O gráfico que é uma reta

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "O gráfico que é uma reta"

Transcrição

1 O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber mais sobre como é essa ligação que eise enre a fórmula = + e a figura geomérica da rea. Queremos saber, por eemplo, se ouras fórmulas ambém êm como gráfico uma rea. Caso haja, o que essas fórmulas de reas êm em comum; de que modo se parecem? É isso que esudaremos hoje. Como você verá, são muias as siuações na vida coidiana - especialmene nas nossas diversas profissões - em que a relação enre duas grandezas é epressa graficamene por um rea. Veremos isso num eemplo com um auomóvel em movimeno, na relação enre a disância percorrida e o empo de percurso. E deiaremos para você aplicar as mesmas idéias na sua própria área de rabalho: na consrução civil, na indúsria, no comércio, no rabalho em casa ec. A conclusão da aula é que a Maemáica em uma maneira de visualizar oda uma série de problemas, faciliando imensamene sua resolução. Inrodução Um eemplo irado do fuebol Talvez você já enha viso um comenarisa de fuebol dizer o seguine, analisando um deerminado chue a gol: A velocidade da bola era de aproimadamene km/h, quando foi espalmada pelo goleiro. O que significa isso? Como se faz essa esimaiva de velocidade? Se um auomóvel esivesse a km/h, isso quer dizer que ele percorreria quilômeros de disância no empo de hora. Possivelmene, a esimaiva do comenarisa deve er sido calculada por compuador da seguine maneira: pelo vídeo do chue, é anoado o insane em que o pé do jogador oca a bola e a posição em que ele esá no campo; é anoado ambém o insane em que o goleiro espalma a bola e a posição do goleiro. Assim, obém-se a disância que a bola percorreu e o empo que levou para isso. O que é a velocidade da bola, enão? Se, para simplificar, considerarmos que a velocidade da bola é consane ao longo de oda sua rajeória, enão, por definição: Nossa aula Velocidade é a disância percorrida dividida pelo empo de percurso.

2 A U L A Rigorosamene falando, isso não é verdade, pois o ario do ar diminui a velocidade da bola o empo odo. Esamos simplificando as coisas.) Em linguagem maemáica: velocidade = espaço empo ou v = e No caso desse chue, a velocidade equivale a km/h. Em meros por segundo (pois as medidas do campo de fuebol são em meros e cada chue se dá em frações de segundo), ela é de: v = km/h = km m = h 6s 4 = 5 m/s Ou seja, a bola percorre um espaço de 5 meros a cada segundo. Ou 5 meros a cada segundos, ou meros a cada 4 segundos, ou 5 meros a cada 6 segundos, e assim por diane. É fácil visualizar de uma só vez a relação do espaço (e) percorrido com o empo () de percurso - que nese eemplo é: e = 5, ou e = 5 Para isso, basa consruir uma abela e um gráfico que mosre a maneira como o espaço se relaciona com o empo: e = e (m) e e= (s) Como vemos, nese caso, emos uma rea que passa pela origem do plano caresiano. Observe que, nesse eemplo, os eios do plano caresiano represenam e (espaço) e (empo), que são grandezas diferenes: uma é medida em meros e oura, em segundos, respecivamene. Dessa forma, a marcação dos ponos sobre os eios pode ser feia ambém com unidades diferenes. No eio verical, cada unidade equivale a 5 meros; enquano no eio horizonal cada unidade corresponde a segundo.

3 O gráfico de = a: reas pela origem Observe os eemplos a seguir: a) = b) = A U L A Eercícios c) = - d) = /

4 A U L A º q. º q. º q. 4º q. Como você mesmo deve er noado, o gráfico de = a (no qual a é uma consane) é sempre uma rea. Quando a é posiivo, a rea esá no º e no º quadranes do plano caresiano; quando a é negaivo, a rea esá no º e no 4º quadranes. Veja nos eemplos abaio: OS 4 QUADRANTES DO PLANO CARTESIANO = (a=) / = (a=) ( ) = =/ (a=/) a= -/ - - =-/ (a=-/) = - ( ) a =- =- (a=-) =- (a=-) Volando ao eemplo da velocidade O gráfico da relação e = 5, que vimos no início da aula, mosra, para cada insane de empo, o espaço e percorrido pela bola de fuebol, desde o início do movimeno aé o insane. Você se lembra de que verificamos que: v = 5 m/s é equivalene a v = km/h Imagine agora um carroque se desloca a uma velocidade de km/h, ou seja, sua velocidade é de 5 m/s. Na figura abaio, ilusramos isso, imaginando o eio e como o próprio caminho do carro para ajudar na visualização. Desenhamos no carrouma sea v, sempre do mesmo amanho, para represenar sua velocidade consane: in cio do empo depois de segundos v = v=5 m/s v = v=5 m/s e e (espa o) e=5 (meros)

5 O gráfico da página 64 já falou udo sobre ese eemplo, não é mesmo? Vêse logo que o carro inha percorrido 5 meros após segundo do início da conagem do empo; 5 meros após segundos, 75 meros após segundos ec. Agora vamos meer um pouco no eemplo. No oal, quanos meros eria percorrido o carro se o cronômero só ivesse sido disparado para começar a conagem do empo depois de o carro já haver percorrido 4 meros? A U L A in cio do empo depois de segundos v = v=5 m/s v = v=5 m/s v = v=5 m/s 4 e e (espa o) 4 5 No oal, o carro eria percorrido 5 (como anes) mais 4 meros. É fácil ober o novo gráfico do espaço percorrido em relação ao empo, para e = Acompanhe como o espaço inicial, que aqui é de 4 meros, aparece nas linhas da nova abela e no gráfico, deslocando a rea anerior para cima em 4 unidades (4 meros). TABELA ANTERIOR: TABELA NOVA: e = 5 e = = = = = = e (m) e e= e= (,) (,5) (s)

