Problema Inversor CMOS

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Problema Inversor CMOS"

Transcrição

1 Problema nersor CMS NMS: V = ol K = 30 μa/v PMS: V = ol K = 30 μa/v A figura represena um inersor CMS em que os dois ransísores apresenam caracerísicas siméricas A ensão de alimenação ale V =5 ol ) Sabendo que as mobilidades de elecrões e buracos alem respeciamene - - μ = 450 cm V s n - - ) Deermine expressões analíicas para a caracerísica de ransferência = ( ) e e μ = 500 cm V s, e que os dois ransísores são inegrados e p consruídos na mesma ecnologia (mesma espessura do óxido, mesmo comprimeno L dos canais), qual a relação enre a largura W dos canais para que se erifique a simeria de caracerísicas arás referida? represene-a graficamene 3) Deermine as ensões V e V que delimiam a margem de ruído inferior, bem como L as que delimiam a margem de ruído superior, V e V L 4) Calcule o araso de propagação do inersor para uma carga capaciia C l = pf Nos cálculos considere a correne média de descarga de C l quando a ensão ransia insananeamene de = 0 para = V 5) Qual o alor da poência dinâmica para uma frequência de comuação f = 40 MHz para a capacidade de carga Cl dada em 4)? Como se diide essa poência pelos componenes do circuio? H H

2 Resolução ) parâmero K pode ser expresso em ermos da capacidade por unidade de área, das mobilidades μ, e da largura W e comprimeno do canal L, W K = μ Cox L Como queremos que K NMS = K PMS, e uma ez que só μ e W são diferenes nos dois ransísores er-se-á Wp μn 450 μ nwn =μpwp = = =,9 W μ 500 ) A caracerísica de ransferência do inersor CMS simérico em o aspeco represenado na figura seguine: n p C ox V V /+ V V / V NMS core PMS ríodo NMS sauração PMS ríodo NMS ríodo PMS sauração NMS ríodo PMS core V V V V / Quando um dos ransísores esá ao core a ensão de saída ou é V (NMS corado)ou é V zero (PMS corado) A ransição abrupa que no gráfico ocorre para = V / porque endo-se desprezado a resisência de dreno r as curas caracerísicas i D ( DS ) são horizonais não esando bem definido o pono de cruzameno das curas dos dois ransísores (er slide da aula eórica) Para deerminar expressões analíicas basará deerminar a que corresponde ao segmeno em que o ransísor NMS esá saurado e o PMS ao core Correne no NMS (saurado): Dn = ( GSn n) = ( ) i K V K V Correne no PMS (ríodo): idp = K ( SGp Vp ) SDp SDp = K ( V V )( V ) ( V )

3 em que fizemos V = V = V, e odas as ensões ariáeis foram posas em função de n p ou Como a correne no ransísor PMS é igual à do ransísor NMS, igualam-se as expressões aneriores das correnes obendo-se: = ) ( V ) ( V V )( V ) ( V Daqui é possíel ober em função de : = + + < < V ( V V ) ( V ), V V / Verifica-se que, nos exremos do ineralo se confirmam os alores esperados: ( V ) = V e ( V / ) = V / + V Para deerminar a expressão analíica do segmeno em que é o ransísor NMS que esá na região de ríodo e o PMS na sauração pode irar-se parido da simeria da caracerísica Assim, designando por _ ( ) low a noa cura, dee erificar-se high _ ( ) a cura arás deerminada e por [ / + ( /)] = [ / ( /)] V V V V V _ low _ high ou seja, ( ) = V ( V ) _ low _ high Fazendo a subsiuição ficamos com, ( ) ( ), / = V V V V V < < V V Também aqui coném confirmar os alores nos exremos do ineralo, ( V / ) = V / V e ( V V ) = 0 Eses resulados podem ser condensados numa represenação gráfica rigorosa obida em Exel: 5 4,5 4 Tensão de saída (ol) 3,5 3,5,5 0, ,5,5,5 3 3,5 4 4,5 5 Tensão de enrada (ol)

