Séries de Fourier de Senos e de Cossenos de Índices Ímpares

Tamanho: px
Começar a partir da página:

Download "Séries de Fourier de Senos e de Cossenos de Índices Ímpares"

Transcrição

1 Séries de Fourier de Senos e de Cossenos de Índices Ímpares Reginaldo J. Sanos Deparameno de Maemáica-ICEx Universidade Federal de Minas Gerais hp:// 26 de seembro de 21

2 2 Análogo ao caso de inegração de funções ímpares no inervalo [, ], se h : [, ] R é simérica em relação ao pono, ) =, ), ou seja, se é al que h ) = h), para odo [, ], enão verifique!) h)d =. Também análogo ao caso de inegração de funções pares no inervalo [, ], se h : [, ] R é simérica em relação à rea =, ou seja, se é al que h ) = h), para odo [, ], enão verifique!) h)d = 2 h)d. Figura 1: Prolongamenos com simeria em relação à rea = e em relação ao pono, ) =, ) de uma função definida inicialmene somene no inervalo [, ] Já vimos que se uma função f : [, ] R é conínua por pares com derivada f ambém conínua por pares, enão pelo Corolário 5.2 ela pode ser represenada por sua série de Fourier de senos f) = b n sen nπ. n=1

3 3 /3 4/3 /2 3/2 com os coeficienes dados por b n Figura 2: sen nπ, para n = 1, 2, 3, 4 = 1 f) sen nπ d para n = 1, 2,... Se a função f é simérica em relação à rea =, iso é, se f ) = f), para odo [, ], enão f) sen 2kπ 2k+1)π é simérica em relação ao pono, ) =, ) e f) sen é simérica em relação à rea = verifique!). Separando os coeficienes em de índice par e de índice ímpar, obemos que: b 2k = b 2k+1 = 2 f) sen 2k+1)π d para k =, 1, 2,...

4 4 E assim f) = k= b 2k+1 sen 2k+1)π, para, ) Ou seja, se uma função f : [, ] R é simérica em relação à rea =, a sua série de Fourier de senos em somene os ermos de índice ímpar. Para as funções f que são definidas apenas em [, ] podemos prolongá-las ao inervalo [, ] de forma que elas sejam siméricas em relação à rea = : { f), se < f) = f ), se < é simérica em relação à rea = Corolário 1. Seja um número real maior que zero. Para oda função f : [, ] R conínua por pares al que a sua derivada f ambém seja conínua por pares. A série de Fourier de senos de índice ímpar de f em que k= b 2k+1 sen 2k+1)π, b 2k+1 = 2 f) sen 2k+1)π d para k =, 1, 2,... converge para f nos ponos do inervalo, ) em que f é conínua. Ou seja, podemos represenar f por sua série de senos de Fourier de índice ímpar: f) = k= b 2k+1 sen 2k+1)π, para, ). A série acima é a série de Fourier da função f : R R definida por f) = { f), se <, f ), se <, f) = f ), se <, f+4) = f).

5 5 /2 3/2 /6 5/3 /4 3/4 5/4 7/4 Figura 3: cos nπ, para n = 1, 2, 3, 4 Já vimos que se uma função f : [, ] R é conínua por pares com derivada f ambém conínua por pares, enão pelo Corolário 5.2 ela pode ser represenada por sua série de Fourier de cossenos com os coeficienes dados por f) = b n cos nπ. n=1 a n = 1 f) cos nπ d para n =, 1, 2,... Se a função f é simérica em relação ao pono, ), iso é, f ) = f), para odo [, ],

6 6 enão f) cos 2kπ 2k+1)π é simérica em relação ao pono, ) =, ) e f) cos é simérica em relação à rea = verifique!). Separando os coeficienes em de índice par e de índice ímpar, obemos que verifique!): E assim a 2k = a 2k+1 = 2 f) = k= f) cos 2k+1)π d para k =, 1, 2,... a 2k+1 cos 2k+1)π, para, ) Ou seja, se uma função f : [, ] R é simérica em relação ao pono, ), a sua série de Fourier de cossenos em somene os ermos de índice ímpar. Para as funções f que são definidas apenas em [, ] podemos prolongá-las ao inervalo [, ] de forma que elas sejam siméricas em relação ao pono, ): { f), se < f) = f ), se < simérica em relação ao pono, ). E assim emos o seguine resulado. Corolário 2. Seja um número real maior que zero. Para oda função f : [, ] R conínua por pares al que a sua derivada f ambém seja conínua por pares. A série de Fourier de cossenos de índice ímpar de f em que k= a 2k+1 cos 2k+1)π, a 2k+1 = 2 f) cos 2k+1)π d para k =, 1, 2,... converge para f nos ponos do inervalo, ) em que f é conínua. Ou seja, podemos represenar f por sua série de cossenos de Fourier de índice ímpar: f) = k= a 2k+1 cos 2k+1)π, para, ).

7 7 A série acima é a série de Fourier da função f : R R definida por f) = { f), se <, f ), se <, f) = f ), se <, f+4) = f).

8 8 Exercícios 1. a) Mosre que se uma função h : [, ] R é simérica em relação ao pono, ) =, ), ou seja, se h ) = h), para [, ], enão h) d =. b) Mosre que se uma função h : [, ] R é simérica em relação à rea =, ou seja, se h ) = h), para [, ], enão h) d = 2 h) d. c) Mosre que se f : [, ] R é simérica em relação à rea =, ou seja, al que f) = f ), para [, ], enão os coeficienes de índice par da série de senos de Fourier são nulos, ou seja, b 2k =, para k = 1, 2, 3... e os coeficienes de índice ímpar são dados por b 2k+1 = 2 f) sen 2k+1)π d para k =, 1, 2,... Sugesão: use os iens a) e b).) d) Mosre que se f : [, ] R é simérica em relação ao pono, ) =, ), ou seja, al que f) = f ), para [, ], enão os coeficienes de índice par da série de cossenos de Fourier são nulos, a 2k =, para k =, 1, e os coeficienes de índice ímpar são dados por a 2k+1 = 2 f) cos 2k+1)π d para k =, 1, 2,... Sugesão: use os iens a) e b).)

9 9 2. Deermine as represenações da função f : [, ] R em ermos das séries de Fourier de senos e de cossenos de índices ímpares: { /2, se < /2, f) =, se /2 <. Figura 4: A função f : [, ] R definida por f) = /2, se [, /2] e f) =, caso conrário e as somas parciais da sua série de Fourier de cossenos de índices ímpares, para N = 1, 2, 3, 4, 5, 6.

