Cap. 5 - Tiristores 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Cap. 5 - Tiristores 1"

Transcrição

1 Cap. 5 - Tirisores 1 Tirisor é a designação genérica para disposiivos que êm a caracerísica esacionária ensão- -correne com duas zonas no 1º quadrane. Numa primeira zona (zona 1) as correnes são baixas, podendo as ensões ser elevadas. O disposiivo esá bloqueado. Na segunda zona (zona 2) as ensões são baixas e as correnes podem ser elevadas. O irisor esá em condução. Nesse senido o irisor pode ser omado como um inerrupor elecrónico. A ransição 1 2 é insável. A ensão para a qual se dá a ransição 1 2 chama-se ensão de báscula. A correne L para a qual se inicia o esado de condução, designa-se por correne de fecho. A maneira de volar para a zona 1 parindo da zona 2 consise em baixar a correne aé H, correne de manuenção, que é próxima de zero e inferior à correne L. As ransições 1 2 e 2 1 fazem-se por percursos diferenes, pelo que o sisema apresena hiserese. Na lisa de problemas proposos e resolvidos são calculadas as evoluções emporais da correne, ensão e/ou poência ao longo de um período em vários ponos de um circuio consiuído basicamene por uma fone, um irisor e uma carga. eralmene assume-se para o

2 Cap. 5 - Tirisores 2 irisor a caracerísica ideal, ou seja, um curo-circuio quando em esado de condução, ou um circuio abero, quando bloqueado (T1 a T3). Esa aproximação é geralmene uma boa aproximação dados os valores geralmene associados para as correnes e ensões em presença. No enano ouros modelos podem ser uilizados (T4). No problema T5 são usados dois díodos de 4 camadas em paralelo cosas com cosas. A siuação em um cero paralelismo com o que se passa num TAC. No problema T6 apresena-se um exemplo do TO.

3 Cap. 5 - Tirisores 3 Problema T1 Considerar o circuio represenado na Fig. 1, que inclui um SC. epresenar graficamene a poência P() posa em jogo na resisência, durane um período da ensão. Considerar que o período T é suficienemene longo para que seja válida a aproximação quase esacionária. Para o irisor desprezar as correnes inversas e direcas correspondenes ao esado bloqueado e as ensões direcas correspondenes ao esado de condução. = 10 kω A T/2 T (ma) T/2 T = 2 ma = 200 V disr = 650 V = 300 V - Fig. 1 -

4 Cap. 5 - Tirisores 4 esolução A = A 2 P P = 2 2 T/2 T A passagem do irisor do esado de bloqueado ao de condução dá-se quando é aingida a ensão de báscula ( ) A =, ou seja no insane = T /3. A passagem do esado de condução ao esado bloqueado dá-se quando a correne do irisor passa pelo zero, ou seja no insane = T /2.

5 Cap. 5 - Tirisores 5 Problema T2 O circuio da figura coném um irisor com as seguines caracerísicas: = 300 V para = 0; = 30 ma = 0 V para 3 ma; = 0 = 500 V disr epresenar graficamene (), calculando o valor de sempre que haja aleração da zona de funcionameno do irisor, nos casos seguines: a) indicado na figura; b) idenicamene nulo. H H u = sen( ) ω 1 /2 1 = 400 V = 10 kω 4 ma esolução a) A passagem do irisor ao esado de condução dá-se quando se ainge a ensão de báscula. Dese modo, quando = 0, o irisor esá sempre bloqueado uma vez que < ; quando = 4 ma o irisor passa ao esado de condução uma vez que se em simulaneamene > e 1 H = >.

6 Cap. 5 - Tirisores 6 A ransição condução/bloqueado dá-se quando a correne passa a ser inferior a H, ou seja, no insane = T 2. /2 A T/2 T Off/On ω A =π 6 On/Off ω =π 2 / T/2 T b) Se for idenicamene nulo a ransição bloqueado/condução dá-se quando é aingida a ensão de báscula = 300 V. A ransição condução/bloqueado dá-se quando a correne oma valores abaixo de, ou seja, quando no meio ciclo posiivo, 300 = = V. H / 1 3/4 / 1 T/2 T A Ou seja, o insane em que o irisor passa ao esado de condução é A, com ω = ( ) O insane em que o irisor passa ao esado de bloqueado é, al que ω =π ω A. A arsen 3 4.

7 Cap. 5 - Tirisores 7 Problema T3 O circuio da figura (a) coném um irisor com as seguines caracerísicas: = 400 V para = 0 ; = 30 ma ; = 0 para 5mA;H= 0; = 500 V disr a) Admiir a evolução emporal de dada na figura (c). epresenar graficamene H em função do empo para a ensão indicada na figura (b) e ainda para o caso em que a ensão enha um valor consane e igual a aproximações feias. a parir do insane inicial. Jusificar as b) Se a resisência passar a er o valor de 20 kω indicar, jusificadamene, quais as alerações nos gráficos raçados em a). c) Que condições deve impor ao impulso de gae para que as soluções apresenadas em a) e b) sejam válidas? = 200 Ω ( ) = sen ω = 100 V; ω= 2 π f ; f = 50 Hz u (b) T/2 T (ma) (a) (c) 10

8 Cap. 5 - Tirisores 8 esolução a) T/4 T/2 (a1) T/4 (a2) A ransição bloqueado/condução dá-se quando é aingida a ensão de báscula, o que só aconece quando se aplica o impulso de gae (para o qual a ensão de báscula é nula), ou seja no insane = T 4. A ransição condução/bloqueado dá-se quando a ensão de enrada passa a negaiva, o que não aconece no caso em que a ensão de enrada apresena o valor consane ( caso (a2)). b) Se a resisência for de 20 kω o gráfico de não se alera para o caso (a1). Em relação ao caso (a2), após a passagem ao esado de condução a correne é dada por = 5mAe não por 500 ma como em a). Nessas condições a passagem ao esado de condução só será possível se H. Enquano durar o impulso de gae, H o irisor esará a conduzir; quando desaparece o impulso de gae a correne anódica orna-se menor que o valor de H (30 ma) e o irisor bloqueia. T/4 3T/4 T

9 Cap. 5 - Tirisores 9 c) Para que o raciocínio apresenado em a) e b) seja válido é necessário que o impulso de gae acue durane o meio ciclo-posiivo da onda de enrada, no caso desa ser sinusoidal, e que a duração do impulso permia a efecivação complea da ransição bloqueado/condução, ou seja, que seja pelo menos igual ao empo de ligação do irisor (urn on, na designação anglo-saxónica).

