CAPÍTULO III TORÇÃO PROBLEMAS ESTATICAMENTE INDETERMINADOS TORÇÃO - PEÇAS DE SEÇÃO VAZADA DE PAREDES FINAS

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "CAPÍTULO III TORÇÃO PROBLEMAS ESTATICAMENTE INDETERMINADOS TORÇÃO - PEÇAS DE SEÇÃO VAZADA DE PAREDES FINAS"

Transcrição

1 APÍTULO III TORÇÃO PROBLEMAS ESTATIAMENTE INDETERMINADOS TORÇÃO - PEÇAS DE SEÇÃO VAZADA DE PAREDES FINAS A- TORÇÃO PROBLEMAS ESTATIAMENTE INDETERMINADOS Vimos aé aqui que para calcularmos as ensões em um eixo, era necessário primeiro, calcularmos os momenos de orção inernos nas várias pares do eixo.os momenos eram calculdos parindo-se a esruura, em equilibrio, na seção onde queriamos conhecer o esforço, aplicando-se a seguir a condição de equilíbrio a roação, iso é, somaório dos momenos ao redor do eixo longiudinal da esruura igual a zero. Exisem siuações em que não se consegue deerminar os esforços inernos de orção apenas com o uso da esáica. Neses casos, mesmo os esforços exernos de orção provenienes dos apoios se ornam impossíveis de calcular somene com as equações da esáica. As equações de equilíbrio devem ser complemenadas por ouras relações, que levam em cona as deformações do eixo e as resrições da geomeria do problema.os exercícios proposos a seguir abordam ese ipo de problema. Exercícios: 1. O eixo AB em 250mm decomprimenoe 20mm de diâmero, endo seção ransversal circular. O eixo em seção vazada, com diâmero inerno de 16mm, no recho de 125mm a parir da exremidade B. O eixo é de aço, sendo engasado nas exremidades.deerminar os momenos orçores reaivos, quando é aplicado um irque de 120N.mno pono médio de AB. 120Nm 125mm 125mm

2 2. Um eixo circular de aço e um ubo de alumínio esão ligados a um pono fixo e a um disco rígido, como mosra a seção longiudinal da figura. Sabendo-se que as ensões iniciais são nulas, deerminar o máximo orçor Mo, que pode ser aplicado ao disco, sendo a ensão admissível ao cisalhameno de 70MPa npara o alumínio e 120MPa para o aço. Adoar G=70Mpa para o aço e G=27Mpa para o alumínio 8mm 5mm 50mm 5mm 8mm 500mm B- TORÇÃO - PEÇAS DE SEÇÃO VAZADA DE PAREDES FINAS B1. HIPÓTESE DE BREDT Para o esudo da orção em peças de paredes delgadas,ias, consideramos: 1. Eixo reilíneo 2. A seção ransversal é qualquer, mas consane ao longo do eixo.

3 3. A espessura da parede é pequena em relação às dimensões da seção ransversal: dm Admiimos que só exise momeno DE TORÇÃO em qualquer seção. 5. HIPÓTESE DE BREDT A disribuição das ensões angenciais ao longo da espessura de um ubo de parede delgada, segue o modelo abaixo, crescendo do cenro para as exremidades: Pelo fao da espessura ser muio pequena, Bred considerou as ensões angenciais consanes em uma mesma espessura: HIPÓTESE DE BREDT: Em uma peça de paredes delgadas, e submeida à orção, as ensões angenciais, nos ponos de uma mesma espessura, são paralelas e de valor consane. Esa hipóese conduz a uma disribuição uniforme de ensões angenciais ao longo de uma espessura.

4 B. TENSÕES Imaginemos um ubo de paredes delgadas sujeio à um momeno orsor, conforme a figura. oramos ese ubo por planos P1 e P2 disanes de um elemeno de comprimeno L Após, o recho isolado pelos cores é corado novamene, agora por um plano longiudinal P 3. As ensões angenciais τ1 e τ2 nas espessuras 1 e 2 esão represenadas de acôrdo com a hipóese de Bred, levando-se ambém em cona a reciprocidade das ensões angenciais. omo nas seções coradas devem aparecer ensões que equilibrem o sisema, podemos verificar as equações de equilíbrio esáico. Σ Fy = 0 τ1.1.l - τ2.2.l = 0

5 τ1.1 = τ2.2 omo esávamos raando com espessuras genéricas, podemos generalizar a conclusão: τ1.1 = τ 2. 2 = τ3.3 =... = τn.n = f f - fluxo das rensões angenciais "Em uma peça de paredes delgadas, submeida à um momeno DE TORÇÃO, o fluxo das ensões angenciais é consane." Passemos à considerar agora uma seçã genérica "S": Seja: - conôrno médio da seção dω - elemeno de área compeendido pelo conôrno médio (área oab) - arco elemenar componene do conôrno médio dω = r. 2 onsideremos um elemeno de área ao longo do conôrno: da =. A ensão desenvolvida nese elemeno de área da, dá origem à uma força df: df = τ.. O momeno desa força em relação ao cenro de orção o é: m = df. r = ( τ.. ). r = τ.. r. O momeno de orção oal da seção será: = τ.. r. = τ. r. observe que τ. = f = ce observe ambém que r. = 2.dω daí iramos que: τ.. 2. dω = 2. τ.. dω =

6 dω = Ω onde Ω represena a área da superfície englobada pelo conôrno médio. Subsiuimos a inegral por seu significado, represenado por Ω :. = 2. τ.. Ω ou τ = 2..Ω Obs: 1. Esa expressão possibilia calcular as ensões angenciais em qualquer espessura da parede do ubo. 2. A ensão máxima ocorre nos ponos de menor espessura. τmáx = 2.Ω. mín. DEFORMAÇÕES Sabemos que τ = 2. Ω. e que : τ = G. θ.r enão: G. θ.r = 2. Ω. Inegrando esa igualdade ao longo do conôrno médio da seção, obemos: G. θ. r = ou 2. Ω. 2.Ω = G. θ r. Já vimos que: enão: 2. G. θ. Ω r. = 2.Ω = 2. Ω

7 ou θ = 4.G. Ω 2 Esa expressão nos possibilia calcular o angulo uniário de orção em uma peça ubular de paredes delgadas submeida à orção. A deformação oal pode ser obida por H = θ. L Observação : Avaliação de 1. asos de peças de espesura consane: = 1 = onde = comprimeno do conôrno médio 2. Seção ransversal consiuida por rechos de espessura consane: = n i= 1 i i θ = 4.G. Ω 2 n i = 1 i i 3. Seção ransversal com lei maemáica para variação da espessura ao longo do conôrno médio: Nese caso basa subsiuirmos pela sua lei maemáica e resolvermos maemáicamene a inegral. 4. Se a seção ransversal não se enquadrar nos casos aneriores a inegral deve ser avaliada por um processo aproximado. 5. As seções da figura abaixo são consruidas com o mesmo maerial e esão submeidas ao mesmo orsor. alcular a relação R/e à fim de que rabalhem com a mesma segurança.

