Porto Alegre, 14 de novembro de 2002

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Porto Alegre, 14 de novembro de 2002"

Transcrição

1 Poro Alegre, 14 de novembro de 2002 Aula 6 de Relaividade e Cosmologia Horácio Doori O paradoo dos gêmeos Sisemas Inerciais (observadores) com velocidades diversas vêem a disância emporal enre dois evenos em forma diferene. Na figura 1, mosramos 2 sisemas (por eemplo foguees) com velocidade diferenes: O primeiro (amarelo) em 3/5 da velocidade da luz, o segundo (roo) em 4/5 da velocidade da luz. Ambos são comparados ao raio de luz (azul) com velocidade 5/5 = 1. 5 Figura Se compuarmos o empo próprio de cada um dos foguees para aingir o eveno de coordenada emporal 5 e coordenada espacial 3, 4 e 5 respecivamene veremos que em cada caso é: τ 2 = 2-2, 4, 3 e 0. Iso é os empos próprios são menores quano maior é a velocidade do móvel. Com a paricularidade de que o raio de luz em empo próprio igual a zero Se agora idealizarmos que cada referencial vola com a mesma velocidade para a origem (Figura 6-2 Iso poderia ser imaginado, por eemplo, da seguine forma: ao chegar as respecivas disâncias de 3, 4 e 5, cada sisema passa um sinal para um sisema de referência que em o mesmo módulo de velocidade, más viaja no senido conrário. Na realidade, pode passar um sinal para odos os sisemas que cruzam-se com ele, sem preender reconhecer aquele que em a mesma

2 velocidade, porem os que arribarão simulaneamene à origem serão aqueles que em as respecivas velocidades iguais, más viajam em senido conrário) Figura Vê-se que os 3 sisemas considerados chegam ao pono =10 =0, nos empos próprios respecivos 8, 6 e 0. É imporane de se desacar desa eperiência que quano maior o espaço percorrido numa mesma unidade de, menor é o empo próprio. Iso é uma caracerísica da geomeria hiperbólica do espaço empo que não em paralelo no espaço físico, onde vale a geomeria euclidea. Na geomeria euclidea, quano mais a gene se afasa da linha rea maior é o espaço a percorrer enre dois ponos, como monsra a figura 6-3. Iso colocado, podemos abordar o paradoo dos gêmeos

3 z y Figura 6-3 A disância euclidea enre as bolinhas vem dada por ( 2 + y 2 + z 2 ) 1/2. quaisquer ouras rajeórias será faalmene maior que a linha rea (como as desenhadas em verde, por eemplo). Na geomeria pseudo-euclidea do caso hiperbólico da RE, as disâncias enre dois evenos podem ser percorridas em um empo ão pequeno quano desejarmos, dependendo da velocidade do móvel. Esa disância própria no sisema do móvel em sempre d =0 é chamada de empo próprio. Não esá impedida por eemplo a possibilidade de uma parícula com média vida de uma pequena fração de segundo cruzar a galáia oda anes dela se desinegrar. O paradoo Volando enão ao objeo desa aula, emos que considerar, como já mencionado da 2da aula, quando da descrição do sisema Q como viso do sisema laboraório Q, a diferença de simulaneidade para um mesmo eveno se viso por observadores com velocidade diferene. O paradoo como geralmene colocado é o seguine: Se dois gêmeos separam-se, um ficando na erra e ouro viajando a velocidades relaivísicas durane um cero empo e depois volando a Terra, aquele que viajou enconrará a seu irmão mais velho. Más, pela equivalência dos sisemas inerciais ele vê ao seu irmão durane a sua viagem mais jovem que ele, al qual como o seu irmão em Terra vê a ele.

4 A Segunda afirmaiva é valida, o viajane vê a seu irmão em Terra envelhecer mais devagar que o que ele envelhece durane a sua viagem. Tomemos para fiar idéias o eemplo de uma velocidade de 9/10, supondo que o foguee viaja durane 10 anos de empo próprio. Ao cabo deses 10 anos, a coordenada emporal do Sisema Q será: τ 2 = 2-2, como τ = 10 anos e / = 0.9, 2 = 100/(1-0.81) 2, = Más viso pelo asronaua, ele esá em um referencial fio e a Terra afasou-se dele com velocidade 9/10, ou seja que nese caso serão as suas coordenadas = 10 anos e =-0.9. Usando as ransformações de Lorenz podemos ober o empo próprio do observador em Terra (ou seja quano envelheceu o irmão que ficou em Terra!) como viso pelo asronaua após os 10 anos decorridos no seu relógio. Ese empo será será: τ 2 = 2-2, ou τ = (1-0.81) 0.5, O que fornece τ = 4.35 anos!!! Más qual é enão a razão pela qual o viajane enconre na vola ao seu irmão residene na Terra mais velho? Esa razão é muio suil e deve-se à mudança de referencial. Quando o viajane (sisema Q ) decide volar após 10 anos de empo próprio ele em de mudar de referencial e passar de v = 9/10 para v = -9/10 (sisema Q ). Em bom romance iso significa que o eveno volar onde ambos referenciais (Q e Q ) se enconram em linha de simulaneidade diferenes e se correspondem com empos diferenes no referencial Q da Terra. Como vê-se na figura 6-4, as linhas roas racejadas represenam as linhas de simulaneidade do eveno reorno (ER) para os sisemas Q e Q. Esas linhas são paralelas aos eios e respecivamene. Noe que os evenos no sisema Q, com =0, que são simulâneos ao eveno reorno como viso por Q e Q são diferenes e correspondem respecivamene aos valores no eio de 4,35 anos e 90,87 anos (use as ransformações de Lorenz para demonsrar ese úlimo valor, da mesma forma em que foi feio para 4,35 poucas linhas anes). Uma críica que pode se fazer é sobre a possibilidade de mudar de sisema, sofrendo uma aceleração como feio pelo gêmeo viajane. Iso raz duas considerações. A primeira é posiiva e define que realmene consegue-se disinguir qual dos dois gêmeos é o que fica mais jovem, pois há uma inquesionável diferença enre quem muda e quem não muda de sisema de referência. A Segunda é negaiva e é precisamene se pode-se mudar ranqüilamene de referencial em Relaividade Especial onde é posulada a equivalência de sisemas inerciais. Em relação a esa segunda quesão, podemos supera-la não passando um ene maerial do sisema Q ao Q mas simplesmene fazendo um conao (que nem nas corridas de bandeirinhas) que diga em que eveno (descrio no sisema Q ou quaisquer ouros) ambos sisemas se enconraram.. O