6 A U L A O gráfico de = a + c: reas quaisquer Nos eemplos abaio, consruímos gráficos de equações do ipo = a + c. Esses gráficos foram obidos somando-se c unidades aos gráficos dos eemplos aneriores, cujas equações eram do ipo = a. =+ = = =- -, ,5 +.5 =-+.5 =-+,5 =- Observe que, quando c é posiivo, a rea de = a + c cora o eio acima da origem; e quando c é negaivo, cora o eio abaio da origem. Um caso paricular: reas horizonais Os diversos gráficos de = a já nos mosraram que a consane a esá relacionada com a inclinação da rea. Quando a é posiivo (rea no º e º quadranes), dizemos que a rea em inclinação posiiva; quando a é negaivo (rea no º e 4º quadranes), dizemos que a rea em inclinação negaiva. Como a rea de = a + c é a rea de = a deslocada de c para cima (se c > ) ou para baio (se c < ), a inclinação permanece igual. Confira nas figuras: as reas são paralelas, endo a mesma inclinação. Para quem esá aeno, uma perguna logo surge: que dizemos da inclinação, quando a não é posiivo nem negaivo, mas nulo (a = )? Dizemos que a inclinação é nula. E como será uma rea = a + c com a =, ou seja, al que = c (para odo )? Aqui esão duas delas, com abela e gráfico: =,5.5, (;.5), (4;.5), =.5,,5,5,5 4,5 -, = (-, -) - (-, -) =-

7 Veja que efeio eve anular a na relação = a + c: c ficamos com = c, cujo gráfico é uma rea horizonal. Já conhecemos reas inclinadas de vários modos e, agora, reas horizonais. Que ipo de rea nos fala enconrar? Pense. A U L A Ouro caso paricular: reas vericais Relembre que obivemos reas horizonais anulando o coeficiene a de na relação = a + c. Poderíamos enconrar as reas que nos falam, as vericais, fazendo a mesma coisa com - ou seja, anulando o seu coeficiene? Do jeio que esá não - porque o coeficiene de é. Mas se incluírmos ambém um coeficiene (b) para, enão, quando ele for nulo, eremos as reas vericais: é o caso dos dois úlimos dos próimos eemplos. a) O gráfico de a + b = c : eemplos Vamos desenhar eses gráficos de reas, usando uma abela auiliar: - = 5 = = / = -,6 = - 5 5/ - / / - (, -) -5/ 5/ -=5 b) +=7 =- + 7 = / =,5 = / +=7 7/ (, ) (4, /) / 4 7 c) += = (para odo ) - - (, ) (, -) d) +=- =- (para odo ) , 5 (-, ) - (-; -,5) = =

8 A U L A Conclusão: a relação = c (onde c é uma consane) é represenada no plano caresiano por uma rea verical: à direia da origem se c >, e à esquerda se c <. E se c =? A rea de = é o próprio eio. Além desa conclusão, os dois primeiros eemplos nos mosram claramene como é o gráfico da relação geral a + b = c, quando a e b não são nulos: é uma rea inclinada que cora o eio no pono ( c, ) e o eio em (, c ). Confirme isso a b nos eemplos. Sendo assim, já sabemos raçar o gráfico de qualquer rea, iso é, de qualquer relação enre e do ipo a + b = c. Vamos praicar? Eercícios Aenção: Para os eercícios desa aula, é ineressane você rabalhar com papel quadriculado, pois ele ajuda no raçado de gráficos. Eercício a) Para cada rea abaio, faça uma abela auiliar e use-a para raçar o gráfico da rea. (Desenhe odas as reas num mesmo plano caresiano). a) = 5 a) = 5 + a) = 5-5 a4) - 5 = 7 b) Qual desas reas em maior inclinação? c) Em ermos geoméricos, o que podemos dizer desas quaro reas? Eercício a) Observando o gráfico de e = 5 + 4, do espaço oal (em meros) percorrido pelo auomóvel aé o insane, responda: qual o espaço oal percorrido aé: a) segundos? a) 4 segundos? a) segundos? a4),5 segundo? b) Confirme suas resposas pela abela.

9 Eercício a) Com base no gráfico de e = 5 + 4, race no mesmo plano caresiano o gráfico de e = b) O que significa esse 75 no lugar de 4, no eemplo do auomóvel? A U L A Eercício 4 a) Observe, a seguir, cada uma das relações que envolvem e, e faça o que se pede. Escreva ao lado de cada uma: (H) se o gráfico da relação for uma rea horizonal; (V) se for uma rea verical; (I +) se for uma rea de inclinação posiiva; e (I -) se for de inclinação negaiva. a) = - a) = 5 a) = - a4) = p a5) = 5 - a6) = - a7) - 4 = b) Usando uma abela auiliar, race o gráfico de cada rea, e confirme sua resposa anerior. Eercício 5 Aqui esão algumas reas na forma a + b = c. Use o úlimo comenário da aula para responder o que se pede em seguida (ou use as sugesões). : rea : 7 + = - 4 rea : - = rea : - - = rea 4: = 4 rea 5: + 5 = 8 a) Em que pono a rea cora o eio? (Sugesão: Faça = e calcule ) b) E o eio? (Sugesão: Faça = e calcule ). c) Em que casos esses dois ponos basam para raçar a rea?

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL Movimeno unidimensional 5 MOVIMENTO UNIDIMENSIONAL. Inrodução Denre os vários movimenos que iremos esudar, o movimeno unidimensional é o mais simples, já que odas as grandezas veoriais que descrevem o

Leia mais

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática A B C D E A B C D E. Avaliação da Aprendizagem em Processo Prova do Aluno 3 a série do Ensino Médio

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática A B C D E A B C D E. Avaliação da Aprendizagem em Processo Prova do Aluno 3 a série do Ensino Médio AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Maemáica a série do Ensino Médio Turma EM GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO o Bimesre de 6 Daa / / Escola Aluno A B C D E 6 7 9 A B C D E Avaliação

Leia mais

Capítulo Cálculo com funções vetoriais

Capítulo Cálculo com funções vetoriais Cálculo - Capíulo 6 - Cálculo com funções veoriais - versão 0/009 Capíulo 6 - Cálculo com funções veoriais 6 - Limies 63 - Significado geomérico da derivada 6 - Derivadas 64 - Regras de derivação Uiliaremos

Leia mais

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara Insiuo de Física USP Física V - Aula 6 Professora: Mazé Bechara Aula 6 Bases da Mecânica quânica e equações de Schroedinger. Aplicação e inerpreações. 1. Ouros posulados da inerpreação de Max-Born para

