1 o Exame 10 de Janeiro de 2005 Nota: Resolva os problemas do exame em folhas separadas. Justifique todas as respostas e explique os seus

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "1 o Exame 10 de Janeiro de 2005 Nota: Resolva os problemas do exame em folhas separadas. Justifique todas as respostas e explique os seus"

Transcrição

1 i

2 Sinais e Sisemas (LERCI) o Exame 0 de Janeiro de 005 Noa: Resolva os problemas do exame em folhas separadas. Jusifique odas as resposas e explique os seus cálculos.

3 Problema.. Represene graficamene o sinal: em que u() é a função escalão uniário., x() = u( ) u( ), 0 x() = u( + ), < 0 x(). Considere sisemas em que a saída se relaciona com a enrada x aravés das equações: w () = x( ) w () = x( ) w 3 () = Par(x( )) w () = x( ) Classifique cada um dos sisemas quano à linearidade e invariância emporal. w () = x( ) w () = x( ) w 3 () = Par(x( )) = x( ) + x ( ) w () = x( ) sisema linear e invariane no empo sisema linear mas variane no empo (-) sisema linear mas variane no empo (-) sisema não linear (módulo) e variane no empo () 3. Esboce o sinal de saída de cada sisema da alínea anerior quando a enrada for o sinal x() definido na primeira alínea. w_() w_() w_3() w_()

4 Problema. Considere uma plaaforma elevaória para cargas que recebe como enrada um sinal de comando elécrico x() correspondene à alura em meros em que se preende elevar a plaaforma, e que é modelada por um sisema cujo sinal de saída correspondene à alura da plaaforma. Suponha que ese sisema em a seguine resposa ao escalão s() = ( e /τ )u(). Deermine a resposa ao impulso do sisema. h() = d d s() = τ e /τ u(). Dimensione τ por forma a que a plaaforma ao receber uma enrada de x() = 3u() ainge a alura de,97 meros em 3 segundos (considere que e.6 = 0,0).,97 = ( e 3/τ ) e 3/τ = 0,0 τ = 5s 3. Deermine uma expressão para a evolução da alura da plaaforma ao longo do empo quando o sinal de conrolo for x() = ( e 3 )u() y() = h() x() = 5 e /5 u() ( e 3 )u() ( ) ( ) = 5 e /5 u() u() 5 e /5 u() e 3 u() = s() 0 5 e τ/5 e 3( τ) dτ = s() e 3 e τ/5 dτ 5 0 = s() e 3 ( e /5 ) u() ( = 5 e /5 + ) e 3 u() 3

5 Problema 3. Considere um sisema discreo linear e invariane no empo caracerizado pela seguine resposa em frequência: H(e jω ) = e jω 3e jω. Deermine a equação às diferenças que relaciona x(n), o sinal de enrada do sisema, com o sinal de saída y(n). y(n) y(n ) = x(n) x(n ) 3. Deermine a resposa do sisema ao sinal x (n) = ( ) n u(n) X (ω) = e jω Y (ω) = e jω ( 3 e jω )( e jω ) y (n) = = e jω e jω ( ) n ( ) n u(n) 3 u(n) 3 3. Usando o resulado da alínea anerior calcule a resposa do sisema ao sinal: ( ) n x (n) = [u(n) u(n )] x (n) = x (n) ( ) ( ) n u(n ) = x (n) 6 x (n ) y (n) = y (n) 6 y (n )

6 Problema. Considere a composição em cascaa de dois sisemas conínuos lineares e invarianes no empo: x() y() z() S S Sabe-se que o sisema S em como resposa em frequência:, ω < 5π H ( jω) = 0, caso conrário. Sabendo que no sisema S a enrada x e a saída y se relacionam pela equação diferencial: dy() + y() = x() 0π d deermine H ( jω), a resposa em frequência do sisema S. Uma vez que se raa de um SLIT: x() = e jω y() = H (ω)e jω aplicando as propriedades da CTFT: 0π ( jω)h (ω)e jω + H (ω)e jω = e jω H (ω) = + j ω 0π. Considere que a enrada x é o sinal periódico x() = cos(0π) + sin(0π). Deermine o período dese sinal e os coeficienes da sua série de Fourier. O sinal é periódico com período T = 0, s e ω 0 = 0π. Pela fórmula de Euler: x() = e j0π + e j0π + j e j0π j0π e j é fácil concluir:, k = j X k =, k = j, k = 0, caso conrário 3. Deermine o sinal z à saída da composição dos dois sisemas quando a enrada for o sinal da alínea anerior (se não resolveu a primeira alínea considere H ( jω) = j ω 0π ) A série de Fourier da saída será z() = k= H(k0π)X k e jk0π como H(ω) = H (ω)h (ω) = H (ω)h (ω) e H(0π) = H (0π) = 0 H(0π) = H (0π) = + j 0π 0π = e jπ/ = ( j) enão z() = e jπ/ e j0π + e jπ/ j0π e = 5 cos(0π π/)

7 Problema 5. Considere o sisema discreo esável, linear e invariane no empo caracerizado pela seguine função de ransferência: H (z) = + 5 z + z 5 z + z. Deermine a localização dos seus pólos e zeros. Indique a região de convergência. Pólos: 5 5 z + z ± 5 = z = z = z = / Zeros: z + z ± 5 = z = z = z = / Para o sisema ser esável a ROC em de incluir a circunferência de raio uniário: / < z <. Deermine a resposa do sisema ao impulso uniário. Como o grau do numerador não é inferior ao do denominador é preciso fazer a divisão polinomial anes da decomposição em fracções simples: H (z) = + 5 z + z 5 z + z 5z = + 5 z + z = + 0/3 0/3 + z z h(n) = δ(n) 0 ( ) n u(n) ()n u( n ) 3. Considere ambém o sisema: H (z) = H (z) z z Usando os respecivos mapas de pólos e zeros compare H (e jω ) com H (e jω ). Analize a causalidade dos dois sisemas. O sisema juno em cascaa em um zero em z = que anula o pólo de H e adiciona um novo pólo em z = /. Relacionando os módulos da DTFT H (e jω ) = H (e jω jω e ) e jω = H (e jω ) e jω = H (e jω ) ( e jω ) ( e jω ) Ambos os sisemas êm o mesmo módulo da resposa em frequência. O sisema H é esável e não causal mas o sisema H é esável e causal porque em odos os pólos no inerior da circunferência de raio uniário. 6