5 imporane é levar a informação empo próprio ao enconro do gêmeo na Terra. Veremos mais adiane que pode-se considerar a aceleração em RE, com um posulado adicional que diz que sisemas acelerados podem se comparar com os sisemas inerciais que em cada insane em a mesma velocidade que ele. 95,22 90,87 simulaneidade de ER na vola τ = 10 a, ER= Eveno Reorno luz simulaneidade de ER do gêmeo na ida 4,35 Figura 6-4

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL Movimeno unidimensional 5 MOVIMENTO UNIDIMENSIONAL. Inrodução Denre os vários movimenos que iremos esudar, o movimeno unidimensional é o mais simples, já que odas as grandezas veoriais que descrevem o

Leia mais

18 GABARITO 1 2 O DIA PROCESSO SELETIVO/2005 FÍSICA QUESTÕES DE 31 A 45

18 GABARITO 1 2 O DIA PROCESSO SELETIVO/2005 FÍSICA QUESTÕES DE 31 A 45 18 GABARITO 1 2 O DIA PROCESSO SELETIO/2005 ÍSICA QUESTÕES DE 31 A 45 31. O gálio é um meal cuja emperaura de fusão é aproximadamene o C. Um pequeno pedaço desse meal, a 0 o C, é colocado em um recipiene

Leia mais

Seção 5: Equações Lineares de 1 a Ordem

Seção 5: Equações Lineares de 1 a Ordem Seção 5: Equações Lineares de 1 a Ordem Definição. Uma EDO de 1 a ordem é dia linear se for da forma y + fx y = gx. 1 A EDO linear de 1 a ordem é uma equação do 1 o grau em y e em y. Qualquer dependência

Leia mais

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara Insiuo de Física USP Física V - Aula 6 Professora: Mazé Bechara Aula 6 Bases da Mecânica quânica e equações de Schroedinger. Aplicação e inerpreações. 1. Ouros posulados da inerpreação de Max-Born para

Leia mais

Cálculo Vetorial - Lista de Exercícios

Cálculo Vetorial - Lista de Exercícios álculo Veorial - Lisa de Exercícios (Organizada pela Profa. Ilka Rebouças). Esboçar o gráfico das curvas represenadas pelas seguines funções veoriais: a) a 4 i j, 0,. d) d i 4 j k,. b) b sen i 4 j cos

Leia mais

Mecânica da partícula

Mecânica da partícula -- Mecânica da parícula Moimenos sob a acção de uma força resulane consane Prof. Luís C. Perna LEI DA INÉRCIA OU ª LEI DE NEWTON LEI DA INÉRCIA Para que um corpo alere o seu esado de moimeno é necessário

Leia mais

RELATIVIDADE ESPECIAL

RELATIVIDADE ESPECIAL RELATIVIDADE ESPECIAL AULA N O ( Quadriveores - Velocidade relaivísica - Tensores ) Vamos ver um eemplo de uma lei que é possível na naureza, mas que não é uma lei da naureza. Duas parículas colidem no

Leia mais

2.6 - Conceitos de Correlação para Sinais Periódicos

2.6 - Conceitos de Correlação para Sinais Periódicos .6 - Conceios de Correlação para Sinais Periódicos O objeivo é o de comparar dois sinais x () e x () na variável empo! Exemplo : Considere os dados mosrados abaixo y 0 x Deseja-se ober a relação enre x

Leia mais

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo PROBLEMAS RESOLVIDOS DE FÍSIA Prof. Anderson oser Gaudio Deparameno de Física enro de iências Eaas Universidade Federal do Espírio Sano hp://www.cce.ufes.br/anderson anderson@npd.ufes.br Úlima aualização:

Leia mais

F-128 Física Geral I. Aula exploratória-02 UNICAMP IFGW

F-128 Física Geral I. Aula exploratória-02 UNICAMP IFGW F-8 Física Geral I Aula eploraória- UNICAMP IFGW username@ifi.unicamp.br Velocidades média e insanânea Velocidade média enre e + Δ - - m Δ Δ ** Se Δ > m > (moimeno à direia, ou no senido de crescimeno

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar Progressão Ariméica e Progressão Geomérica. (Pucrj 0) Os números a x, a x e a x esão em PA. A soma dos números é igual a: a) 8 b) c) 7 d) e) 0. (Fuves 0) Dadas as sequências an n n, n n cn an an b, e b

Leia mais

Circuitos Elétricos I EEL420

Circuitos Elétricos I EEL420 Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL420 Coneúdo 1 - Circuios de primeira ordem...1 1.1 - Equação diferencial ordinária de primeira ordem...1 1.1.1 - Caso linear, homogênea, com

Leia mais

Cinemática Vetorial Movimento Retilíneo. Movimento. Mecânica : relaciona força, matéria e movimento