Leia mais

velocidade inicial: v 0 ; ângulo de tiro com a horizontal: 0.

velocidade inicial: v 0 ; ângulo de tiro com a horizontal: 0. www.fisicaee.com.br Um projéil é disparado com elocidade inicial iual a e formando um ânulo com a horizonal, sabendo-se que os ponos de disparo e o alo esão sobre o mesmo plano horizonal e desprezando-se

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar Progressão Ariméica e Progressão Geomérica. (Pucrj 0) Os números a x, a x e a x esão em PA. A soma dos números é igual a: a) 8 b) c) 7 d) e) 0. (Fuves 0) Dadas as sequências an n n, n n cn an an b, e b

Leia mais

Exercícios Sobre Oscilações, Bifurcações e Caos

Exercícios Sobre Oscilações, Bifurcações e Caos Exercícios Sobre Oscilações, Bifurcações e Caos Os ponos de equilíbrio de um modelo esão localizados onde o gráfico de + versus cora a rea definida pela equação +, cuja inclinação é (pois forma um ângulo

Leia mais

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL42 Coneúdo 8 - Inrodução aos Circuios Lineares e Invarianes...1 8.1 - Algumas definições e propriedades gerais...1 8.2 - Relação enre exciação

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar . (Pucrj 0) Os números a x, a x e a3 x 3 esão em PA. A soma dos 3 números é igual a: é igual a e o raio de cada semicírculo é igual à meade do semicírculo anerior, o comprimeno da espiral é igual a a)

Leia mais

Circuitos Elétricos I EEL420

Circuitos Elétricos I EEL420 Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL420 Coneúdo 1 - Circuios de primeira ordem...1 1.1 - Equação diferencial ordinária de primeira ordem...1 1.1.1 - Caso linear, homogênea, com

Leia mais

12 Integral Indefinida

12 Integral Indefinida Inegral Indefinida Em muios problemas, a derivada de uma função é conhecida e o objeivo é enconrar a própria função. Por eemplo, se a aa de crescimeno de uma deerminada população é conhecida, pode-se desejar

Leia mais

F-128 Física Geral I. Aula exploratória-07 UNICAMP IFGW F128 2o Semestre de 2012

F-128 Física Geral I. Aula exploratória-07 UNICAMP IFGW F128 2o Semestre de 2012 F-18 Física Geral I Aula eploraória-07 UNICAMP IFGW username@ii.unicamp.br F18 o Semesre de 01 1 Energia Energia é um conceio que ai além da mecânica de Newon e permanece úil ambém na mecânica quânica,

Leia mais

ONDAS ELETROMAGNÉTICAS

ONDAS ELETROMAGNÉTICAS LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS A propagação de ondas eleromagnéicas ocorre quando um campo elérico variane no empo produ um campo magnéico ambém variane no empo, que por sua ve produ um campo

Leia mais

2.7 Derivadas e Taxas de Variação

2.7 Derivadas e Taxas de Variação LIMITES E DERIVADAS 131 2.7 Derivadas e Taas de Variação O problema de enconrar a rea angene a uma curva e o problema de enconrar a velocidade de um objeo envolvem deerminar o mesmo ipo de limie, como

Leia mais

Voo Nivelado - Avião a Hélice

Voo Nivelado - Avião a Hélice - Avião a Hélice 763 º Ano da icenciaura em ngenharia Aeronáuica edro. Gamboa - 008. oo de ruzeiro De modo a prosseguir o esudo analíico do desempenho, é conveniene separar as aeronaves por ipo de moor

Leia mais

LABORATÓRIO DE HIDRÁULICA

LABORATÓRIO DE HIDRÁULICA UNIVERSIDADE FEDERAL DE ALAGOAS ENTRO DE TENOLOGIA LABORATÓRIO DE HIDRÁULIA Vladimir aramori Josiane Holz Irene Maria haves Pimenel Marllus Gusavo Ferreira Passos das Neves Maceió - Alagoas Ouubro de 2012

Leia mais

Nome: N.º Turma: Suficiente (50% 69%) Bom (70% 89%)

Nome: N.º Turma: Suficiente (50% 69%) Bom (70% 89%) Escola E.B.,3 Eng. Nuno Mergulhão Porimão Ano Leivo 01/013 Tese de Avaliação Escria de Maemáica 9.º ano de escolaridade Duração do Tese: 90 minuos 16 de novembro de 01 Nome: N.º Turma: Classificação: Fraco

Leia mais

Cinemática Vetorial Movimento Retilíneo. Movimento. Mecânica : relaciona força, matéria e movimento

Cinemática Vetorial Movimento Retilíneo. Movimento. Mecânica : relaciona força, matéria e movimento Fisica I - IO Cinemáica Veorial Moimeno Reilíneo Prof. Crisiano Olieira Ed. Basilio Jafe sala crislpo@if.usp.br Moimeno Mecânica : relaciona força, maéria e moimeno Cinemáica : Pare da mecânica que descree

Leia mais

RÁPIDA INTRODUÇÃO À FÍSICA DAS RADIAÇÕES Simone Coutinho Cardoso & Marta Feijó Barroso UNIDADE 3. Decaimento Radioativo

RÁPIDA INTRODUÇÃO À FÍSICA DAS RADIAÇÕES Simone Coutinho Cardoso & Marta Feijó Barroso UNIDADE 3. Decaimento Radioativo Decaimeno Radioaivo RÁPIDA ITRODUÇÃO À FÍSICA DAS RADIAÇÕES Simone Couinho Cardoso & Mara Feijó Barroso Objeivos: discuir o que é decaimeno radioaivo e escrever uma equação que a descreva UIDADE 3 Sumário

Leia mais

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON)

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON) TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 8 LIVRO DO NILSON). CONSIDERAÇÕES INICIAIS SÉRIES DE FOURIER: descrevem funções periódicas no domínio da freqüência (ampliude e fase). TRANSFORMADA DE FOURIER:

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 2º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Inrodução ao Cálculo Diferencial II TPC nº 9 Enregar em 4 2 29. Num loe de bolbos de úlipas a probabilidade de que

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tarefa de revisão nº 17 1. Uma empresa lançou um produo no mercado. Esudos efecuados permiiram concluir que a evolução do preço se aproxima do seguine modelo maemáico: 7 se 0 1 p() =, p em euros e em anos.