1 o Teste Tipo. Sinais e Sistemas (LERC/LEE) 2008/2009. Maio de Respostas

1 o Teste Tipo. Sinais e Sistemas (LERC/LEE) 2008/2009. Maio de Respostas o Teste Tipo Sinais e Sistemas (LERC/LEE) 2008/2009 Maio de 2009 Respostas i Problema. (0,9v) Considere o seguinte integral: + 0 δ(t π/4) cos(t)dt em que t eδ(t) é a função delta de Dirac. O integral vale:

Leia mais

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 1 3 quadrimestre 2012

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 1 3 quadrimestre 2012 EN67 Transformadas em Sinais e Sisemas Lineares Lisa de Exercícios Suplemenares janeiro EN67 Transformadas em Sinais e Sisemas Lineares Lisa de Exercícios Suplemenares quadrimesre Figura Convolução (LATHI,

Leia mais

Sistemas Lineares e Invariantes

Sistemas Lineares e Invariantes -14-16 -18-2 -22-24 -26-28 -3-32 Frequency (Hz Hamming aiser Chebyshev isemas Lineares e Invarianes Power pecral Densiy Env B F C1 C2 B F C1 Ground Revolue Body Revolue1 Body1 Power/frequency (db/hz ine

Leia mais

Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas

Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas Sinais e Sisemas Série de Fourier Renao Dourado Maia Universidade Esadual de Mones Claros Engenharia de Sisemas Inrodução A Série e a Inegral de Fourier englobam um dos desenvolvimenos maemáicos mais produivos

Leia mais

3 o Teste (1 a data) Sistemas e Sinais (LEIC-TP) 2008/ de Junho de Respostas

3 o Teste (1 a data) Sistemas e Sinais (LEIC-TP) 2008/ de Junho de Respostas 3 o Teste (1 a data) Sistemas e Sinais (LEIC-TP) 2008/2009 12 de Junho de 2009 Respostas i Problema 1. (0,75v) Considere o sinal ( n n, x(n)=cos 8 4) +π Assinale a afirmação correcta x(n) é um sinal periódico

Leia mais

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL42 Coneúdo 8 - Inrodução aos Circuios Lineares e Invarianes...1 8.1 - Algumas definições e propriedades gerais...1 8.2 - Relação enre exciação

Leia mais

2.6 - Conceitos de Correlação para Sinais Periódicos

2.6 - Conceitos de Correlação para Sinais Periódicos .6 - Conceios de Correlação para Sinais Periódicos O objeivo é o de comparar dois sinais x () e x () na variável empo! Exemplo : Considere os dados mosrados abaixo y 0 x Deseja-se ober a relação enre x

Leia mais

Parte I O teste tem uma parte de resposta múltipla (Parte I) e uma parte de resolução livre (Parte II)

Parte I O teste tem uma parte de resposta múltipla (Parte I) e uma parte de resolução livre (Parte II) Instituto Superior Técnico Sinais e Sistemas o teste 4 de Novembro de 0 Nome: Número: Duração da prova: horas Parte I O teste tem uma parte de resposta múltipla (Parte I) e uma parte de resolução livre

Leia mais

Circuitos Elétricos I EEL420

Circuitos Elétricos I EEL420 Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL420 Coneúdo 1 - Circuios de primeira ordem...1 1.1 - Equação diferencial ordinária de primeira ordem...1 1.1.1 - Caso linear, homogênea, com

Leia mais

ENGF93 Análise de Processos e Sistemas I

ENGF93 Análise de Processos e Sistemas I ENGF93 Análise de Processos e Sisemas I Prof a. Karen Pones Revisão: 3 de agoso 4 Sinais e Sisemas Tamanho do sinal Ampliude do sinal varia com o empo, logo a medida de seu amanho deve considerar ampliude

Leia mais

Processamento Digital de Sinais - ENG420

Processamento Digital de Sinais - ENG420 Processamento Digital de Sinais - ENG420 Fabrício Simões IFBA 24 de setembro de 2016 Fabrício Simões (IFBA) Processamento Digital de Sinais - ENG420 24 de setembro de 2016 1 / 19 1 Transformada Z - Conceito

Leia mais

Resumo. Sinais e Sistemas Sinais e Sistemas. Sinal em Tempo Contínuo. Sinal Acústico

Resumo. Sinais e Sistemas Sinais e Sistemas. Sinal em Tempo Contínuo. Sinal Acústico Resumo Sinais e Sisemas Sinais e Sisemas lco@is.ul.p Sinais de empo conínuo e discreo Transformações da variável independene Sinais básicos: impulso, escalão e exponencial. Sisemas conínuos e discreos

Leia mais

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 2012

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 2012 EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 fevereiro 03 EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 0

Leia mais

Características dos Processos ARMA

Características dos Processos ARMA Caracerísicas dos Processos ARMA Aula 0 Bueno, 0, Capíulos e 3 Enders, 009, Capíulo. a.6 Morein e Toloi, 006, Capíulo 5. Inrodução A expressão geral de uma série emporal, para o caso univariado, é dada

Leia mais

Análise de Sistemas LTI através das transformadas

Análise de Sistemas LTI através das transformadas Análise de Sistemas LTI através das transformadas Luis Henrique Assumpção Lolis 23 de setembro de 2013 Luis Henrique Assumpção Lolis Análise de Sistemas LTI através das transformadas 1 Conteúdo 1 Resposta