10 Cap. 5 - Tirisores 10 Problema T4 Considere o circuio da figura em que o irisor em a caracerísica ensão-correne apresenada. Para uma ensão de enrada = sin ω com = 300 V e = 1 kω, represene a variação no empo de e, calculando os valores caracerísicos. Coordenadas dos ponos P, Q e no plano ( ) a a, : P(200; 1); Q(2,5 ;0, 4);( 200 ;0). a (a) (ma) -200 Q P 2,5 200 a (V) esolução Designemos por 1 o insane em que a ensão a = = 200V. Nesse insane a ensão de enrada é igual a ( ) 1 = a + = = 201 V. O insane 1, corresponde ao insane em que o irisor passa do esado bloqueado para o esado de condução. É obido de ω 1 = arcsin ( 200 / 300 ). No inervalo de empo 0 < < 1 o irisor é equivalene a uma resisência de valor T =200k Ω. O circuio é um divisor de ensão e, porano, ( ) ( ) / ( ) () = ()( + ), com ( ) ( ) / T a V; 1 1mA. a = T + T e = = = A correne e a ensão no irisor manêm a forma da onda de enrada, ou seja, de variação sinusoidal no empo. Designemos por 2 o insane em que a correne = 0, 4 ma, ou seja, o valor no pono Q da caracerísica. Corresponde ao insane em que o irisor sai do esado de condução e bloqueia. Nesse insane a ensão de enrada é igual a ( ) 2 arcsin ( 2,9 / 300 ) / 2, 2 = a + = 2,5 + 0, 4 = 2,9 V. É obido de ω = π ou seja, 2 T /2. No inervalo de empo 1 < < 2 o irisor é

11 Cap. 5 - Tirisores 11 equivalene a uma fone de ensão de valor a = 2,5 V. A correne no circuio é assim dada por () ( () ) = 2,5 /, e mais uma vez maném a forma de onda da ensão de enrada. Como ponos noáveis da curva da evolução emporal de correne são de assinalar: + + ( ) ( ) 1 = 1 2,5 / = 198,5mA; ( T / 4) ( 300 2,5 ) / 297,5mA; = = ( ) 2 = 0, 4 ma. No meio ciclo negaivo e aé enrar em disrupção, o irisor compora-se como um circuio abero, e porano () = 0; a () = (). Corresponde aos inervalos de empo T /2< < 3 e 4 T, < < onde arcsin ( 200 / 300 ); arcsin ( 200 / 300) ω = ω = com ω 3 < 3 T /4 e 3 4 ω 4 > 3 T /4. Verifica-se por razões de Trigonomeria que ω3 T /2 = T ω 4. Finalmene, no inervalo 3 < < 4, o irisor esá na disrupção e, porano, compora-se como uma fone de ensão de valor -200V, ou seja, ( ) a ( ) = 200 V e ( ) = /. Como ponos noáveis emos: (3 T / 4) = 100 ma. Nese inervalo de empo a forma de onda da correne é a mesma que a forma de onda da ensão de enrada, ou seja, de variação emporal sinusoidal. É de referir que os resulados obidos não se afasariam muio dos que eriam sido obidos se usássemos um modelo ideal para o irisor (curo-circuio na condução, e circuio abero quando bloqueado). a T/4 T/2 disr 297, 5 198, 5 100

12 Cap. 5 - Tirisores 12 Problema T5 Considere o circuio da figura onde os díodos de quaro camadas apresenam a 300K os valores caracerísicos: = 50 V; AKdisr = 150V. Na caracerísica esacionária () dos irísores despreze a queda de ensão direca no esado de condução e as correnes no esado bloqueado. Esboce jusificadamene um período das variações emporais da correne em 1 e da ensão V 0 quando Vi () = 100sin ω [ V] com f =ω/ ( 2π ) = 50Hz, indicando odos os ponos noáveis das curvas obidas. Dados do circuio: 1 = 2 = 5 kω V i A k T 1 T 2 k A V 0 esolução Designemos por 1 o insane em que a ensão AK1 = = 50 V. No inervalo 0 < < 1 os irisores 1 e 2 esão bloqueados. A correne em 1 é nula e a ensão de saída é igual à ensão de enrada V () = V () 0 i. O insane 1, corresponde ao insane em que o irisor 1 passa do esado bloqueado para o esado de condução. A ensão de enrada é igual a 50 V. O irisor 2 maném-se bloqueado. A correne em 1 é dada pela correne que passa no divisor de ensão consiuído pela série de resisências 1 e 2. Esa siuação maném-se durane o inervalo 1 < < T /2, para o qual () = ()( / + ) e V () = V ( ) ( + ) = V ( ) 1 Vi i 2/ 1 2 i /2. No meio ciclo negaivo da ensão de enrada rocam-se os papéis dos irisores 1 e 2. No inervalo de empo T /2 < < 2 = T /2+ 1 os irisores 1 e 2 esão bloqueados, a correne em é nula e a ensão de saída é igual à ensão de enrada V ( ) = V ( ) 1 0 i. O insane 2, corresponde ao insane em que o irisor 2 passa do esado bloqueado para o esado de condução. A ensão de enrada é igual a -50 V. O irisor 1 maném-se bloqueado. A correne em 1 é dada pela correne que passa no divisor de ensão consiuído pela série de resisências 1 e 2. Esa siuação maném-se durane o inervalo 2 < < T, para o qual () = ()( / + ) e V () = V ( ) 1 Vi i /2.

13 Cap. 5 - Tirisores 13 V i (V) V 0 (V) (ma)

2. DÍODOS DE JUNÇÃO. Dispositivo de dois terminais, passivo e não-linear

2. DÍODOS DE JUNÇÃO. Dispositivo de dois terminais, passivo e não-linear 2. ÍOOS E JUNÇÃO Fernando Gonçalves nsiuo Superior Técnico Teoria dos Circuios e Fundamenos de Elecrónica - 2004/2005 íodo de Junção isposiivo de dois erminais, passivo e não-linear Foografia ânodo Símbolo

Leia mais

Diodos. Símbolo. Função (ideal) Conduzir corrente elétrica somente em um sentido. Tópico : Revisão dos modelos Diodos e Transistores

Diodos. Símbolo. Função (ideal) Conduzir corrente elétrica somente em um sentido. Tópico : Revisão dos modelos Diodos e Transistores 1 Tópico : evisão dos modelos Diodos e Transisores Diodos Símbolo O mais simples dos disposiivos semiconduores. Função (ideal) Conduzir correne elérica somene em um senido. Circuio abero Polarização 2

Leia mais

ELECTRÓNICA DE POTÊNCIA II

ELECTRÓNICA DE POTÊNCIA II E.N.I.D.H. Deparameno de Radioecnia APONTAMENTOS DE ELECTRÓNICA DE POTÊNCIA II (Capíulo 2) José Manuel Dores Cosa 2000 42 ÍNDICE Inrodução... 44 CAPÍTULO 2... 45 CONVERSORES COMUTADOS DE CORRENTE CONTÍNUA...

