TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON)

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON)"

Transcrição

1 TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 8 LIVRO DO NILSON). CONSIDERAÇÕES INICIAIS SÉRIES DE FOURIER: descrevem funções periódicas no domínio da freqüência (ampliude e fase). TRANSFORMADA DE FOURIER: esende esa descrição para funções não periódicas. Qual a necessidade da TF se já foi esudada a Transformada de Laplace (TL), que na verdade faz o mesmo? A Transformada de Fourier (TF) não é uma nova ransformada, mas sim um caso especial da Transformada de Laplace bilaeral (limie inferior é menos infinio e não zero), onde a pare real da freqüência complexa s é nula. A TL unilaeral é uilizada para deerminar a resposa de circuios eléricos lineares a uma perurbação que ocorre, após esabelecidas as condições iniciais. { } s _ f () F( s) f () e d () A TF pode ser inerpreada como caso limie da Série de Fourier quando o período T ende para infinio.. DEFINIÇÃO DA TRANSFORMADA DE FOURIER Considere inicialmene a forma exponencial da Série de Fourier dada por jnω f() Cn e n + T T jnω jnω Cn f() e d f() e d T T onde considerou-se -T/ na equação () anerior. T () de 7

2 Para ransformar uma função periódica numa função aperiódica, basa fazer o período T da função periódica ender a infinio. A disância enre as freqüências harmônicas ω é dada por ( n ) n ω + ω ω ω T (3) Noa-se pois que à medida que o período T aumena, a disância enre as freqüências harmônicas orna-se cada vez menor. No limie quando T ende a infinio não exise mais disância enre as freqüências harmônicas e desa forma a freqüência é conínua. Pela equação (3) em-se que T ω ω (4) Desa forma, quando T ende a infinio, em-se que T nω dω ω ( frequência conínua) (5) De acordo com a primeira das equações () os coeficienes C n ambém variam inversamene com o período T. Quando T ende a infinio, eses coeficienes endem a zero. No enano, de () vem que T jnω CT f () e d n T Desa forma, quando T ende a infinio CT n f () e d (6) de 7

3 A inegral presene na equação (6) é conhecida como Transformada de Fourier da função f() e é represenada por Y { } f() F( ω) F( ) f() e d (7) A Transformada Inversa de Fourier é obida expliciamene invesigando o comporameno da primeira das equações () quando T ende a infinio. Assim ( ) f() C e C T e jnω jnω n n n n ω ω ( CT) e ( ) jn jnω CT e n n n No limie, quando T ende a infinio, a freqüência harmônica nω se orna a freqüência conínua ω, o somaório se orna uma inegral e a equação (8) pode ser escria como T n ω (8) f () F( ω) e dω (9) Exemplo Deerminar a TF do pulso da figura abaixo V m τ / τ / + τ + τ j e ω m m ( τ ) τ F( ω) V e d V V m ( ) ( τ τ e e ) () 3 de 7

4 Como jb e cosb jsen b jb e cosb+ jsen b jb jb e e jsenb Logo Vm F( ω) jsen( ωτ ) Vm τ ( ) ( ωτ ) sen ωτ () Lembrar que para a mesma função, suposa periódica V m τ / τ / T τ / T+τ / C n Vm τ T ( nωτ ) sen nωτ () Traçando o gráfico para as funções F(ω) em () e C n em () percebe-se que quando a função periódica passa a ser aperiódica, o especro de freqüência que inicialmene é discreo, passa a ser conínuo. No enano, o leior pode perceber que em odos os casos a forma de onda é a mesma. 4 de 7

5 . CONVERGÊNCIA DA INTEGRAL DE FOURIER Para que uma função possua a Transformada de Fourier, basa que a inegral de Fourier seja convergene, ou seja, basa que a equação (7) enha um valor finio. Em geral, funções f() que são bem comporadas e que diferem de zero em um inervalo de empo finio vão possuir Transformada de Fourier. NOTA: função bem comporada é uma função conínua e limiada em odos os ponos de seu domínio. Se f() é diferene de zero em um inervalo de empo infinio, a convergência da inegral de Fourier depende do comporameno de f() quando ende a infinio. Assim, vai exisir a Transformada de Fourier se uma das condições de Dirichle for aendida, ou seja, se f () d exisir. Exemplo Deerminar a TF da função mosrada abaixo. K K e -a a F( ω) f( ) e d K e e d ( ω) a+ j ( a+ ) e K e d K ( a+ ) K ( a+ ) K K e [ ] a + a + a + (3) 5 de 7

6 NOTAS: Exisem muias funções de ineresse práico que a inegral de Fourier não converge. Por exemplo: (a) f() K (consane) (b) f() K senω (senóide) (c) f() K u() (degráu) Neses casos uiliza-se um suberfúgio maemáico para cálculo das Transformadas de Fourier desas funções, descrio a seguir: ) Criar uma função de aproximação que possua Transformada de Fourier e que possa se ornar arbirariamene próxima da função de ineresse; ) Calcular a TF desa função de aproximação; 3) Calcular o limie da TF obida quando a função de aproximação ende para a função de ineresse. Exemplo Deerminar a TF da função f() A (consane). A Ae ε Ae ε Ae ε ε < ε Ae ε A inegral de Fourier de f() A não converge, logo esa função não possui a princípio uma Transformada de Fourier. Para cálculo da TF deve ser aplicado o suberfúgio maemáico apresenado aneriormene. ) Criar a função de aproximação; ε ε f() Ae para < < f() Ae ; ε > ε f() Ae para < < (4) 6 de 7

7 ) Calcular a TF desa função de aproximação; ε ε F( ω) Ae e d+ Ae e d ( ε+ ) ( ε+ ) A e d + e e d ( ε+ ) ( ε+ ) e e A + ( ε + ) ( ε + ) A + ( ε ) ( ε + ) Aε A + ε ε + ε + ω (5) 3) Calcular o limie da TF calculada quando a função de aproximação ende à função de ineresse. A figura abaixo mosra a função F(ω) calculada em (5) para alguns valores de ε. O leior pode ver que à medida que ε diminui, a função ende para a forma da função impulso δ(). F( ω) Aε ε + ω ε,5 A ε ε 5 freqüência (rad/s) 7 de 7

