este conhecmento é utlzado para obter o valor de uma grandeza (mensurando) a partr

Leia mais

01. Em porcentagem das emissões totais de gases do efeito estufa, o Brasil é o quarto maior poluidor, conforme a tabela abaixo:

01. Em porcentagem das emissões totais de gases do efeito estufa, o Brasil é o quarto maior poluidor, conforme a tabela abaixo: PROCESSO SELETIVO 7 RESOLUÇÃO MATEMÁTICA Rosane Soares Morera Vana, Luz Cláudo Perera, Lucy Tem Takahash, Olímpo Hrosh Myagak QUESTÕES OBJETIVAS Em porcentagem das emssões totas de gases do efeto estufa,

Leia mais

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos Despacho Econômco de Sstemas Termoelétrcos e Hdrotérmcos Apresentação Introdução Despacho econômco de sstemas termoelétrcos Despacho econômco de sstemas hdrotérmcos Despacho do sstema braslero Conclusões

Leia mais

UERJ CTC IME Departamento de Informática e Ciência da Computação 2 Cálculo Numérico Professora Mariluci Ferreira Portes

UERJ CTC IME Departamento de Informática e Ciência da Computação 2 Cálculo Numérico Professora Mariluci Ferreira Portes UERJ CTC IE Departameto de Iormátca e Cêca da Computação Udade I - Erros as apromações umércas. I. - Cosderações geras. Há váras stuações em dversos campos da cêca em que operações umércas são utlzadas

Leia mais

Experiência V (aulas 08 e 09) Curvas características

Experiência V (aulas 08 e 09) Curvas características Experênca (aulas 08 e 09) Curvas característcas 1. Objetvos 2. Introdução 3. Procedmento expermental 4. Análse de dados 5. Referêncas 1. Objetvos Como no expermento anteror, remos estudar a adequação de

Leia mais

Nestas notas será analisado o comportamento deste motor em regime permanente.

Nestas notas será analisado o comportamento deste motor em regime permanente. MOTO DE INDUÇÃO TIFÁSICO 8/0/006 Ivan Camargo Introdução O motor de indução trifáico correponde a, aproximadamente, 5 % da carga elétrica do Brail, ou eja, 50 % da carga indutrial que, por ua vez, correponde

Leia mais

INTRODUÇÃO AO CÁLCULO DE ERROS NAS MEDIDAS DE GRANDEZAS FÍSICAS

INTRODUÇÃO AO CÁLCULO DE ERROS NAS MEDIDAS DE GRANDEZAS FÍSICAS Físca Laboratoral Ano Lectvo 003/04 ITRODUÇÃO AO CÁLCULO DE ERROS AS MEDIDAS DE GRADEAS FÍSICAS. Introdução.... Erros de observação: erros sstemátcos e erros fortutos ou acdentas... 3. Precsão e rgor...3

Leia mais

Medidas de tendência central. Média Aritmética. 4ª aula 2012

Medidas de tendência central. Média Aritmética. 4ª aula 2012 Estatístca 4ª aula 2012 Meddas de tendênca central Ajudam a conhecer a analsar melhor as característcas de dados colhdos. Chamamos de meddas de tendênca central em decorrênca dos dados observados apresentarem

Leia mais

Capítulo 1. Exercício 5. Capítulo 2 Exercício

Capítulo 1. Exercício 5. Capítulo 2 Exercício UNIVERSIDADE FEDERAL DE GOIÁS CIÊNCIAS ECONÔMICAS ECONOMETRIA (04-II) PRIMEIRA LISTA DE EXERCÍCIOS Exercícos do Gujarat Exercíco 5 Capítulo Capítulo Exercíco 3 4 5 7 0 5 Capítulo 3 As duas prmeras demonstrações

Leia mais

TEORIA DA GERAÇÃO DE QUANTUM BITS EMARANHADOS NO CAMPO TEMPORAL

TEORIA DA GERAÇÃO DE QUANTUM BITS EMARANHADOS NO CAMPO TEMPORAL TEORIA DA GERAÇÃO DE QUANTUM BITS EMARANHADOS NO CAMPO TEMPORAL Cao Olndo de Mranda e Slva Júnor Inttuto de Cênca e Tecnologa,Unverdade Federal do Vale do Jequtnhonha e Mucur, 39100-000, Damantna MG, Bral