10 1 Figura 5: A função f : [, ] R definida por f) = /2, se [, /2] e f) =, caso conrário e as somas parciais da sua série de Fourier de senos de índices ímpares, para N = 1, 2, 3, 4, 5, 6. Resposas dos Exercícios 1. a) Dividindo a inegral em duas pares, fazendo a mudança de variáveis = s na segunda pare e usando o fao de que obemos h ) = h), para [, ] h) d = = = h) d+ h) d+ h) d+ h) d h s) ds) hs) ds = b) Dividindo a inegral em duas pares, fazendo a mudança de variáveis = s na segunda pare e usando o fao de que h ) = h), para [, ]

11 11 obemos h) d = = = h) d+ h) d+ h) d h) d h s) ds) hs) ds = 2 h) d c) Para h) = f) sen 2kπ emos que h ) = f ) sen 2kπ ) ) 2kπ = f) sen = h) = f) sen 2kπ 2kπ ) = f) sen 2kπ ) Assim segue da aplicação do iem a) que b 2k =. Para h) = f) sen 2k+1)π emos que h ) = f ) sen 2k+1)π ) = f) sen π 2k+1)π ) = f) sen 2k+1)π 2k+1)π ) ) 2k+1)π = h) = f) sen Assim segue da aplicação do iem b) que b 2k+1 = 2 f) sen 2k+1)π d para k =, 1, 2,... d) Para h) = f) cos 2kπ emos que h ) = f ) cos 2kπ ) ) 2kπ = f) cos = h) = f) cos 2kπ 2kπ ) = f) cos 2kπ ) Assim segue da aplicação do iem a) que a 2k =. Para h) = f) cos 2k+1)π emos que h ) = f ) cos 2k+1)π ) = f) cos π 2k+1)π = f) cos ) = f) cos 2k+1)π 2k+1)π ) ) 2k+1)π = h) Assim segue da aplicação do iem b) que a 2k+1 = 2 f) cos 2k+1)π d para k =, 1, 2,...

12 12 2. embrando que a inegração deve ser feia no inervalo [, ]: a 2k+1 = 2 a 2k+1 f ) ) a, 4 1 2k+1 f 1) ), 1 4 = k+1)π 2k+1)π sen s 4 2k+1)π 4 2k+1) 2 π 2s sen s+cos s) 4 8 = 2k+1) 2 π 2 1 cos 2k+1)π ) 4 f) = 8 π 2 k= 1 cos 2k+1)π 4 2k+1) 2 cos 2k+1)π b 2k+1 = 2 b 2k+1 f ) ) b, 4 1 2k+1 f 1) ), 1 4 = k+1)π 2k+1)π cos s 4 2k+1)π 4 2k+1) 2 π 2 s cos s+sen s) 4 = 2k+1) 2 π 2 2k+1)π 4 sen 2k+1)π ) 4 f) = π 2 k= 2k+1)π 4 sen 2k+1)π 4 2k+1) 2 sen 2k+1)π

x x9 8 + x13 1 cos (t) t f(x) = (a) Manipulando algebricamente a expressão da soma: 8 + x12 (t) dt = 1 t 4 dt 4 ln 1

x x9 8 + x13 1 cos (t) t f(x) = (a) Manipulando algebricamente a expressão da soma: 8 + x12 (t) dt = 1 t 4 dt 4 ln 1 Turma A Quesão : (3,5 ponos Insiuo de Maemáica e Esaísica da USP MAT455 - Cálculo Diferencial e Inegral IV para Engenharia a. Prova - o. Semesre 3-4//3 (a Obenha uma expressão da série abaixo e o respecivo

Leia mais

4a. Lista de Exercícios

4a. Lista de Exercícios UFPR - Universidade Federal do Paraná Deparameno de Maemáica Prof. José Carlos Eidam CM4 - Cálculo I - Turma C - / 4a. Lisa de Eercícios Inegrais impróprias. Decida quais inegrais impróprias abaio são

Leia mais

5 de fevereiro de x 2 y

5 de fevereiro de x 2 y P 2 - Gabario 5 de fevereiro de 2018 Quesão 1 (1.5). Considere x 2 y g(x, y) = (x, y + x 2 ) e f (x, y) = x 4, se (x, y) = (0, 0) + y2. 0, se (x, y) = (0, 0) Mosre que: (a) f e g admiem odas as derivadas

Leia mais

Análise Matemática II

Análise Matemática II Análise Maemáica II Exame/Tese 3 - de Junho de 5 Licenciaura em Eng. Informáica e de Compuadores Nome: Número: Exame: Todas as pergunas Tese: Pergunas 5, 6, 7, 8 e 9 Indique na erceira coluna da abela

Leia mais

1. Calcule os seguintes limites: lim. lim t t. lim. lim. lim. lim. x + lim. lim. lim. 2. Encontre a derivada das funções dadas.

1. Calcule os seguintes limites: lim. lim t t. lim. lim. lim. lim. x + lim. lim. lim. 2. Encontre a derivada das funções dadas. DEPARTAMENTO DE MATEMÁTICA APLICADA ICTE/UFTM Lisa 0 Cálculo Diferencial e Inegral II Profa.: LIDIANE SARTINI. Calcule os seguines ies: ( 7 5 ) 0 ( 5 + + ) + 5+ + + 0 5 5 5 5 7+ 0 5 + + + l) + + 5 + 5

Leia mais

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON)

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON) TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 8 LIVRO DO NILSON). CONSIDERAÇÕES INICIAIS SÉRIES DE FOURIER: descrevem funções periódicas no domínio da freqüência (ampliude e fase). TRANSFORMADA DE FOURIER:

Leia mais

Universidade Federal do Rio de Janeiro COPPE Programa de Engenharia Química 2014/1

Universidade Federal do Rio de Janeiro COPPE Programa de Engenharia Química 2014/1 Universidade Federal do Rio de Janeiro COPPE Programa de Engenharia Química COQ 79 ANÁLISE DE SISTEMAS DA ENGENHARIA QUÍMICA AULA 5: Represenações Enrada-Saída e o Domínio Transformado; Transformada de

Leia mais

Teoria das Comunicações. Lista de Exercícios 1.1 Série de Fourier Prof. André Noll Barreto