8 Assim, analisando mais pormenorizadamene a função F(ω) vê-se que: F( ω) Aε ε + ω (a) Em ω, a função F(ω) ende para A/ε (6) lim ε A ε (b) ε governa a duração de F(ω). Se ε ende a zero, a duração de F(ω) ambém ende a zero. lim ε A ε (c) A área sob a função F(ω) independe de ε e vale A. ε A Área dω 4εA dω A ε + ω ε + ω Assim sendo, a função F(ω) vai valer: F( ω) πaδ( ω) (7) (8) 3. USO DA TRANSFORMADA DE LAPLACE PARA CÁLCULO DA TRANSFORMADA DE FOURIER Uma oura forma para se calcular a Transformada de Fourier é fazer uso de abelas de Transformadas de Laplace Unilaerais, desde que haja a convergência da Inegral de Fourier. Uma condição para a convergência da Inegral de Fourier é obida quando odos os pólos de F(s) esão no semi-plano esquerdo. 8 de 7

9 REGRAS BÁSICAS DE USO DA TL PARA CÁLCULO DA TF: Regra. Se f() para (denominada de função de empo posiivo), enão pode-se ober a TF direamene da TL de f() subsiuindo s por, ou seja { f() } { f() } Y P _ (9) s Exemplo Deerminar a TF da função de empo posiivo f() abaixo. para f() a e cos ω para > Uilizando a propriedade em (9) basa fazer Y s+ a + a { f() } _ { e a cosω } ( s a) ( j a) s + + ω ω+ + ω s Regra. Como o inervalo de inegração da TF vai de a, uma função de empo negaivo (função nula para empos posiivos) pode possuir uma TF. A TF de funções de empo negaivo pode ser obida calculandose a TL de f( ) e subsiuindo s, ou seja { } { } Y f () _ f ( ) () s j ω Regra 3. Uma função que não se anula nem para empos posiivos, nem para empos negaivos, pode ser considerada como uma soma de duas funções, uma de empo negaivo e oura de empo posiivo. Assim, paa a deerminação de sua TF podem ser uilizadas as regras e aneriores. Iso quer dizer que se + f () f () para > f () f () para < 9 de 7

10 Enão + f () f () + f () e desa forma Y + { f() } Y { f () + f () } + Y { f () } > Y { f () } + _ { f () } > _ { f ( ) } s s () Exemplo Deerminar novamene a TF da função f() e -a. + a f () e para > a f () e para < Assim s + a s + a + a { f () } _ { e } a { f ( ) } _ { e } Finalmene pode-se calcular a TF da função pedida, ou seja, Y a { e } ( s+ a) ( s+ a) + s s a + ( + a) ( + a) ω + a Regra 4. Se f() é par, enão { f () } { f () } + { f () } Y () Regra 5. Se f() é ímpar, enão s s { f() } { f() } { f() } Y (3) s s de 7

11 4. USO DE LIMITES PARA CÁLCULO DA TRANSFORMADA DE FOURIER 4.. TF da função sinal [sgn()] u () e ε u() [ ( )] ε e u u( ) A função sgn() pode ser expressa por sgn( ) u( ) u( ) (4) Para calcular sua TF é necessário: (a) Esabelecer uma função de aproximação para sgn() lim ε ε sgn( ) e u( ) e u( ) ε (5) Logo,considera-se como função aproximação a função dada por f() ε e u() ε e u( ) + f () f () (b) Calcular a TF da função aproximação Y { f() } ( s+ ε) ( s+ ε) s s jω ( + ε) ( + ε) ω + ε (6) de 7

12 (c) Calcular o limie da TF calculada quando a função aproximação ende à função de ineresse j lim Y { f() } (7) j ε ω ω 4.. TF da função degrau uniário [u()] u () / sgn( ) sgn( ) Para calcular sua TF faz-se: (a) Esabelecer uma função aproximação para u() A função u() pode ser expressa por u ( ) + sgn( ) (8) (b) Calcular a TF da função aproximação Y { f() } Y + Y sgn() j [ πδ( ) ] + πδ( ) + ω (9) (c) Nese caso não é necessário o cálculo do limie pois a função degrau uniário foi obida pela soma correa (e não aproximada) de duas ouras funções. de 7

13 4.3. TF da função co-seno [cos()] Sabe-se que a TFI é dada por Seja enão f () F( ω) e dω (3) ( ) F( ω) δ ω ω (3) Enão, uilizando a propriedade de filragem da função δ(ω) vem que ω ω πδ( ω ω ) j ω j (3) f () e d e ω Assim j { } Y e ω π δω ( ω) (33) Como e cosω + jsenω e + e e cosω jsenω cosω (34) Enão Y { cosω} { e } { e } Y + Y πδ( ω ω) πδ( ω ω) + + π δ ( ω+ ω) + δ ( ω ω) (35) O leior pode perceber que o resulado já era esperado, uma vez que um cosω só coném uma freqüência, que é a própria ω. 3 de 7

14 5. APLICAÇÃO DA TRANSFORMADA DE FOURIER NA SOLUÇÃO DE CIRCUITOS ELÉTRICOS Exisem duas razões básicas para que a Transformada de Laplace seja mais uilizada que a Transformada de Fourier na análise de circuios eléricos:. A Transformada de Laplace exise para um número maior de funções;. A Transformada de Laplace permie que se inroduza as condições iniciais de funcionameno do circuio com mais facilidade. No enano, uma propriedade funcional da Transformada de Fourier relaiva à convolução no empo, descria a seguir, vai proporcionar uma maneira eficaz de aplica-la na solução de circuios eléricos quando se desejar a resposa esacionária. Propriedade Funcional da Transformada de Fourier relaiva à Convolução no Tempo y ( ) x( λ) h ( λ) dλ Y( ω) X( ω) H( ω) (55) Exemplo Deerminar i () no circuio abaixo uilizando a TF, quando i g () sgn(). A TF da exciação é da forma Ig { } ( ω) Y sgn( ) 4 i g () Ω 3Ω Η i () As impedâncias em cada uma das pernas do circuio acima são respecivamene Ω e ( 3 + j ω ) Ω. 4 de 7

15 A relação enre as correnes I (ω) e I g (ω) é a função de ransferência desejada (divisor de correne), dada por I ( ) ω H ( ω) I ( ω) 4 + g A correne I (ω) vai ser dada enão por onde 4 ( ) ( ω) K K I ω I g ( ) 4 4 K e K ( + ) ω 4 Desa forma I 4 j ( ω) A correne i () vai ser dada enão por i e u 4 () 5sgn( ) ( ) sgn( ) 5 5sgn( ) i () 5sgn( ) 5 e 4 u ( ) ig () sgn( ) 5 de 7