Leia mais

MODULAÇÃO. Modulação. AM Amplitude Modulation Modulação por amplitude 24/02/2015

MODULAÇÃO. Modulação. AM Amplitude Modulation Modulação por amplitude 24/02/2015 ODUAÇÃO... PW DIGITA odulação odulação éamodificaçãoinencional e conrolada de um sinal original oalmene conhecido por meio de um ouro sinal, que se deseja ransporar. Esa modificação permie o ranspore do

Leia mais

Física. Física Módulo 1

Física. Física Módulo 1 Física Módulo 1 Nesa aula... Movimeno em uma dimensão Aceleração e ouras coisinhas O cálculo de x() a parir de v() v( ) = dx( ) d e x( ) x v( ) d = A velocidade é obida derivando-se a posição em relação

Leia mais

EXPERIÊNCIA 7 CONSTANTE DE TEMPO EM CIRCUITOS RC

EXPERIÊNCIA 7 CONSTANTE DE TEMPO EM CIRCUITOS RC EXPERIÊNIA 7 ONSTANTE DE TEMPO EM IRUITOS R I - OBJETIVO: Medida da consane de empo em um circuio capaciivo. Medida da resisência inerna de um volímero e da capaciância de um circuio aravés da consane

Leia mais

Análise de Circuitos Dinâmicos no Domínio do Tempo

Análise de Circuitos Dinâmicos no Domínio do Tempo Teoria dos ircuios e Fundamenos de Elecrónica Análise de ircuios Dinâmicos no Domínio do Tempo Teresa Mendes de Almeida TeresaMAlmeida@is.ul.p DEE Área ienífica de Elecrónica T.M.Almeida IST-DEE- AElecrónica

Leia mais

Aula 1. Atividades. Para as questões dessa aula, podem ser úteis as seguintes relações:

Aula 1. Atividades. Para as questões dessa aula, podem ser úteis as seguintes relações: Aula 1 Para as quesões dessa aula, podem ser úeis as seguines relações: 1. E c = P = d = m. v E m V E P = m. g. h cos = sen = g = Aividades Z = V caeo adjacene hipoenusa caeo oposo hipoenusa caeo oposo

Leia mais

Figura 1 Carga de um circuito RC série

Figura 1 Carga de um circuito RC série ASSOIAÇÃO EDUAIONAL DOM BOSO FAULDADE DE ENGENHAIA DE ESENDE ENGENHAIA ELÉTIA ELETÔNIA Disciplina: Laboraório de ircuios Eléricos orrene onínua 1. Objeivo Sempre que um capacior é carregado ou descarregado

Leia mais

CAPÍTULO 9. y(t). y Medidor. Figura 9.1: Controlador Analógico

CAPÍTULO 9. y(t). y Medidor. Figura 9.1: Controlador Analógico 146 CAPÍULO 9 Inrodução ao Conrole Discreo 9.1 Inrodução Os sisemas de conrole esudados aé ese pono envolvem conroladores analógicos, que produzem sinais de conrole conínuos no empo a parir de sinais da

Leia mais

Ampliador com estágio de saída classe AB

Ampliador com estágio de saída classe AB Ampliador com eságio de saída classe AB - Inrodução Nese laboraório será esudado um ampliador com rês eságios empregando ransisores bipolares, com aplicação na faixa de áudio freqüência. O eságio de enrada

Leia mais

ENGENHARIA ECONÔMICA AVANÇADA

ENGENHARIA ECONÔMICA AVANÇADA ENGENHARIA ECONÔMICA AVANÇADA TÓPICOS AVANÇADOS MATERIAL DE APOIO ÁLVARO GEHLEN DE LEÃO gehleao@pucrs.br 55 5 Avaliação Econômica de Projeos de Invesimeno Nas próximas seções serão apresenados os principais

Leia mais

Resumo. Sinais e Sistemas Sinais e Sistemas. Sinal em Tempo Contínuo. Sinal Acústico

Resumo. Sinais e Sistemas Sinais e Sistemas. Sinal em Tempo Contínuo. Sinal Acústico Resumo Sinais e Sisemas Sinais e Sisemas lco@is.ul.p Sinais de empo conínuo e discreo Transformações da variável independene Sinais básicos: impulso, escalão e exponencial. Sisemas conínuos e discreos

Leia mais

Curso de Modulação Digital de Sinais (parte 1)

Curso de Modulação Digital de Sinais (parte 1) Curso de Modulação Digial de Sinais (pare ) Márcio Anônio Mahias Auguso Carlos Pavão IMT Insiuo Mauá de Tecnologia. O que é modulação O processo de modulação pode ser definido como a ransformação de um

Leia mais

Prof. Luiz Marcelo Chiesse da Silva DIODOS

Prof. Luiz Marcelo Chiesse da Silva DIODOS DODOS 1.JUÇÃO Os crisais semiconduores, ano do ipo como do ipo, não são bons conduores, mas ao ransferirmos energia a um deses ipos de crisal, uma pequena correne elérica aparece. A finalidade práica não

Leia mais

Telefonia Digital: Modulação por código de Pulso

Telefonia Digital: Modulação por código de Pulso MINISTÉRIO DA EDUCAÇÃO Unidade de São José Telefonia Digial: Modulação por código de Pulso Curso écnico em Telecomunicações Marcos Moecke São José - SC, 2004 SUMÁRIO. MODULAÇÃO POR CÓDIGO DE PULSO....

Leia mais

Estando o capacitor inicialmente descarregado, o gráfico que representa a corrente i no circuito após o fechamento da chave S é:

Estando o capacitor inicialmente descarregado, o gráfico que representa a corrente i no circuito após o fechamento da chave S é: PROCESSO SELETIVO 27 2 O DIA GABARITO 1 13 FÍSICA QUESTÕES DE 31 A 45 31. Considere o circuio mosrado na figura abaixo: S V R C Esando o capacior inicialmene descarregado, o gráfico que represena a correne

Leia mais

ELETRÔNICA DE POTÊNCIA

ELETRÔNICA DE POTÊNCIA Cenro Federal de Educação Tecnológica do Espírio Sano Unidade de Ensino Descenralizada da Serra/ES ELETRÔNICA DE POTÊNCIA AUTOMAÇÃO INDUSTRIAL Cenro Federal de Educação Tecnológica do Espírio Sano Unidade

Leia mais

ELECTRÓNICA DE POTÊNCIA

ELECTRÓNICA DE POTÊNCIA SEMICONDUTORES DE POTÊNCIA: 1. diodo A K 2. irisor - (SCR) silicon conrolled recifier. A K 3. irisor de core comandado (TO) - gae urn off hyrisor. A K E C 4. ransisor bipolar - (TJB). B B C E 5. ransisor

Leia mais

TORNEIRO MECÂNICO TECNOLOGIA

TORNEIRO MECÂNICO TECNOLOGIA TORNEIRO MECÂNICO TECNOLOGIA CÁLCULO ÂNGULO INCL. CARRO SUP. TORNEAR CÔNICO DEFINIÇÃO: É indicar o ângulo de inclinação para desviar em graus na base do carro superior de acordo com a conicidade da peça

Leia mais

TIRISTORES. SCR - Retificador Controlado de Silício

TIRISTORES. SCR - Retificador Controlado de Silício TIRISTORES Chamamos de irisores a uma família de disposiivos semiconduores que possuem, basicamene, quaro camadas (PNPN) e que êm caracerísicas biesáveis de funcionameno, ou seja, permanecem indefinidamene

Leia mais

Com base no enunciado e no gráfico, assinale V (verdadeira) ou F (falsa) nas afirmações a seguir.