8 R: 7,4 6. Uma peça ubular cuja seção rea e indicada na figura, é consruida com maerial que apresena ensão de cisalhameno admissível de 20 MPa. O comprimeno da peça é de 4 meros, seu módulo de elasicidade longiudinal MPa e seu coeficiene de Poisson 0,3. Deermine: a. Maior orsor que a seção admie. b. Ângulo oal de orção. R: a. 10,08 kn. m b. 0,1032 rad 7. A figura abaixo mosra a seção de uma peça ubular de paredes delgadas com maerial que apresena ensão de cisalhameno admissível de 4 kn/cm 2. Pedese a dimensão '' da seção sabendo-se que ela esa submeida a um orsor de 1 kn.m.

9 R: 0,32 cm 8. Aplica-se uma orção de 90 N.m ao eixo de seção vasada da figura. Deermine as ensões de cisalhameno nos ponos A e B. R: pono A = 4,73 MPa pono B = 9,46 MPa 9. Uma barra vasada, endo seção ransversal indicada é feia com uma lamina meálica de 1,6 mm de espessura. Sabe-se que um orque de 339 N.m será aplicado a barra. Deerminar a menor dimensão 'd' de modo que a ensão de cisalhameno não ulrapasse 3,45 MPa. R: d 184,4 mm

10

CAPÍTULO III TORÇÃO SIMPLES

CAPÍTULO III TORÇÃO SIMPLES CAPÍTULO III TORÇÃO SIPLES I.INTRODUÇÂO Uma peça esará sujeia ao esforço de orção simples quando a mesma esiver submeida somene a um momeno de orção. Observe-se que raa-se de uma simplificação, pois no

Leia mais

CAPÍTULO 9. y(t). y Medidor. Figura 9.1: Controlador Analógico

CAPÍTULO 9. y(t). y Medidor. Figura 9.1: Controlador Analógico 146 CAPÍULO 9 Inrodução ao Conrole Discreo 9.1 Inrodução Os sisemas de conrole esudados aé ese pono envolvem conroladores analógicos, que produzem sinais de conrole conínuos no empo a parir de sinais da

Leia mais

Módulo 07 Capítulo 06 - Viscosímetro de Cannon-Fensk

Módulo 07 Capítulo 06 - Viscosímetro de Cannon-Fensk Módulo 07 Capíulo 06 - Viscosímero de Cannon-Fensk Inrodução: o mundo cienífico, medições são necessárias, o que sempre é difícil, impreciso, principalmene quando esa é muio grande ou muio pequena. Exemplos;

Leia mais

Campo magnético variável

Campo magnético variável Campo magnéico variável Já vimos que a passagem de uma correne elécrica cria um campo magnéico em orno de um conduor aravés do qual a correne flui. Esa descobera de Orsed levou os cienisas a desejaram

Leia mais

Função definida por várias sentenças

Função definida por várias sentenças Ese caderno didáico em por objeivo o esudo de função definida por várias senenças. Nese maerial você erá disponível: Uma siuação que descreve várias senenças maemáicas que compõem a função. Diversas aividades

Leia mais

Mecânica dos Fluidos. Aula 8 Introdução a Cinemática dos Fluidos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos. Aula 8 Introdução a Cinemática dos Fluidos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Aula 8 Inrodução a Cinemáica dos Fluidos Tópicos Abordados Nesa Aula Cinemáica dos Fluidos. Definição de Vazão Volumérica. Vazão em Massa e Vazão em Peso. Definição A cinemáica dos fluidos é a ramificação

Leia mais

ANÁLISE DE ESTRUTURAS VIA ANSYS

ANÁLISE DE ESTRUTURAS VIA ANSYS 2 ANÁLISE DE ESTRUTURAS VIA ANSYS A Análise de esruuras provavelmene é a aplicação mais comum do méodo dos elemenos finios. O ermo esruura não só diz respeio as esruuras de engenharia civil como pones

Leia mais

Curso de Engenharia Civil. Universidade Estadual de Maringá Centro de Tecnologia Departamento de Engenharia Civil CAPÍTULO 6: TORÇÃO

Curso de Engenharia Civil. Universidade Estadual de Maringá Centro de Tecnologia Departamento de Engenharia Civil CAPÍTULO 6: TORÇÃO Curso de Engenharia Civil Universidade Estadual de Maringá Centro de ecnologia Departamento de Engenharia Civil CPÍULO 6: ORÇÃO Revisão de Momento orçor Convenção de Sinais: : Revisão de Momento orçor

Leia mais

PROCESSO SELETIVO 2006/2 UNIFAL 2 O DIA GABARITO 1 13 FÍSICA QUESTÕES DE 31 A 45

PROCESSO SELETIVO 2006/2 UNIFAL 2 O DIA GABARITO 1 13 FÍSICA QUESTÕES DE 31 A 45 OCEO EEIVO 006/ UNIF O DI GIO 1 13 FÍIC QUEÕE DE 31 45 31. Uma parícula é sola com elocidade inicial nula a uma alura de 500 cm em relação ao solo. No mesmo insane de empo uma oura parícula é lançada do

Leia mais

Estando o capacitor inicialmente descarregado, o gráfico que representa a corrente i no circuito após o fechamento da chave S é:

Estando o capacitor inicialmente descarregado, o gráfico que representa a corrente i no circuito após o fechamento da chave S é: PROCESSO SELETIVO 27 2 O DIA GABARITO 1 13 FÍSICA QUESTÕES DE 31 A 45 31. Considere o circuio mosrado na figura abaixo: S V R C Esando o capacior inicialmene descarregado, o gráfico que represena a correne

Leia mais

Mecânica de Sistemas de Partículas Prof. Lúcio Fassarella * 2013 *

Mecânica de Sistemas de Partículas Prof. Lúcio Fassarella * 2013 * Mecânica e Sisemas e Parículas Prof. Lúcio Fassarella * 2013 * 1. A velociae e escape e um planea ou esrela é e nia como seno a menor velociae requeria na superfície o objeo para que uma parícula escape