Teoria das Comunicações. Lista de Exercícios 1.1 Série de Fourier Prof. André Noll Barreto Lisa de Exercícios. Série de Fourier Prof. André Noll Barreo Exercício (Lahi, 3a Ed., Ex..-) Calcule a energia dos sinais abaixo. Qual o efeio na energia da inversão, deslocameno no empo ou duplicação

Leia mais

Complementos de Análise Matemática

Complementos de Análise Matemática Insiuo Poliécnico de Viseu Escola Superior de Tecnologia Ficha práica n o 4 - Transformadas de Laplace Equações e Sisemas de Equações Diferenciais. Em cada uma das alíneas seguines, deermine Lf()}., 0

Leia mais

Capítulo 11. Corrente alternada

Capítulo 11. Corrente alternada Capíulo 11 Correne alernada elerônica 1 CAPÍULO 11 1 Figura 11. Sinais siméricos e sinais assiméricos. -1 (ms) 1 15 3 - (ms) Em princípio, pode-se descrever um sinal (ensão ou correne) alernado como aquele

Leia mais

2.6 - Conceitos de Correlação para Sinais Periódicos

2.6 - Conceitos de Correlação para Sinais Periódicos .6 - Conceios de Correlação para Sinais Periódicos O objeivo é o de comparar dois sinais x () e x () na variável empo! Exemplo : Considere os dados mosrados abaixo y 0 x Deseja-se ober a relação enre x

Leia mais

Notas de aula - profa Marlene - função logarítmica 1

Notas de aula - profa Marlene - função logarítmica 1 Noas de aula - profa Marlene - função logarímica Inrodução U - eparameno de Maemáica Aplicada (GMA) NOTAS E AULA - CÁLCULO APLICAO I - PROESSORA MARLENE unção Logarímica e unção Eponencial No Ensino Médio

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática. Primeira Lista de Exercícios MAT 241 Cálculo III

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática. Primeira Lista de Exercícios MAT 241 Cálculo III Universidade Federal de Viçosa Cenro de Ciências Exaas e Tecnológicas Deparameno de Maemáica Primeira Lisa de Exercícios MAT 4 Cálculo III Julgue a veracidade das afirmações abaixo assinalando ( V para

Leia mais

Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas

Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas Sinais e Sisemas Série de Fourier Renao Dourado Maia Universidade Esadual de Mones Claros Engenharia de Sisemas Inrodução A Série e a Inegral de Fourier englobam um dos desenvolvimenos maemáicos mais produivos

Leia mais

Cálculo Diferencial e Integral II - Tagus Park 1o. Semestre 2015/2016 1o. Teste 07/Novembro/2015 JUSTIFIQUE AS SUAS RESPOSTAS. x y 2 x 2 +y 2 (b) lim

Cálculo Diferencial e Integral II - Tagus Park 1o. Semestre 2015/2016 1o. Teste 07/Novembro/2015 JUSTIFIQUE AS SUAS RESPOSTAS. x y 2 x 2 +y 2 (b) lim Cálculo Diferencial e Inegral II - Tagus Park o. Semesre 5/6 o. Tese 7/Novembro/5 JUSTIFIQUE AS SUAS RESPOSTAS RESOLUÇÃO..5+.5 vals.) Calcule ou mosre que não eise: a) a) + b) + + 4 + + Como, não eise.

Leia mais

Capítulo Cálculo com funções vetoriais

Capítulo Cálculo com funções vetoriais Cálculo - Capíulo 6 - Cálculo com funções veoriais - versão 0/009 Capíulo 6 - Cálculo com funções veoriais 6 - Limies 63 - Significado geomérico da derivada 6 - Derivadas 64 - Regras de derivação Uiliaremos

Leia mais

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 1 2 quadrimestre 2011

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 1 2 quadrimestre 2011 EN67 Transformadas em Sinais e Sisemas Lineares Lisa de Exercícios Suplemenares quadrimesre Figura Convolução (LATHI, 998) (N) (HAYKIN; VEEN,, p 79) O pulso rapezoidal x( ) da figura a seguir é aplicado

Leia mais

Sinais e Sistemas. Caderno de Exercícios de Casa (Horas não presenciais) (Compilação de exercícios de exames)

Sinais e Sistemas. Caderno de Exercícios de Casa (Horas não presenciais) (Compilação de exercícios de exames) Sinais e Sisemas Caderno de Exercícios de Casa (Horas não presenciais) (Compilação de exercícios de exames) Capíulo - Sinais. Escreva as linhas de código em Malab para criar e represenar os seguines sinais:

Leia mais

Para Newton, conforme o tempo passa, a velocidade da partícula aumenta indefinidamente. ( )

Para Newton, conforme o tempo passa, a velocidade da partícula aumenta indefinidamente. ( ) Avaliação 1 8/0/010 1) A Primeira Lei do Movimeno de Newon e a Teoria da elaividade esria de Einsein diferem quano ao comporameno de uma parícula quando sua velocidade se aproxima da velocidade da luz

Leia mais

Noções de Espectro de Freqüência

Noções de Espectro de Freqüência MINISTÉRIO DA EDUCAÇÃO - Campus São José Curso de Telecomunicações Noções de Especro de Freqüência Marcos Moecke São José - SC, 6 SUMÁRIO 3. ESPECTROS DE FREQÜÊNCIAS 3. ANÁLISE DE SINAIS NO DOMÍNIO DA

Leia mais

35ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase

35ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase ª Olimpíada rasileira de Maemáica GRITO Segunda Fase Soluções Nível Segunda Fase Pare PRTE Na pare serão aribuídos ponos para cada resposa correa e a ponuação máxima para essa pare será. NENHUM PONTO deverá

Leia mais

yy + (y ) 2 = 0 Demonstração. Note que esta EDO não possui a variável independente e assim faremos a mudança de variável

yy + (y ) 2 = 0 Demonstração. Note que esta EDO não possui a variável independente e assim faremos a mudança de variável UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL 4-018.1 1A VERIFICAÇÃO DE APRENDIZAGEM - PARTE Nome Legível Turma RG CPF Resposas sem

Leia mais

Lista de Exercícios de Cálculo 3 Módulo 2 - Quarta Lista - 02/2016

Lista de Exercícios de Cálculo 3 Módulo 2 - Quarta Lista - 02/2016 Lisa de Exercícios de Cálculo 3 Módulo 2 - Quara Lisa - 02/2016 Pare A 1. Deermine as derivadas das funções abaixo com relação as suas respecivas variáveis. (a) f(x, y) = 3x 3 2x 2 y + xy (b) g(x, y) =