Leia mais

Duas opções de trajetos para André e Bianca. Percurso 1( Sangiovanni tendo sorteado cara e os dois se encontrando no ponto C): P(A) =

Duas opções de trajetos para André e Bianca. Percurso 1( Sangiovanni tendo sorteado cara e os dois se encontrando no ponto C): P(A) = RESOLUÇÃO 1 A AVALIAÇÃO UNIDADE II -016 COLÉGIO ANCHIETA-BA PROFA. MARIA ANTÔNIA C. GOUVEIA ELABORAÇÃO e PESQUISA: PROF. ADRIANO CARIBÉ e WALTER PORTO. QUESTÃO 01. Três saélies compleam suas respecivas

Leia mais

FÍSICA - 1 o ANO MÓDULO 15 GRÁFICOS DA CINEMÁTICA

FÍSICA - 1 o ANO MÓDULO 15 GRÁFICOS DA CINEMÁTICA FÍSICA - 1 o ANO MÓDULO 15 GRÁFICOS DA CINEMÁTICA S S S S S S v v S v v S Área S v v v v v v S(m) 2-1 (s) Se a < S Se a > S S S 1 2 3 a a a v v Área v v S S(m) 16 15 1 (s) Como pode cair no enem? (ENEM)

Leia mais

Introdução às Medidas em Física

Introdução às Medidas em Física Inrodução às Medidas em Física 43152 Elisabeh Maeus Yoshimura emaeus@if.usp.br Bloco F Conjuno Alessandro Vola sl 18 agradecimenos a Nemiala Added por vários slides Conceios Básicos Lei Zero da Termodinâmica

Leia mais

Matemática. Funções polinomiais. Ensino Profissional. Caro estudante. Maria Augusta Neves Albino Pereira António Leite Luís Guerreiro M.

Matemática. Funções polinomiais. Ensino Profissional. Caro estudante. Maria Augusta Neves Albino Pereira António Leite Luís Guerreiro M. Ensino Profissional Maria Augusa Neves Albino Pereira Anónio Leie Luís Guerreiro M. Carlos Silva Maemáica Funções polinomiais Revisão cienífica Professor Douor Jorge Nuno Silva Faculdade de Ciências da

Leia mais

CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA

CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA Inrodução Ese arigo raa de um dos assunos mais recorrenes nas provas do IME e do ITA nos úlimos anos, que é a Cinéica Química. Aqui raamos principalmene dos

Leia mais

Regressão Linear Simples

Regressão Linear Simples Origem hisórica do ermo Regressão: Regressão Linear Simples Francis Galon em 1886 verificou que, embora houvesse uma endência de pais alos erem filhos alos e pais baios erem filhos baios, a alura média

Leia mais

Seção 5: Equações Lineares de 1 a Ordem

Seção 5: Equações Lineares de 1 a Ordem Seção 5: Equações Lineares de 1 a Ordem Definição. Uma EDO de 1 a ordem é dia linear se for da forma y + fx y = gx. 1 A EDO linear de 1 a ordem é uma equação do 1 o grau em y e em y. Qualquer dependência

Leia mais

Lista de Exercícios nº 3 - Parte IV

Lista de Exercícios nº 3 - Parte IV DISCIPLINA: SE503 TEORIA MACROECONOMIA 01/09/011 Prof. João Basilio Pereima Neo E-mail: joaobasilio@ufpr.com.br Lisa de Exercícios nº 3 - Pare IV 1ª Quesão (...) ª Quesão Considere um modelo algébrico

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031 Universidade Federal do io Grande do Sul Escola de Engenharia de Poro Alegre Deparameno de Engenharia Elérica ANÁLISE DE CICUITOS II - ENG43 Aula 5 - Condições Iniciais e Finais de Carga e Descarga em

Leia mais

Função Exponencial 2013

Função Exponencial 2013 Função Exponencial 1 1. (Uerj 1) Um imóvel perde 6% do valor de venda a cada dois anos. O valor V() desse imóvel em anos pode ser obido por meio da fórmula a seguir, na qual V corresponde ao seu valor

Leia mais

RASCUNHO. a) 120º10 b) 95º10 c) 120º d) 95º e) 110º50

RASCUNHO. a) 120º10 b) 95º10 c) 120º d) 95º e) 110º50 ª QUESTÃO Uma deerminada cidade organizou uma olimpíada de maemáica e física, para os alunos do º ano do ensino médio local. Inscreveramse 6 alunos. No dia da aplicação das provas, consaouse que alunos

Leia mais

Física I -2009/2010. Utilize o modelo de uma partícula (ou seja, represente o corpo cujo movimento está a estudar por uma única partícula)

Física I -2009/2010. Utilize o modelo de uma partícula (ou seja, represente o corpo cujo movimento está a estudar por uma única partícula) Quesões: Física I -9/ 3 a Série - Movimeno unidimensional - Resolução Q -Esboce um diagrama de ponos para cada um dos movimenos unidimensionais abaixo indicados, de acordo com as seguines insruções: Uilize

Leia mais

Mecânica da partícula

Mecânica da partícula -- Mecânica da parícula Moimenos sob a acção de uma força resulane consane Prof. Luís C. Perna LEI DA INÉRCIA OU ª LEI DE NEWTON LEI DA INÉRCIA Para que um corpo alere o seu esado de moimeno é necessário

Leia mais

2.6 - Conceitos de Correlação para Sinais Periódicos

2.6 - Conceitos de Correlação para Sinais Periódicos .6 - Conceios de Correlação para Sinais Periódicos O objeivo é o de comparar dois sinais x () e x () na variável empo! Exemplo : Considere os dados mosrados abaixo y 0 x Deseja-se ober a relação enre x

Leia mais

INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas.

INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas. SIMULADO DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - JULHO DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES de 0 a

Leia mais

MATEMÁTICA APLICADA AO PLANEJAMENTO DA PRODUÇÃO E LOGÍSTICA. Silvio A. de Araujo Socorro Rangel

MATEMÁTICA APLICADA AO PLANEJAMENTO DA PRODUÇÃO E LOGÍSTICA. Silvio A. de Araujo Socorro Rangel MAEMÁICA APLICADA AO PLANEJAMENO DA PRODUÇÃO E LOGÍSICA Silvio A. de Araujo Socorro Rangel saraujo@ibilce.unesp.br, socorro@ibilce.unesp.br Apoio Financeiro: PROGRAMA Inrodução 1. Modelagem maemáica: conceios

Leia mais

Física e Química A Ficha de trabalho nº 2: Unidade 1 Física 11.º Ano Movimentos na Terra e no Espaço

Física e Química A Ficha de trabalho nº 2: Unidade 1 Física 11.º Ano Movimentos na Terra e no Espaço Física e Química A Ficha de rabalho nº 2: Unidade 1 Física 11.º Ano Moimenos na Terra e no Espaço 1. Um corpo descree uma rajecória recilínea, sendo regisada a sua posição em sucessios insanes. Na abela

Leia mais

F B d E) F A. Considere:

F B d E) F A. Considere: 5. Dois corpos, e B, de massas m e m, respecivamene, enconram-se num deerminado insane separados por uma disância d em uma região do espaço em que a ineração ocorre apenas enre eles. onsidere F o módulo

Leia mais

A entropia de uma tabela de vida em previdência social *

A entropia de uma tabela de vida em previdência social * A enropia de uma abela de vida em previdência social Renao Marins Assunção Leícia Gonijo Diniz Vicorino Palavras-chave: Enropia; Curva de sobrevivência; Anuidades; Previdência Resumo A enropia de uma abela

Leia mais

Biofísica II Turma de Biologia FFCLRP USP Prof. Antônio Roque Biologia de Populações 2 Modelos não-lineares. Modelos Não-Lineares

Biofísica II Turma de Biologia FFCLRP USP Prof. Antônio Roque Biologia de Populações 2 Modelos não-lineares. Modelos Não-Lineares Modelos Não-Lineares O modelo malhusiano prevê que o crescimeno populacional é exponencial. Enreano, essa predição não pode ser válida por um empo muio longo. As funções exponenciais crescem muio rapidamene

Leia mais

4 O modelo econométrico

4 O modelo econométrico 4 O modelo economérico O objeivo desse capíulo é o de apresenar um modelo economérico para as variáveis financeiras que servem de enrada para o modelo esocásico de fluxo de caixa que será apresenado no

Leia mais

Capítulo 3 Derivada. 3.1 Reta Tangente e Taxa de Variação

Capítulo 3 Derivada. 3.1 Reta Tangente e Taxa de Variação Inrodução ao Cálculo Capíulo Derivada.1 Rea Tangene e Taxa de Variação Exemplo nr. 1 - Uma parícula caminha sobre uma rajeória qualquer obedecendo à função horária: s() 5 + (s em meros, em segundos) a)

Leia mais

Cálculo do valor em risco dos ativos financeiros da Petrobrás e da Vale via modelos ARMA-GARCH

Cálculo do valor em risco dos ativos financeiros da Petrobrás e da Vale via modelos ARMA-GARCH Cálculo do valor em risco dos aivos financeiros da Perobrás e da Vale via modelos ARMA-GARCH Bruno Dias de Casro 1 Thiago R. dos Sanos 23 1 Inrodução Os aivos financeiros das companhias Perobrás e Vale

Leia mais

Exercícios 2.7. e (4, 1 2 ).

Exercícios 2.7. e (4, 1 2 ). LIMITES E DERIVADAS 7.7 Eercícios. Uma curva em por equação f. (a) Escreva uma epressão para a inclinação da rea secane pelos ponos P, f e Q, f. (b) Escreva uma epressão para a inclinação da rea angene

Leia mais

Características dos Processos ARMA

Características dos Processos ARMA Caracerísicas dos Processos ARMA Aula 0 Bueno, 0, Capíulos e 3 Enders, 009, Capíulo. a.6 Morein e Toloi, 006, Capíulo 5. Inrodução A expressão geral de uma série emporal, para o caso univariado, é dada

Leia mais

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Dinâmicos

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Dinâmicos Análise de Projecos ESAPL / IPVC Criérios de Valorização e Selecção de Invesimenos. Méodos Dinâmicos Criério do Valor Líquido Acualizado (VLA) O VLA de um invesimeno é a diferença enre os valores dos benefícios

Leia mais

Integração por substituição (mudança de variável)

Integração por substituição (mudança de variável) M@plus Inegrais Inegrais Pare II IV. Técnicas de inegração Quando o inegral (definido ou indefinido) não é imediao ou quase imediao, recorremos a ouras écnicas de inegração. Inegração por subsiuição (mudança

Leia mais

Função Exponencial Nível Básico

Função Exponencial Nível Básico Função Eponencial - 16 Nível Básico 1. (Imed 16) Em relação à função real definida por g(g()) corresponde a: a) 1. b). c) 3. d). e) 5. g() 1, é correo afirmar que. (Uel 15) A miose é uma divisão celular,

Leia mais

AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM

AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM 163 22. PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM 22.1. Inrodução Na Seção 9.2 foi falado sobre os Parâmeros de Core e

Leia mais

GFI Física por Atividades. Caderno de Trabalhos de Casa

GFI Física por Atividades. Caderno de Trabalhos de Casa GFI00157 - Física por Aividades Caderno de Trabalhos de Casa Coneúdo 1 Cinemáica 4 1.1 Velocidade.............................. 4 1.2 Represenações do movimeno................... 8 1.3 Aceleração em uma

Leia mais

4 Metodologia Proposta para o Cálculo do Valor de Opções Reais por Simulação Monte Carlo com Aproximação por Números Fuzzy e Algoritmos Genéticos.

4 Metodologia Proposta para o Cálculo do Valor de Opções Reais por Simulação Monte Carlo com Aproximação por Números Fuzzy e Algoritmos Genéticos. 4 Meodologia Proposa para o Cálculo do Valor de Opções Reais por Simulação Mone Carlo com Aproximação por Números Fuzzy e Algorimos Genéicos. 4.1. Inrodução Nese capíulo descreve-se em duas pares a meodologia

Leia mais

DENOMINADORES: QUAIS SÃO? COMO SE CALCULAM?