Leia mais

Resumo. Sinais e Sistemas Transformada de Laplace. Resposta ao Sinal Exponencial

Resumo. Sinais e Sistemas Transformada de Laplace. Resposta ao Sinal Exponencial Resumo Sinais e Sistemas Transformada de aplace uís Caldas de Oliveira lco@istutlpt Instituto Superior Técnico Definição da transformada de aplace Região de convergência Propriedades da transformada de

Leia mais

Capítulo 1 Definição de Sinais e Sistemas

Capítulo 1 Definição de Sinais e Sistemas Capíulo 1 Definição de Sinais e Sisemas 1.1 Inrodução 1.2 Represenação dos sinais como funções 1.3 Represenação dos sisemas como funções 1.4 Definições básicas de funções 1.5 Definição de sinal 1.6 Definição

Leia mais

QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS

QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS QUESTÃO Assinale V (verdadeiro) ou F (falso): () A solução da equação diferencial y y y apresena equilíbrios esacionários quando, dependendo

Leia mais

O processo de filtragem de sinais pode ser realizado digitalmente, na forma esquematizada pelo diagrama apresentado a seguir:

O processo de filtragem de sinais pode ser realizado digitalmente, na forma esquematizada pelo diagrama apresentado a seguir: Sistemas e Sinais O processo de filtragem de sinais pode ser realizado digitalmente, na forma esquematizada pelo diagrama apresentado a seguir: 1 Sistemas e Sinais O bloco conversor A/D converte o sinal

Leia mais

Processamento Digital de Sinais. Notas de Aula. Transformada Z. Transformada Z - TZ

Processamento Digital de Sinais. Notas de Aula. Transformada Z. Transformada Z - TZ Transformada Z Transformada Z 2 Transformada Z - TZ Processamento Digital de Sinais Notas de Aula Transformada Z É uma generalização da Transformada de Fourier de Tempo Discreto (DTFT) Útil para representação

Leia mais

Transformada dos Z e Sistemas de Tempo Discreto

Transformada dos Z e Sistemas de Tempo Discreto MEEC Mesrado em Engenharia Elecroécnica e de Compuadores MCSDI Guião do rabalho laboraorial nº 4 Transformada dos Z e Sisemas de Tempo Discreo Transformada dos Z e Sisemas de Tempo Discreo Sumário: Preende-se

Leia mais

Orlando Ferreira Soares

Orlando Ferreira Soares Orlando Ferreira Soares eoria do Sinal Índice Inrodução... Exemplo : Remoção de ruído de sinais audio... Exemplo : Previsão das coações da bolsa... Exemplo 3: Revisão do exemplo... 4 Exemplo 4: Processameno

Leia mais

) quando vamos do ponto P até o ponto Q (sobre a reta) e represente-a no plano cartesiano descrito acima.

) quando vamos do ponto P até o ponto Q (sobre a reta) e represente-a no plano cartesiano descrito acima. ATIVIDADE 1 1. Represene, no plano caresiano xy descrio abaixo, os dois ponos (x 0,y 0 ) = (1,2) e Q(x 1,y 1 ) = Q(3,5). 2. Trace a rea r 1 que passa pelos ponos e Q, no plano caresiano acima. 3. Deermine

Leia mais

Exercícios de Análise de Sinal

Exercícios de Análise de Sinal Exercícios de Aálise de Sial FEUP DEEC Seembro 008 recolha de problemas de diversos auores edição feia por: H. Mirada, J. Barbosa (000) M.I. Carvalho, A. Maos (003, 006, 008) Coeúdo Complexos 3 Siais 5

Leia mais

4. SINAL E CONDICIONAMENTO DE SINAL

4. SINAL E CONDICIONAMENTO DE SINAL 4. SINAL E CONDICIONAMENO DE SINAL Sumário 4. SINAL E CONDICIONAMENO DE SINAL 4. CARACERÍSICAS DOS SINAIS 4.. Período e frequência 4..2 alor médio, valor eficaz e valor máximo 4.2 FILRAGEM 4.2. Circuio

Leia mais

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON)

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON) TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 8 LIVRO DO NILSON). CONSIDERAÇÕES INICIAIS SÉRIES DE FOURIER: descrevem funções periódicas no domínio da freqüência (ampliude e fase). TRANSFORMADA DE FOURIER:

Leia mais

Sinais e Sistemas - Lista 1. Gabarito

Sinais e Sistemas - Lista 1. Gabarito UNIVERSIDADE DE BRASÍLIA, FACULDADE GAMA Sinais e Sistemas - Lista 1 Gabarito 4 de outubro de 015 1. Considere o sinal x(t) mostrado na figura abaixo. O sinal é zero fora do intervalo < t

Leia mais

Introdução ao Processamento Digital de Sinais Soluções dos Exercícios Propostos Capítulo 2

Introdução ao Processamento Digital de Sinais Soluções dos Exercícios Propostos Capítulo 2 Introdução ao Soluções dos Exercícios Propostos Capítulo 2. Verifique se os sinais abaixo têm ou não transformada de Fourier. Em caso positivo, calcule a transformada correspondente: a) x[n] 2δ[n+2]+3δ[n]

Leia mais

Sinais e Sistemas Discretos

Sinais e Sistemas Discretos Sinais e Sistemas Discretos Luís Caldas de Oliveira Resumo 1. Sinais em Tempo Discreto 2. Sistemas em Tempo Discreto 3. Sistemas Lineares e Invariantes no Tempo 4. Representações em requência 5. A Transformada

Leia mais

Licenciatura em Engenharia Biomédica. Faculdade de Ciências e Tecnologia. Universidade de Coimbra. Análise e Processamento de Bio-Sinais - MIEBM