4 3) As ensões V e V são os exremos do ineralo designado por margem de ruído L inferior, enquano as ensões V e V são os exremos da margem de ruído superior Denro desses ineralos o ganho incremenal L H H / dee ser inferior à unidade, o que implica que o inersor acua ambém como aenuador dos sinais ariáeis, aenuando porano o ruído Na figura seguine ilusra-se de forma gráfica ese conceio Sabe-se à parida que Sabe-se ambém que VL 0 = V e VH alores e ober o ouro por simeria = V V / V = V V /, pelo que basará deerminar um deses L H V H =V V L =0 V L V L V H V H =V Assim, amos deerminar o pono do arco superior onde a deriada ale mais fácil parir da relação do que deriar = ) ( V ) ( V V )( V ) ( V ( ) Deriando a expressão anerior em ordem a em-se ( ) ( ) ( ) V = V V V + ( V ) Fazendo / = obém-se a relação V = L + que dee ser subsiuída na expressão de parida para se ober / = É Resula enão V L L = ( 3 V + V ) =,5 V H =,875 V 8 Claro que a expressão geral de ambém se pode ober resulando, V H H = ( 5 V V ) =,875 V 8

5 4) Dada a simeria do inersor os empos de araso PHL ( decrescene) e PLH ( crescene) são iguais Vamos enão calcular aproximadamene PHL considerando que a correne de descarga é dada pelo alor médio da correne inicial e da correne que se erifica quando a ensão de saída ainge o alor = V / condensador descarregase araés do ransísor NMS, como se mosra na figura No insane inicial a ensão no condensador e porano DSn = é igual a V Como a ensão de enrada, nesse insane passou para V, o ransísor esá na região de sauração e a correne em a inensidade i (inicial) = K( V V ) = 30 4 = 480 μ A Dn No insane finl a ensão no condensador e porano DSn = é igual a V / Como a ensão de enrada coninua igual a V, o ransísor esá na região de ríodo e a correne em a inensidade idn(final) = K ( V V )( V / ) ( V / ) = 30 (8,5,5 ) = 4,5 μa alor médio das duas correnes será ,5 i Dn (média) = = 446,5 μ A empo de descarga será dado por P Δ Q Cl V / 0,5 = = = = 5, 6 ns i (média) i (média) 6 446, 5 0 Dn Dn 5) A poência esáica do inersor CMS é, como se sabe, praicamene nula, pois nessas circunsâncias não exise correne Em regime dinâmico a poência de dissipação ale 6 P = f CV = = mw l No processo de carga de C l araés do ransisor PMS dissipa-se a energia W d = CV l no r PMS e armazena-se uma energis igual no condensador No processo de descarga essa energia é ransferida para o r NMS onde se dissipa A poência de dissipação nos dois ransísores é igual a meade de P, ou seja 0,5 mw

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL42 Coneúdo 8 - Inrodução aos Circuios Lineares e Invarianes...1 8.1 - Algumas definições e propriedades gerais...1 8.2 - Relação enre exciação

Leia mais

Aula 13: Amplificadores Diferenciais com MOSFETs

Aula 13: Amplificadores Diferenciais com MOSFETs Aula 3: Amplificadores Diferenciais com MSFETs 88 Elerônica PS33 Programação para a SegundaProva 9 Projeo Amplificador de pequenos sinais MS para experimeno 06 de Avulso lab de elerônica 0 Amplificadores

Leia mais

4. SINAL E CONDICIONAMENTO DE SINAL

4. SINAL E CONDICIONAMENTO DE SINAL 4. SINAL E CONDICIONAMENO DE SINAL Sumário 4. SINAL E CONDICIONAMENO DE SINAL 4. CARACERÍSICAS DOS SINAIS 4.. Período e frequência 4..2 alor médio, valor eficaz e valor máximo 4.2 FILRAGEM 4.2. Circuio

Leia mais

Circuitos Elétricos I EEL420

Circuitos Elétricos I EEL420 Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL420 Coneúdo 1 - Circuios de primeira ordem...1 1.1 - Equação diferencial ordinária de primeira ordem...1 1.1.1 - Caso linear, homogênea, com

Leia mais

Amplificadores de potência de RF

Amplificadores de potência de RF Amplificadores de poência de RF Objeivo: Amplificar sinais de RF em níveis suficienes para a sua ransmissão (geralmene aravés de uma anena) com bom rendimeno energéico. R g P e RF P CC Amplificador de

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031 Universidade Federal do io Grande do Sul Escola de Engenharia de Poro Alegre Deparameno de Engenharia Elérica ANÁLISE DE CICUITOS II - ENG43 Aula 5 - Condições Iniciais e Finais de Carga e Descarga em