16 Exemplo Deerminar i () no mesmo circuio anerior se a correne i g () 5 cos 3. A TF da exciação é da forma Ig { } ( ) δ ( ω ) ( ω) Y 5cos3 5π δ ω i g () Ω 3Ω Η i () As impedâncias em cada uma das pernas do circuio acima são respecivamene Ω e (3+) Ω. A relação enre as correnes I (ω) e I g (ω) é a função de ransferência desejada (divisor de correne), dada por I ( ) ω H ( ω) I ( ω) 4 + g A correne I (ω) vai ser dada enão por 5π ( ω) ( ω) δ ω 3 δ ω I I g Desa forma, no empo vai ser ( ) ( ) ( 3) + δ ( ω+ 3) 5π δ ω i () Y { F( ω) } e dω 4+ j3 e j3 e j3 e j3 e j36,87 j36, j3 4 j3 + 5e 5e + j3 + j36,87 j3 j36,87 j( 3 36,87 ) j( 3 36,87 ) 5 e e + e e 5 e + e Lembrando que jb e cosb jsen b jb e cosb+ jsen b jb jb e + e cosb 6 de 7

17 enão ( 3 36,87 ) ( 3 36,87 ) ( ) j j i () 5 e e + cos 3 36,87 A NOTA: Uma vez que a fone é senoidal, enão a correne i () pode ser calculada uilizando o méodo dos fasores (ransformação fasorial). Cabe ambém lembrar ao leior que nese capíulo serão uilizados os fasores associados aos valores máximos, e não os fasores associados aos valores eficazes, mais uilizados no dia a dia do analisa de circuios AC. Assim procedendo vem que 4+ j3 I I g 5 4+ j3 5 36, ,87 I g Ω 3Ω j3 Ω I A correne i () vai ser dada enão por ( ) i () cos 3 36,87 A O leior pode perceber que a análise uilizando a ransformação fasorial é bem mais rápida e mais simples do que a análise uilizando a Transformada de Fourier, sendo por iso a mais uilizada neses ipos de cálculos. 7 de 7

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL42 Coneúdo 8 - Inrodução aos Circuios Lineares e Invarianes...1 8.1 - Algumas definições e propriedades gerais...1 8.2 - Relação enre exciação

Leia mais

Circuitos Elétricos I EEL420

Circuitos Elétricos I EEL420 Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL420 Coneúdo 1 - Circuios de primeira ordem...1 1.1 - Equação diferencial ordinária de primeira ordem...1 1.1.1 - Caso linear, homogênea, com

Leia mais

2.5 Impulsos e Transformadas no Limite

2.5 Impulsos e Transformadas no Limite .5 Impulsos e Transformadas no Limie Propriedades do Impulso Uniário O impulso uniário ou função dela de Dirac δ não é uma função no senido maemáico esrio. Ela perence a uma classe especial conhecida como

Leia mais

Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas

Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas Sinais e Sisemas Série de Fourier Renao Dourado Maia Universidade Esadual de Mones Claros Engenharia de Sisemas Inrodução A Série e a Inegral de Fourier englobam um dos desenvolvimenos maemáicos mais produivos

Leia mais

Exercícios sobre o Modelo Logístico Discreto

Exercícios sobre o Modelo Logístico Discreto Exercícios sobre o Modelo Logísico Discreo 1. Faça uma abela e o gráfico do modelo logísico discreo descrio pela equação abaixo para = 0, 1,..., 10, N N = 1,3 N 1, N 0 = 1. 10 Solução. Usando o Excel,

Leia mais

2.6 - Conceitos de Correlação para Sinais Periódicos

2.6 - Conceitos de Correlação para Sinais Periódicos .6 - Conceios de Correlação para Sinais Periódicos O objeivo é o de comparar dois sinais x () e x () na variável empo! Exemplo : Considere os dados mosrados abaixo y 0 x Deseja-se ober a relação enre x

Leia mais

INF Técnicas Digitais para Computação. Conceitos Básicos de Circuitos Elétricos. Aula 3

INF Técnicas Digitais para Computação. Conceitos Básicos de Circuitos Elétricos. Aula 3 INF01 118 Técnicas Digiais para Compuação Conceios Básicos de Circuios Eléricos Aula 3 1. Fones de Tensão e Correne Fones são elemenos aivos, capazes de fornecer energia ao circuio, na forma de ensão e

Leia mais

Noções de Espectro de Freqüência

Noções de Espectro de Freqüência MINISTÉRIO DA EDUCAÇÃO - Campus São José Curso de Telecomunicações Noções de Especro de Freqüência Marcos Moecke São José - SC, 6 SUMÁRIO 3. ESPECTROS DE FREQÜÊNCIAS 3. ANÁLISE DE SINAIS NO DOMÍNIO DA

Leia mais

3. Representaç ão de Fourier dos Sinais

3. Representaç ão de Fourier dos Sinais Sinais e Sisemas - 3. Represenaç ão de Fourier dos Sinais Nese capíulo consideramos a represenação dos sinais como uma soma pesada de exponenciais complexas. Dese modo faz-se uma passagem do domínio do

Leia mais

4 Análise de Sensibilidade

4 Análise de Sensibilidade 4 Análise de Sensibilidade 4.1 Considerações Gerais Conforme viso no Capíulo 2, os algorimos uilizados nese rabalho necessiam das derivadas da função objeivo e das resrições em relação às variáveis de

Leia mais

3 LTC Load Tap Change

3 LTC Load Tap Change 54 3 LTC Load Tap Change 3. Inrodução Taps ou apes (ermo em poruguês) de ransformadores são recursos largamene uilizados na operação do sisema elérico, sejam eles de ransmissão, subransmissão e disribuição.

Leia mais

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara Insiuo de Física USP Física V - Aula 6 Professora: Mazé Bechara Aula 6 Bases da Mecânica quânica e equações de Schroedinger. Aplicação e inerpreações. 1. Ouros posulados da inerpreação de Max-Born para

Leia mais

Conceito. Exemplos. Os exemplos de (a) a (d) mostram séries discretas, enquanto que os de (e) a (g) ilustram séries contínuas.

