QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS"

Transcrição

1 QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS QUESTÃO Assinale V (verdadeiro) ou F (falso): () A solução da equação diferencial y y y apresena equilíbrios esacionários quando, dependendo da condição inicial: y, y e y O equilíbrio y é o único que é insável () Considere a equação diferencial y f y coninuamene diferenciável al que k, em que f é uma função f Se f ' enão, para qualquer condição inicial, a solução diverge () A solução da equação diferencial de ª ordem y y c apresena ciclos se, e somene se, c / 4 () Sejam zn Azn um sisema de equações em diferenças finias e r, r os auovalores de A Se r e r enão o sisema converge com oscilações para quando n (4) No modelo de funcionameno dinâmico de um mercado descrio pelo Cobweb cycle a demanda na daa ( D ) é função do preço correne p, enquano que a ofera ( S ) é função do preço praicado no período precedene p A demanda e ofera são especificadas como D p e S p, em que,,, são consanes Enão, com o passar do empo, o mercado converge para um equilíbrio esável se, e somene se, e ( )/ QUESTÃO Sabendo que a função y : saisfaz à equação diferencial de primeira d y x y ordem, x d x 5, e que no pono x em-se y ( ) e, calcule y () QUESTÃO Considerando que a função y: + saisfaz à equação diferencial de primeira ordem dy y x, e que y(x = ) = 8, qual deve ser o valor de x para que y(x) x seja igual a 4? QUESTÃO 4 Considerando uma solução x () qualquer da equação diferencial x ''( ) 4 x'( ) x( ), assinale V (verdadeiro) ou F (falso) () se x () é uma função não-nula enão lim x( ) () se x () é uma função não-nula enão lim x( ) ; ;

2 () x () em um pono de mínimo global na rea real ; () se x() é al que x( ) e x' () enão lim x( ) ; (4) se x () é al que x( ) e x '() enão x () em um pono de máximo global na rea real QUESTÃO 5 Considere a equação diferencial y Calcule y (ln()) QUESTÃO 6 Avalie as afirmaivas: dy() com y ( ) e () Seja f: uma função duas vezes coninuamene diferenciável Se f ainge um máximo local esrio em x, enão f (x ) =, f (x ) < () Se uma mariz simérica nxn A é idempoene, enão para odo v n, v Av () Se uma mariz nxn A é idempoene, enão r(a) n () A equação diferencial x x x em solução geral C C e x( ), em que C e C são consanes (4) A equação diferencial x x x em solução geral x( ) QUESTÃO 7 / C C e, em que C e C são consanes Se a função yxé ( ) uma solução da equação diferencial calcule o valor de d y d y dy y e () y, QUESTÃO 8 Avalie as opções () Seja x,5, x₀ = Enão, lim x 6 x () Seja x,5, x₀ = Enão, lim x 8 x lim x () Se x x x, enão, K, em que K é finio, se e somene se e forem menores do que em módulo () Uma mariz A n n é diagonalizável somene se seus auovalores forem odos disinos * (4) Considere duas séries de números posiivos S n nan e S n nbn * com an bn para odo n > Enão se S n converge, S n ambém converge

3 QUESTÃO 9 dy Seja y(x) uma solução da equação diferencial y 4 Calcule lim y( x) x QUESTÃO Dada uma equação diferencial de segunda ordem d y a dy by c d d Onde c, diga quais afirmações são verdadeiras ou falsas () Exisem infinias soluções da equação diferencial () Se y( ) e y ( ) são soluções, enão y ( ), definida como y( ) y( ) y ( ) ambém é solução () Se y( ) e y ( ) são soluções e se a >, b >, enão y( ) y ( ) converge a quando () Se y ( ), y ( ) e y ( ) são soluções, enão y4 ( ) definida como y4 ( ) y( ) y ( ) y( ), ambém é uma solução (4) Se y( ) e y ( ) são soluções, enão y( ) y( ) y ( ) ambém é solução QUESTÃO Dada a equação em diferenças finias y 5y 6y diga quais afirmações são verdadeiras ou falsas: () A equação não possui soluções consanes () As soluções convergem para quando () Toda solução é combinação linear de funções rigonoméricas () Se y e y solução (4) ( Se y ) ( ), y solução ( ) ( ) ( ) ( ) ( ) são soluções, enão y y y ambém é ( e y ) ( 4) ( ) ( ) ( ) são soluções, enão y y y y ambém é QUESTÃO Suponha que para uma economia se maner em equilíbrio, o invesimeno deva crescer de acordo com a equação,, I() = I()e onde e = exp(,) Qual é a axa percenual de crescimeno correspondene a ela? QUESTÃO = e e Dada a equação d d y a, deermine o valor de y() sabendo-se que y() y

4 QUESTÃO 4 Dada a equação d d verdadeiras ou falsas y, 5y, indique se as afirmaivas abaixo são () A equação é convergene () A solução de equilíbrio em valor () Sabemos que o valor y() é maior que o valor de equilíbrio () A rajeória de y() não é cíclica (4) A solução pode er raízes complexas QUESTÃO 5 Deermine o valor da solução da equação x( + ) =,5x() + 5, =,,,, para = 5, sabendo-se que x() = QUESTÃO 6 Assinale as afirmações verdadeiras e as falsas: () A função -4senx + cosx é solução da equação diferencial y + y = () A função x + senx é solução de y + y = () Há apenas uma solução de y + y = saisfazendo y() = () A equação y + y = possui no máximo duas soluções linearmene independenes (4) Se a função h(x), x é solução de y + y =, enão a função + h(x), x é solução de y + y = QUESTÃO 7 Sabendo que a função y y( x), x saisfaz dy x y x, x, e que y()=, calcule y() QUESTÃO 8 Sabendo que a função y = y(x), x > saisfaz à equação diferencial de primeira ordem dy x y e que y() =, calcule y() x QUESTÃO 9