Cinemática Vetorial Movimento Retilíneo. Movimento. Mecânica : relaciona força, matéria e movimento Fisica I - IO Cinemáica Veorial Moimeno Reilíneo Prof. Crisiano Olieira Ed. Basilio Jafe sala crislpo@if.usp.br Moimeno Mecânica : relaciona força, maéria e moimeno Cinemáica : Pare da mecânica que descree

Leia mais

ONDAS ELETROMAGNÉTICAS

ONDAS ELETROMAGNÉTICAS LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS A propagação de ondas eleromagnéicas ocorre quando um campo elérico variane no empo produ um campo magnéico ambém variane no empo, que por sua ve produ um campo

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031 Universidade Federal do io Grande do Sul Escola de Engenharia de Poro Alegre Deparameno de Engenharia Elérica ANÁLISE DE CICUITOS II - ENG43 Aula 5 - Condições Iniciais e Finais de Carga e Descarga em

Leia mais

Física. Física Módulo 1

Física. Física Módulo 1 Física Módulo 1 Nesa aula... Movimeno em uma dimensão Aceleração e ouras coisinhas O cálculo de x() a parir de v() v( ) = dx( ) d e x( ) x v( ) d = A velocidade é obida derivando-se a posição em relação

Leia mais

RÁPIDA INTRODUÇÃO À FÍSICA DAS RADIAÇÕES Simone Coutinho Cardoso & Marta Feijó Barroso UNIDADE 3. Decaimento Radioativo

RÁPIDA INTRODUÇÃO À FÍSICA DAS RADIAÇÕES Simone Coutinho Cardoso & Marta Feijó Barroso UNIDADE 3. Decaimento Radioativo Decaimeno Radioaivo RÁPIDA ITRODUÇÃO À FÍSICA DAS RADIAÇÕES Simone Couinho Cardoso & Mara Feijó Barroso Objeivos: discuir o que é decaimeno radioaivo e escrever uma equação que a descreva UIDADE 3 Sumário

Leia mais

5.3 Escalonamento FCFS (First-Come, First Served)

5.3 Escalonamento FCFS (First-Come, First Served) c prof. Carlos Maziero Escalonameno FCFS (Firs-Come, Firs Served) 26 5.3 Escalonameno FCFS (Firs-Come, Firs Served) A forma de escalonameno mais elemenar consise em simplesmene aender as arefas em sequência,

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar . (Pucrj 0) Os números a x, a x e a3 x 3 esão em PA. A soma dos 3 números é igual a: é igual a e o raio de cada semicírculo é igual à meade do semicírculo anerior, o comprimeno da espiral é igual a a)

Leia mais

Física e Química A Ficha de trabalho nº 2: Unidade 1 Física 11.º Ano Movimentos na Terra e no Espaço

Física e Química A Ficha de trabalho nº 2: Unidade 1 Física 11.º Ano Movimentos na Terra e no Espaço Física e Química A Ficha de rabalho nº 2: Unidade 1 Física 11.º Ano Moimenos na Terra e no Espaço 1. Um corpo descree uma rajecória recilínea, sendo regisada a sua posição em sucessios insanes. Na abela

Leia mais

Questões sobre derivadas. 1. Uma partícula caminha sobre uma trajetória qualquer obedecendo à função horária 2

Questões sobre derivadas. 1. Uma partícula caminha sobre uma trajetória qualquer obedecendo à função horária 2 Quesões sobre deriadas. Uma parícula caminha sobre uma rajeória qualquer obedecendo à função horária s ( = - + 0 ( s em meros e em segundos. a Deermine a lei de sua elocidade em função do empo. b Deermine

Leia mais

F B d E) F A. Considere:

F B d E) F A. Considere: 5. Dois corpos, e B, de massas m e m, respecivamene, enconram-se num deerminado insane separados por uma disância d em uma região do espaço em que a ineração ocorre apenas enre eles. onsidere F o módulo

Leia mais

CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA

CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA Inrodução Ese arigo raa de um dos assunos mais recorrenes nas provas do IME e do ITA nos úlimos anos, que é a Cinéica Química. Aqui raamos principalmene dos

Leia mais

Física e Química A 11.º Ano N.º 2 - Movimentos

Física e Química A 11.º Ano N.º 2 - Movimentos Física e Química A 11.º Ano N.º 2 - Moimenos 1. Uma parícula P 1 descree uma rajecória circular, de raio 1,0 m, parindo da posição A no senido indicado na figura 1 (a). fig. 1 Uma oura parícula P 2 descree

Leia mais

CINÉTICA RADIOATIVA. Introdução. Tempo de meia-vida (t 1/2 ou P) Atividade Radioativa

CINÉTICA RADIOATIVA. Introdução. Tempo de meia-vida (t 1/2 ou P) Atividade Radioativa CIÉTIC RDIOTIV Inrodução Ese arigo em como objeivo analisar a velocidade dos diferenes processos radioaivos, no que chamamos de cinéica radioaiva. ão deixe de anes esudar o arigo anerior sobre radioaividade

Leia mais

GFI Física por Atividades. Caderno de Trabalhos de Casa

GFI Física por Atividades. Caderno de Trabalhos de Casa GFI00157 - Física por Aividades Caderno de Trabalhos de Casa Coneúdo 1 Cinemáica 4 1.1 Velocidade.............................. 4 1.2 Represenações do movimeno................... 8 1.3 Aceleração em uma

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tarefa de revisão nº 17 1. Uma empresa lançou um produo no mercado. Esudos efecuados permiiram concluir que a evolução do preço se aproxima do seguine modelo maemáico: 7 se 0 1 p() =, p em euros e em anos.