Leia mais

Tópicos Avançados em Eletrônica II

Tópicos Avançados em Eletrônica II Deparameno de ngenharia lérica Aula 1.1 onversor - Prof. João Américo Vilela Bibliografia BARB, vo. & MARNS Denizar ruz. onversores - Básicos Não-solados. 1ª edição, UFS, 21. MOHAN Ned; UNDAND ore M.;

Leia mais

Cap. 5 - Tiristores 1

Cap. 5 - Tiristores 1 Cap. 5 - Tirisores 1 Tirisor é a designação genérica para disposiivos que êm a caracerísica esacionária ensão- -correne com duas zonas no 1º quadrane. Numa primeira zona (zona 1) as correnes são baixas,

Leia mais

F-128 Física Geral I. Aula exploratória-07 UNICAMP IFGW F128 2o Semestre de 2012

F-128 Física Geral I. Aula exploratória-07 UNICAMP IFGW F128 2o Semestre de 2012 F-18 Física Geral I Aula eploraória-07 UNICAMP IFGW username@ii.unicamp.br F18 o Semesre de 01 1 Energia Energia é um conceio que ai além da mecânica de Newon e permanece úil ambém na mecânica quânica,

Leia mais

INF Técnicas Digitais para Computação. Conceitos Básicos de Circuitos Elétricos. Aula 3

INF Técnicas Digitais para Computação. Conceitos Básicos de Circuitos Elétricos. Aula 3 INF01 118 Técnicas Digiais para Compuação Conceios Básicos de Circuios Eléricos Aula 3 1. Fones de Tensão e Correne Fones são elemenos aivos, capazes de fornecer energia ao circuio, na forma de ensão e

Leia mais

R A B VETORES. Módulo. Valor numérico + unidade de medida. Intensidade

R A B VETORES. Módulo. Valor numérico + unidade de medida. Intensidade ETORES 1- DEFINIÇÃO: Ene maemáico usado para caracerizar uma grandeza eorial. paralelogramo. O eor resulane é raçado a parir das origens aé a inersecção das linhas auxiliares. - TIPOS DE GRANDEZAS.1- GRANDEZA

Leia mais

2.6 - Conceitos de Correlação para Sinais Periódicos

2.6 - Conceitos de Correlação para Sinais Periódicos .6 - Conceios de Correlação para Sinais Periódicos O objeivo é o de comparar dois sinais x () e x () na variável empo! Exemplo : Considere os dados mosrados abaixo y 0 x Deseja-se ober a relação enre x

Leia mais

O potencial eléctrico de um condutor aumenta à medida que lhe fornecemos carga eléctrica. Estas duas grandezas são

O potencial eléctrico de um condutor aumenta à medida que lhe fornecemos carga eléctrica. Estas duas grandezas são O ondensador O poencial elécrico de um conduor aumena à medida que lhe fornecemos carga elécrica. Esas duas grandezas são direcamene proporcionais. No enano, para a mesma quanidade de carga, dois conduores

Leia mais

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara Insiuo de Física USP Física V - Aula 6 Professora: Mazé Bechara Aula 6 Bases da Mecânica quânica e equações de Schroedinger. Aplicação e inerpreações. 1. Ouros posulados da inerpreação de Max-Born para

Leia mais

Aplicações à Teoria da Confiabilidade

Aplicações à Teoria da Confiabilidade Aplicações à Teoria da ESQUEMA DO CAPÍTULO 11.1 CONCEITOS FUNDAMENTAIS 11.2 A LEI DE FALHA NORMAL 11.3 A LEI DE FALHA EXPONENCIAL 11.4 A LEI DE FALHA EXPONENCIAL E A DISTRIBUIÇÃO DE POISSON 11.5 A LEI

Leia mais

figura 1 Vamos encontrar, em primeiro lugar, a velocidade do som da explosão (v E) no ar que será dada pela fórmula = v

figura 1 Vamos encontrar, em primeiro lugar, a velocidade do som da explosão (v E) no ar que será dada pela fórmula = v Dispara-se, segundo um ângulo de 6 com o horizone, um projéil que explode ao aingir o solo e oue-se o ruído da explosão, no pono de parida do projéil, 8 segundos após o disparo. Deerminar a elocidade inicial

Leia mais

Circuitos Elétricos- módulo F4

Circuitos Elétricos- módulo F4 Circuios léricos- módulo F4 M 014 Correne elécrica A correne elécrica consise num movimeno orienado de poradores de cara elécrica por acção de forças elécricas. Os poradores de cara podem ser elecrões

Leia mais

CAPÍTULO 8. v G G. r G C. Figura Corpo rígido C com centro de massa G.