Conceito. Exemplos. Os exemplos de (a) a (d) mostram séries discretas, enquanto que os de (e) a (g) ilustram séries contínuas. Conceio Na Esaísica exisem siuações onde os dados de ineresse são obidos em insanes sucessivos de empo (minuo, hora, dia, mês ou ano), ou ainda num período conínuo de empo, como aconece num elerocardiograma

Leia mais

4. SINAL E CONDICIONAMENTO DE SINAL

4. SINAL E CONDICIONAMENTO DE SINAL 4. SINAL E CONDICIONAMENO DE SINAL Sumário 4. SINAL E CONDICIONAMENO DE SINAL 4. CARACERÍSICAS DOS SINAIS 4.. Período e frequência 4..2 alor médio, valor eficaz e valor máximo 4.2 FILRAGEM 4.2. Circuio

Leia mais

Cap. 5 - Tiristores 1

Cap. 5 - Tiristores 1 Cap. 5 - Tirisores 1 Tirisor é a designação genérica para disposiivos que êm a caracerísica esacionária ensão- -correne com duas zonas no 1º quadrane. Numa primeira zona (zona 1) as correnes são baixas,

Leia mais

Séries temporais Modelos de suavização exponencial. Séries de temporais Modelos de suavização exponencial

Séries temporais Modelos de suavização exponencial. Séries de temporais Modelos de suavização exponencial Programa de Pós-graduação em Engenharia de Produção Análise de séries de empo: modelos de suavização exponencial Profa. Dra. Liane Werner Séries emporais A maioria dos méodos de previsão se baseiam na

Leia mais

Seção 5: Equações Lineares de 1 a Ordem

Seção 5: Equações Lineares de 1 a Ordem Seção 5: Equações Lineares de 1 a Ordem Definição. Uma EDO de 1 a ordem é dia linear se for da forma y + fx y = gx. 1 A EDO linear de 1 a ordem é uma equação do 1 o grau em y e em y. Qualquer dependência

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031 Universidade Federal do io Grande do Sul Escola de Engenharia de Poro Alegre Deparameno de Engenharia Elérica ANÁLISE DE CICUITOS II - ENG43 Aula 5 - Condições Iniciais e Finais de Carga e Descarga em

Leia mais

Características dos Processos ARMA

Características dos Processos ARMA Caracerísicas dos Processos ARMA Aula 0 Bueno, 0, Capíulos e 3 Enders, 009, Capíulo. a.6 Morein e Toloi, 006, Capíulo 5. Inrodução A expressão geral de uma série emporal, para o caso univariado, é dada

Leia mais

ENGF93 Análise de Processos e Sistemas I

ENGF93 Análise de Processos e Sistemas I ENGF93 Análise de Processos e Sisemas I Prof a. Karen Pones Revisão: 3 de agoso 4 Sinais e Sisemas Tamanho do sinal Ampliude do sinal varia com o empo, logo a medida de seu amanho deve considerar ampliude

Leia mais

QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS

QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS QUESTÃO Assinale V (verdadeiro) ou F (falso): () A solução da equação diferencial y y y apresena equilíbrios esacionários quando, dependendo

Leia mais

F B d E) F A. Considere:

F B d E) F A. Considere: 5. Dois corpos, e B, de massas m e m, respecivamene, enconram-se num deerminado insane separados por uma disância d em uma região do espaço em que a ineração ocorre apenas enre eles. onsidere F o módulo

Leia mais

UNIDADE 2. t=0. Fig. 2.1-Circuito Com Indutor Pré-Carregado

UNIDADE 2. t=0. Fig. 2.1-Circuito Com Indutor Pré-Carregado UNIDAD 2 CIRCUITOS BÁSICOS COM INTRRUPTORS 2.1 CIRCUITOS D PRIMIRA ORDM 2.1.1 Circuio com Induor PréCarregado em Série com Diodo Seja o circuio represenado na Fig. 2.1. D i =0 Fig. 2.1Circuio Com Induor

Leia mais

*UiILFRGH&RQWUROH(:0$

*UiILFRGH&RQWUROH(:0$ *UiILFRGH&RQWUROH(:$ A EWMA (de ([SRQHQWLDOO\:HLJKWHGRYLQJ$YHUDJH) é uma esaísica usada para vários fins: é largamene usada em méodos de esimação e previsão de séries emporais, e é uilizada em gráficos

Leia mais

Tópicos Especiais em Energia Elétrica (Projeto de Inversores e Conversores CC-CC)

Tópicos Especiais em Energia Elétrica (Projeto de Inversores e Conversores CC-CC) Deparameno de Engenharia Elérica Tópicos Especiais em Energia Elérica () ula 2.2 Projeo do Induor Prof. João mérico Vilela Projeo de Induores Definição do úcleo a Fig.1 pode ser observado o modelo de um

Leia mais

Capítulo Cálculo com funções vetoriais

Capítulo Cálculo com funções vetoriais Cálculo - Capíulo 6 - Cálculo com funções veoriais - versão 0/009 Capíulo 6 - Cálculo com funções veoriais 6 - Limies 63 - Significado geomérico da derivada 6 - Derivadas 64 - Regras de derivação Uiliaremos

Leia mais

ELE-31 Princípios de Telecomunicações

ELE-31 Princípios de Telecomunicações ELE-31 Princípios de Telecomunicações Prof. Manish Sharma Augus 26, 215 2 Sinais e Especro O objeivo dese capíulo é relembrar algumas ferramenas necessárias para a análise de sinais no domínio do empo

Leia mais

ONDAS ELETROMAGNÉTICAS

ONDAS ELETROMAGNÉTICAS LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS A propagação de ondas eleromagnéicas ocorre quando um campo elérico variane no empo produ um campo magnéico ambém variane no empo, que por sua ve produ um campo

Leia mais

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL Movimeno unidimensional 5 MOVIMENTO UNIDIMENSIONAL. Inrodução Denre os vários movimenos que iremos esudar, o movimeno unidimensional é o mais simples, já que odas as grandezas veoriais que descrevem o

Leia mais

Método de integração por partes

Método de integração por partes Maemáica - 8/9 - Inegral de nido 77 Méodo de inegração or ares O méodo de inegração or ares é aenas uma "radução", em ermos de inegrais, do méodo de rimiivação or ares. Sejam f e g duas funções de nidas

Leia mais

Campus de Ilha Solteira

Campus de Ilha Solteira Campus de Ilha Soleira - CAPÍTULO 5 - BALANÇO O INTEGRAL DE ASSA Disciplina: 1081 - Fenômenos de Transpores I Professor: Tsunao asumoo Equação da coninuidade Aplicação do conceio de conservação de massa

Leia mais

Circuitos Elétricos- módulo F4

Circuitos Elétricos- módulo F4 Circuios léricos- módulo F4 M 014 Correne elécrica A correne elécrica consise num movimeno orienado de poradores de cara elécrica por acção de forças elécricas. Os poradores de cara podem ser elecrões