Leia mais

Função Exponencial 2013

Função Exponencial 2013 Função Exponencial 1 1. (Uerj 1) Um imóvel perde 6% do valor de venda a cada dois anos. O valor V() desse imóvel em anos pode ser obido por meio da fórmula a seguir, na qual V corresponde ao seu valor

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Universidade Esadual do Sudoese da Bahia Dearameno de Ciências Exaas e Naurais.1- Roações, Cenro de Massa e Momeno Física I Prof. Robero Claudino Ferreira Índice 1. Movimeno Circular Uniformemene Variado;.

Leia mais

Capítulo Cálculo com funções vetoriais

Capítulo Cálculo com funções vetoriais Cálculo - Capíulo 6 - Cálculo com funções veoriais - versão 0/009 Capíulo 6 - Cálculo com funções veoriais 6 - Limies 63 - Significado geomérico da derivada 6 - Derivadas 64 - Regras de derivação Uiliaremos

Leia mais

F-128 Física Geral I. Aula exploratória-07 UNICAMP IFGW F128 2o Semestre de 2012

F-128 Física Geral I. Aula exploratória-07 UNICAMP IFGW F128 2o Semestre de 2012 F-18 Física Geral I Aula eploraória-07 UNICAMP IFGW username@ii.unicamp.br F18 o Semesre de 01 1 Energia Energia é um conceio que ai além da mecânica de Newon e permanece úil ambém na mecânica quânica,

Leia mais

Exemplos de fontes emissoras de ondas eletromagnéticas

Exemplos de fontes emissoras de ondas eletromagnéticas emplos de fones emissoras de ondas eleromagnéicas Luz visível emiida por um filameno de lâmpada incandescene missoras de rádio e TV Osciladores de micro-ondas Aparelhos de raios X Diferem enre si, apenas

Leia mais

Aula - 2 Movimento em uma dimensão

Aula - 2 Movimento em uma dimensão Aula - Moimeno em uma dimensão Física Geral I - F- 18 o semesre, 1 Ilusração dos Principia de Newon mosrando a ideia de inegral Moimeno 1-D Conceios: posição, moimeno, rajeória Velocidade média Velocidade

Leia mais

Função Exponencial Nível Básico

Função Exponencial Nível Básico Função Eponencial - 16 Nível Básico 1. (Imed 16) Em relação à função real definida por g(g()) corresponde a: a) 1. b). c) 3. d). e) 5. g() 1, é correo afirmar que. (Uel 15) A miose é uma divisão celular,

Leia mais

12 Integral Indefinida

12 Integral Indefinida Inegral Indefinida Em muios problemas, a derivada de uma função é conhecida e o objeivo é enconrar a própria função. Por eemplo, se a aa de crescimeno de uma deerminada população é conhecida, pode-se desejar

Leia mais

RELATIVIDADE ESPECIAL

RELATIVIDADE ESPECIAL 1 RELATIIDADE ESPECIAL AULA N O 5 ( Equações de Mawell em forma ensorial Equação da Coninuidade 4-veor densidade de correne) Anes de prosseguirmos com a Teoria da Relaividade, observando as consequências

Leia mais

Exercícios Sobre Oscilações, Bifurcações e Caos

Exercícios Sobre Oscilações, Bifurcações e Caos Exercícios Sobre Oscilações, Bifurcações e Caos Os ponos de equilíbrio de um modelo esão localizados onde o gráfico de + versus cora a rea definida pela equação +, cuja inclinação é (pois forma um ângulo

Leia mais

Física Aluno Caderno de Atividades Pedagógicas de Aprendizagem Autorregulada ª Série 3 Bimestre

Física Aluno Caderno de Atividades Pedagógicas de Aprendizagem Autorregulada ª Série 3 Bimestre Física Aluno Caderno de Aividades Pedagógicas de Aprendizagem Auorregulada - 03 1ª Série 3 Bimesre Disciplina Curso Bimesre Série Física Ensino Médio 3 1ª Habilidades associadas 1. Compreender que a Teoria

Leia mais

velocidade inicial: v 0 ; ângulo de tiro com a horizontal: 0.

velocidade inicial: v 0 ; ângulo de tiro com a horizontal: 0. www.fisicaee.com.br Um projéil é disparado com elocidade inicial iual a e formando um ânulo com a horizonal, sabendo-se que os ponos de disparo e o alo esão sobre o mesmo plano horizonal e desprezando-se

Leia mais

Conceitos Básicos Circuitos Resistivos

Conceitos Básicos Circuitos Resistivos Conceios Básicos Circuios esisivos Elecrónica 005006 Arnaldo Baisa Elecrónica_biomed_ef Circuio Elécrico com uma Baeria e uma esisência I V V V I Lei de Ohm I0 V 0 i0 Movimeno Das Pás P >P P >P Líquido

Leia mais

4 Metodologia Proposta para o Cálculo do Valor de Opções Reais por Simulação Monte Carlo com Aproximação por Números Fuzzy e Algoritmos Genéticos.

4 Metodologia Proposta para o Cálculo do Valor de Opções Reais por Simulação Monte Carlo com Aproximação por Números Fuzzy e Algoritmos Genéticos. 4 Meodologia Proposa para o Cálculo do Valor de Opções Reais por Simulação Mone Carlo com Aproximação por Números Fuzzy e Algorimos Genéicos. 4.1. Inrodução Nese capíulo descreve-se em duas pares a meodologia

Leia mais

Econometria Semestre

Econometria Semestre Economeria Semesre 00.0 6 6 CAPÍTULO ECONOMETRIA DE SÉRIES TEMPORAIS CONCEITOS BÁSICOS.. ALGUMAS SÉRIES TEMPORAIS BRASILEIRAS Nesa seção apresenamos algumas séries econômicas, semelhanes às exibidas por

Leia mais

AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM

AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM 163 22. PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM 22.1. Inrodução Na Seção 9.2 foi falado sobre os Parâmeros de Core e