Leia mais

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL42 Coneúdo 8 - Inrodução aos Circuios Lineares e Invarianes...1 8.1 - Algumas definições e propriedades gerais...1 8.2 - Relação enre exciação

Leia mais

CAPÍTULO 10 DERIVADAS DIRECIONAIS

CAPÍTULO 10 DERIVADAS DIRECIONAIS CAPÍTULO 0 DERIVADAS DIRECIONAIS 0. Inrodução Dada uma função f : Dom(f) R n R X = (x, x,..., x n ) f(x) = f(x, x,..., x n ), vimos que a derivada parcial de f com respeio à variável x i no pono X 0, (X

Leia mais

Circuitos Elétricos I EEL420

Circuitos Elétricos I EEL420 Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL420 Coneúdo 1 - Circuios de primeira ordem...1 1.1 - Equação diferencial ordinária de primeira ordem...1 1.1.1 - Caso linear, homogênea, com

Leia mais

Lista de Exercícios 1

Lista de Exercícios 1 Universidade Federal de Ouro Preo Deparameno de Maemáica MTM14 - CÁLCULO DIFERENCIAL E INTEGRAL III Anônio Silva, Edney Oliveira, Marcos Marcial, Wenderson Ferreira Lisa de Exercícios 1 1 Para cada um

Leia mais

DISCIPLINA SÉRIE CAMPO CONCEITO

DISCIPLINA SÉRIE CAMPO CONCEITO Log Soluções Reforço escolar M ae máica Dinâmica 4 2ª Série 1º Bimesre DISCIPLINA SÉRIE CAMPO CONCEITO Maemáica 2ª do Ensino Médio Algébrico simbólico Função Logarímica Primeira Eapa Comparilhar Ideias

Leia mais

2.5 Impulsos e Transformadas no Limite

2.5 Impulsos e Transformadas no Limite .5 Impulsos e Transformadas no Limie Propriedades do Impulso Uniário O impulso uniário ou função dela de Dirac δ não é uma função no senido maemáico esrio. Ela perence a uma classe especial conhecida como

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

PARTE 12 DERIVADAS DIRECIONAIS

PARTE 12 DERIVADAS DIRECIONAIS PARTE DERIVADAS DIRECIONAIS. Inrodução Dada uma função f : Dom(f) R n R X = (x, x,..., x n ) f(x) = f(x, x,..., x n ), vimos que a derivada parcial de f com respeio à variável x i no pono X 0, (X 0 ),

Leia mais

Funções de Várias Variáveis (FVV) UFABC, 2019-Q1

Funções de Várias Variáveis (FVV) UFABC, 2019-Q1 Funções de Várias Variáveis (FVV UFABC, 2019-Q1 Peer Hazard Prova 1 B 19:00hs, 25 de março, Sala A002, Bloco Bea, SBC Duração: 90 minuos Aviso: É erminanemene proibido consular qualquer maerial ou colega,

Leia mais

Resolução. Caderno SFB Enem

Resolução. Caderno SFB Enem Caderno SFB Enem COMENTÁRIOS EXERCÍCIOS PROPOSTOS 0. Do enunciado, emos: y x k, onde k é a consane de proporcionalidade. Assim: 6 5 k k 50 Logo: y x 50 y 5 50 y 0. Seja L a quanidade de laranjas ransporadas:

Leia mais

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara Insiuo de Física USP Física V - Aula 6 Professora: Mazé Bechara Aula 6 Bases da Mecânica quânica e equações de Schroedinger. Aplicação e inerpreações. 1. Ouros posulados da inerpreação de Max-Born para

Leia mais

Cálculo Vetorial - Lista de Exercícios

Cálculo Vetorial - Lista de Exercícios álculo Veorial - Lisa de Exercícios (Organizada pela Profa. Ilka Rebouças). Esboçar o gráfico das curvas represenadas pelas seguines funções veoriais: a) a 4 i j, 0,. d) d i 4 j k,. b) b sen i 4 j cos

Leia mais

Antes de mais nada, é importante notar que isso nem sempre faz sentido do ponto de vista biológico.

Antes de mais nada, é importante notar que isso nem sempre faz sentido do ponto de vista biológico. O modelo malusiano para empo conínuo: uma inrodução não rigorosa ao cálculo A dinâmica de populações ambém pode ser modelada usando-se empo conínuo, o que é mais realisa para populações que se reproduzem

Leia mais

3. Representaç ão de Fourier dos Sinais

3. Representaç ão de Fourier dos Sinais Sinais e Sisemas - 3. Represenaç ão de Fourier dos Sinais Nese capíulo consideramos a represenação dos sinais como uma soma pesada de exponenciais complexas. Dese modo faz-se uma passagem do domínio do

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 20. Palavras-chaves: derivada,derivada direcional, gradiente

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 20. Palavras-chaves: derivada,derivada direcional, gradiente Assuno: Derivada direcional UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 20 Palavras-chaves: derivada,derivada direcional, gradiene Derivada Direcional Sejam z = fx, y) uma função e x

Leia mais

ENGF93 Análise de Processos e Sistemas I

ENGF93 Análise de Processos e Sistemas I ENGF93 Análise de Processos e Sisemas I Prof a. Karen Pones Revisão: 3 de agoso 4 Sinais e Sisemas Tamanho do sinal Ampliude do sinal varia com o empo, logo a medida de seu amanho deve considerar ampliude

Leia mais

1 o Exame 10 de Janeiro de 2005 Nota: Resolva os problemas do exame em folhas separadas. Justifique todas as respostas e explique os seus

1 o Exame 10 de Janeiro de 2005 Nota: Resolva os problemas do exame em folhas separadas. Justifique todas as respostas e explique os seus i Sinais e Sisemas (LERCI) o Exame 0 de Janeiro de 005 Noa: Resolva os problemas do exame em folhas separadas. Jusifique odas as resposas e explique os seus cálculos. Problema.. Represene graficamene o

Leia mais

Escola de Pós-Graduação em Economia da Fundação Getulio Vargas (EPGE/FGV) Macroeconomia I / Professor: Rubens Penha Cysne. Lista de Exercícios 4