Leia mais

Capítulo 2: Conceitos Fundamentais sobre Circuitos Elétricos

Capítulo 2: Conceitos Fundamentais sobre Circuitos Elétricos SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA TE041 Circuios Eléricos I Prof. Ewaldo L. M. Mehl Capíulo 2: Conceios Fundamenais sobre Circuios Eléricos 2.1. CARGA ELÉTRICA E CORRENTE ELÉTRICA

Leia mais

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Dinâmicos

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Dinâmicos Análise de Projecos ESAPL / IPVC Criérios de Valorização e Selecção de Invesimenos. Méodos Dinâmicos Criério do Valor Líquido Acualizado (VLA) O VLA de um invesimeno é a diferença enre os valores dos benefícios

Leia mais

4 CER Compensador Estático de Potência Reativa

4 CER Compensador Estático de Potência Reativa 68 4 ompensador Esáico de Poência Reaiva 4.1 Inrodução ompensadores esáicos de poência reaiva (s ou Saic var ompensaors (Ss são equipamenos de conrole de ensão cuja freqüência de uso em aumenado no sisema

Leia mais

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc.

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc. ECONOMETRIA Prof. Paricia Maria Borolon, D. Sc. Séries Temporais Fone: GUJARATI; D. N. Economeria Básica: 4ª Edição. Rio de Janeiro. Elsevier- Campus, 2006 Processos Esocásicos É um conjuno de variáveis

Leia mais

Biofísica II Turma de Biologia FFCLRP USP Prof. Antônio Roque Biologia de Populações 2 Modelos não-lineares. Modelos Não-Lineares

Biofísica II Turma de Biologia FFCLRP USP Prof. Antônio Roque Biologia de Populações 2 Modelos não-lineares. Modelos Não-Lineares Modelos Não-Lineares O modelo malhusiano prevê que o crescimeno populacional é exponencial. Enreano, essa predição não pode ser válida por um empo muio longo. As funções exponenciais crescem muio rapidamene

Leia mais

1 o Exame 10 de Janeiro de 2005 Nota: Resolva os problemas do exame em folhas separadas. Justifique todas as respostas e explique os seus

1 o Exame 10 de Janeiro de 2005 Nota: Resolva os problemas do exame em folhas separadas. Justifique todas as respostas e explique os seus i Sinais e Sisemas (LERCI) o Exame 0 de Janeiro de 005 Noa: Resolva os problemas do exame em folhas separadas. Jusifique odas as resposas e explique os seus cálculos. Problema.. Represene graficamene o

Leia mais

Amplificadores de potência de RF

Amplificadores de potência de RF Amplificadores de poência de RF Objeivo: Amplificar sinais de RF em níveis suficienes para a sua ransmissão (geralmene aravés de uma anena) com bom rendimeno energéico. R g P e RF P CC Amplificador de

Leia mais

Lista de Exercícios n o.1. 1) O diodo do circuito da Fig. 1(a) se comporta segundo a característica linearizada por partes da Fig 1(b). I D (ma) Fig.

Lista de Exercícios n o.1. 1) O diodo do circuito da Fig. 1(a) se comporta segundo a característica linearizada por partes da Fig 1(b). I D (ma) Fig. Universidade Federal da Bahia EE isposiivos Semiconduores ENG C41 Lisa de Exercícios n o.1 1) O diodo do circuio da Fig. 1 se compora segundo a caracerísica linearizada por pares da Fig 1. R R (ma) 2R

Leia mais

Aplicações à Teoria da Confiabilidade

Aplicações à Teoria da Confiabilidade Aplicações à Teoria da ESQUEMA DO CAPÍTULO 11.1 CONCEITOS FUNDAMENTAIS 11.2 A LEI DE FALHA NORMAL 11.3 A LEI DE FALHA EXPONENCIAL 11.4 A LEI DE FALHA EXPONENCIAL E A DISTRIBUIÇÃO DE POISSON 11.5 A LEI

Leia mais

AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM

AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM 163 22. PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM 22.1. Inrodução Na Seção 9.2 foi falado sobre os Parâmeros de Core e

Leia mais

Calcule a área e o perímetro da superfície S. Calcule o volume do tronco de cone indicado na figura 1.

Calcule a área e o perímetro da superfície S. Calcule o volume do tronco de cone indicado na figura 1. 1. (Unesp 017) Um cone circular reo de gerariz medindo 1 cm e raio da base medindo 4 cm foi seccionado por um plano paralelo à sua base, gerando um ronco de cone, como mosra a figura 1. A figura mosra

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

5.1 Objectivos. Caracterizar os métodos de detecção de valor eficaz.

5.1 Objectivos. Caracterizar os métodos de detecção de valor eficaz. 5. PRINCÍPIOS DE MEDIÇÃO DE CORRENE, ENSÃO, POÊNCIA E ENERGIA 5. Objecivos Caracerizar os méodos de deecção de valor eficaz. Caracerizar os méodos de medição de poência e energia em correne conínua, correne

Leia mais

Sistemas Lineares e Invariantes

Sistemas Lineares e Invariantes -14-16 -18-2 -22-24 -26-28 -3-32 Frequency (Hz Hamming aiser Chebyshev isemas Lineares e Invarianes Power pecral Densiy Env B F C1 C2 B F C1 Ground Revolue Body Revolue1 Body1 Power/frequency (db/hz ine

Leia mais

Voo Nivelado - Avião a Hélice

Voo Nivelado - Avião a Hélice - Avião a Hélice 763 º Ano da icenciaura em ngenharia Aeronáuica edro. Gamboa - 008. oo de ruzeiro De modo a prosseguir o esudo analíico do desempenho, é conveniene separar as aeronaves por ipo de moor

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar Progressão Ariméica e Progressão Geomérica. (Pucrj 0) Os números a x, a x e a x esão em PA. A soma dos números é igual a: a) 8 b) c) 7 d) e) 0. (Fuves 0) Dadas as sequências an n n, n n cn an an b, e b

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 2º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Inrodução ao Cálculo Diferencial II TPC nº 9 Enregar em 4 2 29. Num loe de bolbos de úlipas a probabilidade de que

Leia mais

Prof. Daniel Hasse. Princípios de Comunicações

Prof. Daniel Hasse. Princípios de Comunicações Prof. Daniel Hasse Princípios de Comunicações AULA 3 Análise de Fourier Prof. Daniel Hasse Sinais e espectros Os sinais são compostos de várias componentes senoidais (Série de Fourier) Generalização ransformada