DENOMINADORES: QUAIS SÃO? COMO SE CALCULAM? DENOMINADORES: QUAIS SÃO? COMO SE CALCULAM? POPULAÇÃO SOB OBSERVAÇÃO A idade e o sexo da população inscria nas lisas dos médicos paricipanes é conhecida. A composição dessas lisas é acualizada no final

Leia mais

Capítulo 2: Conceitos Fundamentais sobre Circuitos Elétricos

Capítulo 2: Conceitos Fundamentais sobre Circuitos Elétricos SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA TE041 Circuios Eléricos I Prof. Ewaldo L. M. Mehl Capíulo 2: Conceios Fundamenais sobre Circuios Eléricos 2.1. CARGA ELÉTRICA E CORRENTE ELÉTRICA

Leia mais

QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS

QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS QUESTÃO Assinale V (verdadeiro) ou F (falso): () A solução da equação diferencial y y y apresena equilíbrios esacionários quando, dependendo

Leia mais

Análise de séries de tempo: modelos de decomposição

Análise de séries de tempo: modelos de decomposição Análise de séries de empo: modelos de decomposição Profa. Dra. Liane Werner Séries de emporais - Inrodução Uma série emporal é qualquer conjuno de observações ordenadas no empo. Dados adminisraivos, econômicos,

Leia mais

ENGF93 Análise de Processos e Sistemas I

ENGF93 Análise de Processos e Sistemas I ENGF93 Análise de Processos e Sisemas I Prof a. Karen Pones Revisão: 3 de agoso 4 Sinais e Sisemas Tamanho do sinal Ampliude do sinal varia com o empo, logo a medida de seu amanho deve considerar ampliude

Leia mais

Lista de exercícios 1

Lista de exercícios 1 Fundamenos de Mecânica - FAP151 Licenciaura em Física - 1 o semesre de 5 Lisa de eercícios 1 Para enregar: eercícios 16 e 17 Algarismos significaios 1) Usando uma régua de madeira, ocê mede o comprimeno

Leia mais

Física e Química A 11.º Ano N.º 2 - Movimentos

Física e Química A 11.º Ano N.º 2 - Movimentos Física e Química A 11.º Ano N.º 2 - Moimenos 1. Uma parícula P 1 descree uma rajecória circular, de raio 1,0 m, parindo da posição A no senido indicado na figura 1 (a). fig. 1 Uma oura parícula P 2 descree

Leia mais

CINÉTICA RADIOATIVA. Introdução. Tempo de meia-vida (t 1/2 ou P) Atividade Radioativa

CINÉTICA RADIOATIVA. Introdução. Tempo de meia-vida (t 1/2 ou P) Atividade Radioativa CIÉTIC RDIOTIV Inrodução Ese arigo em como objeivo analisar a velocidade dos diferenes processos radioaivos, no que chamamos de cinéica radioaiva. ão deixe de anes esudar o arigo anerior sobre radioaividade

Leia mais

Circuitos Elétricos- módulo F4

Circuitos Elétricos- módulo F4 Circuios léricos- módulo F4 M 014 Correne elécrica A correne elécrica consise num movimeno orienado de poradores de cara elécrica por acção de forças elécricas. Os poradores de cara podem ser elecrões

Leia mais

Econometria Semestre

Econometria Semestre Economeria Semesre 00.0 6 6 CAPÍTULO ECONOMETRIA DE SÉRIES TEMPORAIS CONCEITOS BÁSICOS.. ALGUMAS SÉRIES TEMPORAIS BRASILEIRAS Nesa seção apresenamos algumas séries econômicas, semelhanes às exibidas por

Leia mais

Física. Física Módulo 1

Física. Física Módulo 1 Física Módulo 1 Nesa aula... Movimeno em uma dimensão Aceleração e ouras coisinhas O cálculo de x() a parir de v() v( ) = dx( ) d e x( ) x v( ) d = A velocidade é obida derivando-se a posição em relação

Leia mais

4 O Papel das Reservas no Custo da Crise

4 O Papel das Reservas no Custo da Crise 4 O Papel das Reservas no Cuso da Crise Nese capíulo buscamos analisar empiricamene o papel das reservas em miigar o cuso da crise uma vez que esa ocorre. Acrediamos que o produo seja a variável ideal

Leia mais

A função do 2º grau. Na aula anterior, estudamos a função do. Nossa aula

A função do 2º grau. Na aula anterior, estudamos a função do. Nossa aula A UA UL LA A função do º grau Introdução Na aula anterior, estudamos a função do 1º grau ( = a + b) e verificamos que seu gráfico é uma reta. Nesta aula, vamos estudar outra função igualmente importante:

Leia mais

F-128 Física Geral I. Aula exploratória-02 UNICAMP IFGW

F-128 Física Geral I. Aula exploratória-02 UNICAMP IFGW F-8 Física Geral I Aula eploraória- UNICAMP IFGW username@ifi.unicamp.br Velocidades média e insanânea Velocidade média enre e + Δ - - m Δ Δ ** Se Δ > m > (moimeno à direia, ou no senido de crescimeno

Leia mais

18 GABARITO 1 2 O DIA PROCESSO SELETIVO/2005 FÍSICA QUESTÕES DE 31 A 45

18 GABARITO 1 2 O DIA PROCESSO SELETIVO/2005 FÍSICA QUESTÕES DE 31 A 45 18 GABARITO 1 2 O DIA PROCESSO SELETIO/2005 ÍSICA QUESTÕES DE 31 A 45 31. O gálio é um meal cuja emperaura de fusão é aproximadamene o C. Um pequeno pedaço desse meal, a 0 o C, é colocado em um recipiene

Leia mais

UNIVERSIDADE DA BEIRA INTERIOR FACULDADE DE CIÊNCIAS SOCIAIS E HUMANAS DEPARTAMENTO DE GESTÃO E ECONOMIA MACROECONOMIA III

UNIVERSIDADE DA BEIRA INTERIOR FACULDADE DE CIÊNCIAS SOCIAIS E HUMANAS DEPARTAMENTO DE GESTÃO E ECONOMIA MACROECONOMIA III UNIVERSIDADE DA BEIRA INTERIOR FACUDADE DE CIÊNCIAS SOCIAIS E HUMANAS DEPARTAMENTO DE GESTÃO E ECONOMIA MACROECONOMIA III icenciaura de Economia (ºAno/1ºS) Ano ecivo 007/008 Caderno de Exercícios Nº 1