5 Sabendo que a função y(x) saisfaz à equação diferencial de segunda ordem y 5 e que y() = e dy ( ), calcule lim y( x) x QUESTÃO Dada a equação em diferenças finias y y e sabendo que y o, indique se as afirmaivas a seguir são verdadeiras ou falsas: () A variável y converge para / sem oscilações () A variável y converge para -/ com oscilações y () y () () y e 6 QUESTÃO Considere a seguine equação de diferenças não homogênea: 9 y y, com y Sua solução geral é dada por: y a m b () A variável y converge para que valor?? () Calcule o valor de m a () Calcule o valor de b () Parindo-se de, qual o valor inicial de y? QUESTÃO Dada a equação diferencial y y y, indique se as afirmaivas abaixo são verdadeiras ou falsas: () Toda solução desa equação converge de forma oscilane para / () y( ) / é a única solução esacionária (ie, consane) da equação () O polinômio caracerísico associado à equação possui raízes reais

6 () A solução geral desa equação é dada por: y( ) e ( k cos k sen) / ; k, k consanes reais QUESTÃO Considere a equação de diferenças finias x px ( p) x p, n n n, onde Classifique como verdadeira ou falsa cada uma das afirmaivas abaixo: () Se x = enão não exise lim n x n () Se x m = x n para algum m diferene de n enão x n = consane () Se a sequência x n é uma progressão geomérica, enão a razão é necessariamene p () Se x n não é uma sequência consane, enão a sequência cujo ermo geral é x n - x n- é uma progressão geomérica de razão negaiva

7 Considere a seguine equação diferencial: ( 5 y) y y e a condição inicial y( ) Suponha que y( ) 5, Julgue as afirmaivas abaixo: () Quando =, y será 56 () lim ( ) y () lim ( ) 5 y () Fora do pono = 5, a solução é não-linear Seja x: duas vezes diferenciável e considere a equação diferencial x x x com as condições x( ) e x( ) exp{ } (onde exp é a exponencial) Se a solução é x(), julgue as afirmaivas abaixo: () lim x( ) x( ) x e x( ), para odo exp{ } () ( ) () x( ), para odo (4) x() é periódica porque a equação caracerísica associada à equação diferencial acima possui uma raiz posiiva e oura negaiva 5) Sabendo que a função real y = y(x), saisfaz à equação diferencial de primeira ordem dy x y e x /, e que y( ) 5e, calcule y() 7) Sabendo que a função real y(x) saisfaz à equação diferencial de segunda ordem 5 4y 4 e x, calcule lim yx x Considere a equação de diferenças finias y - - y - + y = () Sua equação caracerísica é b - b + = () Uma solução paricular é y* = () Sua solução complemenar não pode ser obida

8 () Represena um processo oscilaório QUESTÃO Sabendo que a função x y e y : R R saisfaz à equação diferencial ordinária de a dy ordem, e sendo dados y( ) e e () e e, assinale V (verdadeiro) ou F (falso): h x x () A solução homogênea é y ( x) ce ce, em que c,c são consanes a deerminar; p x () A solução paricular é y ( x) (/ ) e ; () As consanes são c ; c ; () y( ) QUESTÃO 4 Considere a equação em diferenças y y y 4 al que y e y 5 Assinale V (verdadeiro) ou F (falso): h () A solução homogênea é : y c ( / ) c ; () A solução paricular é : y p 4; () As consanes são: c ; c ; () y 5 / 4 lim y (4) QUESTÃO Dada a equação de diferenças finias do segundo grau y y y com valores y e y 4, assinale V (verdadeiro) ou F (falso): () A solução paricular da equação é uma função decrescene; () A solução homogênea da equação é uma função monóona; () Para =, o valor da solução geral é y / ; () O valor da solução geral no infinio é lim y ; (4) O valor da solução geral no infinio independe de y e y QUESTÃO 4 Sabendo que a função y : R R saisfaz à equação diferencial dy() y x, e que e, e que y( ) e, calcule y ()

9 QUESTÃO 5 Sabendo que a função y : (, ) R saisfaz à equação diferencial dy y x, e que y ( ) 5, calcule y () x

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL42 Coneúdo 8 - Inrodução aos Circuios Lineares e Invarianes...1 8.1 - Algumas definições e propriedades gerais...1 8.2 - Relação enre exciação

Leia mais

Circuitos Elétricos I EEL420

Circuitos Elétricos I EEL420 Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL420 Coneúdo 1 - Circuios de primeira ordem...1 1.1 - Equação diferencial ordinária de primeira ordem...1 1.1.1 - Caso linear, homogênea, com

Leia mais

Cálculo Vetorial - Lista de Exercícios

Cálculo Vetorial - Lista de Exercícios álculo Veorial - Lisa de Exercícios (Organizada pela Profa. Ilka Rebouças). Esboçar o gráfico das curvas represenadas pelas seguines funções veoriais: a) a 4 i j, 0,. d) d i 4 j k,. b) b sen i 4 j cos

Leia mais

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON)

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON) TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 8 LIVRO DO NILSON). CONSIDERAÇÕES INICIAIS SÉRIES DE FOURIER: descrevem funções periódicas no domínio da freqüência (ampliude e fase). TRANSFORMADA DE FOURIER:

Leia mais

Aplicações à Teoria da Confiabilidade

Aplicações à Teoria da Confiabilidade Aplicações à Teoria da ESQUEMA DO CAPÍTULO 11.1 CONCEITOS FUNDAMENTAIS 11.2 A LEI DE FALHA NORMAL 11.3 A LEI DE FALHA EXPONENCIAL 11.4 A LEI DE FALHA EXPONENCIAL E A DISTRIBUIÇÃO DE POISSON 11.5 A LEI

Leia mais

Modelos de Crescimento Endógeno de 1ªgeração

Modelos de Crescimento Endógeno de 1ªgeração Teorias do Crescimeno Económico Mesrado de Economia Modelos de Crescimeno Endógeno de 1ªgeração Inrodução A primeira geração de modelos de crescimeno endógeno ena endogeneiar a axa de crescimeno de SSG