Leia mais

Introdução ao estudo de Circuitos Lineares, Invariantes, Dinâmicos e de Parâmetros Concentrados usando o. Modelo de Estado. Análise de Circuitos

Introdução ao estudo de Circuitos Lineares, Invariantes, Dinâmicos e de Parâmetros Concentrados usando o. Modelo de Estado. Análise de Circuitos Inrodução ao esudo de ircuios Lineares, Invarianes, Dinâmicos e de Parâmeros oncenrados usando o Modelo de Esado Análise de ircuios ircuios Elecrónicos das Telecomunicações ircuios Lineares e Não-Lineares

Leia mais

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 1 3 quadrimestre 2012

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 1 3 quadrimestre 2012 EN67 Transformadas em Sinais e Sisemas Lineares Lisa de Exercícios Suplemenares janeiro EN67 Transformadas em Sinais e Sisemas Lineares Lisa de Exercícios Suplemenares quadrimesre Figura Convolução (LATHI,

Leia mais

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo PROBLEMAS RESOLVIDOS DE FÍSIA Prof. Anderson oser Gaudio Deparameno de Física enro de iências Eaas Universidade Federal do Espírio Sano hp://www.cce.ufes.br/anderson anderson@npd.ufes.br Úlima aualização:

Leia mais

O potencial eléctrico de um condutor aumenta à medida que lhe fornecemos carga eléctrica. Estas duas grandezas são

O potencial eléctrico de um condutor aumenta à medida que lhe fornecemos carga eléctrica. Estas duas grandezas são O ondensador O poencial elécrico de um conduor aumena à medida que lhe fornecemos carga elécrica. Esas duas grandezas são direcamene proporcionais. No enano, para a mesma quanidade de carga, dois conduores

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar . (Pucrj 0) Os números a x, a x e a3 x 3 esão em PA. A soma dos 3 números é igual a: é igual a e o raio de cada semicírculo é igual à meade do semicírculo anerior, o comprimeno da espiral é igual a a)

Leia mais

As cargas das partículas 1, 2 e 3, respectivamente, são:

As cargas das partículas 1, 2 e 3, respectivamente, são: 18 GAB. 1 2 O DIA PROCSSO SLTIVO/2006 FÍSICA QUSTÕS D 31 A 45 31. A figura abaixo ilusra as rajeórias de rês parículas movendo-se unicamene sob a ação de um campo magnéico consane e uniforme, perpendicular

Leia mais

Confiabilidade e Taxa de Falhas

Confiabilidade e Taxa de Falhas Prof. Lorí Viali, Dr. hp://www.pucrs.br/fama/viali/ viali@pucrs.br Definição A confiabilidade é a probabilidade de que de um sisema, equipameno ou componene desempenhe a função para o qual foi projeado

Leia mais

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 2012

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 2012 EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 fevereiro 03 EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 0

Leia mais

Análise de Pós-optimização e de Sensibilidade

Análise de Pós-optimização e de Sensibilidade CPÍULO nálise de Pós-opimização e de Sensibilidade. Inrodução Uma das arefas mais delicadas no desenvolvimeno práico dos modelos de PL, relaciona-se com a obenção de esimaivas credíveis para os parâmeros

Leia mais

Exercícios Sobre Oscilações, Bifurcações e Caos

Exercícios Sobre Oscilações, Bifurcações e Caos Exercícios Sobre Oscilações, Bifurcações e Caos Os ponos de equilíbrio de um modelo esão localizados onde o gráfico de + versus cora a rea definida pela equação +, cuja inclinação é (pois forma um ângulo

Leia mais

CIRCUITO RC SÉRIE. max

CIRCUITO RC SÉRIE. max ELETRICIDADE 1 CAPÍTULO 8 CIRCUITO RC SÉRIE Ese capíulo em por finalidade inroduzir o esudo de circuios que apresenem correnes eléricas variáveis no empo. Para ano, esudaremos o caso de circuios os quais

Leia mais

ARNALDO CARLOS MÜLLER JUNIOR INTEGRAÇÃO DA EQUAÇÃO DE MOVIMENTO ATRAVÉS DA TRANSFORMADA DE FOURIER COM O USO DE PONDERADORES DE ORDEM ELEVADA

ARNALDO CARLOS MÜLLER JUNIOR INTEGRAÇÃO DA EQUAÇÃO DE MOVIMENTO ATRAVÉS DA TRANSFORMADA DE FOURIER COM O USO DE PONDERADORES DE ORDEM ELEVADA ARNALDO CARLOS MÜLLER JUNIOR INTEGRAÇÃO DA EQUAÇÃO DE MOVIMENTO ATRAVÉS DA TRANSFORMADA DE FOURIER COM O USO DE ONDERADORES DE ORDEM ELEVADA Disseração apresenada à Escola de Engenharia de São Carlos da

Leia mais

A CONTABILIZAÇÃO DOS LUCROS DO MANIPULADOR 1

A CONTABILIZAÇÃO DOS LUCROS DO MANIPULADOR 1 16 : CADERNOS DO MERCADO DE VALORES MOBILIÁRIOS A CONTABILIZAÇÃO DOS LUCROS DO MANIPULADOR 1 PAULO HORTA* A esimaiva dos lucros obidos pelo preenso manipulador apresena-se como uma arefa imporane na análise

Leia mais

4 O modelo econométrico

4 O modelo econométrico 4 O modelo economérico O objeivo desse capíulo é o de apresenar um modelo economérico para as variáveis financeiras que servem de enrada para o modelo esocásico de fluxo de caixa que será apresenado no

Leia mais

velocidade inicial: v 0 ; ângulo de tiro com a horizontal: 0.

velocidade inicial: v 0 ; ângulo de tiro com a horizontal: 0. www.fisicaee.com.br Um projéil é disparado com elocidade inicial iual a e formando um ânulo com a horizonal, sabendo-se que os ponos de disparo e o alo esão sobre o mesmo plano horizonal e desprezando-se

Leia mais

Detecção e Correcção de Erros Instituto Superior de Engenharia do Porto. 2003/2004 Redes de Computadores I Filipe Costa

Detecção e Correcção de Erros Instituto Superior de Engenharia do Porto. 2003/2004 Redes de Computadores I Filipe Costa Deecção e Correcção de Erros Insiuo Superior de Engenharia do Poro 2003/2004 Redes de Compuadores I Filipe Cosa - 1020525 Deecção de Erros Nas linhas de comunicação menos consisenes, a probabilidade de