Leia mais

RELATIVIDADE ESPECIAL

RELATIVIDADE ESPECIAL 1 RELATIIDADE ESPECIAL AULA N O 5 ( Equações de Mawell em forma ensorial Equação da Coninuidade 4-veor densidade de correne) Anes de prosseguirmos com a Teoria da Relaividade, observando as consequências

Leia mais

CIRCUITO RC SÉRIE. max

CIRCUITO RC SÉRIE. max ELETRICIDADE 1 CAPÍTULO 8 CIRCUITO RC SÉRIE Ese capíulo em por finalidade inroduzir o esudo de circuios que apresenem correnes eléricas variáveis no empo. Para ano, esudaremos o caso de circuios os quais

Leia mais

Escola Secundária da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo de 2003/04 Funções exponencial e logarítmica

Escola Secundária da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo de 2003/04 Funções exponencial e logarítmica Escola Secundária da Sé-Lamego Ficha de Trabalho de Maemáica Ano Lecivo de /4 Funções eponencial e logarímica - º Ano Nome: Nº: Turma: 4 A unção ( ),, é usada para deerminar o valor de um carro (em euros)

Leia mais

DEMOGRAFIA. Assim, no processo de planeamento é muito importante conhecer a POPULAÇÃO porque:

DEMOGRAFIA. Assim, no processo de planeamento é muito importante conhecer a POPULAÇÃO porque: DEMOGRAFIA Fone: Ferreira, J. Anunes Demografia, CESUR, Lisboa Inrodução A imporância da demografia no planeameno regional e urbano O processo de planeameno em como fim úlimo fomenar uma organização das

Leia mais

Questões sobre derivadas. 1. Uma partícula caminha sobre uma trajetória qualquer obedecendo à função horária 2

Questões sobre derivadas. 1. Uma partícula caminha sobre uma trajetória qualquer obedecendo à função horária 2 Quesões sobre deriadas. Uma parícula caminha sobre uma rajeória qualquer obedecendo à função horária s ( = - + 0 ( s em meros e em segundos. a Deermine a lei de sua elocidade em função do empo. b Deermine

Leia mais

12 A interseção de retas e a solução de sistemas

12 A interseção de retas e a solução de sistemas A UA UL LA A interseção de retas e a solução de sistemas Introdução Aqui está um problema que serve de eemplo para as questões que serão tratadas nesta aula. Pense, e veja se consegue resolvê-lo com as

Leia mais

Relatividade especial Capítulo 37

Relatividade especial Capítulo 37 Relaiidade espeial Capíulo 37 º Posulado: s leis da físia são as mesmas em odos os refereniais ineriais. º Posulado: eloidade da luz no áuo em o mesmo alor em odas as direções e em odos os refereniais

Leia mais

CORREIOS. Prof. Sérgio Altenfelder

CORREIOS. Prof. Sérgio Altenfelder 15. Uma pessoa preende medir a alura de um edifício baseado no amanho de sua sombra projeada ao solo. Sabendo-se que a pessoa em 1,70m de alura e as sombras do edifício e da pessoa medem 20m e 20cm respecivamene,

Leia mais

NOTA TÉCNICA. Nota Sobre Evolução da Produtividade no Brasil. Fernando de Holanda Barbosa Filho

NOTA TÉCNICA. Nota Sobre Evolução da Produtividade no Brasil. Fernando de Holanda Barbosa Filho NOTA TÉCNICA Noa Sobre Evolução da Produividade no Brasil Fernando de Holanda Barbosa Filho Fevereiro de 2014 1 Essa noa calcula a evolução da produividade no Brasil enre 2002 e 2013. Para ano uiliza duas

Leia mais

GERAÇÃO DE PREÇOS DE ATIVOS FINANCEIROS E SUA UTILIZAÇÃO PELO MODELO DE BLACK AND SCHOLES

GERAÇÃO DE PREÇOS DE ATIVOS FINANCEIROS E SUA UTILIZAÇÃO PELO MODELO DE BLACK AND SCHOLES XXX ENCONTRO NACIONAL DE ENGENHARIA DE PRODUÇÃO Mauridade e desafios da Engenharia de Produção: compeiividade das empresas, condições de rabalho, meio ambiene. São Carlos, SP, Brasil, 1 a15 de ouubro de

Leia mais

Cálculo Vetorial - Lista de Exercícios

Cálculo Vetorial - Lista de Exercícios álculo Veorial - Lisa de Exercícios (Organizada pela Profa. Ilka Rebouças). Esboçar o gráfico das curvas represenadas pelas seguines funções veoriais: a) a 4 i j, 0,. d) d i 4 j k,. b) b sen i 4 j cos

Leia mais

Questão 1 Questão 2. Resposta. Resposta

Questão 1 Questão 2. Resposta. Resposta Quesão Quesão Dois amigos, Alfredo e Bruno, combinam dispuar a posse de um objeo num jogo de cara coroa. Alfredo lança moedas e Bruno moedas, simulaneamene. Vence o jogo e, conseqüenemene, fica com o objeo,

Leia mais

Equações Simultâneas. Aula 16. Gujarati, 2011 Capítulos 18 a 20 Wooldridge, 2011 Capítulo 16

Equações Simultâneas. Aula 16. Gujarati, 2011 Capítulos 18 a 20 Wooldridge, 2011 Capítulo 16 Equações Simulâneas Aula 16 Gujarai, 011 Capíulos 18 a 0 Wooldridge, 011 Capíulo 16 Inrodução Durane boa pare do desenvolvimeno dos coneúdos desa disciplina, nós nos preocupamos apenas com modelos de regressão

Leia mais

RESSALTO HIDRÁULICO Nome: nº

RESSALTO HIDRÁULICO Nome: nº RESSALTO HIDRÁULICO Nome: nº O ressalo hidráulico é um dos fenômenos imporanes no campo da hidráulica. Ele foi primeiramene descrio por Leonardo da Vinci e o primeiro esudo experimenal foi crediado a Bidone