Leia mais

Aula - 2 Movimento em uma dimensão

Aula - 2 Movimento em uma dimensão Aula - Moimeno em uma dimensão Física Geral I - F- 18 o semesre, 1 Ilusração dos Principia de Newon mosrando a ideia de inegral Moimeno 1-D Conceios: posição, moimeno, rajeória Velocidade média Velocidade

Leia mais

12 Integral Indefinida

12 Integral Indefinida Inegral Indefinida Em muios problemas, a derivada de uma função é conhecida e o objeivo é enconrar a própria função. Por eemplo, se a aa de crescimeno de uma deerminada população é conhecida, pode-se desejar

Leia mais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO ESCOLA POLITÉCNICA Curso de Engenharia Civil Departamento de Estruturas

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO ESCOLA POLITÉCNICA Curso de Engenharia Civil Departamento de Estruturas UNIVERSIDADE FEDERAL DO RIO DE JANEIRO ESCOLA POLITÉCNICA Curso de Engenharia Civil Deparameno de Esruuras PROJETO DE PASSARELA COMPOSTA DE PERFIS TUBULARES EM AÇO Rafael Brand Ruas Projeo de Graduação

Leia mais

Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) - Professores: João Arruda e Henriette Righi

Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) - Professores: João Arruda e Henriette Righi Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) - Professores: João Arruda e Henriee Righi LISTA DE EXERCÍCIOS # 1 Aenção: Aualize seu adobe, ou subsiua os quadrados por negaivo!!! 1) Deermine

Leia mais

MARCOS VELOSO CZERNORUCKI REPRESENTAÇÃO DE TRANSFORMADORES EM ESTUDOS DE TRANSITÓRIOS ELETROMAGNÉTICOS

MARCOS VELOSO CZERNORUCKI REPRESENTAÇÃO DE TRANSFORMADORES EM ESTUDOS DE TRANSITÓRIOS ELETROMAGNÉTICOS MARCOS VELOSO CZERNORUCKI REPRESENTAÇÃO DE TRANSFORMADORES EM ESTUDOS DE TRANSITÓRIOS ELETROMAGNÉTICOS Disseração apresenada à Escola Poliécnica da Universidade de São Paulo para obenção do íulo de Mesre

Leia mais

Prof. Luiz Marcelo Chiesse da Silva DIODOS

Prof. Luiz Marcelo Chiesse da Silva DIODOS DODOS 1.JUÇÃO Os crisais semiconduores, ano do ipo como do ipo, não são bons conduores, mas ao ransferirmos energia a um deses ipos de crisal, uma pequena correne elérica aparece. A finalidade práica não

Leia mais

Equações Simultâneas. Aula 16. Gujarati, 2011 Capítulos 18 a 20 Wooldridge, 2011 Capítulo 16

Equações Simultâneas. Aula 16. Gujarati, 2011 Capítulos 18 a 20 Wooldridge, 2011 Capítulo 16 Equações Simulâneas Aula 16 Gujarai, 011 Capíulos 18 a 0 Wooldridge, 011 Capíulo 16 Inrodução Durane boa pare do desenvolvimeno dos coneúdos desa disciplina, nós nos preocupamos apenas com modelos de regressão

Leia mais

Física e Química A. Teste Intermédio de Física e Química A. Teste Intermédio. Versão 1. Duração do Teste: 90 minutos 26.05.2009

Física e Química A. Teste Intermédio de Física e Química A. Teste Intermédio. Versão 1. Duração do Teste: 90 minutos 26.05.2009 Tese Inermédio de Física e Química A Tese Inermédio Física e Química A Versão Duração do Tese: 90 minuos 26.05.2009.º ou 2.º Anos de Escolaridade Decreo-Lei n.º 74/2004, de 26 de Março Na folha de resposas,

Leia mais

EXPERIÊNCIA 7 CONSTANTE DE TEMPO EM CIRCUITOS RC

EXPERIÊNCIA 7 CONSTANTE DE TEMPO EM CIRCUITOS RC EXPERIÊNIA 7 ONSTANTE DE TEMPO EM IRUITOS R I - OBJETIVO: Medida da consane de empo em um circuio capaciivo. Medida da resisência inerna de um volímero e da capaciância de um circuio aravés da consane

Leia mais

Valor do Trabalho Realizado 16.

Valor do Trabalho Realizado 16. Anonio Vicorino Avila Anonio Edésio Jungles Planejameno e Conrole de Obras 16.2 Definições. 16.1 Objeivo. Valor do Trabalho Realizado 16. Parindo do conceio de Curva S, foi desenvolvida pelo Deparameno

Leia mais

Adaptado de O Prisma e o Pêndulo as dez mais belas experiências científicas, p. 52, Crease, R. (2006)

Adaptado de O Prisma e o Pêndulo as dez mais belas experiências científicas, p. 52, Crease, R. (2006) PROVA MODELO GRUPO I Arisóeles inha examinado corpos em moimeno e inha concluído, pelo modo como os corpos caem denro de água, que a elocidade de um corpo em queda é uniforme, proporcional ao seu peso,

Leia mais

Equações Diferenciais Ordinárias Lineares

Equações Diferenciais Ordinárias Lineares Equações Diferenciais Ordinárias Lineares 67 Noções gerais Equações diferenciais são equações que envolvem uma função incógnia e suas derivadas, além de variáveis independenes Aravés de equações diferenciais

Leia mais

Sistemas não-lineares de 2ª ordem Plano de Fase

Sistemas não-lineares de 2ª ordem Plano de Fase EA93 - Pro. Von Zuben Sisemas não-lineares de ª ordem Plano de Fase Inrodução o esudo de sisemas dinâmicos não-lineares de a ordem baseia-se principalmene na deerminação de rajeórias no plano de esados,

Leia mais

QUESTÃO 01 Considere os conjuntos A = {x R / 0 x 3} e B = {y Z / 1 y 1}. A representação gráfica do produto cartesiano A B corresponde a:

QUESTÃO 01 Considere os conjuntos A = {x R / 0 x 3} e B = {y Z / 1 y 1}. A representação gráfica do produto cartesiano A B corresponde a: PROVA DE MATEMÁTICA - TURMA DO o ANO DO ENINO MÉDIO COLÉGIO ANCHIETA-A - JUlHO DE. ELAORAÇÃO: PROFEORE ADRIANO CARIÉ E WALTER PORTO. PROFEORA MARIA ANTÔNIA C. GOUVEIA QUETÃO Considere os conjunos A { R