CAPÍTULO 8. v G G. r G C. Figura Corpo rígido C com centro de massa G. 7 CÍTULO 8 DINÂMIC DO MOVIMENTO LNO DE COROS RÍIDOS IMULSO E QUNTIDDE DE MOVIMENTO Nese capíulo será analisada a lei de Newon apresenada nua ra fora inegral. Nesa fora inegra-se a lei de Newon dada por

Leia mais

Física e Química A Ficha de trabalho nº 2: Unidade 1 Física 11.º Ano Movimentos na Terra e no Espaço

Física e Química A Ficha de trabalho nº 2: Unidade 1 Física 11.º Ano Movimentos na Terra e no Espaço Física e Química A Ficha de rabalho nº 2: Unidade 1 Física 11.º Ano Moimenos na Terra e no Espaço 1. Um corpo descree uma rajecória recilínea, sendo regisada a sua posição em sucessios insanes. Na abela

Leia mais

Conceitos Básicos Circuitos Resistivos

Conceitos Básicos Circuitos Resistivos Conceios Básicos Circuios esisivos Elecrónica 005006 Arnaldo Baisa Elecrónica_biomed_ef Circuio Elécrico com uma Baeria e uma esisência I V V V I Lei de Ohm I0 V 0 i0 Movimeno Das Pás P >P P >P Líquido

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 2º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Inrodução ao Cálculo Diferencial II TPC nº 9 Enregar em 4 2 29. Num loe de bolbos de úlipas a probabilidade de que

Leia mais

Tópicos Especiais em Energia Elétrica (Projeto de Inversores e Conversores CC-CC)

Tópicos Especiais em Energia Elétrica (Projeto de Inversores e Conversores CC-CC) Deparameno de Engenharia Elérica Tópicos Especiais em Energia Elérica () ula 2.2 Projeo do Induor Prof. João mérico Vilela Projeo de Induores Definição do úcleo a Fig.1 pode ser observado o modelo de um

Leia mais

CIRCUITO RC SÉRIE. max

CIRCUITO RC SÉRIE. max ELETRICIDADE 1 CAPÍTULO 8 CIRCUITO RC SÉRIE Ese capíulo em por finalidade inroduzir o esudo de circuios que apresenem correnes eléricas variáveis no empo. Para ano, esudaremos o caso de circuios os quais

Leia mais

ONDAS ELETROMAGNÉTICAS

ONDAS ELETROMAGNÉTICAS LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS A propagação de ondas eleromagnéicas ocorre quando um campo elérico variane no empo produ um campo magnéico ambém variane no empo, que por sua ve produ um campo

Leia mais

Capítulo. Meta deste capítulo Estudar o princípio de funcionamento do conversor Buck.

Capítulo. Meta deste capítulo Estudar o princípio de funcionamento do conversor Buck. 12 Conversores Capíulo CCCC: Conversor Buck Mea dese capíulo Esudar o princípio de funcionameno do conversor Buck objeivos Enender o funcionameno dos conversores cccc do ipo Buck; Analisar conversores

Leia mais

F B d E) F A. Considere:

F B d E) F A. Considere: 5. Dois corpos, e B, de massas m e m, respecivamene, enconram-se num deerminado insane separados por uma disância d em uma região do espaço em que a ineração ocorre apenas enre eles. onsidere F o módulo

Leia mais

Lista de Exercícios n o.1. 1) O diodo do circuito da Fig. 1(a) se comporta segundo a característica linearizada por partes da Fig 1(b). I D (ma) Fig.