Leia mais

Duas opções de trajetos para André e Bianca. Percurso 1( Sangiovanni tendo sorteado cara e os dois se encontrando no ponto C): P(A) =

Duas opções de trajetos para André e Bianca. Percurso 1( Sangiovanni tendo sorteado cara e os dois se encontrando no ponto C): P(A) = RESOLUÇÃO 1 A AVALIAÇÃO UNIDADE II -016 COLÉGIO ANCHIETA-BA PROFA. MARIA ANTÔNIA C. GOUVEIA ELABORAÇÃO e PESQUISA: PROF. ADRIANO CARIBÉ e WALTER PORTO. QUESTÃO 01. Três saélies compleam suas respecivas

Leia mais

Versão preliminar serão feitas correções em sala de aula 1

Versão preliminar serão feitas correções em sala de aula 1 Versão preinar serão feias correções em sala de aula 7.. Inrodução Dependendo das condições de soliciação, o maerial pode se enconrar sob diferenes esados mecânicos. Quando as cargas (exernas) são pequenas

Leia mais

1 o Exame 10 de Janeiro de 2005 Nota: Resolva os problemas do exame em folhas separadas. Justifique todas as respostas e explique os seus

1 o Exame 10 de Janeiro de 2005 Nota: Resolva os problemas do exame em folhas separadas. Justifique todas as respostas e explique os seus i Sinais e Sisemas (LERCI) o Exame 0 de Janeiro de 005 Noa: Resolva os problemas do exame em folhas separadas. Jusifique odas as resposas e explique os seus cálculos. Problema.. Represene graficamene o

Leia mais

4 Modelagem e metodologia de pesquisa

4 Modelagem e metodologia de pesquisa 4 Modelagem e meodologia de pesquisa Nese capíulo será apresenada a meodologia adoada nese rabalho para a aplicação e desenvolvimeno de um modelo de programação maemáica linear misa, onde a função-objeivo,

Leia mais

RELATIVIDADE ESPECIAL

RELATIVIDADE ESPECIAL 1 RELATIVIDADE ESPECIAL AULA N O (paradoos - empo próprio - elocidade momeno) Vamos agora coninuar a er os efeios decorrenes da Transformação de Lorenz com relação às leis da Física, nos diersos sisemas

Leia mais

Física. MU e MUV 1 ACESSO VESTIBULAR. Lista de Física Prof. Alexsandro

Física. MU e MUV 1 ACESSO VESTIBULAR. Lista de Física Prof. Alexsandro Física Lisa de Física Prof. Alexsandro MU e MU 1 - (UnB DF) Qual é o empo gaso para que um merô de 2m a uma velocidade de 18km/h aravesse um únel de 1m? Dê sua resposa em segundos. 2 - (UERJ) Um rem é

Leia mais

6ROXomR: A aceleração das esferas é a mesma, g (aceleração da gravidade), como demonstrou

6ROXomR: A aceleração das esferas é a mesma, g (aceleração da gravidade), como demonstrou 6ROXomR&RPHQWDGD3URYDGH)VLFD. O sisema inernacional de unidades e medidas uiliza vários prefixos associados à unidade-base. Esses prefixos indicam os múliplos decimais que são maiores ou menores do que

Leia mais

Confiabilidade e Taxa de Falhas

Confiabilidade e Taxa de Falhas Prof. Lorí Viali, Dr. hp://www.pucrs.br/fama/viali/ viali@pucrs.br Definição A confiabilidade é a probabilidade de que de um sisema, equipameno ou componene desempenhe a função para o qual foi projeado

Leia mais

5.1 Objectivos. Caracterizar os métodos de detecção de valor eficaz.

5.1 Objectivos. Caracterizar os métodos de detecção de valor eficaz. 5. PRINCÍPIOS DE MEDIÇÃO DE CORRENE, ENSÃO, POÊNCIA E ENERGIA 5. Objecivos Caracerizar os méodos de deecção de valor eficaz. Caracerizar os méodos de medição de poência e energia em correne conínua, correne

Leia mais

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON)

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON) TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 8 LIVRO DO NILSON). CONSIDERAÇÕES INICIAIS SÉRIES DE FOURIER: descrevem funções periódicas no domínio da freqüência (ampliude e fase). TRANSFORMADA DE FOURIER:

Leia mais

uma função qualquer com uma variável independente. A derivada de uma função é

uma função qualquer com uma variável independente. A derivada de uma função é Ondas (EE) Análise vecorial. Derivadas parciais.. Derivada de uma função Seja a função f () uma função qualquer com uma variável independene. A derivada de uma função é d d lim 0 Geomericamene, a derivada

Leia mais

INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas.

INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas. SIMULADO DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - JULHO DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES de 0 a

Leia mais

Relatividade. Bruna Moura Colombo Administração / Manhã

Relatividade. Bruna Moura Colombo Administração / Manhã Relatividade Bruna Moura Colombo Administração / Manhã brumcolombo@gmail.com A teoria da relatividade aborda a relatividade especial (ou restrita), que irei enfatizar neste artigo, e a relatividade geral

Leia mais

INF Técnicas Digitais para Computação. Conceitos Básicos de Circuitos Elétricos. Aula 3

INF Técnicas Digitais para Computação. Conceitos Básicos de Circuitos Elétricos. Aula 3 INF01 118 Técnicas Digiais para Compuação Conceios Básicos de Circuios Eléricos Aula 3 1. Fones de Tensão e Correne Fones são elemenos aivos, capazes de fornecer energia ao circuio, na forma de ensão e

Leia mais

Questão 1 Questão 2. Resposta. Resposta

Questão 1 Questão 2. Resposta. Resposta Quesão Quesão Dois amigos, Alfredo e Bruno, combinam dispuar a posse de um objeo num jogo de cara coroa. Alfredo lança moedas e Bruno moedas, simulaneamene. Vence o jogo e, conseqüenemene, fica com o objeo,