Leia mais

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara Insiuo de Física USP Física V - Aula 6 Professora: Mazé Bechara Aula 6 Bases da Mecânica quânica e equações de Schroedinger. Aplicação e inerpreações. 1. Ouros posulados da inerpreação de Max-Born para

Leia mais

Cap. 5 - Tiristores 1

Cap. 5 - Tiristores 1 Cap. 5 - Tirisores 1 Tirisor é a designação genérica para disposiivos que êm a caracerísica esacionária ensão- -correne com duas zonas no 1º quadrane. Numa primeira zona (zona 1) as correnes são baixas,

Leia mais

9. COMPORTAMENTO DINÂMICO COMPLEXO

9. COMPORTAMENTO DINÂMICO COMPLEXO 9. COMPORTAMENTO DINÂMICO COMPLEXO 9. Movimeno no Espaço de Esado A resposa de um sisema começando em um esado inicial o, acompanha uma curva num espaço de (n+) dimensões. Esamos bem acosumados ao ipo

Leia mais

está localizado no cruzamento da i-ésima linha com a j-ésima coluna.

está localizado no cruzamento da i-ésima linha com a j-ésima coluna. MATRIZES 1. DEFINIÇÕES As marizes são frequenemene usadas para organizar dados, como uma abela indexada. Por exemplo, as noas dos alunos de uma escola podem ser disposas numa mariz cujas colunas correspondem

Leia mais

Exercícios Sobre Oscilações, Bifurcações e Caos

Exercícios Sobre Oscilações, Bifurcações e Caos Exercícios Sobre Oscilações, Bifurcações e Caos Os ponos de equilíbrio de um modelo esão localizados onde o gráfico de + versus cora a rea definida pela equação +, cuja inclinação é (pois forma um ângulo

Leia mais

Sistemas não-lineares de 2ª ordem Plano de Fase

Sistemas não-lineares de 2ª ordem Plano de Fase EA93 - Pro. Von Zuben Sisemas não-lineares de ª ordem Plano de Fase Inrodução o esudo de sisemas dinâmicos não-lineares de a ordem baseia-se principalmene na deerminação de rajeórias no plano de esados,

Leia mais

. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1

. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1 QUESTÕES ANPEC ÁLGEBRA LINEAR QUESTÃO 0 Assinale V (verdadeiro) ou F (falso): (0) Os vetores (,, ) (,,) e (, 0,) formam uma base de,, o espaço vetorial gerado por,, e,, passa pela origem na direção de,,

Leia mais

Processos de Markov. Processos de Markov com tempo discreto Processos de Markov com tempo contínuo. com tempo discreto. com tempo contínuo

Processos de Markov. Processos de Markov com tempo discreto Processos de Markov com tempo contínuo. com tempo discreto. com tempo contínuo Processos de Markov Processos sem memória : probabilidade de X assumir um valor fuuro depende apenas do esado aual (desconsidera esados passados). P(X n =x n X =x,x 2 =x 2,...,X n- =x n- ) = P(X n =x n

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 2º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Inrodução ao Cálculo Diferencial II TPC nº 9 Enregar em 4 2 29. Num loe de bolbos de úlipas a probabilidade de que

Leia mais

Resumo. Sinais e Sistemas Sinais e Sistemas. Sinal em Tempo Contínuo. Sinal Acústico

Resumo. Sinais e Sistemas Sinais e Sistemas. Sinal em Tempo Contínuo. Sinal Acústico Resumo Sinais e Sisemas Sinais e Sisemas lco@is.ul.p Sinais de empo conínuo e discreo Transformações da variável independene Sinais básicos: impulso, escalão e exponencial. Sisemas conínuos e discreos

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar Progressão Ariméica e Progressão Geomérica. (Pucrj 0) Os números a x, a x e a x esão em PA. A soma dos números é igual a: a) 8 b) c) 7 d) e) 0. (Fuves 0) Dadas as sequências an n n, n n cn an an b, e b

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar . (Pucrj 0) Os números a x, a x e a3 x 3 esão em PA. A soma dos 3 números é igual a: é igual a e o raio de cada semicírculo é igual à meade do semicírculo anerior, o comprimeno da espiral é igual a a)

Leia mais

INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas.

INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas. SIMULADO DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - JULHO DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES de 0 a

Leia mais

F B d E) F A. Considere:

F B d E) F A. Considere: 5. Dois corpos, e B, de massas m e m, respecivamene, enconram-se num deerminado insane separados por uma disância d em uma região do espaço em que a ineração ocorre apenas enre eles. onsidere F o módulo

Leia mais

RASCUNHO. a) 120º10 b) 95º10 c) 120º d) 95º e) 110º50

RASCUNHO. a) 120º10 b) 95º10 c) 120º d) 95º e) 110º50 ª QUESTÃO Uma deerminada cidade organizou uma olimpíada de maemáica e física, para os alunos do º ano do ensino médio local. Inscreveramse 6 alunos. No dia da aplicação das provas, consaouse que alunos

Leia mais

Calcule a área e o perímetro da superfície S. Calcule o volume do tronco de cone indicado na figura 1.

Calcule a área e o perímetro da superfície S. Calcule o volume do tronco de cone indicado na figura 1. 1. (Unesp 017) Um cone circular reo de gerariz medindo 1 cm e raio da base medindo 4 cm foi seccionado por um plano paralelo à sua base, gerando um ronco de cone, como mosra a figura 1. A figura mosra

Leia mais

1 o Exame 10 de Janeiro de 2005 Nota: Resolva os problemas do exame em folhas separadas. Justifique todas as respostas e explique os seus

1 o Exame 10 de Janeiro de 2005 Nota: Resolva os problemas do exame em folhas separadas. Justifique todas as respostas e explique os seus i Sinais e Sisemas (LERCI) o Exame 0 de Janeiro de 005 Noa: Resolva os problemas do exame em folhas separadas. Jusifique odas as resposas e explique os seus cálculos. Problema.. Represene graficamene o