Escola de Pós-Graduação em Economia da Fundação Getulio Vargas (EPGE/FGV) Macroeconomia I / Professor: Rubens Penha Cysne. Lista de Exercícios 4 Escola de Pós-Graduação em Economia da Fundação Geulio Vargas (EPGE/FGV) Macroeconomia I / 207 Professor: Rubens Penha Cysne Lisa de Exercícios 4 Gerações Superposas em Tempo Conínuo Na ausência de de

Leia mais

Método de integração por partes

Método de integração por partes Maemáica - 8/9 - Inegral de nido 77 Méodo de inegração or ares O méodo de inegração or ares é aenas uma "radução", em ermos de inegrais, do méodo de rimiivação or ares. Sejam f e g duas funções de nidas

Leia mais

3 - Diferencial. 3.1 Plano tangente. O plano tangente a uma superfície z = f(x,y) no ponto (x 0, y 0,f(x 0,y 0 )) é dado por: f x

3 - Diferencial. 3.1 Plano tangente. O plano tangente a uma superfície z = f(x,y) no ponto (x 0, y 0,f(x 0,y 0 )) é dado por: f x 18 - Diferencial.1 Plano angene O plano angene a uma superfície z f(x, no pono (x 0, y 0,f(x 0,y 0 )) é dado por: z f ( x0,.(.( y Exemplo 1: Deerminar o plano angene a superfície z x +y nos ponos P(0,0,0)

Leia mais

Exemplo 1: Determine se os sistemas abaixo possuem o seu inverso. Em caso afirmativo, determine o sistema inverso. = dt

Exemplo 1: Determine se os sistemas abaixo possuem o seu inverso. Em caso afirmativo, determine o sistema inverso. = dt FACULDADE DE CIÊNCIA E TECNOLOGIA DE MONTES CLAROS FACIT QUARTO PERÍODO DE ENGENHARIA DE CONTROLE E AUTOMAÇÃO DISCIPLINA: SINAIS E SISTEMAS PROFESSOR: RENATO DOURADO MAIA EXEMPLOS RESOLVIDOS AULA : SINAIS

Leia mais

3 LTC Load Tap Change

3 LTC Load Tap Change 54 3 LTC Load Tap Change 3. Inrodução Taps ou apes (ermo em poruguês) de ransformadores são recursos largamene uilizados na operação do sisema elérico, sejam eles de ransmissão, subransmissão e disribuição.

Leia mais

Matemática. Funções polinomiais. Ensino Profissional. Caro estudante. Maria Augusta Neves Albino Pereira António Leite Luís Guerreiro M.

Matemática. Funções polinomiais. Ensino Profissional. Caro estudante. Maria Augusta Neves Albino Pereira António Leite Luís Guerreiro M. Ensino Profissional Maria Augusa Neves Albino Pereira Anónio Leie Luís Guerreiro M. Carlos Silva Maemáica Funções polinomiais Revisão cienífica Professor Douor Jorge Nuno Silva Faculdade de Ciências da

Leia mais

Calcule a área e o perímetro da superfície S. Calcule o volume do tronco de cone indicado na figura 1.

Calcule a área e o perímetro da superfície S. Calcule o volume do tronco de cone indicado na figura 1. 1. (Unesp 017) Um cone circular reo de gerariz medindo 1 cm e raio da base medindo 4 cm foi seccionado por um plano paralelo à sua base, gerando um ronco de cone, como mosra a figura 1. A figura mosra

Leia mais

Funções vetoriais. I) Funções vetoriais a valores reais:

Funções vetoriais. I) Funções vetoriais a valores reais: Funções veoriais I) Funções veoriais a valores reais: f: I R f() R (f 1 n (), f (),..., f n ()) I = inervalo da rea real denominada domínio da função veorial f = {conjuno de odos os valores possíveis de,

Leia mais

Movimento unidimensional. Prof. DSc. Anderson Cortines IFF campus Cabo Frio MECÂNICA GERAL

Movimento unidimensional. Prof. DSc. Anderson Cortines IFF campus Cabo Frio MECÂNICA GERAL Movimeno unidimensional Prof. DSc. Anderson Corines IFF campus Cabo Frio MECÂNICA GERAL 218.1 Objeivos Ter uma noção inicial sobre: Referencial Movimeno e repouso Pono maerial e corpo exenso Posição Diferença

Leia mais

CONCURSO PÚBLICO EDITAL Nº 06/2010. Professor do Magistério do Ensino Básico, Técnico e Tecnológico DISCIPLINA / ÁREA. Matemática.

CONCURSO PÚBLICO EDITAL Nº 06/2010. Professor do Magistério do Ensino Básico, Técnico e Tecnológico DISCIPLINA / ÁREA. Matemática. CONCURSO PÚBLICO EDITAL Nº 6/ Professor do Magisério do Ensino Básico, Técnico e Tecnológico DISCIPLINA / ÁREA Maemáica Caderno de Provas Quesões Objeivas INSTRUÇÕES: - Aguarde auorização para abrir o

Leia mais

Teoremas Básicos de Equações a Diferenças Lineares

Teoremas Básicos de Equações a Diferenças Lineares Teoremas Básicos de Equações a Diferenças Lineares (Chiang e Wainwrigh Capíulos 17 e 18) Caracerização Geral de Equações a diferenças Lineares: Seja a seguine especificação geral de uma equação a diferença

Leia mais

figura 1 Vamos encontrar, em primeiro lugar, a velocidade do som da explosão (v E) no ar que será dada pela fórmula = v

figura 1 Vamos encontrar, em primeiro lugar, a velocidade do som da explosão (v E) no ar que será dada pela fórmula = v Dispara-se, segundo um ângulo de 6 com o horizone, um projéil que explode ao aingir o solo e oue-se o ruído da explosão, no pono de parida do projéil, 8 segundos após o disparo. Deerminar a elocidade inicial

Leia mais

velocidade inicial: v 0 ; ângulo de tiro com a horizontal: 0.

velocidade inicial: v 0 ; ângulo de tiro com a horizontal: 0. www.fisicaee.com.br Um projéil é disparado com elocidade inicial iual a e formando um ânulo com a horizonal, sabendo-se que os ponos de disparo e o alo esão sobre o mesmo plano horizonal e desprezando-se

Leia mais

INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas.

INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas. SIMULADO DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - JULHO DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES de 0 a

Leia mais

CÁLCULO I 1º Semestre 2011/2012. Duração: 2 horas

CÁLCULO I 1º Semestre 2011/2012. Duração: 2 horas NOV SCHOOL OF USINESS ND ECONOMICS CÁLCULO I º Semesre / TESTE INTERMÉDIO - Correcção 8 Novembro Duração: oras Não é permiido o uso de calculadoras. Não pode desagrafar as folas do enunciado. Responda

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

Lista de Função Exponencial e Logarítmica Pré-vestibular Noturno Professor: Leandro (Pinda)

Lista de Função Exponencial e Logarítmica Pré-vestibular Noturno Professor: Leandro (Pinda) Lisa de Função Eponencial e Logarímica Pré-vesibular Nourno Professor: Leandro (Pinda) 1. (Ueg 018) O gráfico a seguir é a represenação da 1 função f() log a b 3. (Epcar (Afa) 017) A função real f definida

Leia mais

Trigonometria e funções trigonométricas. Funções trigonométricas O essencial

Trigonometria e funções trigonométricas. Funções trigonométricas O essencial Trigonometria e funções trigonométricas Funções trigonométricas O essencial Funções seno e cosseno Designa-se por função seno (respetivamente, função cosseno) e representa-se por sin ou sen (respetivamente,

Leia mais

Sinais e Sistemas Exame Data: 19/1/2017. Duração: 3 horas

Sinais e Sistemas Exame Data: 19/1/2017. Duração: 3 horas Sinais e Sisemas Exame Daa: 9//07. Duração: 3 horas Número: Nome: Idenique ese enunciado e a folha de resposas com o seu número e os seus primeiro e úlimo nomes. Para as quesões a, indique as suas resposas,

Leia mais

Seção 5: Equações Lineares de 1 a Ordem

Seção 5: Equações Lineares de 1 a Ordem Seção 5: Equações Lineares de 1 a Ordem Definição. Uma EDO de 1 a ordem é dia linear se for da forma y + fx y = gx. 1 A EDO linear de 1 a ordem é uma equação do 1 o grau em y e em y. Qualquer dependência

Leia mais

Análise e Processamento de BioSinais

Análise e Processamento de BioSinais Análise e Processameno de BioSinais Mesrado Inegrado em Engenaria Biomédica Faculdade de Ciências e Tecnologia Slide Análise e Processameno de BioSinais MIEB Adapado dos slides S&S de Jorge Dias Tópicos:

Leia mais

UNIVERSIDADE ESTADUAL DE MONTES CLAROS CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE CIÊNCIAS DA COMPUTAÇÃO

UNIVERSIDADE ESTADUAL DE MONTES CLAROS CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE CIÊNCIAS DA COMPUTAÇÃO UNIVERSIDADE ESTADUAL DE MONTES CLAROS CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE CIÊNCIAS DA COMPUTAÇÃO DISCIPLINA: SINAIS E SISTEMAS PROFESSOR: RENATO DOURADO MAIA EXEMPLOS RESOLVIDOS AULA

Leia mais

Problema Inversor CMOS

Problema Inversor CMOS Problema nersor CMS NMS: V = ol K = 30 μa/v PMS: V = ol K = 30 μa/v A figura represena um inersor CMS em que os dois ransísores apresenam caracerísicas siméricas A ensão de alimenação ale V =5 ol ) Sabendo

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar Progressão Ariméica e Progressão Geomérica. (Pucrj 0) Os números a x, a x e a x esão em PA. A soma dos números é igual a: a) 8 b) c) 7 d) e) 0. (Fuves 0) Dadas as sequências an n n, n n cn an an b, e b

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar . (Pucrj 0) Os números a x, a x e a3 x 3 esão em PA. A soma dos 3 números é igual a: é igual a e o raio de cada semicírculo é igual à meade do semicírculo anerior, o comprimeno da espiral é igual a a)

Leia mais

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 1 3 quadrimestre 2012

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 1 3 quadrimestre 2012 EN67 Transformadas em Sinais e Sisemas Lineares Lisa de Exercícios Suplemenares janeiro EN67 Transformadas em Sinais e Sisemas Lineares Lisa de Exercícios Suplemenares quadrimesre Figura Convolução (LATHI,

Leia mais

Universidade Federal de Viçosa DEPARTAMENTO DE MATEMÁTICA MAT Cálculo Dif. e Int. I PRIMEIRA LISTAA

Universidade Federal de Viçosa DEPARTAMENTO DE MATEMÁTICA MAT Cálculo Dif. e Int. I PRIMEIRA LISTAA Universidde Federl de Viços DEPARTAMENTO DE MATEMÁTICA MAT - Cálculo Dif e In I PRIMEIRA LISTAA Memáic básic Professors: Gbriel e Crin Simplifique: ) b ) 9 c ) d ) ( 9) e ) 79 f ) g ) ) ) i j ) Verddeiro

Leia mais

DVD do professor. banco De questões. 3. (Mackenzie-SP) f 1. I. O período de f 1. II. O maior valor que f 2. III. O conjunto imagem de f 1

DVD do professor. banco De questões. 3. (Mackenzie-SP) f 1. I. O período de f 1. II. O maior valor que f 2. III. O conjunto imagem de f 1 coneões com a maemáica banco De quesões Capíulo Funções rigonoméricas banco De quesões capíulo. (FEI-SP) O gráfico da função 5 f() 5 senh H no inervalo [, ] é: Funções rigonoméricas Grau de dificuldade

Leia mais

FUNÇÕES VETORIAIS. f t = at + bt. g t ti sen t j tk. f t g t. , com a= i+ 1. Sejam ( ) e ( ) . Calcular: a) ( ) ( ) e) lim ( ) ( ) 2.