Com base no enunciado e no gráfico, assinale V (verdadeira) ou F (falsa) nas afirmações a seguir. PROVA DE FÍSICA 2º ANO - 1ª MENSAL - 2º TRIMESTRE TIPO A 01) O gráico a seguir represena a curva de aquecimeno de 10 g de uma subsância à pressão de 1 am. Analise as seguines airmações. I. O pono de ebulição

Leia mais

Universidade Federal de Lavras

Universidade Federal de Lavras Universidade Federal de Lavras Deparameno de Ciências Exaas Prof. Daniel Furado Ferreira 8 a Lisa de Exercícios Disribuição de Amosragem 1) O empo de vida de uma lâmpada possui disribuição normal com média

Leia mais

Instituto de Tecnologia de Massachusetts Departamento de Engenharia Elétrica e Ciência da Computação. Tarefa 5 Introdução aos Modelos Ocultos Markov

Instituto de Tecnologia de Massachusetts Departamento de Engenharia Elétrica e Ciência da Computação. Tarefa 5 Introdução aos Modelos Ocultos Markov Insiuo de Tecnologia de Massachuses Deparameno de Engenharia Elérica e Ciência da Compuação 6.345 Reconhecimeno Auomáico da Voz Primavera, 23 Publicado: 7/3/3 Devolução: 9/3/3 Tarefa 5 Inrodução aos Modelos

Leia mais

Campo magnético variável

Campo magnético variável Campo magnéico variável Já vimos que a passagem de uma correne elécrica cria um campo magnéico em orno de um conduor aravés do qual a correne flui. Esa descobera de Orsed levou os cienisas a desejaram

Leia mais

Aula - 2 Movimento em uma dimensão

Aula - 2 Movimento em uma dimensão Aula - Moimeno em uma dimensão Física Geral I - F- 18 o semesre, 1 Ilusração dos Principia de Newon mosrando a ideia de inegral Moimeno 1-D Conceios: posição, moimeno, rajeória Velocidade média Velocidade

Leia mais

12 Integral Indefinida

12 Integral Indefinida Inegral Indefinida Em muios problemas, a derivada de uma função é conhecida e o objeivo é enconrar a própria função. Por eemplo, se a aa de crescimeno de uma deerminada população é conhecida, pode-se desejar

Leia mais

BLOCO 9 PROBLEMAS: PROBLEMA 1

BLOCO 9 PROBLEMAS: PROBLEMA 1 BLOCO 9 ASSUNTOS: Análise de Invesimenos Valor Acual Líquido (VAL) Taxa Inerna de Renabilidade (TIR) Rácio Benefício - Cuso (RBC) Tempo de Recuperação (TR) PROBLEMAS: PROBLEMA 1 Perane a previsão de prejuízos

Leia mais

Exercícios 5 Leis de Newton

Exercícios 5 Leis de Newton Exercícios 5 Leis de Newon 1) (UES) Um carro freia bruscamene e o passageiro bae com a cabeça no idro para-brisa. Três pessoas dão a seguine explicação sobre o fao: 1- O carro foi freado, mas o passageiro

Leia mais

Capítulo 1 Introdução

Capítulo 1 Introdução Capíulo 1 Inrodução Índice Índice...1 1. Inrodução...2 1.1. Das Ondas Sonoras aos Sinais Elécricos...2 1.2. Frequência...4 1.3. Fase...6 1.4. Descrição de sinais nos domínios do empo e da frequência...7

Leia mais

INSTRUMENTAÇÃO, CONTROLE E AUTOMAÇÃO

INSTRUMENTAÇÃO, CONTROLE E AUTOMAÇÃO INSTRUMENTAÇÃO, CONTROLE E AUTOMAÇÃO Pág.: 1/88 ÍNDICE Professor: Waldemir Loureiro Inrodução ao Conrole Auomáico de Processos... 4 Conrole Manual... 5 Conrole Auomáico... 5 Conrole Auo-operado... 6 Sisema

Leia mais

Transistor de Efeito de Campo de Porta Isolada MOSFET - Revisão

Transistor de Efeito de Campo de Porta Isolada MOSFET - Revisão Transisor de Efeio de Campo de Pora Isolada MOSFET - Revisão 1 NMOS: esruura física NMOS subsrao ipo P isposiivo simérico isposiivo de 4 erminais Pora, reno, Fone e Subsrao (gae, drain, source e Bulk)

Leia mais

Desenvolvimento de um sistema instrumentado para ensaios de filtração em batelada

Desenvolvimento de um sistema instrumentado para ensaios de filtração em batelada Desenvolvimeno de um sisema insrumenado para ensaios de ilração em baelada Pedro Tersiguel de Oliveira Bolsisa de Iniciação Cieníica, Engenharia ecânica, UFRJ Claudio L. Schneider Orienador, Engenheiro

Leia mais

GRUPO XIII GRUPO DE ESTUDO DE INTERFERÊNCIAS, COMPATIBILIDADE ELETROMAGNÉTICA E QUALIDADE DE ENERGIA - GCQ

GRUPO XIII GRUPO DE ESTUDO DE INTERFERÊNCIAS, COMPATIBILIDADE ELETROMAGNÉTICA E QUALIDADE DE ENERGIA - GCQ SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA GCQ - 11 16 a 21 Ouubro de 2005 Curiiba - Paraná GRUPO XIII GRUPO DE ESTUDO DE INTERFERÊNCIAS, COMPATIBILIDADE ELETROMAGNÉTICA E

Leia mais

Sistemas de Energia Ininterrupta: No-Breaks

Sistemas de Energia Ininterrupta: No-Breaks Sisemas de Energia Ininerrupa: No-Breaks Prof. Dr.. Pedro Francisco Donoso Garcia Prof. Dr. Porfírio Cabaleiro Corizo www.cpdee.ufmg.br/~el GEP-DELT-EEUFMG Porque a necessidade de equipamenos de energia

Leia mais

A) inevitável. B) cérebro. C) comanda. D) socorro. E) cachorro.

A) inevitável. B) cérebro. C) comanda. D) socorro. E) cachorro. CONHECIMENTOS DE LÍNGUA PORTUGUESA TEXTO 1 CÉREBRO ELETRÔNICO O cérebro elerônico faz udo Faz quase udo Faz quase udo Mas ele é mudo. O cérebro elerônico comanda Manda e desmanda Ele é quem manda Mas ele

Leia mais

Física. MU e MUV 1 ACESSO VESTIBULAR. Lista de Física Prof. Alexsandro

Física. MU e MUV 1 ACESSO VESTIBULAR. Lista de Física Prof. Alexsandro Física Lisa de Física Prof. Alexsandro MU e MU 1 - (UnB DF) Qual é o empo gaso para que um merô de 2m a uma velocidade de 18km/h aravesse um únel de 1m? Dê sua resposa em segundos. 2 - (UERJ) Um rem é

Leia mais

Equações Diferenciais Ordinárias Lineares

Equações Diferenciais Ordinárias Lineares Equações Diferenciais Ordinárias Lineares 67 Noções gerais Equações diferenciais são equações que envolvem uma função incógnia e suas derivadas, além de variáveis independenes Aravés de equações diferenciais

Leia mais

Experiências para o Ensino de Queda Livre

Experiências para o Ensino de Queda Livre Universidade Esadual de Campinas Insiuo de Física Gleb Waagin Relaório Final da disciplina F 69A - Tópicos de Ensino de Física I Campinas, de juno de 7. Experiências para o Ensino de Queda Livre Aluno:

Leia mais

INTRODUÇÃO. 1. MODULAÇÃO POR CÓDIGO DE PULSO - PCM 1.1

INTRODUÇÃO. 1. MODULAÇÃO POR CÓDIGO DE PULSO - PCM 1.1 ETFSC UNED/SJ CURSO DE TELEFONIA DIGITAL CAPÍTULO. MODULAÇÃO POR CÓDIGO DE PULSO - PCM. INTRODUÇÃO. Uma grande pare dos sinais de inormações que são processados em uma rede de elecomunicações são sinais