Leia mais

Características dos Processos ARMA

Características dos Processos ARMA Caracerísicas dos Processos ARMA Aula 0 Bueno, 0, Capíulos e 3 Enders, 009, Capíulo. a.6 Morein e Toloi, 006, Capíulo 5. Inrodução A expressão geral de uma série emporal, para o caso univariado, é dada

Leia mais

Lista de Exercícios nº 3 - Parte IV

Lista de Exercícios nº 3 - Parte IV DISCIPLINA: SE503 TEORIA MACROECONOMIA 01/09/011 Prof. João Basilio Pereima Neo E-mail: joaobasilio@ufpr.com.br Lisa de Exercícios nº 3 - Pare IV 1ª Quesão (...) ª Quesão Considere um modelo algébrico

Leia mais

ONDAS ELETROMAGNÉTICAS

ONDAS ELETROMAGNÉTICAS LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS A propagação de ondas eleromagnéicas ocorre quando um campo elérico variane no empo produ um campo magnéico ambém variane no empo, que por sua ve produ um campo

Leia mais

5.1 Objectivos. Caracterizar os métodos de detecção de valor eficaz.

5.1 Objectivos. Caracterizar os métodos de detecção de valor eficaz. 5. PRINCÍPIOS DE MEDIÇÃO DE CORRENE, ENSÃO, POÊNCIA E ENERGIA 5. Objecivos Caracerizar os méodos de deecção de valor eficaz. Caracerizar os méodos de medição de poência e energia em correne conínua, correne

Leia mais

Exercícios sobre o Modelo Logístico Discreto

Exercícios sobre o Modelo Logístico Discreto Exercícios sobre o Modelo Logísico Discreo 1. Faça uma abela e o gráfico do modelo logísico discreo descrio pela equação abaixo para = 0, 1,..., 10, N N = 1,3 N 1, N 0 = 1. 10 Solução. Usando o Excel,

Leia mais

Funções vetoriais. I) Funções vetoriais a valores reais:

Funções vetoriais. I) Funções vetoriais a valores reais: Funções veoriais I) Funções veoriais a valores reais: f: I R f() R (f 1 n (), f (),..., f n ()) I = inervalo da rea real denominada domínio da função veorial f = {conjuno de odos os valores possíveis de,

Leia mais

Seção 5: Equações Lineares de 1 a Ordem

Seção 5: Equações Lineares de 1 a Ordem Seção 5: Equações Lineares de 1 a Ordem Definição. Uma EDO de 1 a ordem é dia linear se for da forma y + fx y = gx. 1 A EDO linear de 1 a ordem é uma equação do 1 o grau em y e em y. Qualquer dependência

Leia mais

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática A B C D E A B C D E. Avaliação da Aprendizagem em Processo Prova do Aluno 3 a série do Ensino Médio

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática A B C D E A B C D E. Avaliação da Aprendizagem em Processo Prova do Aluno 3 a série do Ensino Médio AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Maemáica a série do Ensino Médio Turma EM GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO o Bimesre de 6 Daa / / Escola Aluno A B C D E 6 7 9 A B C D E Avaliação

Leia mais

2.6 - Conceitos de Correlação para Sinais Periódicos

2.6 - Conceitos de Correlação para Sinais Periódicos .6 - Conceios de Correlação para Sinais Periódicos O objeivo é o de comparar dois sinais x () e x () na variável empo! Exemplo : Considere os dados mosrados abaixo y 0 x Deseja-se ober a relação enre x

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática. Primeira Lista de Exercícios MAT 241 Cálculo III

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática. Primeira Lista de Exercícios MAT 241 Cálculo III Universidade Federal de Viçosa Cenro de Ciências Exaas e Tecnológicas Deparameno de Maemáica Primeira Lisa de Exercícios MAT 4 Cálculo III Julgue a veracidade das afirmações abaixo assinalando ( V para

Leia mais

Lista de Exercícios 1

Lista de Exercícios 1 Universidade Federal de Ouro Preo Deparameno de Maemáica MTM14 - CÁLCULO DIFERENCIAL E INTEGRAL III Anônio Silva, Edney Oliveira, Marcos Marcial, Wenderson Ferreira Lisa de Exercícios 1 1 Para cada um

Leia mais

MACROECONOMIA DO DESENVOLVIMENTO PROFESSOR JOSÉ LUIS OREIRO PRIMEIRA LISTA DE QUESTÕES PARA DISCUSSÃO

MACROECONOMIA DO DESENVOLVIMENTO PROFESSOR JOSÉ LUIS OREIRO PRIMEIRA LISTA DE QUESTÕES PARA DISCUSSÃO MACROECONOMIA DO DESENVOLVIMENTO PROFESSOR JOSÉ LUIS OREIRO PRIMEIRA LISTA DE QUESTÕES PARA DISCUSSÃO 1 Quesão: Um fao esilizado sobre a dinâmica do crescimeno econômico mundial é a ocorrência de divergências

Leia mais

EXAME DE ESTATÍSTICA AMBIENTAL 1ª Época (v1)

EXAME DE ESTATÍSTICA AMBIENTAL 1ª Época (v1) Nome: Aluno nº: Duração: horas LICENCIATURA EM CIÊNCIAS DE ENGENHARIA - ENGENHARIA DO AMBIENTE EXAME DE ESTATÍSTICA AMBIENTAL ª Época (v) I (7 valores) Na abela seguine apresena-se os valores das coordenadas

Leia mais

ENGF93 Análise de Processos e Sistemas I

ENGF93 Análise de Processos e Sistemas I ENGF93 Análise de Processos e Sisemas I Prof a. Karen Pones Revisão: 3 de agoso 4 Sinais e Sisemas Tamanho do sinal Ampliude do sinal varia com o empo, logo a medida de seu amanho deve considerar ampliude

Leia mais

Confiabilidade e Taxa de Falhas

Confiabilidade e Taxa de Falhas Prof. Lorí Viali, Dr. hp://www.pucrs.br/fama/viali/ viali@pucrs.br Definição A confiabilidade é a probabilidade de que de um sisema, equipameno ou componene desempenhe a função para o qual foi projeado

Leia mais

Conceito. Exemplos. Os exemplos de (a) a (d) mostram séries discretas, enquanto que os de (e) a (g) ilustram séries contínuas.