Licenciatura em Engenharia Biomédica. Faculdade de Ciências e Tecnologia. Universidade de Coimbra. Análise e Processamento de Bio-Sinais - MIEBM Licenciatura em Engenharia Biomédica Faculdade de Ciências e Tecnologia Slide Slide 1 1 Tópicos: Representações de Fourier de Sinais Compostos Introdução Transformada de Fourier de Sinais Periódicos Convolução

Leia mais

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara Insiuo de Física USP Física V - Aula 6 Professora: Mazé Bechara Aula 6 Bases da Mecânica quânica e equações de Schroedinger. Aplicação e inerpreações. 1. Ouros posulados da inerpreação de Max-Born para

Leia mais

EXAME DE ESTATÍSTICA AMBIENTAL 1ª Época (v1)

EXAME DE ESTATÍSTICA AMBIENTAL 1ª Época (v1) Nome: Aluno nº: Duração: horas LICENCIATURA EM CIÊNCIAS DE ENGENHARIA - ENGENHARIA DO AMBIENTE EXAME DE ESTATÍSTICA AMBIENTAL ª Época (v) I (7 valores) Na abela seguine apresena-se os valores das coordenadas

Leia mais

Sistemas Lineares e Invariantes: Tempo Contínuo e Tempo Discreto

Sistemas Lineares e Invariantes: Tempo Contínuo e Tempo Discreto Universidade Federal da Paraíba Programa de Pós-Graduação em Engenharia Elétrica Sistemas Lineares e Invariantes: Tempo Contínuo e Tempo Discreto Prof. Juan Moises Mauricio Villanueva jmauricio@cear.ufpb.br

Leia mais

Exercícios sobre o Modelo Logístico Discreto

Exercícios sobre o Modelo Logístico Discreto Exercícios sobre o Modelo Logísico Discreo 1. Faça uma abela e o gráfico do modelo logísico discreo descrio pela equação abaixo para = 0, 1,..., 10, N N = 1,3 N 1, N 0 = 1. 10 Solução. Usando o Excel,

Leia mais

UNIVERSIDADE DA BEIRA INTERIOR FACULDADE DE CIÊNCIAS SOCIAIS E HUMANAS DEPARTAMENTO DE GESTÃO E ECONOMIA MACROECONOMIA III

UNIVERSIDADE DA BEIRA INTERIOR FACULDADE DE CIÊNCIAS SOCIAIS E HUMANAS DEPARTAMENTO DE GESTÃO E ECONOMIA MACROECONOMIA III UNIVERSIDADE DA BEIRA INTERIOR FACUDADE DE CIÊNCIAS SOCIAIS E HUMANAS DEPARTAMENTO DE GESTÃO E ECONOMIA MACROECONOMIA III icenciaura de Economia (ºAno/1ºS) Ano ecivo 007/008 Caderno de Exercícios Nº 1

Leia mais

TRANSFORMADA Z. A transformada Z de um sinal x(n) é definida como a série de potências: Onde z é uma variável complexa e pode ser indicada como.

TRANSFORMADA Z. A transformada Z de um sinal x(n) é definida como a série de potências: Onde z é uma variável complexa e pode ser indicada como. TRANSFORMADA Z A transformada Z (TZ) tem o mesmo papel, para a análise de sinais e sistemas discretos LTI, que a transformada de Laplace na análise de sinais e sistemas nos sistemas contínuos do mesmo

Leia mais

Lista de Exercícios 1

Lista de Exercícios 1 Universidade Federal de Ouro Preo Deparameno de Maemáica MTM14 - CÁLCULO DIFERENCIAL E INTEGRAL III Anônio Silva, Edney Oliveira, Marcos Marcial, Wenderson Ferreira Lisa de Exercícios 1 1 Para cada um

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 2º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Inrodução ao Cálculo Diferencial II TPC nº 9 Enregar em 4 2 29. Num loe de bolbos de úlipas a probabilidade de que

Leia mais

Calcule a área e o perímetro da superfície S. Calcule o volume do tronco de cone indicado na figura 1.

Calcule a área e o perímetro da superfície S. Calcule o volume do tronco de cone indicado na figura 1. 1. (Unesp 017) Um cone circular reo de gerariz medindo 1 cm e raio da base medindo 4 cm foi seccionado por um plano paralelo à sua base, gerando um ronco de cone, como mosra a figura 1. A figura mosra

Leia mais

3. Representaç ão de Fourier dos Sinais

3. Representaç ão de Fourier dos Sinais Sinais e Sisemas - 3. Represenaç ão de Fourier dos Sinais Nese capíulo consideramos a represenação dos sinais como uma soma pesada de exponenciais complexas. Dese modo faz-se uma passagem do domínio do

Leia mais

CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA

CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA Inrodução Ese arigo raa de um dos assunos mais recorrenes nas provas do IME e do ITA nos úlimos anos, que é a Cinéica Química. Aqui raamos principalmene dos

Leia mais

Matemática. Funções polinomiais. Ensino Profissional. Caro estudante. Maria Augusta Neves Albino Pereira António Leite Luís Guerreiro M.