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ110 : Prncípos de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br Potencal químco, m potencal químco CQ110 : Prncípos de FQ Propredades termodnâmcas das soluções

Leia mais

ANÁLISE EXPLORATÓRIA DE DADOS

ANÁLISE EXPLORATÓRIA DE DADOS CENTRO DE CIÊNCIAS EXATAS CCE DEPARTAMENTO DE ESTATÍSTICA Curso de Especalzação Lato Sensu em Estatístca ANÁLISE EXPLORATÓRIA DE DADOS Professor: Dr. Waldr Medr medr@uel.br Londrna/Pr Março de 011 ÍNDICE

Leia mais

PROCEDIMENTO DE MERCADO AM.04 Cálculo de Votos e Contribuição

PROCEDIMENTO DE MERCADO AM.04 Cálculo de Votos e Contribuição PROCEDIMENTO DE MERCADO AM.04 Cálculo de Voto e Contribuição Reponável pelo PM: Acompanhamento do Mercado CONTROLE DE ALTERAÇÕES Verão Data Decrição da Alteração Elaborada por Aprovada por PM AM.04 - Cálculo

Leia mais

Rastreando Algoritmos

Rastreando Algoritmos Rastreando lgortmos José ugusto aranauskas epartamento de Físca e Matemátca FFCLRP-USP Sala loco P Fone () - Uma vez desenvolvdo um algortmo, como saber se ele faz o que se supõe que faça? esta aula veremos

Leia mais

O problema da superdispersão na análise de dados de contagens

O problema da superdispersão na análise de dados de contagens O problema da superdspersão na análse de dados de contagens 1 Uma das restrções mpostas pelas dstrbuções bnomal e Posson, aplcadas usualmente na análse de dados dscretos, é que o parâmetro de dspersão

Leia mais

1. Conceitos básicos de estatística descritiva. A ciência descobre relações de causa efeito entre fenómenos. Há fenómenos que são muito complexos

1. Conceitos básicos de estatística descritiva. A ciência descobre relações de causa efeito entre fenómenos. Há fenómenos que são muito complexos 2 Matemátca Fnancera e Instrumentos de Gestão Sumáro 1. Concetos báscos de estatístca descrtva 1.1. 2ª Aula 1.2. 1.2.1. Frequênca relatva 1.2.2. Frequênca relatva acumulada 3 4 A cênca descobre relações

Leia mais

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística ESTATÍSTICA MULTIVARIADA º SEMESTRE 010 / 11 EXERCÍCIOS PRÁTICOS - CADERNO 1 Revsões de Estatístca -0-11 1.1 1.1. (Varáves aleatóras: função de densdade e de dstrbução; Méda e Varânca enquanto expectatvas

Leia mais

LQA - LEFQ - EQ -Química Analítica Complemantos Teóricos 04-05

LQA - LEFQ - EQ -Química Analítica Complemantos Teóricos 04-05 LQA - LEFQ - EQ -Químca Analítca Complemantos Teórcos 04-05 CONCEITO DE ERRO ALGARISMOS SIGNIFICATIVOS Embora uma análse detalhada do erro em Químca Analítca esteja fora do âmbto desta cadera, sendo abordada

Leia mais

Elaboração: Fevereiro/2008

Elaboração: Fevereiro/2008 Elaboração: Feverero/2008 Últma atualzação: 19/02/2008 E ste Caderno de Fórmulas tem por objetvo esclarecer aos usuáros a metodologa de cálculo e os crtéros de precsão utlzados na atualzação das Letras

Leia mais

Cálculo do Conceito ENADE

Cálculo do Conceito ENADE Insttuto aconal de Estudos e Pesqusas Educaconas Aníso Texera IEP Mnstéro da Educação ME álculo do onceto EADE Para descrever o cálculo do onceto Enade, prmeramente é mportante defnr a undade de observação

Leia mais

Professor Mauricio Lutz CORRELAÇÃO

Professor Mauricio Lutz CORRELAÇÃO Professor Maurco Lutz 1 CORRELAÇÃO Em mutas stuações, torna-se nteressante e útl estabelecer uma relação entre duas ou mas varáves. A matemátca estabelece város tpos de relações entre varáves, por eemplo,