Conceito. Exemplos. Os exemplos de (a) a (d) mostram séries discretas, enquanto que os de (e) a (g) ilustram séries contínuas. Conceio Na Esaísica exisem siuações onde os dados de ineresse são obidos em insanes sucessivos de empo (minuo, hora, dia, mês ou ano), ou ainda num período conínuo de empo, como aconece num elerocardiograma

Leia mais

Capítulo 1 Definição de Sinais e Sistemas

Capítulo 1 Definição de Sinais e Sistemas Capíulo 1 Definição de Sinais e Sisemas 1.1 Inrodução 1.2 Represenação dos sinais como funções 1.3 Represenação dos sisemas como funções 1.4 Definições básicas de funções 1.5 Definição de sinal 1.6 Definição

Leia mais

RÁPIDA INTRODUÇÃO À FÍSICA DAS RADIAÇÕES Simone Coutinho Cardoso & Marta Feijó Barroso UNIDADE 3. Decaimento Radioativo

RÁPIDA INTRODUÇÃO À FÍSICA DAS RADIAÇÕES Simone Coutinho Cardoso & Marta Feijó Barroso UNIDADE 3. Decaimento Radioativo Decaimeno Radioaivo RÁPIDA ITRODUÇÃO À FÍSICA DAS RADIAÇÕES Simone Couinho Cardoso & Mara Feijó Barroso Objeivos: discuir o que é decaimeno radioaivo e escrever uma equação que a descreva UIDADE 3 Sumário

Leia mais

6 Processos Estocásticos

6 Processos Estocásticos 6 Processos Esocásicos Um processo esocásico X { X ( ), T } é uma coleção de variáveis aleaórias. Ou seja, para cada no conjuno de índices T, X() é uma variável aleaória. Geralmene é inerpreado como empo

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL Movimeno unidimensional 5 MOVIMENTO UNIDIMENSIONAL. Inrodução Denre os vários movimenos que iremos esudar, o movimeno unidimensional é o mais simples, já que odas as grandezas veoriais que descrevem o

Leia mais

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa C. Os números inteiros x e y satisfazem a equação

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa C. Os números inteiros x e y satisfazem a equação Quesão Os números ineiros x e y saisfazem a equação x x y y 5 5.Enãox y é: a) 8 b) 5 c) 9 d) 6 e) 7 alernaiva B x x y y 5 5 x ( ) 5 y (5 ) x y 7 x 6 y 5 5 5 Como x e y são ineiros, pelo Teorema Fundamenal

Leia mais

Porto Alegre, 14 de novembro de 2002

Porto Alegre, 14 de novembro de 2002 Poro Alegre, 14 de novembro de 2002 Aula 6 de Relaividade e Cosmologia Horácio Doori 1.12- O paradoo dos gêmeos 1.12.1- Sisemas Inerciais (observadores) com velocidades diversas vêem a disância emporal

Leia mais

UNIVERSIDADE DA BEIRA INTERIOR FACULDADE DE CIÊNCIAS SOCIAIS E HUMANAS DEPARTAMENTO DE GESTÃO E ECONOMIA MACROECONOMIA III

UNIVERSIDADE DA BEIRA INTERIOR FACULDADE DE CIÊNCIAS SOCIAIS E HUMANAS DEPARTAMENTO DE GESTÃO E ECONOMIA MACROECONOMIA III UNIVERSIDADE DA BEIRA INTERIOR FACUDADE DE CIÊNCIAS SOCIAIS E HUMANAS DEPARTAMENTO DE GESTÃO E ECONOMIA MACROECONOMIA III icenciaura de Economia (ºAno/1ºS) Ano ecivo 007/008 Caderno de Exercícios Nº 1

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

MATEMÁTICA E SUAS TECNOLOGIAS

MATEMÁTICA E SUAS TECNOLOGIAS 1º SIMULADO ENEM 017 Resposa da quesão 1: MATEMÁTICA E SUAS TECNOLOGIAS Basa aplicar a combinação de see espores agrupados dois a dois, logo: 7! C7,!(7 )! 7 6 5! C7,!5! 7 6 5! C7, 1!5! Resposa da quesão

Leia mais

Crescimento e Flutuações Introdução aos modelos de ciclos económicos

Crescimento e Flutuações Introdução aos modelos de ciclos económicos Crescimeno e Fluuações Inrodução aos modelos de ciclos económicos 1. Trajecórias de variáveis económicas Movimenos monóonos: ou convergenes ou divergenes Toda a análise que é feia nese pono pare da hipóese

Leia mais

Equações Diferenciais Ordinárias Lineares

Equações Diferenciais Ordinárias Lineares Equações Diferenciais Ordinárias Lineares 67 Noções gerais Equações diferenciais são equações que envolvem uma função incógnia e suas derivadas, além de variáveis independenes Aravés de equações diferenciais

Leia mais

N(0) número de núcleos da espécie inicial no instante t=0. N(t) número de núcleos da espécie inicial no instante t. λ constante de decaimento

N(0) número de núcleos da espécie inicial no instante t=0. N(t) número de núcleos da espécie inicial no instante t. λ constante de decaimento 07-0-00 Lei do Decaimeno Radioacivo probabilidade de ransformação elemenar durane d d número médio de ransformações (dum elemeno) ocorridas em d N = Nd número médio de ocorrências na amosra com N elemenos

Leia mais

Campo magnético variável

Campo magnético variável Campo magnéico variável Já vimos que a passagem de uma correne elécrica cria um campo magnéico em orno de um conduor aravés do qual a correne flui. Esa descobera de Orsed levou os cienisas a desejaram

Leia mais

CINÉTICA RADIOATIVA. Introdução. Tempo de meia-vida (t 1/2 ou P) Atividade Radioativa

CINÉTICA RADIOATIVA. Introdução. Tempo de meia-vida (t 1/2 ou P) Atividade Radioativa CIÉTIC RDIOTIV Inrodução Ese arigo em como objeivo analisar a velocidade dos diferenes processos radioaivos, no que chamamos de cinéica radioaiva. ão deixe de anes esudar o arigo anerior sobre radioaividade

Leia mais

3 LTC Load Tap Change

3 LTC Load Tap Change 54 3 LTC Load Tap Change 3. Inrodução Taps ou apes (ermo em poruguês) de ransformadores são recursos largamene uilizados na operação do sisema elérico, sejam eles de ransmissão, subransmissão e disribuição.