Matemática. Funções polinomiais. Ensino Profissional. Caro estudante. Maria Augusta Neves Albino Pereira António Leite Luís Guerreiro M. Ensino Profissional Maria Augusa Neves Albino Pereira Anónio Leie Luís Guerreiro M. Carlos Silva Maemáica Funções polinomiais Revisão cienífica Professor Douor Jorge Nuno Silva Faculdade de Ciências da

Leia mais

figura 1 Vamos encontrar, em primeiro lugar, a velocidade do som da explosão (v E) no ar que será dada pela fórmula = v

figura 1 Vamos encontrar, em primeiro lugar, a velocidade do som da explosão (v E) no ar que será dada pela fórmula = v Dispara-se, segundo um ângulo de 6 com o horizone, um projéil que explode ao aingir o solo e oue-se o ruído da explosão, no pono de parida do projéil, 8 segundos após o disparo. Deerminar a elocidade inicial

Leia mais

Resumo. Sinais e Sistemas Representação de Sinais Periódicos em Séries de Fourier. Objectivo. Função Própria de um Sistema

Resumo. Sinais e Sistemas Representação de Sinais Periódicos em Séries de Fourier. Objectivo. Função Própria de um Sistema Resumo Sinais e Sistemas Representação de Sinais Periódicos em Séries de Fourier lco@ist.utl.pt Instituto Superior Técnico Resposta de SLITs a exponenciais complexas Série de Fourier de sinais contínuos

Leia mais

Fundamentos de Telecomunicações

Fundamentos de Telecomunicações Fundamenos de Teleomuniações LERCI_FT : Sinais Aleaórios Professor Vior Barroso vab@isr.is.ul.p Sinais Deerminísios desrios por uma função (do empo ou da frequênia) Periódios (de poênia) Não periódios

Leia mais

Análise de Sistemas em Tempo Discreto usando a Transformada Z

Análise de Sistemas em Tempo Discreto usando a Transformada Z Análise de Sistemas em Tempo Discreto usando a Transformada Z Edmar José do Nascimento (Análise de Sinais e Sistemas) http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do São Francisco

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática. Primeira Lista de Exercícios MAT 241 Cálculo III

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática. Primeira Lista de Exercícios MAT 241 Cálculo III Universidade Federal de Viçosa Cenro de Ciências Exaas e Tecnológicas Deparameno de Maemáica Primeira Lisa de Exercícios MAT 4 Cálculo III Julgue a veracidade das afirmações abaixo assinalando ( V para

Leia mais

Lista de Exercícios nº 3 - Parte IV

Lista de Exercícios nº 3 - Parte IV DISCIPLINA: SE503 TEORIA MACROECONOMIA 01/09/011 Prof. João Basilio Pereima Neo E-mail: joaobasilio@ufpr.com.br Lisa de Exercícios nº 3 - Pare IV 1ª Quesão (...) ª Quesão Considere um modelo algébrico

Leia mais

MT DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM. Misturas betuminosas determinação do módulo de resiliência

MT DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM. Misturas betuminosas determinação do módulo de resiliência Méodo de Ensaio Página 1 de 5 RESUMO Ese documeno, que é uma norma écnica, esabelece o méodo para deerminar o módulo de resiliência de misuras beuminosas, de uilidade para projeo de pavimenos flexíveis.

Leia mais

Resumo. Sinais e Sistemas Sistemas Lineares e Invariantes no Tempo. Resposta ao Impulso. Representação de Sequências

Resumo. Sinais e Sistemas Sistemas Lineares e Invariantes no Tempo. Resposta ao Impulso. Representação de Sequências Resumo Sinais e Sistemas Sistemas Lineares e Invariantes no Tempo lco@ist.utl.pt Instituto Superior Técnico SLITs discretos. O somatório de convolução. SLITs contínuos. A convolução contínua. Propriedades

Leia mais

REPRESENTAÇÃO DE SISTEMAS NO DOMÍNIO Z. n +

REPRESENTAÇÃO DE SISTEMAS NO DOMÍNIO Z. n + REPRESETAÇÃO DE SISTEMAS O DOMÍIO Z [ ] x h y h h n RC RC RC X H Y Y H X R R n h n h Z H < < + : ) ( ) ( ) ( ) ( ) ( ) ( ; ) ( ) ( ) ( Função de Sistema : FUÇÃO DE SISTEMA A PARTIR DA REPRESETAÇÃO POR

Leia mais

Confiabilidade e Taxa de Falhas

Confiabilidade e Taxa de Falhas Prof. Lorí Viali, Dr. hp://www.pucrs.br/fama/viali/ viali@pucrs.br Definição A confiabilidade é a probabilidade de que de um sisema, equipameno ou componene desempenhe a função para o qual foi projeado

Leia mais

CORREIOS. Prof. Sérgio Altenfelder

CORREIOS. Prof. Sérgio Altenfelder 15. Uma pessoa preende medir a alura de um edifício baseado no amanho de sua sombra projeada ao solo. Sabendo-se que a pessoa em 1,70m de alura e as sombras do edifício e da pessoa medem 20m e 20cm respecivamene,

Leia mais

Sinais e Sistemas. Env. CS1 Ground Revolute. Sine Wave Joint Actuator. Double Pendulum Two coupled planar pendulums with

Sinais e Sistemas. Env. CS1 Ground Revolute. Sine Wave Joint Actuator. Double Pendulum Two coupled planar pendulums with -4-6 -8-0 - -4-6 -8-30 -3 Frequec Hz Hammig aiser Chebshev Faculdade de Egeharia iais e isemas Power pecral Desi Ev B F C C B F C Groud Revolue Bod Revolue Bod Power/frequec db/hz ie Wave Joi Acuaor Joi

Leia mais

Problema Inversor CMOS

Problema Inversor CMOS Problema nersor CMS NMS: V = ol K = 30 μa/v PMS: V = ol K = 30 μa/v A figura represena um inersor CMS em que os dois ransísores apresenam caracerísicas siméricas A ensão de alimenação ale V =5 ol ) Sabendo

Leia mais

Análise e Processamento de Bio-Sinais Mestrado Integrado em Engenharia Biomédica. Sinais e Sistemas Licenciatura em Engenharia Física

Análise e Processamento de Bio-Sinais Mestrado Integrado em Engenharia Biomédica. Sinais e Sistemas Licenciatura em Engenharia Física Análise e Processameno e Bio-Sinais Mesrao Inegrao em Engenaria Bioméica Sinais e Sisemas Licenciara em Engenaria Física Deparameno e Engenaria Elecroécnica e Compaores Faclae e Ciências e Tecnologia Universiae