Leia mais

MARCOS VELOSO CZERNORUCKI REPRESENTAÇÃO DE TRANSFORMADORES EM ESTUDOS DE TRANSITÓRIOS ELETROMAGNÉTICOS

MARCOS VELOSO CZERNORUCKI REPRESENTAÇÃO DE TRANSFORMADORES EM ESTUDOS DE TRANSITÓRIOS ELETROMAGNÉTICOS MARCOS VELOSO CZERNORUCKI REPRESENTAÇÃO DE TRANSFORMADORES EM ESTUDOS DE TRANSITÓRIOS ELETROMAGNÉTICOS Disseração apresenada à Escola Poliécnica da Universidade de São Paulo para obenção do íulo de Mesre

Leia mais

Escola Secundária Dom Manuel Martins

Escola Secundária Dom Manuel Martins Escola Secundária Dom Manuel Marins Seúbal Prof. Carlos Cunha 1ª Ficha de Avaliação FÍSICO QUÍMICA A ANO LECTIVO 2006 / 2007 ANO II N. º NOME: TURMA: C CLASSIFICAÇÃO Grisson e a sua equipa são chamados

Leia mais

Escola E.B. 2,3 / S do Pinheiro

Escola E.B. 2,3 / S do Pinheiro Escola E.B. 2,3 / S do Pinheiro Ciências Físico Químicas 9º ano Movimenos e Forças 1.º Período 1.º Unidade 2010 / 2011 Massa, Força Gravíica e Força de Ario 1 - A bordo de um vaivém espacial, segue um

Leia mais

Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) - Professores: João Arruda e Henriette Righi

Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) - Professores: João Arruda e Henriette Righi Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) - Professores: João Arruda e Henriee Righi LISTA DE EXERCÍCIOS # 1 Aenção: Aualize seu adobe, ou subsiua os quadrados por negaivo!!! 1) Deermine

Leia mais

GERAÇÃO DE PREÇOS DE ATIVOS FINANCEIROS E SUA UTILIZAÇÃO PELO MODELO DE BLACK AND SCHOLES

GERAÇÃO DE PREÇOS DE ATIVOS FINANCEIROS E SUA UTILIZAÇÃO PELO MODELO DE BLACK AND SCHOLES XXX ENCONTRO NACIONAL DE ENGENHARIA DE PRODUÇÃO Mauridade e desafios da Engenharia de Produção: compeiividade das empresas, condições de rabalho, meio ambiene. São Carlos, SP, Brasil, 1 a15 de ouubro de

Leia mais

3 REVISÃO BIBLIOGRÁFICA

3 REVISÃO BIBLIOGRÁFICA 33 3 REVISÃO BIBLIOGRÁFICA No iem 3.1, apresena-se uma visão geral dos rabalhos esudados sobre a programação de horários de rens. No iem 3.2, em-se uma análise dos rabalhos que serviram como base e conribuíram

Leia mais

Um modelo matemático para o ciclo de vida do mosquito Aedes aegypti e controle de epidemias

Um modelo matemático para o ciclo de vida do mosquito Aedes aegypti e controle de epidemias Universidade Federal de Ouro Preo Modelagem e Simulação de Sisemas Terresres DECOM- prof. Tiago Garcia de Senna Carneiro Um modelo maemáico para o ciclo de vida do mosquio Aedes aegypi e conrole de epidemias

Leia mais

Equações Simultâneas. Aula 16. Gujarati, 2011 Capítulos 18 a 20 Wooldridge, 2011 Capítulo 16

Equações Simultâneas. Aula 16. Gujarati, 2011 Capítulos 18 a 20 Wooldridge, 2011 Capítulo 16 Equações Simulâneas Aula 16 Gujarai, 011 Capíulos 18 a 0 Wooldridge, 011 Capíulo 16 Inrodução Durane boa pare do desenvolvimeno dos coneúdos desa disciplina, nós nos preocupamos apenas com modelos de regressão

Leia mais

Espaço SENAI. Missão do Sistema SENAI

Espaço SENAI. Missão do Sistema SENAI Sumário Inrodução 5 Gerador de funções 6 Caracerísicas de geradores de funções 6 Tipos de sinal fornecidos 6 Faixa de freqüência 7 Tensão máxima de pico a pico na saída 7 Impedância de saída 7 Disposiivos

Leia mais

OTIMIZAÇÃO ENERGÉTICA NA CETREL: DIAGNÓSTICO, IMPLEMENTAÇÃO E AVALIAÇÃO DE GANHOS

OTIMIZAÇÃO ENERGÉTICA NA CETREL: DIAGNÓSTICO, IMPLEMENTAÇÃO E AVALIAÇÃO DE GANHOS STC/ 08 17 à 22 de ouubro de 1999 Foz do Iguaçu Paraná - Brasil SESSÃO TÉCNICA ESPECIAL CONSERVAÇÃO DE ENERGIA ELÉTRICA (STC) OTIMIZAÇÃO ENERGÉTICA NA CETREL: DIAGNÓSTICO, IMPLEMENTAÇÃO E AVALIAÇÃO DE

Leia mais

Medição de Potência. Jorge Guilherme 2008 #20 2 R. Elementos reactivos ou armazenadores de energia Elementos resistivos ou dissipadores de energia

Medição de Potência. Jorge Guilherme 2008 #20 2 R. Elementos reactivos ou armazenadores de energia Elementos resistivos ou dissipadores de energia Elecrónica de nsrumenação edição de oência Jorge Guilherme 008 #0 oência em.. U ce., ce. Elecrónica de nsrumenação U. [] oência em.a. p( u(. i( [] oência insanânea Num circuio resisivo puro i( u( / u (

Leia mais

CAPITULO 01 DEFINIÇÕES E PARÂMETROS DE CIRCUITOS. Prof. SILVIO LOBO RODRIGUES

CAPITULO 01 DEFINIÇÕES E PARÂMETROS DE CIRCUITOS. Prof. SILVIO LOBO RODRIGUES CAPITULO 1 DEFINIÇÕES E PARÂMETROS DE CIRCUITOS Prof. SILVIO LOBO RODRIGUES 1.1 INTRODUÇÃO PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA FENG Desinase o primeiro capíulo

Leia mais

Função definida por várias sentenças

Função definida por várias sentenças Ese caderno didáico em por objeivo o esudo de função definida por várias senenças. Nese maerial você erá disponível: Uma siuação que descreve várias senenças maemáicas que compõem a função. Diversas aividades

Leia mais

AULA 02 MOVIMENTO. 1. Introdução

AULA 02 MOVIMENTO. 1. Introdução AULA 02 MOVIMENTO 1. Inrodução Esudaremos a seguir os movimenos uniforme e uniformemene variado. Veremos suas definições, equações, represenações gráficas e aplicações. Faremos o esudo de cada movimeno

Leia mais

Um estudo de Cinemática

Um estudo de Cinemática Um esudo de Cinemáica Meu objeivo é expor uma ciência muio nova que raa de um ema muio anigo. Talvez nada na naureza seja mais anigo que o movimeno... Galileu Galilei 1. Inrodução Nese exo focaremos nossa