Leia mais

Função Exponencial 2013

Função Exponencial 2013 Função Exponencial 1 1. (Uerj 1) Um imóvel perde 6% do valor de venda a cada dois anos. O valor V() desse imóvel em anos pode ser obido por meio da fórmula a seguir, na qual V corresponde ao seu valor

Leia mais

Formas Quadráticas e Cônicas

Formas Quadráticas e Cônicas Formas Quadráicas e Cônicas Sela Zumerle Soares Anônio Carlos Nogueira (selazs@gmail.com) (anogueira@uu.br). Resumo Faculdade de Maemáica, UFU, MG Nesse rabalho preendemos apresenar alguns resulados da

Leia mais

2. DÍODOS DE JUNÇÃO. Dispositivo de dois terminais, passivo e não-linear

2. DÍODOS DE JUNÇÃO. Dispositivo de dois terminais, passivo e não-linear 2. ÍOOS E JUNÇÃO Fernando Gonçalves nsiuo Superior Técnico Teoria dos Circuios e Fundamenos de Elecrónica - 2004/2005 íodo de Junção isposiivo de dois erminais, passivo e não-linear Foografia ânodo Símbolo

Leia mais

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 1 3 quadrimestre 2012

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 1 3 quadrimestre 2012 EN67 Transformadas em Sinais e Sisemas Lineares Lisa de Exercícios Suplemenares janeiro EN67 Transformadas em Sinais e Sisemas Lineares Lisa de Exercícios Suplemenares quadrimesre Figura Convolução (LATHI,

Leia mais

4 O modelo econométrico

4 O modelo econométrico 4 O modelo economérico O objeivo desse capíulo é o de apresenar um modelo economérico para as variáveis financeiras que servem de enrada para o modelo esocásico de fluxo de caixa que será apresenado no

Leia mais

Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas

Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas Sinais e Sisemas Série de Fourier Renao Dourado Maia Universidade Esadual de Mones Claros Engenharia de Sisemas Inrodução A Série e a Inegral de Fourier englobam um dos desenvolvimenos maemáicos mais produivos

Leia mais

Capítulo 2: Conceitos Fundamentais sobre Circuitos Elétricos

Capítulo 2: Conceitos Fundamentais sobre Circuitos Elétricos SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA TE041 Circuios Eléricos I Prof. Ewaldo L. M. Mehl Capíulo 2: Conceios Fundamenais sobre Circuios Eléricos 2.1. CARGA ELÉTRICA E CORRENTE ELÉTRICA

Leia mais

Biofísica II Turma de Biologia FFCLRP USP Prof. Antônio Roque Biologia de Populações 2 Modelos não-lineares. Modelos Não-Lineares

Biofísica II Turma de Biologia FFCLRP USP Prof. Antônio Roque Biologia de Populações 2 Modelos não-lineares. Modelos Não-Lineares Modelos Não-Lineares O modelo malhusiano prevê que o crescimeno populacional é exponencial. Enreano, essa predição não pode ser válida por um empo muio longo. As funções exponenciais crescem muio rapidamene

Leia mais

AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM

AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM 163 22. PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM 22.1. Inrodução Na Seção 9.2 foi falado sobre os Parâmeros de Core e

Leia mais

Primeira Lista de Exercícios

Primeira Lista de Exercícios TP30 Modulação Digial Prof.: MSc. Marcelo Carneiro de Paiva Primeira Lisa de Exercícios Caracerize: - Transmissão em Banda-Base (apresene um exemplo de especro de ransmissão). - Transmissão em Banda Passane

Leia mais

F-128 Física Geral I. Aula exploratória-07 UNICAMP IFGW F128 2o Semestre de 2012

F-128 Física Geral I. Aula exploratória-07 UNICAMP IFGW F128 2o Semestre de 2012 F-18 Física Geral I Aula eploraória-07 UNICAMP IFGW username@ii.unicamp.br F18 o Semesre de 01 1 Energia Energia é um conceio que ai além da mecânica de Newon e permanece úil ambém na mecânica quânica,

Leia mais

4. SINAL E CONDICIONAMENTO DE SINAL

4. SINAL E CONDICIONAMENTO DE SINAL 4. SINAL E CONDICIONAMENO DE SINAL Sumário 4. SINAL E CONDICIONAMENO DE SINAL 4. CARACERÍSICAS DOS SINAIS 4.. Período e frequência 4..2 alor médio, valor eficaz e valor máximo 4.2 FILRAGEM 4.2. Circuio

Leia mais

Prof. Carlos H. C. Ribeiro ramal 5895 sala 106 IEC

Prof. Carlos H. C. Ribeiro  ramal 5895 sala 106 IEC MB770 Previsão usa ando modelos maemáicos Prof. Carlos H. C. Ribeiro carlos@comp.ia.br www.comp.ia.br/~carlos ramal 5895 sala 106 IEC Aula 14 Modelos de defasagem disribuída Modelos de auo-regressão Esacionariedade

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tarefa de revisão nº 17 1. Uma empresa lançou um produo no mercado. Esudos efecuados permiiram concluir que a evolução do preço se aproxima do seguine modelo maemáico: 7 se 0 1 p() =, p em euros e em anos.