Leia mais

3 Retorno, Marcação a Mercado e Estimadores de Volatilidade

3 Retorno, Marcação a Mercado e Estimadores de Volatilidade eorno, Marcação a Mercado e Esimadores de Volailidade 3 3 eorno, Marcação a Mercado e Esimadores de Volailidade 3.. eorno de um Aivo Grande pare dos esudos envolve reorno ao invés de preços. Denre as principais

Leia mais

KCA = KCB KBA TB = KBA TA. TC = KCA TA Adição de velocidades = KCB TB = KCB KBA TA (KCA) 2 =(KCB) 2 (KBA) 2 A B. A m/s

KCA = KCB KBA TB = KBA TA. TC = KCA TA Adição de velocidades = KCB TB = KCB KBA TA (KCA) 2 =(KCB) 2 (KBA) 2 A B. A m/s A B TB = KBA TA C TC = KCA TA Adição de eloidades TB TC = KCB TB = KCB KBA TA TA KCA = KCB KBA A TB B TC C (KCA) =(KCB) (KBA) VCA = Veloidade de C isa por A VCB = Veloidade de C isa por B VBA = Veloidade

Leia mais

QUESTÃO 60 DA CODESP

QUESTÃO 60 DA CODESP UEÃO 60 D CODE - 0 êmpera é um ipo de raameno érmico uilizado para aumenar a dureza de peças de aço respeio da êmpera, é correo afirmar: ) a êmpera modifica de maneira uniforme a dureza da peça, independenemene

Leia mais

4 O modelo econométrico

4 O modelo econométrico 4 O modelo economérico O objeivo desse capíulo é o de apresenar um modelo economérico para as variáveis financeiras que servem de enrada para o modelo esocásico de fluxo de caixa que será apresenado no

Leia mais

A Teoria da Relatividade Especial. Prof. Edgard P. M. Amorim Disciplina: FEE º sem/2011.

A Teoria da Relatividade Especial. Prof. Edgard P. M. Amorim Disciplina: FEE º sem/2011. A Teoria da Relaiidade Espeial Prof. Edgard P. M. Amorim Disiplina: FEE º sem/. Inrodução Para definirmos o esado de um sisema físio preisamos: Sisema de referênia: em relação ao quê? Posições e deriadas

Leia mais

Tópicos Especiais em Energia Elétrica (Projeto de Inversores e Conversores CC-CC)

Tópicos Especiais em Energia Elétrica (Projeto de Inversores e Conversores CC-CC) Deparameno de Engenharia Elérica Tópicos Especiais em Energia Elérica () ula 2.2 Projeo do Induor Prof. João mérico Vilela Projeo de Induores Definição do úcleo a Fig.1 pode ser observado o modelo de um

Leia mais

Critérios e Metodologia de Apuração de Superfície de Volatilidade

Critérios e Metodologia de Apuração de Superfície de Volatilidade Criérios e Meodologia de Apuração de Superfície de Volailidade Diariamene são calculadas superfícies de volailidade implícia de odos os vencimenos de conraos de opções em que há posição em abero e/ou séries

Leia mais

CAPÍTULO 4. Vamos partir da formulação diferencial da lei de Newton

CAPÍTULO 4. Vamos partir da formulação diferencial da lei de Newton 9 CPÍTUL 4 DINÂMIC D PRTÍCUL: IMPULS E QUNTIDDE DE MVIMENT Nese capíulo será analsada a le de Newon na forma de negral no domíno do empo, aplcada ao momeno de parículas. Defne-se o conceo de mpulso e quandade

Leia mais

ENGF93 Análise de Processos e Sistemas I

ENGF93 Análise de Processos e Sistemas I ENGF93 Análise de Processos e Sisemas I Prof a. Karen Pones Revisão: 3 de agoso 4 Sinais e Sisemas Tamanho do sinal Ampliude do sinal varia com o empo, logo a medida de seu amanho deve considerar ampliude

Leia mais

CORREIOS. Prof. Sérgio Altenfelder

CORREIOS. Prof. Sérgio Altenfelder 15. Uma pessoa preende medir a alura de um edifício baseado no amanho de sua sombra projeada ao solo. Sabendo-se que a pessoa em 1,70m de alura e as sombras do edifício e da pessoa medem 20m e 20cm respecivamene,

Leia mais

(Queda Livre, Lançamentos Verticais, velocidade media, mru, mruv, derivada e integrais)

(Queda Livre, Lançamentos Verticais, velocidade media, mru, mruv, derivada e integrais) Movimento vertical (Queda Livre, Lançamentos Verticais, velocidade media, mru, mruv, derivada e integrais) 1. Três bolinhas idênticas, são lançadas na vertical, lado a lado e em seqüência, a partir do

Leia mais

Características dos Processos ARMA

Características dos Processos ARMA Caracerísicas dos Processos ARMA Aula 0 Bueno, 0, Capíulos e 3 Enders, 009, Capíulo. a.6 Morein e Toloi, 006, Capíulo 5. Inrodução A expressão geral de uma série emporal, para o caso univariado, é dada

Leia mais

ELECTRÓNICA DE POTÊNCIA CONVERSORES CC-CC COM ISOLAMENTO GALVÂNICO

ELECTRÓNICA DE POTÊNCIA CONVERSORES CC-CC COM ISOLAMENTO GALVÂNICO ONERSORES ONERSORES OM ISOLAMENTO GALÂNIO FONTES DE DE ALIMENTAÇÃO OMUTADAS caracerísicas:.. saída saída regulada (regulação de de linha linha e regulação de de carga) carga).. isolameno galvânico 3. 3.