Leia mais

Dados do Plano. Resultado da Avaliação Atuarial. Data da Avaliação: 31/12/2010

Dados do Plano. Resultado da Avaliação Atuarial. Data da Avaliação: 31/12/2010 AVALIAÇÃO ATUARIAL Daa da Avaliação: 3/2/200 Dados do Plano Nome do Plano: CEEEPREV CNPB: 20.020.04-56 Parocinadoras: Companhia Esadual de Geração e Transmissão de Energia Elérica CEEE-GT Companhia Esadual

Leia mais

CAPITULO 01 DEFINIÇÕES E PARÂMETROS DE CIRCUITOS. Prof. SILVIO LOBO RODRIGUES

CAPITULO 01 DEFINIÇÕES E PARÂMETROS DE CIRCUITOS. Prof. SILVIO LOBO RODRIGUES CAPITULO 1 DEFINIÇÕES E PARÂMETROS DE CIRCUITOS Prof. SILVIO LOBO RODRIGUES 1.1 INTRODUÇÃO PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA FENG Desinase o primeiro capíulo

Leia mais

Física. MU e MUV 1 ACESSO VESTIBULAR. Lista de Física Prof. Alexsandro

Física. MU e MUV 1 ACESSO VESTIBULAR. Lista de Física Prof. Alexsandro Física Lisa de Física Prof. Alexsandro MU e MU 1 - (UnB DF) Qual é o empo gaso para que um merô de 2m a uma velocidade de 18km/h aravesse um únel de 1m? Dê sua resposa em segundos. 2 - (UERJ) Um rem é

Leia mais

MATEMATICA Vestibular UFU 2ª Fase 17 de Janeiro de 2011

MATEMATICA Vestibular UFU 2ª Fase 17 de Janeiro de 2011 Vesibular UFU ª Fase 17 de Janeiro de 011 PRIMEIRA QUESTÃO A realidade mosra que as favelas já fazem pare do cenário urbano de muias cidades brasileiras. Suponha que se deseja realizar uma esimaiva quano

Leia mais

exercício e o preço do ativo são iguais, é dito que a opção está no dinheiro (at-themoney).

exercício e o preço do ativo são iguais, é dito que a opção está no dinheiro (at-themoney). 4. Mercado de Opções O mercado de opções é um mercado no qual o iular (comprador) de uma opção em o direio de exercer a mesma, mas não a obrigação, mediane o pagameno de um prêmio ao lançador da opção

Leia mais

Fichas de sistemas de partículas

Fichas de sistemas de partículas Capítulo 3 Fichas de sistemas de partículas 1. (Alonso, pg 247) Um tubo de secção transversal a lança um fluxo de gás contra uma parede com uma velocidade v muito maior que a agitação térmica das moléculas.

Leia mais

Universidade Federal de Pelotas UFPEL Departamento de Economia - DECON. Economia Ecológica. Professor Rodrigo Nobre Fernandez

Universidade Federal de Pelotas UFPEL Departamento de Economia - DECON. Economia Ecológica. Professor Rodrigo Nobre Fernandez Universidade Federal de Peloas UFPEL Deparameno de Economia - DECON Economia Ecológica Professor Rodrigo Nobre Fernandez Capíulo 6 Conabilidade Ambienal Nacional Peloas, 2010 6.1 Inrodução O lado moneário

Leia mais

Um estudo de Cinemática

Um estudo de Cinemática Um esudo de Cinemáica Meu objeivo é expor uma ciência muio nova que raa de um ema muio anigo. Talvez nada na naureza seja mais anigo que o movimeno... Galileu Galilei 1. Inrodução Nese exo focaremos nossa

Leia mais

Escola de Pós-Graduação em Economia da Fundação Getulio Vargas (EPGE/FGV) Macroeconomia I / 2016. Professor: Rubens Penha Cysne

Escola de Pós-Graduação em Economia da Fundação Getulio Vargas (EPGE/FGV) Macroeconomia I / 2016. Professor: Rubens Penha Cysne Escola de Pós-Graduação em Economia da Fundação Geulio Vargas (EPGE/FGV) Macroeconomia I / 2016 Professor: Rubens Penha Cysne Lisa de Exercícios 4 - Gerações Superposas Obs: Na ausência de de nição de

Leia mais

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais II Estruturas III. Capítulo 2 Torção

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais II Estruturas III. Capítulo 2 Torção Capítulo 2 Torção 2.1 Revisão Torque é um momento que tende a torcer um elemento em torno de seu eixo longitudinal. Se o ângulo de rotação for pequeno, o comprimento e o raio do eixo permanecerão inalterados.

Leia mais

CAPÍTULO 5: CISALHAMENTO

CAPÍTULO 5: CISALHAMENTO Curo de Engenaria Civil Univeridade Eadual de Maringá Cenro de Tecnologia Deparameno de Engenaria Civil CAPÍTULO 5: CSALHAMENTO 5. Tenõe de Cialameno em iga o Flexão Hipóee Báica: a) A enõe de cialameno

Leia mais

= + 3. h t t. h t t. h t t. h t t MATEMÁTICA

= + 3. h t t. h t t. h t t. h t t MATEMÁTICA MAEMÁICA 01 Um ourives possui uma esfera de ouro maciça que vai ser fundida para ser dividida em 8 (oio) esferas menores e de igual amanho. Seu objeivo é acondicionar cada esfera obida em uma caixa cúbica.

Leia mais

EQUIVALENTES DINÂMICOS PARA ESTUDOS DE HARMÔNICOS USANDO ANÁLISE MODAL. Franklin Clement Véliz Sergio Luis Varricchio Sergio Gomes Jr.

EQUIVALENTES DINÂMICOS PARA ESTUDOS DE HARMÔNICOS USANDO ANÁLISE MODAL. Franklin Clement Véliz Sergio Luis Varricchio Sergio Gomes Jr. SP-2 X SEPOPE 2 a 25 de maio de 2006 a 2 s o 25 h 2006 X SIPÓSIO DE ESPECIAISTAS E PANEJAENTO DA OPERAÇÃO E EXPANSÃO EÉTRICA X SYPOSIU OF SPECIAISTS IN EECTRIC OPERATIONA AND EXPANSION PANNING FORIANÓPOIS

Leia mais

Capítulo 19. 4. (UTFPR) Na figura a seguir, temos r//s e t//u//v. Triângulos. 1. Na figura, AB = AC ead = AE. A medida do ângulo oposto α é:

Capítulo 19. 4. (UTFPR) Na figura a seguir, temos r//s e t//u//v. Triângulos. 1. Na figura, AB = AC ead = AE. A medida do ângulo oposto α é: Maemáica II Ângulos apíulo 19 1. (UNIRI) s reas r 1 e r são paralelas. valor do ângulo, apresenado na figura a seguir, é: r 1 Suponha que um passageiro de nome arlos pegou um avião II, que seguiu a direção