Leia mais

Versão preliminar serão feitas correções em sala de aula 1

Versão preliminar serão feitas correções em sala de aula 1 Versão preinar serão feias correções em sala de aula 7.. Inrodução Dependendo das condições de soliciação, o maerial pode se enconrar sob diferenes esados mecânicos. Quando as cargas (exernas) são pequenas

Leia mais

AULA 02 MOVIMENTO. 1. Introdução

AULA 02 MOVIMENTO. 1. Introdução AULA 02 MOVIMENTO 1. Inrodução Esudaremos a seguir os movimenos uniforme e uniformemene variado. Veremos suas definições, equações, represenações gráficas e aplicações. Faremos o esudo de cada movimeno

Leia mais

Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) - Professores: João Arruda e Henriette Righi

Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) - Professores: João Arruda e Henriette Righi Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) - Professores: João Arruda e Henriee Righi LISTA DE EXERCÍCIOS # 1 Aenção: Aualize seu adobe, ou subsiua os quadrados por negaivo!!! 1) Deermine

Leia mais

RELATIVIDADE ESPECIAL

RELATIVIDADE ESPECIAL RELATIVIDADE ESPECIAL AULA N O ( Quadriveores - Velocidade relaivísica - Tensores ) Vamos ver um eemplo de uma lei que é possível na naureza, mas que não é uma lei da naureza. Duas parículas colidem no

Leia mais

4. SINAL E CONDICIONAMENTO DE SINAL

4. SINAL E CONDICIONAMENTO DE SINAL 4. SINAL E CONDICIONAMENO DE SINAL Sumário 4. SINAL E CONDICIONAMENO DE SINAL 4. CARACERÍSICAS DOS SINAIS 4.. Período e frequência 4..2 alor médio, valor eficaz e valor máximo 4.2 FILRAGEM 4.2. Circuio

Leia mais

Tópicos Especiais em Energia Elétrica (Projeto de Inversores e Conversores CC-CC)

Tópicos Especiais em Energia Elétrica (Projeto de Inversores e Conversores CC-CC) Deparameno de Engenharia Elérica Tópicos Especiais em Energia Elérica () ula 2.2 Projeo do Induor Prof. João mérico Vilela Projeo de Induores Definição do úcleo a Fig.1 pode ser observado o modelo de um

Leia mais

Dimensões Físicas e Padrões; Gráficos.

Dimensões Físicas e Padrões; Gráficos. FAP151 - Fundamenos de Mecânica. 1ª Lisa de Eercícios. Feereiro de 9. Dimensões Físicas e Padrões; Gráficos. Enregar as soluções dos eercícios 4 e 31 APENAS; regisre odas as eapas necessárias para conseguir

Leia mais

5.3 Escalonamento FCFS (First-Come, First Served)

5.3 Escalonamento FCFS (First-Come, First Served) c prof. Carlos Maziero Escalonameno FCFS (Firs-Come, Firs Served) 26 5.3 Escalonameno FCFS (Firs-Come, Firs Served) A forma de escalonameno mais elemenar consise em simplesmene aender as arefas em sequência,

Leia mais

Confiabilidade e Taxa de Falhas

Confiabilidade e Taxa de Falhas Prof. Lorí Viali, Dr. hp://www.pucrs.br/fama/viali/ viali@pucrs.br Definição A confiabilidade é a probabilidade de que de um sisema, equipameno ou componene desempenhe a função para o qual foi projeado

Leia mais

Física. MU e MUV 1 ACESSO VESTIBULAR. Lista de Física Prof. Alexsandro

Física. MU e MUV 1 ACESSO VESTIBULAR. Lista de Física Prof. Alexsandro Física Lisa de Física Prof. Alexsandro MU e MU 1 - (UnB DF) Qual é o empo gaso para que um merô de 2m a uma velocidade de 18km/h aravesse um únel de 1m? Dê sua resposa em segundos. 2 - (UERJ) Um rem é

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Universidade Esadual do Sudoese da Bahia Dearameno de Ciências Exaas e Naurais.1- Roações, Cenro de Massa e Momeno Física I Prof. Robero Claudino Ferreira Índice 1. Movimeno Circular Uniformemene Variado;.

Leia mais

O potencial eléctrico de um condutor aumenta à medida que lhe fornecemos carga eléctrica. Estas duas grandezas são

O potencial eléctrico de um condutor aumenta à medida que lhe fornecemos carga eléctrica. Estas duas grandezas são O ondensador O poencial elécrico de um conduor aumena à medida que lhe fornecemos carga elécrica. Esas duas grandezas são direcamene proporcionais. No enano, para a mesma quanidade de carga, dois conduores

Leia mais

Método de integração por partes

Método de integração por partes Maemáica - 8/9 - Inegral de nido 77 Méodo de inegração or ares O méodo de inegração or ares é aenas uma "radução", em ermos de inegrais, do méodo de rimiivação or ares. Sejam f e g duas funções de nidas

Leia mais

LIGAÇÕES QUÍMICAS NOS COMPOSTOS DE COORDENAÇÃO: TEORIA DO CAMPO CRISTALINO (TCC)

LIGAÇÕES QUÍMICAS NOS COMPOSTOS DE COORDENAÇÃO: TEORIA DO CAMPO CRISTALINO (TCC) LIGAÇÕES QUÍMICAS NS CMPSTS DE CRDENAÇÃ: TERIA D CAMP CRISTALIN (TCC) A Teoria do Campo Crisalino (TCC) posula que a única ineração exisene enre o íon cenral e os liganes é de naureza elerosáica, pois

Leia mais

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo PROBLEMAS RESOLVIDOS DE FÍSIA Prof. Anderson oser Gaudio Deparameno de Física enro de iências Eaas Universidade Federal do Espírio Sano hp://www.cce.ufes.br/anderson anderson@npd.ufes.br Úlima aualização:

Leia mais

Conceitos Básicos Circuitos Resistivos

Conceitos Básicos Circuitos Resistivos Conceios Básicos Circuios esisivos Elecrónica 005006 Arnaldo Baisa Elecrónica_biomed_ef Circuio Elécrico com uma Baeria e uma esisência I V V V I Lei de Ohm I0 V 0 i0 Movimeno Das Pás P >P P >P Líquido

Leia mais