FUNÇÕES VETORIAIS. f t = at + bt. g t ti sen t j tk. f t g t. , com a= i+ 1. Sejam ( ) e ( ) . Calcular: a) ( ) ( ) e) lim ( ) ( ) 2. DEPARTAMENTO DE MATEMÁTIA APLIADA ITE Lisa 03 álculo Dierencial e Inegral II Proa.: LIDIANE SARTINI FUNÇÕES VETORIAIS = a + b b= i j;0 π. alcular: + g 1. Sejam ( a ( ( b ( g( g i sen j k e ( = + + cos

Leia mais

Suponhamos que f é uma função que pode ser representada por uma série trigonométrica da forma. ) + B nsen( 2nπx )]. (2)

Suponhamos que f é uma função que pode ser representada por uma série trigonométrica da forma. ) + B nsen( 2nπx )]. (2) Séries de Fourier Os fenómenos periódicos aparecem nas mais variadas situações: ondas de som, movimento da erra, batimento cardíaco,... Frequentemente uma função periódica pode ser representada por meio

Leia mais

CAPÍTULO 2. Exercícios 2.1. f é integrável em [0, 2], pois é limitada e descontínua apenas em x 1. Temos

CAPÍTULO 2. Exercícios 2.1. f é integrável em [0, 2], pois é limitada e descontínua apenas em x 1. Temos CAPÍTULO Eercícios.. a) Ï f( ), onde f( ) Ó f é inegrável em [, ], pois é limiada e desconínua apenas em. Temos f( ) f( ) f( ) Em [, ], f() difere de apenas em. Daí, f ( ) [ ] Em [, ], f(). Logo, f( )

Leia mais

SISTEMAS DE EQUAÇÕES A DIFERENÇAS LINEARES

SISTEMAS DE EQUAÇÕES A DIFERENÇAS LINEARES 8//7 SISTEMAS DE EQUAÇÕES A DIFERENÇAS LINEARES Teorema: Considere o seguine sisema de k equações a diferenças lineares de primeira ordem, homogêneo: x a x a x... a x k k x a x a x... a x k k x a x a x...

Leia mais

t 2 se t 0 Determine a expansão em série de potências para a função F (x) = ( 1) n y2n (2n)!, ( 1) n t4n (2n)! (2n)! ( 1) n t4n 2 dt = ( 1) n t 4n 2 )

t 2 se t 0 Determine a expansão em série de potências para a função F (x) = ( 1) n y2n (2n)!, ( 1) n t4n (2n)! (2n)! ( 1) n t4n 2 dt = ( 1) n t 4n 2 ) MAT456 - Cálculo Diferencial e Integral IV para Engenharia Escola Politecnica - a. Prova - 8// Turma A a Questão (,) a) Seja cos (t ) f(t) = t se t se t = Determine a expansão em série de potências para

Leia mais

Aula - 2 Movimento em uma dimensão

Aula - 2 Movimento em uma dimensão Aula - Moimeno em uma dimensão Física Geral I - F-18 semesre, 1 Ilusração dos Principia de Newon mosrando a ideia de inegral Moimeno em 1-D Enender o moimeno é uma das meas das leis da Física. A Mecânica

Leia mais

02 A prova pode ser feita a lápis. 03 Proibido o uso de calculadoras e similares. 04 Duração: 2 HORAS. SOLUÇÃO:

02 A prova pode ser feita a lápis. 03 Proibido o uso de calculadoras e similares. 04 Duração: 2 HORAS. SOLUÇÃO: UNIVERSIDADE FEDERAL DE ITAJUBÁ FUNDAMENTOS DE MATEMÁTICA PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR 9/6/ CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES: Prova sem consula

Leia mais

Dinâmica Estocástica. Aula 9. Setembro de Equação de Fokker-Planck Solução estacionária

Dinâmica Estocástica. Aula 9. Setembro de Equação de Fokker-Planck Solução estacionária Dinâmica Esocásica Aula 9 Seembro de 015 Solução esacionária Bibliograia Capíulo 4 T. Tomé e M de Oliveira Dinâmica Esocásica e Irreversibilidade Úlima aula 1 Dedução da equação de Fokker-lanck Esudo da

Leia mais

DICAS E RESPOSTAS DA LISTA DE EXERCÍCIOS 1 EDO II - MAP 0316

DICAS E RESPOSTAS DA LISTA DE EXERCÍCIOS 1 EDO II - MAP 0316 DICAS E RESPOSTAS DA LISTA DE EXERCÍCIOS EDO II - MAP 036 PROF: PEDRO T P LOPES WWWIMEUSPBR/ PPLOPES/EDO2 Os exercícios a seguir foram selecionaos os livros os auores Claus Doering-Arur Lopes e Jorge Soomayor

Leia mais

Definição 0.1. Define se a derivada direcional de f : R n R em um ponto X 0 na direção do vetor unitário u como sendo: df 0) = lim t 0 t (1)

Definição 0.1. Define se a derivada direcional de f : R n R em um ponto X 0 na direção do vetor unitário u como sendo: df 0) = lim t 0 t (1) Cálculo II - B profs.: Heloisa Bauzer Medeiros e Denise de Oliveira Pino 1 2 o semesre de 2017 Aulas 11/12 derivadas de ordem superior/regra da cadeia gradiene e derivada direcional Derivadas direcionais

Leia mais

Características dos Processos ARMA

Características dos Processos ARMA Caracerísicas dos Processos ARMA Aula 0 Bueno, 0, Capíulos e 3 Enders, 009, Capíulo. a.6 Morein e Toloi, 006, Capíulo 5. Inrodução A expressão geral de uma série emporal, para o caso univariado, é dada

Leia mais

APÊNDICE A. Rotação de um MDT

APÊNDICE A. Rotação de um MDT APÊNDICES 7 APÊNDICE A Roação de um MDT 8 Os passos seguidos para a realização da roação do MDT foram os seguines: - Deerminar as coordenadas do cenro geomérico da região, ou pono em orno do qual a roação

Leia mais

Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas

Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas Sinais e Sisemas Série de Fourier Renao Dourado Maia Universidade Esadual de Mones Claros Engenharia de Sisemas Convergência da Um sinal periódico conínuo possui uma represenação em Série de Fourier se

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 2º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Inrodução ao Cálculo Diferencial II TPC nº 9 Enregar em 4 2 29. Num loe de bolbos de úlipas a probabilidade de que

Leia mais

MÉTODOS PARAMÉTRICOS PARA A ANÁLISE DE DADOS DE SOBREVIVÊNCIA

MÉTODOS PARAMÉTRICOS PARA A ANÁLISE DE DADOS DE SOBREVIVÊNCIA MÉTODOS PARAMÉTRICOS PARA A ANÁLISE DE DADOS DE SOBREVIVÊNCIA Nesa abordagem paramérica, para esimar as funções básicas da análise de sobrevida, assume-se que o empo de falha T segue uma disribuição conhecida

Leia mais

QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS

QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS QUESTÃO Assinale V (verdadeiro) ou F (falso): () A solução da equação diferencial y y y apresena equilíbrios esacionários quando, dependendo