Leia mais

Sistemas e Sinais. Universidade Federal do Rio Grande do Sul Departamento de Engenharia Elétrica

Sistemas e Sinais. Universidade Federal do Rio Grande do Sul Departamento de Engenharia Elétrica Aplicações de Filtros Para extrair o conteúdo de informação fundamental de um sinal é necessário um dispositivo que selecione as frequências de interesse que compõe o sinal. Este dispositivo é denominando

Leia mais

Transformada de Laplace. Transformada de Laplace

Transformada de Laplace. Transformada de Laplace A generalização da representação por senóides complexas de um sinal de tempo contínuo fornecida pela Transformada de Fourier é realizada em termos de sinais exponenciais complexos pela. A Transformada

Leia mais

Aula 05 Transformadas de Laplace

Aula 05 Transformadas de Laplace Aula 05 Transformadas de Laplace Pierre Simon Laplace (1749-1827) As Transformadas de Laplace apresentam uma representação de sinais no domínio da frequência em função de uma variável s que é um número

Leia mais

Aula 4 Respostas de um SLIT

Aula 4 Respostas de um SLIT Aula 4 Respostas de um SLIT Introdução Características de um SLIT Resposta ao degrau unitário Resposta a entrada nula Resposta total A convolução entre dois sinais de tempo contínuo x(t) e h(t) é dada

Leia mais

MATEMÁTICA E SUAS TECNOLOGIAS

MATEMÁTICA E SUAS TECNOLOGIAS 1º SIMULADO ENEM 017 Resposa da quesão 1: MATEMÁTICA E SUAS TECNOLOGIAS Basa aplicar a combinação de see espores agrupados dois a dois, logo: 7! C7,!(7 )! 7 6 5! C7,!5! 7 6 5! C7, 1!5! Resposa da quesão

Leia mais

Observação: No próximo documento veremos como escrever a solução de um sistema escalonado que possui mais incógnitas que equações.

Observação: No próximo documento veremos como escrever a solução de um sistema escalonado que possui mais incógnitas que equações. .. Sisemas Escalonados Os sisemas abaio são escalonados: 7 Veja as maries associadas a esses sisemas: 7 Podemos associar o nome "escalonado" com as maries ao "escalar" os eros ou energar a "escada" de

Leia mais

INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas.

INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas. SIMULADO DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - JULHO DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES de 0 a

Leia mais

Introdução ao estudo de Circuitos Lineares, Invariantes, Dinâmicos e de Parâmetros Concentrados usando o. Modelo de Estado. Análise de Circuitos

Introdução ao estudo de Circuitos Lineares, Invariantes, Dinâmicos e de Parâmetros Concentrados usando o. Modelo de Estado. Análise de Circuitos Inrodução ao esudo de ircuios Lineares, Invarianes, Dinâmicos e de Parâmeros oncenrados usando o Modelo de Esado Análise de ircuios ircuios Elecrónicos das Telecomunicações ircuios Lineares e Não-Lineares

Leia mais

Sinais e Sistemas. Tempo para Sistemas Lineares Invariantes no Tempo. Representações em Domínio do. Profª Sandra Mara Torres Müller.

Sinais e Sistemas. Tempo para Sistemas Lineares Invariantes no Tempo. Representações em Domínio do. Profª Sandra Mara Torres Müller. Sinais e Sistemas Representações em Domínio do Tempo para Sistemas Lineares Invariantes no Tempo Profª Sandra Mara Torres Müller Aula 7 Representações em Domínio do Tempo para Sistemas Lineares e Invariantes

Leia mais

Aula 15 Propriedades da TFD

Aula 15 Propriedades da TFD Processamento Digital de Sinais Aula 5 Professor Marcio Eisencraft abril 0 Aula 5 Propriedades da TFD Bibliografia OPPENHEIM, A. V.; SCHAFER. Discrete-time signal processing, 3rd. ed., Prentice-Hall, 00.

Leia mais

Processamento de Sinal

Processamento de Sinal APSI - Processameno de Sinal 1 Processameno de Sinal Conceios Méodos e Aplicações Teo Tuorial da Disciplina: APSI - LEEC J.P. Marques de Sá jmsa@e.up.p Faculdade de Engenharia da Universidade do Poro 001

Leia mais

Capítulo 3 Derivada. 3.1 Reta Tangente e Taxa de Variação

Capítulo 3 Derivada. 3.1 Reta Tangente e Taxa de Variação Inrodução ao Cálculo Capíulo Derivada.1 Rea Tangene e Taxa de Variação Exemplo nr. 1 - Uma parícula caminha sobre uma rajeória qualquer obedecendo à função horária: s() 5 + (s em meros, em segundos) a)

Leia mais

ANÁLISE MATEMÁTICA IV LEEC SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS EDO S. disponível em

ANÁLISE MATEMÁTICA IV LEEC SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS EDO S. disponível em Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualiação: //003 ANÁLISE MATEMÁTICA IV LEEC RESOLUÇÃO DA FICHA 3 SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS

Leia mais

Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Faculdade de Ciência e Tecnologia de Montes Claros. Fundação Educacional Montes Claros

Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Faculdade de Ciência e Tecnologia de Montes Claros. Fundação Educacional Montes Claros Sinais e Sistemas Série de Fourier Renato Dourado Maia Faculdade de Ciência e ecnologia de Montes Claros Fundação Educacional Montes Claros Convergência da Um sinal periódico contínuo possui uma representação

Leia mais

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL Movimeno unidimensional 5 MOVIMENTO UNIDIMENSIONAL. Inrodução Denre os vários movimenos que iremos esudar, o movimeno unidimensional é o mais simples, já que odas as grandezas veoriais que descrevem o