Leia mais

5 Metodologia Probabilística de Estimativa de Reservas Considerando o Efeito-Preço

5 Metodologia Probabilística de Estimativa de Reservas Considerando o Efeito-Preço 5 Meodologia Probabilísica de Esimaiva de Reservas Considerando o Efeio-Preço O principal objeivo desa pesquisa é propor uma meodologia de esimaiva de reservas que siga uma abordagem probabilísica e que

Leia mais

CONVERSORES CC-CC COM ISOLAMENTO GALVÂNICO

CONVERSORES CC-CC COM ISOLAMENTO GALVÂNICO ONERSORES ELETRÓNIOS DE POTÊNIA A ALTA FREQUÊNIA ONERSORES com isolameno galvânico ONERSORES OM ISOLAMENTO GALÂNIO FONTES DE DE ALIMENTAÇÃO OMUTADAS caracerísicas:.. saída saída regulada (regulação de

Leia mais

Ciências do Ambiente

Ciências do Ambiente Universidade Federal do Paraná Engenharia Civil Ciências do Ambiene Aula 24 O meio aquáico III: Auodepuração 2º Semesre/ 205 Auodepuração de rios Auodepuração de rios Cinéica da desoxigenação O conceio

Leia mais

1 Movimento de uma Carga Pontual dentro de um Campo Elétrico

1 Movimento de uma Carga Pontual dentro de um Campo Elétrico Correne Elérica Movimeno de uma Carga Ponual denro de um Campo Elérico Uma carga elérica denro de um campo elérico esá sujeia a uma força igual a qe. Se nenhuma oura força aua sobre essa carga (considerar

Leia mais

9. COMPORTAMENTO DINÂMICO COMPLEXO

9. COMPORTAMENTO DINÂMICO COMPLEXO 9. COMPORTAMENTO DINÂMICO COMPLEXO 9. Movimeno no Espaço de Esado A resposa de um sisema começando em um esado inicial o, acompanha uma curva num espaço de (n+) dimensões. Esamos bem acosumados ao ipo

Leia mais

RASCUNHO. a) 120º10 b) 95º10 c) 120º d) 95º e) 110º50

RASCUNHO. a) 120º10 b) 95º10 c) 120º d) 95º e) 110º50 ª QUESTÃO Uma deerminada cidade organizou uma olimpíada de maemáica e física, para os alunos do º ano do ensino médio local. Inscreveramse 6 alunos. No dia da aplicação das provas, consaouse que alunos

Leia mais

dr = ( t ) k. Portanto,

dr = ( t ) k. Portanto, Aplicações das Equações Diferenciais de ordem (Evaporação de uma goa) Suponha que uma goa de chuva esférica evapore numa aa proporcional à sua área de superfície Se o raio original era de mm e depois de

Leia mais

Resumo. Sinais e Sistemas Sinais e Sistemas. Sinal em Tempo Contínuo. Sinal Acústico

Resumo. Sinais e Sistemas Sinais e Sistemas. Sinal em Tempo Contínuo. Sinal Acústico Resumo Sinais e Sisemas Sinais e Sisemas lco@is.ul.p Sinais de empo conínuo e discreo Transformações da variável independene Sinais básicos: impulso, escalão e exponencial. Sisemas conínuos e discreos

Leia mais

O potencial eléctrico de um condutor aumenta à medida que lhe fornecemos carga eléctrica. Estas duas grandezas são

O potencial eléctrico de um condutor aumenta à medida que lhe fornecemos carga eléctrica. Estas duas grandezas são O ondensador O poencial elécrico de um conduor aumena à medida que lhe fornecemos carga elécrica. Esas duas grandezas são direcamene proporcionais. No enano, para a mesma quanidade de carga, dois conduores

Leia mais

UNIDADE 2. t=0. Fig. 2.1-Circuito Com Indutor Pré-Carregado

UNIDADE 2. t=0. Fig. 2.1-Circuito Com Indutor Pré-Carregado UNIDAD 2 CIRCUITOS BÁSICOS COM INTRRUPTORS 2.1 CIRCUITOS D PRIMIRA ORDM 2.1.1 Circuio com Induor PréCarregado em Série com Diodo Seja o circuio represenado na Fig. 2.1. D i =0 Fig. 2.1Circuio Com Induor

Leia mais

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática A B C D E A B C D E. Avaliação da Aprendizagem em Processo Prova do Aluno 3 a série do Ensino Médio

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática A B C D E A B C D E. Avaliação da Aprendizagem em Processo Prova do Aluno 3 a série do Ensino Médio AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Maemáica a série do Ensino Médio Turma EM GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO o Bimesre de 6 Daa / / Escola Aluno A B C D E 6 7 9 A B C D E Avaliação

Leia mais

DENOMINADORES: QUAIS SÃO? COMO SE CALCULAM?

DENOMINADORES: QUAIS SÃO? COMO SE CALCULAM? DENOMINADORES: QUAIS SÃO? COMO SE CALCULAM? POPULAÇÃO SOB OBSERVAÇÃO A idade e o sexo da população inscria nas lisas dos médicos paricipanes é conhecida. A composição dessas lisas é acualizada no final

Leia mais

Integração por substituição (mudança de variável)

Integração por substituição (mudança de variável) M@plus Inegrais Inegrais Pare II IV. Técnicas de inegração Quando o inegral (definido ou indefinido) não é imediao ou quase imediao, recorremos a ouras écnicas de inegração. Inegração por subsiuição (mudança

Leia mais

Nome: N.º Turma: Suficiente (50% 69%) Bom (70% 89%)

Nome: N.º Turma: Suficiente (50% 69%) Bom (70% 89%) Escola E.B.,3 Eng. Nuno Mergulhão Porimão Ano Leivo 01/013 Tese de Avaliação Escria de Maemáica 9.º ano de escolaridade Duração do Tese: 90 minuos 16 de novembro de 01 Nome: N.º Turma: Classificação: Fraco