Leia mais

Cálculo Vetorial - Lista de Exercícios

Cálculo Vetorial - Lista de Exercícios álculo Veorial - Lisa de Exercícios (Organizada pela Profa. Ilka Rebouças). Esboçar o gráfico das curvas represenadas pelas seguines funções veoriais: a) a 4 i j, 0,. d) d i 4 j k,. b) b sen i 4 j cos

Leia mais

Econometria Semestre

Econometria Semestre Economeria Semesre 00.0 6 6 CAPÍTULO ECONOMETRIA DE SÉRIES TEMPORAIS CONCEITOS BÁSICOS.. ALGUMAS SÉRIES TEMPORAIS BRASILEIRAS Nesa seção apresenamos algumas séries econômicas, semelhanes às exibidas por

Leia mais

Análise de séries de tempo: modelos de decomposição

Análise de séries de tempo: modelos de decomposição Análise de séries de empo: modelos de decomposição Profa. Dra. Liane Werner Séries de emporais - Inrodução Uma série emporal é qualquer conjuno de observações ordenadas no empo. Dados adminisraivos, econômicos,

Leia mais

EXAME DE ESTATÍSTICA AMBIENTAL 1ª Época (v1)

EXAME DE ESTATÍSTICA AMBIENTAL 1ª Época (v1) Nome: Aluno nº: Duração: horas LICENCIATURA EM CIÊNCIAS DE ENGENHARIA - ENGENHARIA DO AMBIENTE EXAME DE ESTATÍSTICA AMBIENTAL ª Época (v) I (7 valores) Na abela seguine apresena-se os valores das coordenadas

Leia mais

Proporcional, Integral e Derivativo

Proporcional, Integral e Derivativo Implemenação de um conrolador do ipo Proporcional, Inegral e Derivaivo num auómao programável e(k) PID u(k) U s min U s max u s ( pv( Moor ario velocidade Auomao programável Processo Aluno: José Lucas

Leia mais

CINÉTICA RADIOATIVA. Introdução. Tempo de meia-vida (t 1/2 ou P) Atividade Radioativa

CINÉTICA RADIOATIVA. Introdução. Tempo de meia-vida (t 1/2 ou P) Atividade Radioativa CIÉTIC RDIOTIV Inrodução Ese arigo em como objeivo analisar a velocidade dos diferenes processos radioaivos, no que chamamos de cinéica radioaiva. ão deixe de anes esudar o arigo anerior sobre radioaividade

Leia mais

) quando vamos do ponto P até o ponto Q (sobre a reta) e represente-a no plano cartesiano descrito acima.

) quando vamos do ponto P até o ponto Q (sobre a reta) e represente-a no plano cartesiano descrito acima. ATIVIDADE 1 1. Represene, no plano caresiano xy descrio abaixo, os dois ponos (x 0,y 0 ) = (1,2) e Q(x 1,y 1 ) = Q(3,5). 2. Trace a rea r 1 que passa pelos ponos e Q, no plano caresiano acima. 3. Deermine

Leia mais

4 Metodologia Proposta para o Cálculo do Valor de Opções Reais por Simulação Monte Carlo com Aproximação por Números Fuzzy e Algoritmos Genéticos.

4 Metodologia Proposta para o Cálculo do Valor de Opções Reais por Simulação Monte Carlo com Aproximação por Números Fuzzy e Algoritmos Genéticos. 4 Meodologia Proposa para o Cálculo do Valor de Opções Reais por Simulação Mone Carlo com Aproximação por Números Fuzzy e Algorimos Genéicos. 4.1. Inrodução Nese capíulo descreve-se em duas pares a meodologia

Leia mais

1 Movimento de uma Carga Pontual dentro de um Campo Elétrico

1 Movimento de uma Carga Pontual dentro de um Campo Elétrico Correne Elérica Movimeno de uma Carga Ponual denro de um Campo Elérico Uma carga elérica denro de um campo elérico esá sujeia a uma força igual a qe. Se nenhuma oura força aua sobre essa carga (considerar

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tarefa de revisão nº 17 1. Uma empresa lançou um produo no mercado. Esudos efecuados permiiram concluir que a evolução do preço se aproxima do seguine modelo maemáico: 7 se 0 1 p() =, p em euros e em anos.

Leia mais

Lista de Exercícios 1

Lista de Exercícios 1 Universidade Federal de Ouro Preo Deparameno de Maemáica MTM14 - CÁLCULO DIFERENCIAL E INTEGRAL III Anônio Silva, Edney Oliveira, Marcos Marcial, Wenderson Ferreira Lisa de Exercícios 1 1 Para cada um

Leia mais

FÍSICA II. Estudo de circuitos RC em corrente contínua

FÍSICA II. Estudo de circuitos RC em corrente contínua FÍSICA II GUIA DO 2º TRABALHO LABORATORIAL Esudo de circuios RC em correne conínua OBJECTIVOS Preende-se com ese rabalho que os alunos conacem com um circuio elécrico conendo resisências, condensadores

Leia mais

DINÂMICA DE ESTRUTURAS

DINÂMICA DE ESTRUTURAS UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE ECNOLOGIA Área Deparamenal de Engenharia Civil COMPLEMENOS DE ANÁLISE ESRUURAL DINÂMICA DE ESRUURAS VERSÃO PROVISÓRIA JOÃO MANUEL CARVALHO ESÊVÃO FARO 006/0/7

Leia mais

Experiência IV (aulas 06 e 07) Queda livre

Experiência IV (aulas 06 e 07) Queda livre Experiência IV (aulas 06 e 07) Queda livre 1. Objeivos. Inrodução 3. Procedimeno experimenal 4. Análise de dados 5. Quesões 6. Referências 1. Objeivos Nesa experiência, esudaremos o movimeno da queda de

Leia mais

Capacitores e Indutores

Capacitores e Indutores Capaciores e Induores Um capacior é um disposiivo que é capaz de armazenar e disribuir carga elérica em um circuio. A capaciância (C) é a grandeza física associada a esa capacidade de armazenameno da carga

Leia mais

APOSTILA DE MODELOS LINEARES EM SÉRIES TEMPORAIS

APOSTILA DE MODELOS LINEARES EM SÉRIES TEMPORAIS UNIVERSIDADE FEDERAL DE MINAS GERAIS - UFMG INSIUO DE CIÊNCIAS EXAAS ICEx DEPARAMENO DE ESAÍSICA ES APOSILA DE MODELOS LINEARES EM SÉRIES EMPORAIS Glaura da Conceição Franco (ES/UFMG) Belo Horizone, agoso