Leia mais

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2 Econometra - Lsta 3 - Regressão Lnear Múltpla Professores: Hedbert Lopes, Prscla Rbero e Sérgo Martns Montores: Gustavo Amarante e João Marcos Nusdeo QUESTÃO 1. Você trabalha na consultora Fazemos Qualquer

Leia mais

PROBABILIDADE E ESTATÍSTICA APLICADAS À HIDROLOGIA

PROBABILIDADE E ESTATÍSTICA APLICADAS À HIDROLOGIA PROBABILIDADE E ESTATÍSTICA APLICADAS À HIDROLOGIA Mauro aghettn Mara Manuela Portela DECvl, IST, 0 PROBABILIDADE E ESTATÍSTICA APLICADAS À HIDROLOGIA Mauro aghettn Professor Assocado, Escola de Engenhara

Leia mais

Portaria Inmetro nº 248 de 17 de julho de 2008

Portaria Inmetro nº 248 de 17 de julho de 2008 INSTITUTO NACIONAL DE METROLOGIA, NORMALIZAÇÃO E QUALIDADE INDUSTRIAL - Portara Inmetro nº 248 de 17 de julho de 2008 O PRESIDENTE DO INSTITUTO NACIONAL DE METROLOGIA, NORMALIZAÇÃO E QUALIDADE INDUSTRIAL,

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas Unversdade Salvador UNIFACS Cursos de Engenhara Cálculo IV Profa: Ilka ebouças Frere Integras Múltplas Texto 3: A Integral Dupla em Coordenadas Polares Coordenadas Polares Introduzremos agora um novo sstema

Leia mais

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. Disciplina: Variável Aleatória

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. Disciplina: Variável Aleatória Departamento de Informátca Dscplna: do Desempenho de Sstemas de Computação Varável leatóra Prof. Sérgo Colcher colcher@nf.puc-ro.br Varável leatóra eal O espaço de amostras Ω fo defndo como o conjunto

Leia mais

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES 1. Obtenha os estmadores dos coefcentes lnear e angular de um modelo de regressão lnear smples utlzando o método

Leia mais

ESTATÍSTICA. PROBABILIDADES Professora Rosana Relva Números Inteiros AULA e Racionais 09 e 10 ESTATÍSTICA. Professor Luiz Antonio de Carvalho

ESTATÍSTICA. PROBABILIDADES Professora Rosana Relva Números Inteiros AULA e Racionais 09 e 10 ESTATÍSTICA. Professor Luiz Antonio de Carvalho Professor Luz Antono de Carvalho PROBABILIDADES Professora Rosana Relva Números Interos AULA e Raconas 9 e APRESENTAÇÃO ROL:,,, 4, 4,,, DISCRETA : rrelva@globo.com PROGRESSÃO ARITMÉTICA PROGRESSÃO ARITMÉTICA

Leia mais

A transformada de Laplace pode ser usada para resolver equações diferencias lineares com coeficientes constantes, ou seja, equações da forma

A transformada de Laplace pode ser usada para resolver equações diferencias lineares com coeficientes constantes, ou seja, equações da forma Introdução A tranformada de Laplace pode er uada para reolver equaçõe diferencia lineare com coeficiente contante, ou eja, equaçõe da forma ay + by + cy = ft), para a, b, c R Para io, a equação diferencial

Leia mais

VI SBQEE. 21 a 24 de agosto de 2005 Belém Pará Brasil

VI SBQEE. 21 a 24 de agosto de 2005 Belém Pará Brasil VI SBQEE 2 a 24 de agoto de 2005 Belém Pará Bral Códgo: BEL 3 7679 Tópco: Stema de Montoramento e Tratamento de dado REDES EURAIS A CLASSIFICAÇÃO DE EVETOS DE QUALIDADE DE EERGIA ELÉTRICA: UMA ABORDAGEM

Leia mais

Notas de Aula de Probabilidade A

Notas de Aula de Probabilidade A VII- VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS. 7. CONCEITO DE VARIÁVEIS ALEATÓRIAS: Informalmente, uma varável aleatóra é um característco numérco do resultado de um epermento aleatóro. Defnção: Uma varável

Leia mais