Leia mais

Desenvolvimento de um sistema instrumentado para ensaios de filtração em batelada

Desenvolvimento de um sistema instrumentado para ensaios de filtração em batelada Desenvolvimeno de um sisema insrumenado para ensaios de ilração em baelada Pedro Tersiguel de Oliveira Bolsisa de Iniciação Cieníica, Engenharia ecânica, UFRJ Claudio L. Schneider Orienador, Engenheiro

Leia mais

Lista de exercícios 1

Lista de exercícios 1 Fundamenos de Mecânica - FAP151 Licenciaura em Física - 1 o semesre de 5 Lisa de eercícios 1 Para enregar: eercícios 16 e 17 Algarismos significaios 1) Usando uma régua de madeira, ocê mede o comprimeno

Leia mais

4. SINAL E CONDICIONAMENTO DE SINAL

4. SINAL E CONDICIONAMENTO DE SINAL 4. SINAL E CONDICIONAMENO DE SINAL Sumário 4. SINAL E CONDICIONAMENO DE SINAL 4. CARACERÍSICAS DOS SINAIS 4.. Período e frequência 4..2 alor médio, valor eficaz e valor máximo 4.2 FILRAGEM 4.2. Circuio

Leia mais

Questão 30. Questão 32. Questão 31. alternativa E. alternativa D. alternativa A

Questão 30. Questão 32. Questão 31. alternativa E. alternativa D. alternativa A Quesão 30 Um sólido branco apresena as seguines propriedades: I. É solúvel em água. II. Sua solução aquosa é conduora de correne elérica. III. Quando puro, o sólido não conduz correne elérica. IV. Quando

Leia mais

4 Modelo teórico Avaliação tradicional

4 Modelo teórico Avaliação tradicional 4 Modelo eórico 4.1. Avaliação radicional Em economia define-se invesimeno como sendo o ao de incorrer em um cuso imediao na expecaiva de fuuros reornos (DIXIT e PINDYCK, 1994). Nesse senido as empresas

Leia mais

1. O movimento uniforme de uma partícula tem sua função horária representada no diagrama a seguir: e (m) t (s)

1. O movimento uniforme de uma partícula tem sua função horária representada no diagrama a seguir: e (m) t (s) . O moimeno uniforme de uma parícula em ua função horária repreenada no diagrama a eguir: e (m) - 6 7 - Deerminar: a) o epaço inicial e a elocidade ecalar; a função horária do epaço.. É dado o gráfico

Leia mais

Física B Extensivo V. 5

Física B Extensivo V. 5 Gabario Eensivo V 5 Resolva Aula 8 Aula 9 80) E 80) A 90) f = 50 MHz = 50 0 6 Hz v = 3 0 8 m/s v = f = v f = 3 0 8 50 0 = 6 m 90) B y = 0,5 cos [ (4 0)] y = 0,5 cos y = A cos A = 0,5 m 6 = 4 s = 0,5 s

Leia mais

Treinamento para Olimpíadas de Física

Treinamento para Olimpíadas de Física www.cursoanglo.com.br Treinameno para Olimpíadas de Física 9º- ano EF AULAS 5 e 6 Em Classe 1. (OBF-1ª- Fase-6) Um rem de carga de 4m de comprimeno, que em a elocidade consane de m/s. gasa 3 s para araessar

Leia mais

Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) - Professores: João Arruda e Henriette Righi

Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) - Professores: João Arruda e Henriette Righi Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) - Professores: João Arruda e Henriee Righi LISTA DE EXERCÍCIOS # 1 Aenção: Aualize seu adobe, ou subsiua os quadrados por negaivo!!! 1) Deermine

Leia mais

Matemática. Funções polinomiais. Ensino Profissional. Caro estudante. Maria Augusta Neves Albino Pereira António Leite Luís Guerreiro M.

Matemática. Funções polinomiais. Ensino Profissional. Caro estudante. Maria Augusta Neves Albino Pereira António Leite Luís Guerreiro M. Ensino Profissional Maria Augusa Neves Albino Pereira Anónio Leie Luís Guerreiro M. Carlos Silva Maemáica Funções polinomiais Revisão cienífica Professor Douor Jorge Nuno Silva Faculdade de Ciências da

Leia mais

TORNEIRO MECÂNICO TECNOLOGIA

TORNEIRO MECÂNICO TECNOLOGIA TORNEIRO MECÂNICO TECNOLOGIA CÁLCULO ÂNGULO INCL. CARRO SUP. TORNEAR CÔNICO DEFINIÇÃO: É indicar o ângulo de inclinação para desviar em graus na base do carro superior de acordo com a conicidade da peça

Leia mais

4 O Papel das Reservas no Custo da Crise

4 O Papel das Reservas no Custo da Crise 4 O Papel das Reservas no Cuso da Crise Nese capíulo buscamos analisar empiricamene o papel das reservas em miigar o cuso da crise uma vez que esa ocorre. Acrediamos que o produo seja a variável ideal

Leia mais

GRUPO XIII GRUPO DE ESTUDO DE INTERFERÊNCIAS, COMPATIBILIDADE ELETROMAGNÉTICA E QUALIDADE DE ENERGIA - GCQ

GRUPO XIII GRUPO DE ESTUDO DE INTERFERÊNCIAS, COMPATIBILIDADE ELETROMAGNÉTICA E QUALIDADE DE ENERGIA - GCQ SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA GCQ - 11 16 a 21 Ouubro de 2005 Curiiba - Paraná GRUPO XIII GRUPO DE ESTUDO DE INTERFERÊNCIAS, COMPATIBILIDADE ELETROMAGNÉTICA E

Leia mais