Leia mais

Terceira Lista de Exercícios

Terceira Lista de Exercícios Universidade Católica de Petrópolis Disciplina: Resitência dos Materiais I Prof.: Paulo César Ferreira Terceira Lista de Exercícios 1. Calcular o diâmetro de uma barra de aço sujeita a ação de uma carga

Leia mais

Figura 1 Carga de um circuito RC série

Figura 1 Carga de um circuito RC série ASSOIAÇÃO EDUAIONAL DOM BOSO FAULDADE DE ENGENHAIA DE ESENDE ENGENHAIA ELÉTIA ELETÔNIA Disciplina: Laboraório de ircuios Eléricos orrene onínua 1. Objeivo Sempre que um capacior é carregado ou descarregado

Leia mais

Escola Secundária Dom Manuel Martins

Escola Secundária Dom Manuel Martins Escola Secundária Dom Manuel Marins Seúbal Prof. Carlos Cunha 1ª Ficha de Avaliação FÍSICO QUÍMICA A ANO LECTIVO 2006 / 2007 ANO II N. º NOME: TURMA: C CLASSIFICAÇÃO Grisson e a sua equipa são chamados

Leia mais

2 Conceitos de transmissão de dados

2 Conceitos de transmissão de dados 2 Conceios de ransmissão de dados 2 Conceios de ransmissão de dados 1/23 2.2.1 Fones de aenuação e disorção de sinal 2.2.1 Fones de aenuação e disorção do sinal (coninuação) 2/23 Imperfeições do canal

Leia mais

Torção Deformação por torção de um eixo circular

Torção Deformação por torção de um eixo circular Torção Deformação por torção de um eixo irular Torque é um momento que tende a torer um elemento em torno de seu eixo longitudinal. Se o ângulo de rotação for pequeno, o omprimento e o raio do eixo permaneerão

Leia mais

Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA

Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Carga Elétrica e Lei de Coulomb 1. Consideremos o ponto P no centro de um quadrado

Leia mais

CAPÍTULO IX CISALHAMENTO CONVENCIONAL

CAPÍTULO IX CISALHAMENTO CONVENCIONAL I. ASECTOS GERAIS CAÍTULO IX CISALHAMENTO CONVENCIONAL O cisalhamento convencional é adotado em casos especiais, que é a ligação de peças de espessura pequena. Considera-se inicialmente um sistema formado

Leia mais

APÊNDICES APÊNDICE A - TEXTO DE INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS LINEARES DE 1ª E 2ª ORDEM COM O SOFTWARE MAPLE

APÊNDICES APÊNDICE A - TEXTO DE INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS LINEARES DE 1ª E 2ª ORDEM COM O SOFTWARE MAPLE 170 APÊNDICES APÊNDICE A - TEXTO DE INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS LINEARES DE 1ª E ª ORDEM COM O SOFTWARE MAPLE PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS PUC MINAS MESTRADO PROFISSIONAL

Leia mais

ENGENHARIA ECONÔMICA AVANÇADA

ENGENHARIA ECONÔMICA AVANÇADA ENGENHARIA ECONÔMICA AVANÇADA TÓPICOS AVANÇADOS MATERIAL DE APOIO ÁLVARO GEHLEN DE LEÃO gehleao@pucrs.br 55 5 Avaliação Econômica de Projeos de Invesimeno Nas próximas seções serão apresenados os principais

Leia mais

Escola E.B. 2,3 / S do Pinheiro

Escola E.B. 2,3 / S do Pinheiro Escola E.B. 2,3 / S do Pinheiro Ciências Físico Químicas 9º ano Movimenos e Forças 1.º Período 1.º Unidade 2010 / 2011 Massa, Força Gravíica e Força de Ario 1 - A bordo de um vaivém espacial, segue um

Leia mais

Instituto de Tecnologia de Massachusetts Departamento de Engenharia Elétrica e Ciência da Computação. Tarefa 5 Introdução aos Modelos Ocultos Markov

Instituto de Tecnologia de Massachusetts Departamento de Engenharia Elétrica e Ciência da Computação. Tarefa 5 Introdução aos Modelos Ocultos Markov Insiuo de Tecnologia de Massachuses Deparameno de Engenharia Elérica e Ciência da Compuação 6.345 Reconhecimeno Auomáico da Voz Primavera, 23 Publicado: 7/3/3 Devolução: 9/3/3 Tarefa 5 Inrodução aos Modelos

Leia mais

MATEMÁTICA E RACIOCÍNIO LÓGICO

MATEMÁTICA E RACIOCÍNIO LÓGICO AT VIRTUA GEOMETRIA EPACIAL PRIMA 01) A caixa de água de um cero prédio possui o formao de um prisma reo de ase quadrada com 1,6 m de aura e aresa da ase medindo,5 m. Quanos iros de água há nessa caixa

Leia mais

APLICAÇÃO DE MODELAGEM NO CRESCIMENTO POPULACIONAL BRASILEIRO

APLICAÇÃO DE MODELAGEM NO CRESCIMENTO POPULACIONAL BRASILEIRO ALICAÇÃO DE MODELAGEM NO CRESCIMENTO OULACIONAL BRASILEIRO Adriano Luís Simonao (Faculdades Inegradas FAFIBE) Kenia Crisina Gallo (G- Faculdade de Ciências e Tecnologia de Birigüi/S) Resumo: Ese rabalho

Leia mais

RISCO DE PERDA ADICIONAL, TEORIA DOS VALORES EXTREMOS E GESTÃO DO RISCO: APLICAÇÃO AO MERCADO FINANCEIRO PORTUGUÊS

RISCO DE PERDA ADICIONAL, TEORIA DOS VALORES EXTREMOS E GESTÃO DO RISCO: APLICAÇÃO AO MERCADO FINANCEIRO PORTUGUÊS RISCO DE PERDA ADICIONAL, TEORIA DOS VALORES EXTREMOS E GESTÃO DO RISCO: APLICAÇÃO AO MERCADO FINANCEIRO PORTUGUÊS João Dionísio Moneiro * ; Pedro Marques Silva ** Deparameno de Gesão e Economia, Universidade

Leia mais

Resistência dos Materiais

Resistência dos Materiais Aula 6 Estudo de Torção, Transmissão de Potência e Torque Aula 6 Definição de Torque Torque é o momento que tende a torcer a peça em torno de seu eixo longitudinal. Seu efeito é de interesse principal

Leia mais

D - Torção Pura. ω ω. Utilizador

D - Torção Pura. ω ω. Utilizador 4.0 ORÇÃO PURA D - orção Pura 4.1 MOMENO DE ORÇÃO ORQUE Quando uma barra reta é submetida, exclusivamente, a um momento em torno do eixo da barra, diz-se que estará submetida a um momento torçor (ou torque).