Lista de Exercícios n o.1. 1) O diodo do circuito da Fig. 1(a) se comporta segundo a característica linearizada por partes da Fig 1(b). I D (ma) Fig. Universidade Federal da Bahia EE isposiivos Semiconduores ENG C41 Lisa de Exercícios n o.1 1) O diodo do circuio da Fig. 1 se compora segundo a caracerísica linearizada por pares da Fig 1. R R (ma) 2R

Leia mais

Física e Química A 11.º Ano N.º 2 - Movimentos

Física e Química A 11.º Ano N.º 2 - Movimentos Física e Química A 11.º Ano N.º 2 - Moimenos 1. Uma parícula P 1 descree uma rajecória circular, de raio 1,0 m, parindo da posição A no senido indicado na figura 1 (a). fig. 1 Uma oura parícula P 2 descree

Leia mais

ELECTRÓNICA DE POTÊNCIA CONVERSORES CC-CC COM ISOLAMENTO GALVÂNICO

ELECTRÓNICA DE POTÊNCIA CONVERSORES CC-CC COM ISOLAMENTO GALVÂNICO ONERSORES ONERSORES OM ISOLAMENTO GALÂNIO FONTES DE DE ALIMENTAÇÃO OMUTADAS caracerísicas:.. saída saída regulada (regulação de de linha linha e regulação de de carga) carga).. isolameno galvânico 3. 3.

Leia mais

3 LTC Load Tap Change

3 LTC Load Tap Change 54 3 LTC Load Tap Change 3. Inrodução Taps ou apes (ermo em poruguês) de ransformadores são recursos largamene uilizados na operação do sisema elérico, sejam eles de ransmissão, subransmissão e disribuição.

Leia mais

CONVERSORES CC-CC COM ISOLAMENTO GALVÂNICO

CONVERSORES CC-CC COM ISOLAMENTO GALVÂNICO ONERSORES ELETRÓNIOS DE POTÊNIA A ALTA FREQUÊNIA ONERSORES com isolameno galvânico ONERSORES OM ISOLAMENTO GALÂNIO FONTES DE DE ALIMENTAÇÃO OMUTADAS caracerísicas:.. saída saída regulada (regulação de

Leia mais

5.1 Objectivos. Caracterizar os métodos de detecção de valor eficaz.

5.1 Objectivos. Caracterizar os métodos de detecção de valor eficaz. 5. PRINCÍPIOS DE MEDIÇÃO DE CORRENE, ENSÃO, POÊNCIA E ENERGIA 5. Objecivos Caracerizar os méodos de deecção de valor eficaz. Caracerizar os méodos de medição de poência e energia em correne conínua, correne

Leia mais

Capítulo 2: Conceitos Fundamentais sobre Circuitos Elétricos

Capítulo 2: Conceitos Fundamentais sobre Circuitos Elétricos SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA TE041 Circuios Eléricos I Prof. Ewaldo L. M. Mehl Capíulo 2: Conceios Fundamenais sobre Circuios Eléricos 2.1. CARGA ELÉTRICA E CORRENTE ELÉTRICA

Leia mais

Conversores CC-CC: Conversor Buck- Boost

Conversores CC-CC: Conversor Buck- Boost 14 Conversores CCCC: Conversor Buck Boos Mea dese capíulo Capíulo Esudar o princípio de funcionameno do conversor BuckBoos objeivos Enender o funcionameno dos conversores cccc do ipo BuckBoos Analisar

Leia mais

18 GABARITO 1 2 O DIA PROCESSO SELETIVO/2005 FÍSICA QUESTÕES DE 31 A 45

18 GABARITO 1 2 O DIA PROCESSO SELETIVO/2005 FÍSICA QUESTÕES DE 31 A 45 18 GABARITO 1 2 O DIA PROCESSO SELETIO/2005 ÍSICA QUESTÕES DE 31 A 45 31. O gálio é um meal cuja emperaura de fusão é aproximadamene o C. Um pequeno pedaço desse meal, a 0 o C, é colocado em um recipiene

Leia mais

velocidade inicial: v 0 ; ângulo de tiro com a horizontal: 0.

velocidade inicial: v 0 ; ângulo de tiro com a horizontal: 0. www.fisicaee.com.br Um projéil é disparado com elocidade inicial iual a e formando um ânulo com a horizonal, sabendo-se que os ponos de disparo e o alo esão sobre o mesmo plano horizonal e desprezando-se

Leia mais

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática A B C D E A B C D E. Avaliação da Aprendizagem em Processo Prova do Aluno 3 a série do Ensino Médio

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática A B C D E A B C D E. Avaliação da Aprendizagem em Processo Prova do Aluno 3 a série do Ensino Médio AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Maemáica a série do Ensino Médio Turma EM GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO o Bimesre de 6 Daa / / Escola Aluno A B C D E 6 7 9 A B C D E Avaliação