Leia mais

FUNÇÕES CONVEXAS EM TEORIA DE APREÇAMENTO DE OPÇÕES POR ARBITRAGEM UTILIZANDO O MODELO BINOMIAL

FUNÇÕES CONVEXAS EM TEORIA DE APREÇAMENTO DE OPÇÕES POR ARBITRAGEM UTILIZANDO O MODELO BINOMIAL FUNÇÕES CONVEAS EM EORIA DE APREÇAMENO DE OPÇÕES POR ARBIRAGEM UILIZANDO O MODELO BINOMIAL Devanil Jaques de SOUZA Lucas Moneiro CHAVES RESUMO: Nese rabalho uilizam-se écnicas maemáicas elemenares, baseadas

Leia mais

Sistemas não-lineares de 2ª ordem Plano de Fase

Sistemas não-lineares de 2ª ordem Plano de Fase EA93 - Pro. Von Zuben Sisemas não-lineares de ª ordem Plano de Fase Inrodução o esudo de sisemas dinâmicos não-lineares de a ordem baseia-se principalmene na deerminação de rajeórias no plano de esados,

Leia mais

TÍTULO DO TRABALHO: APLICANDO O MOSFET DE FORMA A REDUZIR INDUTÂNCIAS E CAPACITÂNCIAS PARASITAS EM DISPOSITIVOS ELETRÔNICOS

TÍTULO DO TRABALHO: APLICANDO O MOSFET DE FORMA A REDUZIR INDUTÂNCIAS E CAPACITÂNCIAS PARASITAS EM DISPOSITIVOS ELETRÔNICOS 1 TÍTULO DO TRABALHO: APLICANDO O MOSFET DE FORMA A REDUZIR INDUTÂNCIAS E CAPACITÂNCIAS PARASITAS EM DISPOSITIVOS ELETRÔNICOS Applying Mosfe To Reduce The Inducance And Capaciance Parasies in Elecronic

Leia mais

Universidade Federal de Pelotas Departamento de Economia Contabilidade Social Professor Rodrigo Nobre Fernandez Lista de Exercícios I - Gabarito

Universidade Federal de Pelotas Departamento de Economia Contabilidade Social Professor Rodrigo Nobre Fernandez Lista de Exercícios I - Gabarito 1 Universidade Federal de Peloas Deparameno de Economia Conabilidade Social Professor Rodrigo Nobre Fernandez Lisa de Exercícios I - Gabario 1. Idenifique na lisa abaixo quais variáveis são e fluxo e quais

Leia mais

exercício e o preço do ativo são iguais, é dito que a opção está no dinheiro (at-themoney).

exercício e o preço do ativo são iguais, é dito que a opção está no dinheiro (at-themoney). 4. Mercado de Opções O mercado de opções é um mercado no qual o iular (comprador) de uma opção em o direio de exercer a mesma, mas não a obrigação, mediane o pagameno de um prêmio ao lançador da opção

Leia mais

= + 3. h t t. h t t. h t t. h t t MATEMÁTICA

= + 3. h t t. h t t. h t t. h t t MATEMÁTICA MAEMÁICA 01 Um ourives possui uma esfera de ouro maciça que vai ser fundida para ser dividida em 8 (oio) esferas menores e de igual amanho. Seu objeivo é acondicionar cada esfera obida em uma caixa cúbica.

Leia mais

Eficiência em dimensões reduzidas!

Eficiência em dimensões reduzidas! Caálogo Janeiro 200 para moores assíncronos Eficiência em dimensões reduzidas! Ninguém faz ano com a elericidade. para moores assíncronos Sumário Apresenação Páginas 2 e Caracerísicas, aplicações especiais

Leia mais

VALOR DA PRODUÇÃO DE CACAU E ANÁLISE DOS FATORES RESPONSÁVEIS PELA SUA VARIAÇÃO NO ESTADO DA BAHIA. Antônio Carlos de Araújo

VALOR DA PRODUÇÃO DE CACAU E ANÁLISE DOS FATORES RESPONSÁVEIS PELA SUA VARIAÇÃO NO ESTADO DA BAHIA. Antônio Carlos de Araújo 1 VALOR DA PRODUÇÃO DE CACAU E ANÁLISE DOS FATORES RESPONSÁVEIS PELA SUA VARIAÇÃO NO ESTADO DA BAHIA Anônio Carlos de Araújo CPF: 003.261.865-49 Cenro de Pesquisas do Cacau CEPLAC/CEPEC Faculdade de Tecnologia

Leia mais

Estudo comparativo de processo produtivo com esteira alimentadora em uma indústria de embalagens

Estudo comparativo de processo produtivo com esteira alimentadora em uma indústria de embalagens Esudo comparaivo de processo produivo com eseira alimenadora em uma indúsria de embalagens Ana Paula Aparecida Barboza (IMIH) anapbarboza@yahoo.com.br Leicia Neves de Almeida Gomes (IMIH) leyneves@homail.com

Leia mais

CONVERSOR BUCK UTILIZANDO CÉLULA DE COMUTAÇÃO DE TRÊS ESTADOS

CONVERSOR BUCK UTILIZANDO CÉLULA DE COMUTAÇÃO DE TRÊS ESTADOS UNIVERSIDADE ESADUA PAUISA FACUDADE DE ENGENHARIA CAMPUS DE IHA SOEIRA PÓSGRADUAÇÃO EM ENGENHARIA EÉRICA CONVERSOR BUCK UIIZANDO CÉUA DE COMUAÇÃO DE RÊS ESADOS JUAN PAUO ROBES BAESERO Orienador: Prof.

Leia mais

APÊNDICES APÊNDICE A - TEXTO DE INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS LINEARES DE 1ª E 2ª ORDEM COM O SOFTWARE MAPLE

APÊNDICES APÊNDICE A - TEXTO DE INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS LINEARES DE 1ª E 2ª ORDEM COM O SOFTWARE MAPLE 170 APÊNDICES APÊNDICE A - TEXTO DE INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS LINEARES DE 1ª E ª ORDEM COM O SOFTWARE MAPLE PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS PUC MINAS MESTRADO PROFISSIONAL

Leia mais

Física 2 aula 11 COMENTÁRIOS ATIVIDADES PARA SALA CINEMÁTICA IV. 4. (0,2s) movimento progressivo: 1. Como x 1

Física 2 aula 11 COMENTÁRIOS ATIVIDADES PARA SALA CINEMÁTICA IV. 4. (0,2s) movimento progressivo: 1. Como x 1 Física aula CIEMÁTICA IV 4. (,s) movimeno progressivo: COMETÁRIOS ATIVIDADES PARA SALA. Como x x é a diferença enre as posições dos auomóveis A e A em-se: o insane, os auomóveis A e A esão na mesma posição.

Leia mais

Condensadores e Bobinas

Condensadores e Bobinas ondensadores e Bobinas Arnaldo Baisa TE_4 Dielécrico é não conduor Placas ou armaduras conduoras ondensadores TE_4 R Área A Analogia Hidráulica V S + - Elecrão Elecrões que se repelem d Bomba Hidráulica

Leia mais

SIMULADO. Física. 1 (Fuvest-SP) 3 (UERJ) 2 (UFPA)

SIMULADO. Física. 1 (Fuvest-SP) 3 (UERJ) 2 (UFPA) (Fuves-SP) (UERJ) No esáio o Morumbi, 0 000 orceores assisem a um jogo. Aravés e caa uma as 6 saías isponíveis, poem passar 000 pessoas por minuo. Qual é o empo mínimo necessário para esvaziar o esáio?