Leia mais

Resumo. Sinais e Sistemas Transformada Z. Introdução. Transformada Z Bilateral

Resumo. Sinais e Sistemas Transformada Z. Introdução. Transformada Z Bilateral Resumo Sinis e Sistems Trnsformd Luís Clds de Oliveir lco@istutlpt Instituto Superior Técnico Definição Região de convergênci Trnsformd invers Proprieddes d trnsformd Avlição geométric d DTFT Crcterição

Leia mais

Duas opções de trajetos para André e Bianca. Percurso 1( Sangiovanni tendo sorteado cara e os dois se encontrando no ponto C): P(A) =

Duas opções de trajetos para André e Bianca. Percurso 1( Sangiovanni tendo sorteado cara e os dois se encontrando no ponto C): P(A) = RESOLUÇÃO 1 A AVALIAÇÃO UNIDADE II -016 COLÉGIO ANCHIETA-BA PROFA. MARIA ANTÔNIA C. GOUVEIA ELABORAÇÃO e PESQUISA: PROF. ADRIANO CARIBÉ e WALTER PORTO. QUESTÃO 01. Três saélies compleam suas respecivas

Leia mais

Cap. 5 - Tiristores 1

Cap. 5 - Tiristores 1 Cap. 5 - Tirisores 1 Tirisor é a designação genérica para disposiivos que êm a caracerísica esacionária ensão- -correne com duas zonas no 1º quadrane. Numa primeira zona (zona 1) as correnes são baixas,

Leia mais

Exercícios Sobre Oscilações, Bifurcações e Caos

Exercícios Sobre Oscilações, Bifurcações e Caos Exercícios Sobre Oscilações, Bifurcações e Caos Os ponos de equilíbrio de um modelo esão localizados onde o gráfico de + versus cora a rea definida pela equação +, cuja inclinação é (pois forma um ângulo

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031 Universidade Federal do io Grande do Sul Escola de Engenharia de Poro Alegre Deparameno de Engenharia Elérica ANÁLISE DE CICUITOS II - ENG43 Aula 5 - Condições Iniciais e Finais de Carga e Descarga em

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar Progressão Ariméica e Progressão Geomérica. (Pucrj 0) Os números a x, a x e a x esão em PA. A soma dos números é igual a: a) 8 b) c) 7 d) e) 0. (Fuves 0) Dadas as sequências an n n, n n cn an an b, e b

Leia mais

5.1 Objectivos. Caracterizar os métodos de detecção de valor eficaz.

5.1 Objectivos. Caracterizar os métodos de detecção de valor eficaz. 5. PRINCÍPIOS DE MEDIÇÃO DE CORRENE, ENSÃO, POÊNCIA E ENERGIA 5. Objecivos Caracerizar os méodos de deecção de valor eficaz. Caracerizar os méodos de medição de poência e energia em correne conínua, correne

Leia mais

Função Exponencial 2013

Função Exponencial 2013 Função Exponencial 1 1. (Uerj 1) Um imóvel perde 6% do valor de venda a cada dois anos. O valor V() desse imóvel em anos pode ser obido por meio da fórmula a seguir, na qual V corresponde ao seu valor

Leia mais

Filtros Digitais 1 FILTROS DIGITAIS (5.1) y = A. x B. y. onde A = C / D e B = D / D

Filtros Digitais 1 FILTROS DIGITAIS (5.1) y = A. x B. y. onde A = C / D e B = D / D Filtros Digitais FILTROS DIGITAIS Um filtro digital é um sistema temporal discreto projetado para passar o conteúdo espectral de um sinal de entrada em uma determinada banda de freqüências [DEF 88],isto

Leia mais

Resumo. Sinais e Sistemas Transformada Z. Introdução. Transformada Z Bilateral

Resumo. Sinais e Sistemas Transformada Z. Introdução. Transformada Z Bilateral Resumo Sinis e Sistems Trnsformd lco@ist.utl.pt Instituto Superior Técnico Definição Região de convergênci Trnsformd invers Proprieddes d trnsformd Avlição geométric d DTFT Crcterição de SLITs usndo trnsformd.

Leia mais

Sinais e Sistemas p.1/33

Sinais e Sistemas p.1/33 Resumo Sinais e Sistemas Transformada de Fourier de Sinais Contínuos lco@ist.utl.pt Representação de sinais aperiódicos Transformada de Fourier de sinais periódicos Propriedades da transformada de Fourier

Leia mais

ARNALDO CARLOS MÜLLER JUNIOR INTEGRAÇÃO DA EQUAÇÃO DE MOVIMENTO ATRAVÉS DA TRANSFORMADA DE FOURIER COM O USO DE PONDERADORES DE ORDEM ELEVADA

ARNALDO CARLOS MÜLLER JUNIOR INTEGRAÇÃO DA EQUAÇÃO DE MOVIMENTO ATRAVÉS DA TRANSFORMADA DE FOURIER COM O USO DE PONDERADORES DE ORDEM ELEVADA ARNALDO CARLOS MÜLLER JUNIOR INTEGRAÇÃO DA EQUAÇÃO DE MOVIMENTO ATRAVÉS DA TRANSFORMADA DE FOURIER COM O USO DE ONDERADORES DE ORDEM ELEVADA Disseração apresenada à Escola de Engenharia de São Carlos da

Leia mais

ANÁLISE DE SINAIS DINÂMICOS

ANÁLISE DE SINAIS DINÂMICOS ANÁLISE DE SINAIS DINÂMICOS Paulo S. Varoto 7 . - Classificação de Sinais Sinais dinâmicos são geralmente classificados como deterministicos e aleatórios, como mostra a figura abaixo: Periódicos Determinísticos

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar . (Pucrj 0) Os números a x, a x e a3 x 3 esão em PA. A soma dos 3 números é igual a: é igual a e o raio de cada semicírculo é igual à meade do semicírculo anerior, o comprimeno da espiral é igual a a)

Leia mais

Lista de Exercícios n o.1. 1) O diodo do circuito da Fig. 1(a) se comporta segundo a característica linearizada por partes da Fig 1(b). I D (ma) Fig.