Leia mais

figura 1 Vamos encontrar, em primeiro lugar, a velocidade do som da explosão (v E) no ar que será dada pela fórmula = v

figura 1 Vamos encontrar, em primeiro lugar, a velocidade do som da explosão (v E) no ar que será dada pela fórmula = v Dispara-se, segundo um ângulo de 6 com o horizone, um projéil que explode ao aingir o solo e oue-se o ruído da explosão, no pono de parida do projéil, 8 segundos após o disparo. Deerminar a elocidade inicial

Leia mais

12 Integral Indefinida

12 Integral Indefinida Inegral Indefinida Em muios problemas, a derivada de uma função é conhecida e o objeivo é enconrar a própria função. Por eemplo, se a aa de crescimeno de uma deerminada população é conhecida, pode-se desejar

Leia mais

Sistemas Lineares e Invariantes

Sistemas Lineares e Invariantes -14-16 -18-2 -22-24 -26-28 -3-32 Frequency (Hz Hamming aiser Chebyshev isemas Lineares e Invarianes Power pecral Densiy Env B F C1 C2 B F C1 Ground Revolue Body Revolue1 Body1 Power/frequency (db/hz ine

Leia mais

Econometria Semestre

Econometria Semestre Economeria Semesre 00.0 6 6 CAPÍTULO ECONOMETRIA DE SÉRIES TEMPORAIS CONCEITOS BÁSICOS.. ALGUMAS SÉRIES TEMPORAIS BRASILEIRAS Nesa seção apresenamos algumas séries econômicas, semelhanes às exibidas por

Leia mais

Equações Simultâneas. Aula 16. Gujarati, 2011 Capítulos 18 a 20 Wooldridge, 2011 Capítulo 16

Equações Simultâneas. Aula 16. Gujarati, 2011 Capítulos 18 a 20 Wooldridge, 2011 Capítulo 16 Equações Simulâneas Aula 16 Gujarai, 011 Capíulos 18 a 0 Wooldridge, 011 Capíulo 16 Inrodução Durane boa pare do desenvolvimeno dos coneúdos desa disciplina, nós nos preocupamos apenas com modelos de regressão

Leia mais

Curso de preparação para a prova de matemática do ENEM Professor Renato Tião

Curso de preparação para a prova de matemática do ENEM Professor Renato Tião Porcenagem As quaro primeiras noções que devem ser assimiladas a respeio do assuno são: I. Que porcenagem é fração e fração é a pare sobre o odo. II. Que o símbolo % indica que o denominador desa fração

Leia mais

Plano Básico Equações Diferenciais

Plano Básico Equações Diferenciais Plano Básico Equações Diferenciais PET ENGENHARIA ELÉTRICA PROGRAMA DE EDUCAÇÃO TUTORIAL ORIENTADOR: LEONARDO OLÍMPIO LOPES Felipe Pones Samara Fava Rafael Marins Hydelo Wagner Robson Cardoso Foraleza,

Leia mais

CIRCUITO RC SÉRIE. max

CIRCUITO RC SÉRIE. max ELETRICIDADE 1 CAPÍTULO 8 CIRCUITO RC SÉRIE Ese capíulo em por finalidade inroduzir o esudo de circuios que apresenem correnes eléricas variáveis no empo. Para ano, esudaremos o caso de circuios os quais

Leia mais

Diodos. Símbolo. Função (ideal) Conduzir corrente elétrica somente em um sentido. Tópico : Revisão dos modelos Diodos e Transistores

Diodos. Símbolo. Função (ideal) Conduzir corrente elétrica somente em um sentido. Tópico : Revisão dos modelos Diodos e Transistores 1 Tópico : evisão dos modelos Diodos e Transisores Diodos Símbolo O mais simples dos disposiivos semiconduores. Função (ideal) Conduzir correne elérica somene em um senido. Circuio abero Polarização 2

Leia mais

Simulado ITA. 3. O número complexo. (x + 4) (1 5x) 3x 2 x + 5

Simulado ITA. 3. O número complexo. (x + 4) (1 5x) 3x 2 x + 5 Simulado ITA 1. E m relação à teoria dos conjuntos, considere as seguintes afirmativas relacionadas aos conjuntos A, B e C: I. Se A B e B C então A C. II. Se A B e B C então A C. III. Se A B e B C então

Leia mais

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Dinâmicos

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Dinâmicos Análise de Projecos ESAPL / IPVC Criérios de Valorização e Selecção de Invesimenos. Méodos Dinâmicos Criério do Valor Líquido Acualizado (VLA) O VLA de um invesimeno é a diferença enre os valores dos benefícios

Leia mais

Capítulo Cálculo com funções vetoriais

Capítulo Cálculo com funções vetoriais Cálculo - Capíulo 6 - Cálculo com funções veoriais - versão 0/009 Capíulo 6 - Cálculo com funções veoriais 6 - Limies 63 - Significado geomérico da derivada 6 - Derivadas 64 - Regras de derivação Uiliaremos

Leia mais

CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA

CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA Inrodução Ese arigo raa de um dos assunos mais recorrenes nas provas do IME e do ITA nos úlimos anos, que é a Cinéica Química. Aqui raamos principalmene dos

Leia mais

3 Equacões de Bernoulli e Riccati Equação de Bernoulli Equação de Riccati Exercícios... 24

3 Equacões de Bernoulli e Riccati Equação de Bernoulli Equação de Riccati Exercícios... 24 Conteúdo 3 Equacões de Bernoulli e Riccati 18 3.1 - Equação de Bernoulli.................... 18 3.2 - Equação de Riccati..................... 20 3.3 - Exercícios.......................... 24 1 Equações

Leia mais

velocidade inicial: v 0 ; ângulo de tiro com a horizontal: 0.

velocidade inicial: v 0 ; ângulo de tiro com a horizontal: 0. www.fisicaee.com.br Um projéil é disparado com elocidade inicial iual a e formando um ânulo com a horizonal, sabendo-se que os ponos de disparo e o alo esão sobre o mesmo plano horizonal e desprezando-se

Leia mais

GFI Física por Atividades. Caderno de Trabalhos de Casa

GFI Física por Atividades. Caderno de Trabalhos de Casa GFI00157 - Física por Aividades Caderno de Trabalhos de Casa Coneúdo 1 Cinemáica 4 1.1 Velocidade.............................. 4 1.2 Represenações do movimeno................... 8 1.3 Aceleração em uma