Leia mais

Adaptado de O Prisma e o Pêndulo as dez mais belas experiências científicas, p. 52, Crease, R. (2006)

Adaptado de O Prisma e o Pêndulo as dez mais belas experiências científicas, p. 52, Crease, R. (2006) PROVA MODELO GRUPO I Arisóeles inha examinado corpos em moimeno e inha concluído, pelo modo como os corpos caem denro de água, que a elocidade de um corpo em queda é uniforme, proporcional ao seu peso,

Leia mais

EQUIVALENTES DINÂMICOS PARA ESTUDOS DE HARMÔNICOS USANDO ANÁLISE MODAL. Franklin Clement Véliz Sergio Luis Varricchio Sergio Gomes Jr.

EQUIVALENTES DINÂMICOS PARA ESTUDOS DE HARMÔNICOS USANDO ANÁLISE MODAL. Franklin Clement Véliz Sergio Luis Varricchio Sergio Gomes Jr. SP-2 X SEPOPE 2 a 25 de maio de 2006 a 2 s o 25 h 2006 X SIPÓSIO DE ESPECIAISTAS E PANEJAENTO DA OPERAÇÃO E EXPANSÃO EÉTRICA X SYPOSIU OF SPECIAISTS IN EECTRIC OPERATIONA AND EXPANSION PANNING FORIANÓPOIS

Leia mais

4 Cenários de estresse

4 Cenários de estresse 4 Cenários de esresse Os cenários de esresse são simulações para avaliar a adequação de capial ao limie de Basiléia numa deerminada daa. Sua finalidade é medir a capacidade de o PR das insiuições bancárias

Leia mais

Curso de preparação para a prova de matemática do ENEM Professor Renato Tião

Curso de preparação para a prova de matemática do ENEM Professor Renato Tião Porcenagem As quaro primeiras noções que devem ser assimiladas a respeio do assuno são: I. Que porcenagem é fração e fração é a pare sobre o odo. II. Que o símbolo % indica que o denominador desa fração

Leia mais

EDITORIAL. Índice. Prova Escrita de Matemática Aplicada às Ciências Sociais. 11.º/12.º anos ou 11º/12º de Escolaridade. Prova 835/2.ª Fase de 2009.

EDITORIAL. Índice. Prova Escrita de Matemática Aplicada às Ciências Sociais. 11.º/12.º anos ou 11º/12º de Escolaridade. Prova 835/2.ª Fase de 2009. Número º Quadrimesre de 010 Maio 010 Índice Ediorial 1 Exame de M.A.C.S. ª Fase 009 1 Exame de Física - Química A. 1ª Fase 008. 7 EDITORIAL Devido à proximidade da época de exames, decidimos dedicar ese

Leia mais

2 a Aula Introdução ao TL: INSTRUMENTAÇÃO LABORATORIAL. Introdução. Aparelhos analógicos e digitais. Aparelhos analógicos e digitais.

2 a Aula Introdução ao TL: INSTRUMENTAÇÃO LABORATORIAL. Introdução. Aparelhos analógicos e digitais. Aparelhos analógicos e digitais. 2 a Aula Inrodução ao TL: INSTUMNTAÇÃO LABOATOIAL Inrodução Aparelhos analógicos e digiais Volímeros, amperímeros e ohmímeros:mulímero Sinais DC e AC Tensão pico-a-pico e ensão eficaz Fones de energia

Leia mais

2 PREVISÃO DA DEMANDA

2 PREVISÃO DA DEMANDA PREVISÃO DA DEMANDA Abandonando um pouco a visão românica do ermo previsão, milhares de anos após as grandes civilizações da nossa hisória, a previsão do fuuro vola a omar a sua posição de imporância no

Leia mais

Os Sete Hábitos das Pessoas Altamente Eficazes

Os Sete Hábitos das Pessoas Altamente Eficazes Os See Hábios das Pessoas Alamene Eficazes Sephen Covey baseou seus fundamenos para o sucesso na Éica do Caráer aribuos como inegridade, humildade, fidelidade, emperança, coragem, jusiça, paciência, diligência,

Leia mais

Física B Extensivo V. 5

Física B Extensivo V. 5 Gabario Eensivo V 5 Resolva Aula 8 Aula 9 80) E 80) A 90) f = 50 MHz = 50 0 6 Hz v = 3 0 8 m/s v = f = v f = 3 0 8 50 0 = 6 m 90) B y = 0,5 cos [ (4 0)] y = 0,5 cos y = A cos A = 0,5 m 6 = 4 s = 0,5 s

Leia mais

Mecânica dos Fluidos. Aula 8 Introdução a Cinemática dos Fluidos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos. Aula 8 Introdução a Cinemática dos Fluidos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Aula 8 Inrodução a Cinemáica dos Fluidos Tópicos Abordados Nesa Aula Cinemáica dos Fluidos. Definição de Vazão Volumérica. Vazão em Massa e Vazão em Peso. Definição A cinemáica dos fluidos é a ramificação

Leia mais

Física e Química A. Teste Intermédio de Física e Química A. Teste Intermédio. Versão 1. Duração do Teste: 90 minutos 26.05.2009

Física e Química A. Teste Intermédio de Física e Química A. Teste Intermédio. Versão 1. Duração do Teste: 90 minutos 26.05.2009 Tese Inermédio de Física e Química A Tese Inermédio Física e Química A Versão Duração do Tese: 90 minuos 26.05.2009.º ou 2.º Anos de Escolaridade Decreo-Lei n.º 74/2004, de 26 de Março Na folha de resposas,

Leia mais

ENG04030 - ANÁLISE DE CIRCUITOS I ENG04030

ENG04030 - ANÁLISE DE CIRCUITOS I ENG04030 EG04030 AÁISE DE IRUITOS I Aulas 9 ircuios e ª orem: análise no omínio o empo aracerísicas e capaciores e inuores; energia armazenaa nos componenes; associação e capaciores/inuores Sérgio Haffner ircuios

Leia mais

Redes de Computadores

Redes de Computadores Inrodução Ins iuo de Info ormáic ca - UF FRGS Redes de Compuadores Conrole de fluxo Revisão 6.03.015 ula 07 Comunicação em um enlace envolve a coordenação enre dois disposiivos: emissor e recepor Conrole

Leia mais

Notas Técnicas do Banco Central do Brasil

Notas Técnicas do Banco Central do Brasil ISSN 1519-7212 Noas Técnicas do Banco Cenral do Brasil Número 25 Julho de 2002 Há Razões para Duvidar de Que a Dívida Pública no Brasil é Susenável? Ilan Goldfajn ISSN 1519-7212 CGC 00.038.166/0001-05

Leia mais

GFI00157 - Física por Atividades. Caderno de Trabalhos de Casa

GFI00157 - Física por Atividades. Caderno de Trabalhos de Casa GFI00157 - Física por Aiidades Caderno de Trabalhos de Casa Coneúdo 1 Cinemáica 3 1.1 Velocidade.............................. 3 1.2 Represenações do moimeno................... 7 1.3 Aceleração em uma

Leia mais

4.4 Limite e continuidade

4.4 Limite e continuidade 4.4 Limite e continuidade Noções Topológicas em R : Dados dois pontos quaisquer (x 1, y 1 ) e (x, y ) de R indicaremos a distância entre eles por då(x 1, y 1 ), (x, y )è=(x 1 x ) + (y 1 y ). Definição

Leia mais

Valor do Trabalho Realizado 16.