Leia mais

TEMA 1 TRANSFORMADA DE FOURIER

TEMA 1 TRANSFORMADA DE FOURIER TEMA 1 TRANSFORMADA DE FOURIER O primeiro ema do curso é a Transformada de Fourier (TF) e a sua aplicação à análise de séries emporais de valores. A aplicação da TF não se resringe, conudo, à análise de

Leia mais

REDUÇÃO DE DIMENSIONALIDADE

REDUÇÃO DE DIMENSIONALIDADE Análise de componenes e discriminanes REDUÇÃO DE DIMENSIONALIDADE Uma esraégia para abordar o problema da praga da dimensionalidade é realizar uma redução da dimensionalidade por meio de uma ransformação

Leia mais

Exercícios sobre o Modelo Logístico Discreto

Exercícios sobre o Modelo Logístico Discreto Exercícios sobre o Modelo Logísico Discreo 1. Faça uma abela e o gráfico do modelo logísico discreo descrio pela equação abaixo para = 0, 1,..., 10, N N = 1,3 N 1, N 0 = 1. 10 Solução. Usando o Excel,

Leia mais

RASCUNHO. a) 120º10 b) 95º10 c) 120º d) 95º e) 110º50

RASCUNHO. a) 120º10 b) 95º10 c) 120º d) 95º e) 110º50 ª QUESTÃO Uma deerminada cidade organizou uma olimpíada de maemáica e física, para os alunos do º ano do ensino médio local. Inscreveramse 6 alunos. No dia da aplicação das provas, consaouse que alunos

Leia mais

PROVA PARA OS ALUNOS DO 1o. ANO DO ENSINO MÉDIO. 15 a ORMUB/2007 OLIMPÍADA REGIONAL DE MATEMÁTICA PROVA PARA OS ALUNOS DO 1º ANO DO ENSINO MÉDIO

PROVA PARA OS ALUNOS DO 1o. ANO DO ENSINO MÉDIO. 15 a ORMUB/2007 OLIMPÍADA REGIONAL DE MATEMÁTICA PROVA PARA OS ALUNOS DO 1º ANO DO ENSINO MÉDIO 5 a ORMUB/7 OLIMPÍADA REGIONAL DE MATEMÁTICA PROVA PARA OS ALUNOS DO º ANO DO ENSINO MÉDIO NOME: ESCOLA: CIDADE: INSTRUÇÕES AVALIAÇÃO Ese caderno coném 5 (cinco) quesões. A solução de cada quesão, bem

Leia mais

Lista de exercícios 3. September 15, 2016

Lista de exercícios 3. September 15, 2016 ELE-3 Inrodução a Comunicações Lisa de exercícios 3 Sepember 5, 6. Enconre a ransformada de Hilber x() da onda quadrada abaixo. Esboce o especro de x() j x(). [ ] x() = Π ( n). n=. Um sinal em banda passane

Leia mais

Questão 1 Questão 2. Resposta. Resposta

Questão 1 Questão 2. Resposta. Resposta Quesão Quesão Dois amigos, Alfredo e Bruno, combinam dispuar a posse de um objeo num jogo de cara coroa. Alfredo lança moedas e Bruno moedas, simulaneamene. Vence o jogo e, conseqüenemene, fica com o objeo,

Leia mais

Sistemas Lineares e Invariantes

Sistemas Lineares e Invariantes 6 8 - - - -6-8 -3-3 Frequency (Hz) Hamming aiser Chebyshev Sisemas Lineares e Invarianes Power Specral Densiy Env B F CS1 CS B F CS1 Ground Revolue Body Revolue1 Body1 Power/frequency (db/hz) Sine Wave

Leia mais

Figuras do Livro Introdução à Análise Complexa, Séries de Fourier e Equações Diferenciais

Figuras do Livro Introdução à Análise Complexa, Séries de Fourier e Equações Diferenciais Figuras do Livro Inrodução à Análise Complea, Séries de Fourier e Equações Diferenciais Pedro Marins Girão Deparameno de Maemáica Insiuo Superior Técnico Julho de 04 Capíulo Números compleos iiz θ = π

Leia mais

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo PROBLEMAS RESOLVIDOS DE FÍSIA Prof. Anderson oser Gaudio Deparameno de Física enro de iências Eaas Universidade Federal do Espírio Sano hp://www.cce.ufes.br/anderson anderson@npd.ufes.br Úlima aualização:

Leia mais

Reginaldo J. Santos. Universidade Federal de Minas Gerais 22 de novembro de 2007

Reginaldo J. Santos. Universidade Federal de Minas Gerais  22 de novembro de 2007 Séries de Fourier e Equações Diferenciais Parciais Reginaldo J. Santos Departamento de Matemática-ICE Universidade Federal de Minas Gerais http://www.mat.ufmg.r/~regi de novemro de 7 Sumário Séries de

Leia mais

NOTAÇÕES. x 2y < 0. A ( ) apenas I. B ( ) apenas I e II. C ( ) apenas II e III. D ( ) apenas I e III. E ( ) todas. . C ( ) [ ] 5, 0 U [1, )

NOTAÇÕES. x 2y < 0. A ( ) apenas I. B ( ) apenas I e II. C ( ) apenas II e III. D ( ) apenas I e III. E ( ) todas. . C ( ) [ ] 5, 0 U [1, ) NOTAÇÕES C é o conjuno dos números complexos R é o conjuno dos números reais N = {,,,} i denoa a unidade imaginária, ou seja, i = - z é o conjugado do número complexo z Se X é um conjuno, P(X) denoa o

Leia mais

Escola Secundária da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo de 2003/04 Funções exponencial e logarítmica

Escola Secundária da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo de 2003/04 Funções exponencial e logarítmica Escola Secundária da Sé-Lamego Ficha de Trabalho de Maemáica Ano Lecivo de 003/04 Funções eponencial e logarímica - º Ano Nome: Nº: Turma: 4 A função P( ) = 500, 0, é usada para deerminar o valor de um

Leia mais

Formas Quadráticas e Cônicas

Formas Quadráticas e Cônicas Formas Quadráicas e Cônicas Sela Zumerle Soares Anônio Carlos Nogueira (selazs@gmail.com) (anogueira@uu.br). Resumo Faculdade de Maemáica, UFU, MG Nesse rabalho preendemos apresenar alguns resulados da

Leia mais