Leia mais

É a parte da mecânica que descreve os movimentos, sem se preocupar com suas causas.

É a parte da mecânica que descreve os movimentos, sem se preocupar com suas causas. 1 INTRODUÇÃO E CONCEITOS INICIAIS 1.1 Mecânca É a pare da Físca que esuda os movmenos dos corpos. 1. -Cnemáca É a pare da mecânca que descreve os movmenos, sem se preocupar com suas causas. 1.3 - Pono

Leia mais

Overdose. Série Matemática na Escola. Objetivos

Overdose. Série Matemática na Escola. Objetivos Overdose Série Maemáica na Escola Objeivos 1. Analisar um problema sobre drogas, modelado maemaicamene por funções exponenciais; 2. Inroduzir o ermo meia-vida e com ele ober a função exponencial que modela

Leia mais

CAPÍTULO V CISALHAMENTO CONVENCIONAL

CAPÍTULO V CISALHAMENTO CONVENCIONAL 1 I. ASPECTOS GERAIS CAPÍTULO V CISALHAMENTO CONVENCIONAL Conforme já foi visto, a tensão representa o efeito de um esforço sobre uma área. Até aqui tratamos de peças submetidas a esforços normais a seção

Leia mais

Influência de Variáveis Meteorológicas sobre a Incidência de Meningite em Campina Grande PB

Influência de Variáveis Meteorológicas sobre a Incidência de Meningite em Campina Grande PB Revisa Fafibe On Line n.3 ago. 007 ISSN 808-6993 www.fafibe.br/revisaonline Faculdades Inegradas Fafibe Bebedouro SP Influência de Variáveis Meeorológicas sobre a Incidência de Meningie em Campina Grande

Leia mais

4.2. Veio Cilíndrico de Secção Circular

4.2. Veio Cilíndrico de Secção Circular Cpíulo IV Torção de Peçs Lineres 1 CPÍTULO IV TORÇÃO DE PEÇS LINERES.1. Inrodução. sorção ou rnsmissão de esforços de orção: o Veios ou árvores de rnsmissão o Brrs de orção; ols; Esruurs uulres (veículos

Leia mais

Física Fascículo 01 Eliana S. de Souza Braga

Física Fascículo 01 Eliana S. de Souza Braga Física Fascículo 01 Eliana S. de Souza raga Índice Cinemáica...1 Exercícios... Gabario...6 Cinemáica (Não se esqueça de adoar uma origem dos espaços, uma origem dos empos e orienar a rajeória) M.R.U. =

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Civil. Mecânica Vetorial ENG01035

Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Civil. Mecânica Vetorial ENG01035 Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Civil EXERCÍCIOS D 2 a. ÁRE Mecânica Vetorial ENG035 LIST DE PROLEMS DE PROV CENTRO DE GRVIDDE 1) peça representada

Leia mais

Física B Extensivo V. 5

Física B Extensivo V. 5 Gabario Eensivo V 5 Resolva Aula 8 Aula 9 80) E 80) A 90) f = 50 MHz = 50 0 6 Hz v = 3 0 8 m/s v = f = v f = 3 0 8 50 0 = 6 m 90) B y = 0,5 cos [ (4 0)] y = 0,5 cos y = A cos A = 0,5 m 6 = 4 s = 0,5 s

Leia mais

Curso de preparação para a prova de matemática do ENEM Professor Renato Tião

Curso de preparação para a prova de matemática do ENEM Professor Renato Tião Porcenagem As quaro primeiras noções que devem ser assimiladas a respeio do assuno são: I. Que porcenagem é fração e fração é a pare sobre o odo. II. Que o símbolo % indica que o denominador desa fração

Leia mais

Lista de exercícios sobre barras submetidas a força normal

Lista de exercícios sobre barras submetidas a força normal RESISTÊNCIA DOS MATERIAIS I Lista de exercícios sobre barras submetidas a força normal 1) O cabo e a barra formam a estrutura ABC (ver a figura), que suporta uma carga vertical P= 12 kn. O cabo tem a área

Leia mais

Comportamento Assintótico de Convoluções e Aplicações em EDP

Comportamento Assintótico de Convoluções e Aplicações em EDP Comporameno Assinóico de Convoluções e Aplicações em EDP José A. Barrionuevo Paulo Sérgio Cosa Lino Deparameno de Maemáica UFRGS Av. Beno Gonçalves 9500, 9509-900 Poro Alegre, RS, Brasil. 2008 Resumo Nese

Leia mais

Esquema: Dados: v água 1520m. Fórmulas: Pede-se: d. Resolução:

Esquema: Dados: v água 1520m. Fórmulas: Pede-se: d. Resolução: Queda Livre e Movimeno Uniformemene Acelerado Sergio Scarano Jr 1906/013 Exercícios Proposo Um navio equipado com um sonar preende medir a profundidade de um oceano. Para isso, o sonar emiiu um Ulra-Som

Leia mais

Guia de Recursos e Atividades

Guia de Recursos e Atividades Guia de Recursos e Aividades girls worldwide say World Associaion of Girl Guides and Girl Scous Associaion mondiale des Guides e des Eclaireuses Asociación Mundial de las Guías Scous Unir as Forças conra

Leia mais

VALOR DA PRODUÇÃO DE CACAU E ANÁLISE DOS FATORES RESPONSÁVEIS PELA SUA VARIAÇÃO NO ESTADO DA BAHIA. Antônio Carlos de Araújo

VALOR DA PRODUÇÃO DE CACAU E ANÁLISE DOS FATORES RESPONSÁVEIS PELA SUA VARIAÇÃO NO ESTADO DA BAHIA. Antônio Carlos de Araújo 1 VALOR DA PRODUÇÃO DE CACAU E ANÁLISE DOS FATORES RESPONSÁVEIS PELA SUA VARIAÇÃO NO ESTADO DA BAHIA Anônio Carlos de Araújo CPF: 003.261.865-49 Cenro de Pesquisas do Cacau CEPLAC/CEPEC Faculdade de Tecnologia