Valor do Trabalho Realizado 16. Anonio Vicorino Avila Anonio Edésio Jungles Planejameno e Conrole de Obras 16.2 Definições. 16.1 Objeivo. Valor do Trabalho Realizado 16. Parindo do conceio de Curva S, foi desenvolvida pelo Deparameno

Leia mais

Palavras-chave: Análise de Séries Temporais; HIV; AIDS; HUJBB.

Palavras-chave: Análise de Séries Temporais; HIV; AIDS; HUJBB. Análise de Séries Temporais de Pacienes com HIV/AIDS Inernados no Hospial Universiário João de Barros Barreo (HUJBB), da Região Meropoliana de Belém, Esado do Pará Gilzibene Marques da Silva ¹ Adrilayne

Leia mais

QUESTÕES GLOBALIZANTES

QUESTÕES GLOBALIZANTES 1. DO GPS À DESCRIÇÃO DO MOVIMENTO O Sisema Global de Posicionameno (global posiion sysem) compreende 24 saélies, cada um de apenas 5 m de comprimeno, em órbia a uma aliude de cerca de 20 000 km. Pode

Leia mais

PREÇOS DE PRODUTO E INSUMO NO MERCADO DE LEITE: UM TESTE DE CAUSALIDADE

PREÇOS DE PRODUTO E INSUMO NO MERCADO DE LEITE: UM TESTE DE CAUSALIDADE PREÇOS DE PRODUTO E INSUMO NO MERCADO DE LEITE: UM TESTE DE CAUSALIDADE Luiz Carlos Takao Yamaguchi Pesquisador Embrapa Gado de Leie e Professor Adjuno da Faculdade de Economia do Insiuo Vianna Júnior.

Leia mais

Física Fascículo 01 Eliana S. de Souza Braga

Física Fascículo 01 Eliana S. de Souza Braga Física Fascículo 01 Eliana S. de Souza raga Índice Cinemáica...1 Exercícios... Gabario...6 Cinemáica (Não se esqueça de adoar uma origem dos espaços, uma origem dos empos e orienar a rajeória) M.R.U. =

Leia mais

Jovens no mercado de trabalho formal brasileiro: o que há de novo no ingresso dos ocupados? 1

Jovens no mercado de trabalho formal brasileiro: o que há de novo no ingresso dos ocupados? 1 Jovens no mercado de rabalho formal brasileiro: o que há de novo no ingresso dos ocupados? 1 Luís Abel da Silva Filho 2 Fábio José Ferreira da Silva 3 Silvana Nunes de Queiroz 4 Resumo: Nos anos 1990,

Leia mais

3 O impacto de choques externos sobre a inflação e o produto dos países em desenvolvimento: o grau de abertura comercial importa?

3 O impacto de choques externos sobre a inflação e o produto dos países em desenvolvimento: o grau de abertura comercial importa? 3 O impaco de choques exernos sobre a inflação e o produo dos países em desenvolvimeno: o grau de aberura comercial impora? 3.1.Inrodução Todas as economias esão sujeias a choques exernos. Enreano, a presença

Leia mais

CERNE ISSN: 0104-7760 cerne@dcf.ufla.br Universidade Federal de Lavras Brasil

CERNE ISSN: 0104-7760 cerne@dcf.ufla.br Universidade Federal de Lavras Brasil CERNE ISSN: 4-776 cerne@dcf.ufla.br Universidade Federal de Lavras Brasil Pereira Rezende, José Luiz; Túlio Jorge Padua, Cláudio; Donizee de Oliveira, Anônio; Soares Scolforo, José Robero Análise econômica

Leia mais

Prof. Josemar dos Santos

Prof. Josemar dos Santos Engenharia Mecânica - FAENG Sumário SISTEMAS DE CONTROLE Definições Básicas; Exemplos. Definição; ; Exemplo. Prof. Josemar dos Sanos Sisemas de Conrole Sisemas de Conrole Objeivo: Inroduzir ferramenal

Leia mais

Susan Schommer Risco de Crédito 1 RISCO DE CRÉDITO

Susan Schommer Risco de Crédito 1 RISCO DE CRÉDITO Susan Schommer Risco de Crédio 1 RISCO DE CRÉDITO Definição: Risco de crédio é o risco de defaul ou de reduções no valor de mercado causada por rocas na qualidade do crédio do emissor ou conrapare. Modelagem:

Leia mais

Testes de Hipóteses Estatísticas

Testes de Hipóteses Estatísticas Capítulo 5 Slide 1 Testes de Hipóteses Estatísticas Resenha Hipótese nula e hipótese alternativa Erros de 1ª e 2ª espécie; potência do teste Teste a uma proporção; testes ao valor médio de uma v.a.: σ

Leia mais

ESCOLA SUPERIOR NÁUTICA INFANTE D. HENRIQUE VIBRAÇÕES MECÂNICAS TEXTOS DE APOIO. Prof. Victor Franco Correia ENIDH, 2002-2010

ESCOLA SUPERIOR NÁUTICA INFANTE D. HENRIQUE VIBRAÇÕES MECÂNICAS TEXTOS DE APOIO. Prof. Victor Franco Correia ENIDH, 2002-2010 ESCOLA SUPERIOR NÁUTICA INFANTE D. HENRIQUE VIBRAÇÕES MECÂNICAS TEXTOS DE APOIO Prof. Vicor Franco Correia ENIDH, 00-00 Índice:. SISTEMAS COM UM GRAU DE LIBERDADE. Vibrações livres não amorecidas. Vibrações

Leia mais

3 PROGRAMAÇÃO DOS MICROCONTROLADORES

3 PROGRAMAÇÃO DOS MICROCONTROLADORES 3 PROGRAMAÇÃO DOS MICROCONTROLADORES Os microconroladores selecionados para o presene rabalho foram os PICs 16F628-A da Microchip. Eses microconroladores êm as vanagens de serem facilmene enconrados no

Leia mais

MÉTODO MARSHALL. Os corpos de prova deverão ter a seguinte composição em peso:

MÉTODO MARSHALL. Os corpos de prova deverão ter a seguinte composição em peso: TEXTO COMPLEMENTAR MÉTODO MARSHALL ROTINA DE EXECUÇÃO (PROCEDIMENTOS) Suponhamos que se deseje dosar um concreo asfálico com os seguines maeriais: 1. Pedra 2. Areia 3. Cimeno Porland 4. CAP 85 100 amos

Leia mais

A FÁBULA DO CONTROLADOR PID E DA CAIXA D AGUA

A FÁBULA DO CONTROLADOR PID E DA CAIXA D AGUA A FÁBULA DO CONTROLADOR PID E DA CAIXA D AGUA Era uma vez uma pequena cidade que não inha água encanada. Mas, um belo dia, o prefeio mandou consruir uma caia d água na serra e ligou-a a uma rede de disribuição.

Leia mais