Leia mais

Aula 05 Transformadas de Laplace

Aula 05 Transformadas de Laplace Aula 05 Transformadas de Laplace Pierre Simon Laplace (1749-1827) As Transformadas de Laplace apresentam uma representação de sinais no domínio da frequência em função de uma variável s que é um número

Leia mais

CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA

CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA Inrodução Ese arigo raa de um dos assunos mais recorrenes nas provas do IME e do ITA nos úlimos anos, que é a Cinéica Química. Aqui raamos principalmene dos

Leia mais

CAPÍTULO III TORÇÃO SIMPLES

CAPÍTULO III TORÇÃO SIMPLES CAPÍTULO III TORÇÃO SIPLES I.INTRODUÇÂO Uma peça esará sujeia ao esforço de orção simples quando a mesma esiver submeida somene a um momeno de orção. Observe-se que raa-se de uma simplificação, pois no

Leia mais

Comunicação. Tipos de Sinal. Redes. Tempo de Transmissão x Tempo de Propagação. d = v. Sinal Analógico. Sinal Digital.

Comunicação. Tipos de Sinal. Redes. Tempo de Transmissão x Tempo de Propagação. d = v. Sinal Analógico. Sinal Digital. Comunicação Redes Análise Básica de Sinais Informação Mensagem Sinal Sinal Mensagem Informação Idéia Idéia Sinal de Voz rof. Sérgio Colcher colcher@inf.puc-rio.br 2 Tipos de Sinal Tempo de Transmissão

Leia mais

Integração por substituição (mudança de variável)

Integração por substituição (mudança de variável) M@plus Inegrais Inegrais Pare II IV. Técnicas de inegração Quando o inegral (definido ou indefinido) não é imediao ou quase imediao, recorremos a ouras écnicas de inegração. Inegração por subsiuição (mudança

Leia mais

3 Retorno, Marcação a Mercado e Estimadores de Volatilidade

3 Retorno, Marcação a Mercado e Estimadores de Volatilidade eorno, Marcação a Mercado e Esimadores de Volailidade 3 3 eorno, Marcação a Mercado e Esimadores de Volailidade 3.. eorno de um Aivo Grande pare dos esudos envolve reorno ao invés de preços. Denre as principais

Leia mais

MATEMÁTICA APLICADA AO PLANEJAMENTO DA PRODUÇÃO E LOGÍSTICA. Silvio A. de Araujo Socorro Rangel

MATEMÁTICA APLICADA AO PLANEJAMENTO DA PRODUÇÃO E LOGÍSTICA. Silvio A. de Araujo Socorro Rangel MAEMÁICA APLICADA AO PLANEJAMENO DA PRODUÇÃO E LOGÍSICA Silvio A. de Araujo Socorro Rangel saraujo@ibilce.unesp.br, socorro@ibilce.unesp.br Apoio Financeiro: PROGRAMA Inrodução 1. Modelagem maemáica: conceios

Leia mais

INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS

INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS Gil da Cosa Marques Fundamenos de Maemáica I.1 Inrodução. Equações Diferenciais Lineares.3 Equações Lineares de Primeira ordem.3.1 Equações de Primeira ordem não homogêneas

Leia mais

Funções vetoriais. I) Funções vetoriais a valores reais:

Funções vetoriais. I) Funções vetoriais a valores reais: Funções veoriais I) Funções veoriais a valores reais: f: I R f() R (f 1 n (), f (),..., f n ()) I = inervalo da rea real denominada domínio da função veorial f = {conjuno de odos os valores possíveis de,

Leia mais

Física. Física Módulo 1

Física. Física Módulo 1 Física Módulo 1 Nesa aula... Movimeno em uma dimensão Aceleração e ouras coisinhas O cálculo de x() a parir de v() v( ) = dx( ) d e x( ) x v( ) d = A velocidade é obida derivando-se a posição em relação

Leia mais

3 Processos Estocásticos

3 Processos Estocásticos 3 Processos Esocásicos Um processo esocásico pode ser definido como uma seqüência de variáveis aleaórias indexadas ao empo e ambém a evenos. É uma variável que se desenvolve no empo de maneira parcialmene

Leia mais

Resoluções de Exercícios de Telecomunicações I

Resoluções de Exercícios de Telecomunicações I Resoluções de Exercícios de elecomunicações I elecomunicações I Folha - SINAIS - Por definição V f v e j πf d Ae e jπf d A jπf + jπf + [ e ] A + jπf - A ransformada de Fourier do impulso v δ δ é V f Aδ

Leia mais

Lista de Exercícios nº 3 - Parte IV

Lista de Exercícios nº 3 - Parte IV DISCIPLINA: SE503 TEORIA MACROECONOMIA 01/09/011 Prof. João Basilio Pereima Neo E-mail: joaobasilio@ufpr.com.br Lisa de Exercícios nº 3 - Pare IV 1ª Quesão (...) ª Quesão Considere um modelo algébrico

Leia mais

QUESTÃO 60 DA CODESP

QUESTÃO 60 DA CODESP UEÃO 60 D CODE - 0 êmpera é um ipo de raameno érmico uilizado para aumenar a dureza de peças de aço respeio da êmpera, é correo afirmar: ) a êmpera modifica de maneira uniforme a dureza da peça, independenemene

Leia mais

Tópicos Avançados em Eletrônica II

Tópicos Avançados em Eletrônica II Deparameno de ngenharia lérica Aula 1.1 onversor - Prof. João Américo Vilela Bibliografia BARB, vo. & MARNS Denizar ruz. onversores - Básicos Não-solados. 1ª edição, UFS, 21. MOHAN Ned; UNDAND ore M.;

Leia mais

Conceitos Básicos Circuitos Resistivos

Conceitos Básicos Circuitos Resistivos Conceios Básicos Circuios esisivos Elecrónica 005006 Arnaldo Baisa Elecrónica_biomed_ef Circuio Elécrico com uma Baeria e uma esisência I V V V I Lei de Ohm I0 V 0 i0 Movimeno Das Pás P >P P >P Líquido

Leia mais

DEMOGRAFIA. Assim, no processo de planeamento é muito importante conhecer a POPULAÇÃO porque:

DEMOGRAFIA. Assim, no processo de planeamento é muito importante conhecer a POPULAÇÃO porque: DEMOGRAFIA Fone: Ferreira, J. Anunes Demografia, CESUR, Lisboa Inrodução A imporância da demografia no planeameno regional e urbano O processo de planeameno em como fim úlimo fomenar uma organização das

Leia mais