Leia mais

UNIVERSIDADE DE BRASÍLIA

UNIVERSIDADE DE BRASÍLIA ANÁLISE ESTÁTICA E DINÂMICA DE TORRES METÁLICAS ESTAIADAS RENATO CÉSAR GAVAZZA MENIN DISSERTAÇÃO DE MESTRADO EM ESTRUTURAS E CONSTRUÇÃO CIVIL DEPARTAMENTO DE ENGENHARIA CIVIL E AMBIENTAL FACULDADE DE TECNOLOGIA

Leia mais

Diodos. Símbolo. Função (ideal) Conduzir corrente elétrica somente em um sentido. Tópico : Revisão dos modelos Diodos e Transistores

Diodos. Símbolo. Função (ideal) Conduzir corrente elétrica somente em um sentido. Tópico : Revisão dos modelos Diodos e Transistores 1 Tópico : evisão dos modelos Diodos e Transisores Diodos Símbolo O mais simples dos disposiivos semiconduores. Função (ideal) Conduzir correne elérica somene em um senido. Circuio abero Polarização 2

Leia mais

GFI00157 - Física por Atividades. Caderno de Trabalhos de Casa

GFI00157 - Física por Atividades. Caderno de Trabalhos de Casa GFI00157 - Física por Aiidades Caderno de Trabalhos de Casa Coneúdo 1 Cinemáica 3 1.1 Velocidade.............................. 3 1.2 Represenações do moimeno................... 7 1.3 Aceleração em uma

Leia mais

EM 421 - RESISTÊNCIA DOS MATERIAIS I 3. Prova Data: 06/12/96 Profs. Marco Lúcio Bittencourt e Euclides de Mesquita Neto GABARITO

EM 421 - RESISTÊNCIA DOS MATERIAIS I 3. Prova Data: 06/12/96 Profs. Marco Lúcio Bittencourt e Euclides de Mesquita Neto GABARITO EM 421 - RESISTÊNCIA DOS MATERIAIS I 3. Prova Data: 06/12/96 Profs. Marco Lúcio Bittencourt e Euclides de Mesquita Neto GABARITO 1. QUESTÃO (VALOR 6.0) A viga bi-engastada abaio mostrada deverá ser construída

Leia mais

Capítulo 6 Transformação de tensões e critérios de falhas

Capítulo 6 Transformação de tensões e critérios de falhas Capítulo 6 Transformação de tensões e critérios de falhas 6.1 Tensões principais no plano- O estado geral de tensão em um ponto é caracterizado por seis componentes independentes da tensão normal e de

Leia mais

velocidade inicial: v 0 ; ângulo de tiro com a horizontal: 0.

velocidade inicial: v 0 ; ângulo de tiro com a horizontal: 0. www.fisicaee.com.br Um projéil é disparado com elocidade inicial iual a e formando um ânulo com a horizonal, sabendo-se que os ponos de disparo e o alo esão sobre o mesmo plano horizonal e desprezando-se

Leia mais

OTIMIZAÇÃO ENERGÉTICA NA CETREL: DIAGNÓSTICO, IMPLEMENTAÇÃO E AVALIAÇÃO DE GANHOS

OTIMIZAÇÃO ENERGÉTICA NA CETREL: DIAGNÓSTICO, IMPLEMENTAÇÃO E AVALIAÇÃO DE GANHOS STC/ 08 17 à 22 de ouubro de 1999 Foz do Iguaçu Paraná - Brasil SESSÃO TÉCNICA ESPECIAL CONSERVAÇÃO DE ENERGIA ELÉTRICA (STC) OTIMIZAÇÃO ENERGÉTICA NA CETREL: DIAGNÓSTICO, IMPLEMENTAÇÃO E AVALIAÇÃO DE

Leia mais

67.301/1. RLP 10 & 20: Controlador pneumático de volume-caudal. Sauter Components

67.301/1. RLP 10 & 20: Controlador pneumático de volume-caudal. Sauter Components 7./ RL & : Conrolador pneumáico de volume-caudal Usado em conjuno com um prao orifício ou com um sensor de pressão dinâmica e um acuador pneumáico de regiso para conrolo do volume de ar em sisemas de ar

Leia mais

A FÁBULA DO CONTROLADOR PID E DA CAIXA D AGUA

A FÁBULA DO CONTROLADOR PID E DA CAIXA D AGUA A FÁBULA DO CONTROLADOR PID E DA CAIXA D AGUA Era uma vez uma pequena cidade que não inha água encanada. Mas, um belo dia, o prefeio mandou consruir uma caia d água na serra e ligou-a a uma rede de disribuição.

Leia mais

CORPOS RÍGIDOS: As forças que actuam num corpo rígido podem ser divididas em dois grupos:

CORPOS RÍGIDOS: As forças que actuam num corpo rígido podem ser divididas em dois grupos: CORPOS RÍGIDOS: As forças que actuam num corpo rígido podem ser divididas em dois grupos: 1. Forças externas (que representam as acções externas sobre o corpo rígido) 2. Forças internas (que representam

Leia mais

Exercícios de Física Eletromagnetismo

Exercícios de Física Eletromagnetismo Exercícios de Física Eletromagnetismo 1-Considerando as propriedades dos ímãs, assinale a alternativa correta. a) Quando temos dois ímãs, podemos afirmar que seus pólos magnéticos de mesmo nome (norte

Leia mais

Exercícios de Física Eletromagnetismo

Exercícios de Física Eletromagnetismo Exercícios de Física Eletromagnetismo 1-Considerando as propriedades dos ímãs, assinale a alternativa correta. a) Quando temos dois ímãs, podemos afirmar que seus pólos magnéticos de mesmo nome (norte

Leia mais

Exercícios Eletromagnetismo

Exercícios Eletromagnetismo Exercícios Eletromagnetismo 1-Considerando as propriedades dos ímãs, assinale a alternativa correta. a) Quando temos dois ímãs, podemos afirmar que seus pólos magnéticos de mesmo nome (norte e norte, ou

Leia mais

3 PROGRAMAÇÃO DOS MICROCONTROLADORES

3 PROGRAMAÇÃO DOS MICROCONTROLADORES 3 PROGRAMAÇÃO DOS MICROCONTROLADORES Os microconroladores selecionados para o presene rabalho foram os PICs 16F628-A da Microchip. Eses microconroladores êm as vanagens de serem facilmene enconrados no

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031 Universidade Federal do io Grande do Sul Escola de Engenharia de Poro Alegre Deparameno de Engenharia Elérica ANÁLISE DE CICUITOS II - ENG43 Aula 5 - Condições Iniciais e Finais de Carga e Descarga em