Lista de Exercícios n o.1. 1) O diodo do circuito da Fig. 1(a) se comporta segundo a característica linearizada por partes da Fig 1(b). I D (ma) Fig. Universidade Federal da Bahia EE isposiivos Semiconduores ENG C41 Lisa de Exercícios n o.1 1) O diodo do circuio da Fig. 1 se compora segundo a caracerísica linearizada por pares da Fig 1. R R (ma) 2R

Leia mais

Funções vetoriais. I) Funções vetoriais a valores reais:

Funções vetoriais. I) Funções vetoriais a valores reais: Funções veoriais I) Funções veoriais a valores reais: f: I R f() R (f 1 n (), f (),..., f n ()) I = inervalo da rea real denominada domínio da função veorial f = {conjuno de odos os valores possíveis de,

Leia mais

Técnicas de Desenho de Filtros Digitais

Técnicas de Desenho de Filtros Digitais Técnicas de Desenho de Filtros Digitais Luís Caldas de Oliveira lco@istutlpt Instituto Superior Técnico Técnicas de Desenho de Filtros Digitais p1/38 Resumo Desenho de filtros discretos com base em filtros

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tarefa de revisão nº 17 1. Uma empresa lançou um produo no mercado. Esudos efecuados permiiram concluir que a evolução do preço se aproxima do seguine modelo maemáico: 7 se 0 1 p() =, p em euros e em anos.

Leia mais

Análise de Pós-optimização e de Sensibilidade

Análise de Pós-optimização e de Sensibilidade CPÍULO nálise de Pós-opimização e de Sensibilidade. Inrodução Uma das arefas mais delicadas no desenvolvimeno práico dos modelos de PL, relaciona-se com a obenção de esimaivas credíveis para os parâmeros

Leia mais

Projeto de Filtros Não-Recursivos (FIR)

Projeto de Filtros Não-Recursivos (FIR) p.1/81 Projeto de Filtros Não-Recursivos (FIR) Eduardo Mendes emmendes@cpdee.ufmg.br Departamento de Engenharia Eletrônica Universidade Federal de Minas Gerais Av. Antônio Carlos 6627, Belo Horizonte,

Leia mais

Trabalho de Processamento Digital de Sinais usando MATLAB R

Trabalho de Processamento Digital de Sinais usando MATLAB R Trabalho de Processamento Digital de Sinais usando MATLAB R Prof. Marcelo de Oliveira Rosa Universidade Federal do Paraná 21 de maio de 2007 1 Introdução Este trabalho permitirá que o aluno realize operações

Leia mais

Porto Alegre, 14 de novembro de 2002

Porto Alegre, 14 de novembro de 2002 Poro Alegre, 14 de novembro de 2002 Aula 6 de Relaividade e Cosmologia Horácio Doori 1.12- O paradoo dos gêmeos 1.12.1- Sisemas Inerciais (observadores) com velocidades diversas vêem a disância emporal

Leia mais

P2 - PROVA DE QUÍMICA GERAL - 07/05/05

P2 - PROVA DE QUÍMICA GERAL - 07/05/05 P - PROVA DE QUÍMICA GERAL - 07/05/05 Nome: Nº de Marícula: Gabario Turma: Assinaura: Quesão Valor Grau Revisão a,0 a,0 3 a,0 4 a,0 5 a,0 Toal 0,0 Consanes: R 8,34 J mol - K - R 0,08 am L mol - K - am

Leia mais

Voo Nivelado - Avião a Hélice

Voo Nivelado - Avião a Hélice - Avião a Hélice 763 º Ano da icenciaura em ngenharia Aeronáuica edro. Gamboa - 008. oo de ruzeiro De modo a prosseguir o esudo analíico do desempenho, é conveniene separar as aeronaves por ipo de moor

Leia mais

Capítulo 6 Filtragem, Amostragem e Reconstrução

Capítulo 6 Filtragem, Amostragem e Reconstrução Capítulo 6 Filtragem, Amostragem e Reconstrução 6. Filtragem 6.2 Amostragem e reconstrução de sinais Capítulo 6 Filtragem, Amostragem e Reconstrução 6. Filtragem 6.2 Amostragem e reconstrução de sinais

Leia mais

Transformada Rápida de Fourier (FFT)

Transformada Rápida de Fourier (FFT) Transformada Rápida de Fourier (FFT) A FFT é um algoritmo eficiente para calcular a DFT A DFT de uma sequência x n de comprimento finito N é definida como: N 1 N 1 X k = x n e j2π N kn = x n W N kn, 0

Leia mais

Processamento Digital de Sinais

Processamento Digital de Sinais Processamento Digital de Sinais Carlos Alexandre Mello Carlos Alexandre Mello cabm@cin.ufpe.br 1 Sinais Digitais Um sinal pode ser entendido como uma função que carrega uma informação Sinal de voz O sinal

Leia mais

Modelos de Crescimento Endógeno de 1ªgeração

Modelos de Crescimento Endógeno de 1ªgeração Teorias do Crescimeno Económico Mesrado de Economia Modelos de Crescimeno Endógeno de 1ªgeração Inrodução A primeira geração de modelos de crescimeno endógeno ena endogeneiar a axa de crescimeno de SSG

Leia mais

Física e Química A 11.º Ano N.º 2 - Movimentos

Física e Química A 11.º Ano N.º 2 - Movimentos Física e Química A 11.º Ano N.º 2 - Moimenos 1. Uma parícula P 1 descree uma rajecória circular, de raio 1,0 m, parindo da posição A no senido indicado na figura 1 (a). fig. 1 Uma oura parícula P 2 descree

Leia mais