Leia mais

Visto do Professor: Prof. Rafael D N X Laboratório de Informática para essa prova? Sim Não X

Visto do Professor: Prof. Rafael D N X Laboratório de Informática para essa prova? Sim Não X Disciplina: Cálculo 1 Identificação da Prova: Simulado Ex. Final Nota: Professor e Visto: Visto da Coordenação: Período: Data: Visto do Professor: Prof. Rafael D N X Laboratório de Informática para essa

Leia mais

Q = , 03.( )

Q = , 03.( ) PROVA DE FÍSIA 2º ANO - 1ª MENSAL - 2º TRIMESTRE TIPO A 01) Um bloco de chumbo de massa 1,0 kg, inicialmene a 227, é colocado em conao com uma fone érmica de poência consane. Deermine a quanidade de calor

Leia mais

4 CER Compensador Estático de Potência Reativa

4 CER Compensador Estático de Potência Reativa 68 4 ompensador Esáico de Poência Reaiva 4.1 Inrodução ompensadores esáicos de poência reaiva (s ou Saic var ompensaors (Ss são equipamenos de conrole de ensão cuja freqüência de uso em aumenado no sisema

Leia mais

y (n) (x) = dn y dx n(x) y (0) (x) = y(x).

y (n) (x) = dn y dx n(x) y (0) (x) = y(x). Capítulo 1 Introdução 1.1 Definições Denotaremos por I R um intervalo aberto ou uma reunião de intervalos abertos e y : I R uma função que possua todas as suas derivadas, a menos que seja indicado o contrário.

Leia mais

2.5 Impulsos e Transformadas no Limite

2.5 Impulsos e Transformadas no Limite .5 Impulsos e Transformadas no Limie Propriedades do Impulso Uniário O impulso uniário ou função dela de Dirac δ não é uma função no senido maemáico esrio. Ela perence a uma classe especial conhecida como

Leia mais

3 Retorno, Marcação a Mercado e Estimadores de Volatilidade

3 Retorno, Marcação a Mercado e Estimadores de Volatilidade eorno, Marcação a Mercado e Esimadores de Volailidade 3 3 eorno, Marcação a Mercado e Esimadores de Volailidade 3.. eorno de um Aivo Grande pare dos esudos envolve reorno ao invés de preços. Denre as principais

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031 Universidade Federal do io Grande do Sul Escola de Engenharia de Poro Alegre Deparameno de Engenharia Elérica ANÁLISE DE CICUITOS II - ENG43 Aula 5 - Condições Iniciais e Finais de Carga e Descarga em

Leia mais

Noções de Espectro de Freqüência

Noções de Espectro de Freqüência MINISTÉRIO DA EDUCAÇÃO - Campus São José Curso de Telecomunicações Noções de Especro de Freqüência Marcos Moecke São José - SC, 6 SUMÁRIO 3. ESPECTROS DE FREQÜÊNCIAS 3. ANÁLISE DE SINAIS NO DOMÍNIO DA

Leia mais

dr = ( t ) k. Portanto,

dr = ( t ) k. Portanto, Aplicações das Equações Diferenciais de ordem (Evaporação de uma goa) Suponha que uma goa de chuva esférica evapore numa aa proporcional à sua área de superfície Se o raio original era de mm e depois de

Leia mais

Aula - 2 Movimento em uma dimensão

Aula - 2 Movimento em uma dimensão Aula - Moimeno em uma dimensão Física Geral I - F- 18 o semesre, 1 Ilusração dos Principia de Newon mosrando a ideia de inegral Moimeno 1-D Conceios: posição, moimeno, rajeória Velocidade média Velocidade

Leia mais

Lista de Exercícios n o.1. 1) O diodo do circuito da Fig. 1(a) se comporta segundo a característica linearizada por partes da Fig 1(b). I D (ma) Fig.

Lista de Exercícios n o.1. 1) O diodo do circuito da Fig. 1(a) se comporta segundo a característica linearizada por partes da Fig 1(b). I D (ma) Fig. Universidade Federal da Bahia EE isposiivos Semiconduores ENG C41 Lisa de Exercícios n o.1 1) O diodo do circuio da Fig. 1 se compora segundo a caracerísica linearizada por pares da Fig 1. R R (ma) 2R

Leia mais

Questão 30. Questão 32. Questão 31. alternativa E. alternativa D. alternativa A

Questão 30. Questão 32. Questão 31. alternativa E. alternativa D. alternativa A Quesão 30 Um sólido branco apresena as seguines propriedades: I. É solúvel em água. II. Sua solução aquosa é conduora de correne elérica. III. Quando puro, o sólido não conduz correne elérica. IV. Quando

Leia mais

R A B VETORES. Módulo. Valor numérico + unidade de medida. Intensidade

R A B VETORES. Módulo. Valor numérico + unidade de medida. Intensidade ETORES 1- DEFINIÇÃO: Ene maemáico usado para caracerizar uma grandeza eorial. paralelogramo. O eor resulane é raçado a parir das origens aé a inersecção das linhas auxiliares. - TIPOS DE GRANDEZAS.1- GRANDEZA

Leia mais

Função de risco, h(t) 3. Função de risco ou taxa de falha. Como obter a função de risco. Condições para uma função ser função de risco

Função de risco, h(t) 3. Função de risco ou taxa de falha. Como obter a função de risco. Condições para uma função ser função de risco Função de risco, h() 3. Função de risco ou axa de falha Manuenção e Confiabilidade Prof. Flavio Fogliao Mais imporane das medidas de confiabilidade Traa-se da quanidade de risco associada a uma unidade

Leia mais

Análise de Pós-optimização e de Sensibilidade

Análise de Pós-optimização e de Sensibilidade CPÍULO nálise de Pós-opimização e de Sensibilidade. Inrodução Uma das arefas mais delicadas no desenvolvimeno práico dos modelos de PL, relaciona-se com a obenção de esimaivas credíveis para os parâmeros

Leia mais