Leia mais

Esforços axiais e tensões normais

Esforços axiais e tensões normais Esforços axiais e tensões normais (Ref.: Beer & Johnston, Resistência dos Materiais, ª ed., Makron) Considere a estrutura abaixo, construída em barras de aço AB e BC, unidas por ligações articuladas nas

Leia mais

F-128 Física Geral I. Aula exploratória-07 UNICAMP IFGW F128 2o Semestre de 2012

F-128 Física Geral I. Aula exploratória-07 UNICAMP IFGW F128 2o Semestre de 2012 F-18 Física Geral I Aula eploraória-07 UNICAMP IFGW username@ii.unicamp.br F18 o Semesre de 01 1 Energia Energia é um conceio que ai além da mecânica de Newon e permanece úil ambém na mecânica quânica,

Leia mais

CORREÇÃO PROVA UFRGS 2009 MATEMÁTICA FAÉ

CORREÇÃO PROVA UFRGS 2009 MATEMÁTICA FAÉ CORREÇÃO PROVA UFRGS 009 MATEMÁTICA FAÉ QUESTÃO 6 (E) ASSUNTO: MATEMÁTICA BÁSICA (PORCENT. E POTÊNCIAS DE 0) 00 milhões = 00.0 6 Regra de Três: 00.0 6,% 00%.0 8,.0.0 0 dólares QUESTÃO 7 (E) ASSUNTO: MATEMÁTICA

Leia mais

Sistemas de Energia Ininterrupta: No-Breaks

Sistemas de Energia Ininterrupta: No-Breaks Sisemas de Energia Ininerrupa: No-Breaks Prof. Dr.. Pedro Francisco Donoso Garcia Prof. Dr. Porfírio Cabaleiro Corizo www.cpdee.ufmg.br/~el GEP-DELT-EEUFMG Porque a necessidade de equipamenos de energia

Leia mais

Modelos de séries temporais aplicados a índices de preços hospitalares do Hospital da Universidade Federal de Santa Catarina

Modelos de séries temporais aplicados a índices de preços hospitalares do Hospital da Universidade Federal de Santa Catarina Modelos de séries emporais aplicados a índices de preços hospialares do Hospial da Universidade Federal de Sana Caarina Marcelo Angelo Cirillo Thelma Sáfadi Resumo O princípio básico da adminisração de

Leia mais

O objectivo deste estudo é a obtenção de estimativas para o número de nados vivos (de cada um dos sexos) ocorrido por mês em Portugal.

O objectivo deste estudo é a obtenção de estimativas para o número de nados vivos (de cada um dos sexos) ocorrido por mês em Portugal. REVISTA DE ESTATÍSTICA 8ª PAGINA NADOS VIVOS: ANÁLISE E ESTIMAÇÃO LIVE BIRTHS: ANALYSIS AND ESTIMATION Auora: Teresa Bago d Uva -Gabinee de Esudos e Conjunura do Insiuo Nacional de Esaísica Resumo: O objecivo

Leia mais

Com base no enunciado e no gráfico, assinale V (verdadeira) ou F (falsa) nas afirmações a seguir.

Com base no enunciado e no gráfico, assinale V (verdadeira) ou F (falsa) nas afirmações a seguir. PROVA DE FÍSICA 2º ANO - 1ª MENSAL - 2º TRIMESTRE TIPO A 01) O gráico a seguir represena a curva de aquecimeno de 10 g de uma subsância à pressão de 1 am. Analise as seguines airmações. I. O pono de ebulição

Leia mais

CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA

CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA Inrodução Ese arigo raa de um dos assunos mais recorrenes nas provas do IME e do ITA nos úlimos anos, que é a Cinéica Química. Aqui raamos principalmene dos

Leia mais

MECÂNICA DOS SÓLIDOS

MECÂNICA DOS SÓLIDOS Deparameno de Engenharia Mecânica Mecânica dos Sólidos 05/06 MECÂNICA DOS SÓLIDOS 05/6 Noas das aulas e problemas Versão 0. Prof. Luis Faria Prof. Luís Sousa Draf 0.- 30--05 Pág. Deparameno de Engenharia

Leia mais

Capítulo 5: Introdução às Séries Temporais e aos Modelos ARIMA

Capítulo 5: Introdução às Séries Temporais e aos Modelos ARIMA 0 Capíulo 5: Inrodução às Séries emporais e aos odelos ARIA Nese capíulo faremos uma inrodução às séries emporais. O nosso objeivo aqui é puramene operacional e esaremos mais preocupados com as definições

Leia mais

Artigos. Abordagem intertemporal da conta corrente: Nelson da Silva Joaquim Pinto de Andrade. introduzindo câmbio e juros no modelo básico*

Artigos. Abordagem intertemporal da conta corrente: Nelson da Silva Joaquim Pinto de Andrade. introduzindo câmbio e juros no modelo básico* Arigos Abordagem ineremporal da cona correne: inroduzindo câmbio e juros no modelo básico* Nelson da Silva Joaquim Pino de Andrade Resumo O modelo padrão da abordagem ineremporal da cona correne assume

Leia mais

QUESTÃO 60 DA CODESP

QUESTÃO 60 DA CODESP UEÃO 60 D CODE - 0 êmpera é um ipo de raameno érmico uilizado para aumenar a dureza de peças de aço respeio da êmpera, é correo afirmar: ) a êmpera modifica de maneira uniforme a dureza da peça, independenemene

Leia mais

Lista de Exercícios 1

Lista de Exercícios 1 Universidade Federal de Ouro Preo Deparameno de Maemáica MTM14 - CÁLCULO DIFERENCIAL E INTEGRAL III Anônio Silva, Edney Oliveira, Marcos Marcial, Wenderson Ferreira Lisa de Exercícios 1 1 Para cada um

Leia mais

Introdução A tensão plana existe praticamente em todas as estruturas comuns, incluindo prédios máquinas, veículos e aeronaves.

Introdução A tensão plana existe praticamente em todas as estruturas comuns, incluindo prédios máquinas, veículos e aeronaves. - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Vasos de Pressão Introdução

Leia mais

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL42 Coneúdo 8 - Inrodução aos Circuios Lineares e Invarianes...1 8.1 - Algumas definições e propriedades gerais...1 8.2 - Relação enre exciação

Leia mais

7. VENTILADORES INTRODUÇÃO CAMPOS DE APLICAÇÃO

7. VENTILADORES INTRODUÇÃO CAMPOS DE APLICAÇÃO 7. ENTILADORES INTRODUÇÃO eniladores são máquinas de fluxo geradoras que ransmiem a energia mecânica recebida do eixo ara o fluido (gás). Seu funcionameno é similar às bombas, sendo a rincial diferença

Leia mais