Leia mais

2.5 Impulsos e Transformadas no Limite

2.5 Impulsos e Transformadas no Limite .5 Impulsos e Transformadas no Limie Propriedades do Impulso Uniário O impulso uniário ou função dela de Dirac δ não é uma função no senido maemáico esrio. Ela perence a uma classe especial conhecida como

Leia mais

Frequência: [1MHz] Pot<50W η<95%

Frequência: [1MHz] Pot<50W η<95% EECRÓNCA DE PÊNCA CNERRE RENANE CNERRE RENANE + - + - n: i v D ideal C C i C R + - v () Fone Quase Ressonane Z Zero olage wiching Circuio de poência Circuio de poência Circuio de de conrolo CC-CA hf -CC

Leia mais

Características dos Processos ARMA

Características dos Processos ARMA Caracerísicas dos Processos ARMA Aula 0 Bueno, 0, Capíulos e 3 Enders, 009, Capíulo. a.6 Morein e Toloi, 006, Capíulo 5. Inrodução A expressão geral de uma série emporal, para o caso univariado, é dada

Leia mais

Confiabilidade e Taxa de Falhas

Confiabilidade e Taxa de Falhas Prof. Lorí Viali, Dr. hp://www.pucrs.br/fama/viali/ viali@pucrs.br Definição A confiabilidade é a probabilidade de que de um sisema, equipameno ou componene desempenhe a função para o qual foi projeado

Leia mais

Física I -2009/2010. Utilize o modelo de uma partícula (ou seja, represente o corpo cujo movimento está a estudar por uma única partícula)

Física I -2009/2010. Utilize o modelo de uma partícula (ou seja, represente o corpo cujo movimento está a estudar por uma única partícula) Quesões: Física I -9/ 3 a Série - Movimeno unidimensional - Resolução Q -Esboce um diagrama de ponos para cada um dos movimenos unidimensionais abaixo indicados, de acordo com as seguines insruções: Uilize

Leia mais

QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS

QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS QUESTÃO Assinale V (verdadeiro) ou F (falso): () A solução da equação diferencial y y y apresena equilíbrios esacionários quando, dependendo

Leia mais

ENGF93 Análise de Processos e Sistemas I

ENGF93 Análise de Processos e Sistemas I ENGF93 Análise de Processos e Sisemas I Prof a. Karen Pones Revisão: 3 de agoso 4 Sinais e Sisemas Tamanho do sinal Ampliude do sinal varia com o empo, logo a medida de seu amanho deve considerar ampliude

Leia mais

Questões sobre derivadas. 1. Uma partícula caminha sobre uma trajetória qualquer obedecendo à função horária 2

Questões sobre derivadas. 1. Uma partícula caminha sobre uma trajetória qualquer obedecendo à função horária 2 Quesões sobre deriadas. Uma parícula caminha sobre uma rajeória qualquer obedecendo à função horária s ( = - + 0 ( s em meros e em segundos. a Deermine a lei de sua elocidade em função do empo. b Deermine

Leia mais

Mecânica da partícula

Mecânica da partícula -- Mecânica da parícula Moimenos sob a acção de uma força resulane consane Prof. Luís C. Perna LEI DA INÉRCIA OU ª LEI DE NEWTON LEI DA INÉRCIA Para que um corpo alere o seu esado de moimeno é necessário

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar Progressão Ariméica e Progressão Geomérica. (Pucrj 0) Os números a x, a x e a x esão em PA. A soma dos números é igual a: a) 8 b) c) 7 d) e) 0. (Fuves 0) Dadas as sequências an n n, n n cn an an b, e b

Leia mais

PEA LABORATÓRIO DE INSTALAÇÕES ELÉTRICAS I CONDUTORES E DISPOSITIVOS DE PROTEÇÃO (CDP_EA)

PEA LABORATÓRIO DE INSTALAÇÕES ELÉTRICAS I CONDUTORES E DISPOSITIVOS DE PROTEÇÃO (CDP_EA) PEA 40 - LAORAÓRO DE NSALAÇÕES ELÉRCAS CONDUORES E DSPOSVOS DE PROEÇÃO (CDP_EA) RELAÓRO - NOA... Grupo:...... Professor:...Daa:... Objeivo:..... MPORANE: Em odas as medições, o amperímero de alicae deverá

Leia mais

Primeira Lista de Exercícios

Primeira Lista de Exercícios TP30 Modulação Digial Prof.: MSc. Marcelo Carneiro de Paiva Primeira Lisa de Exercícios Caracerize: - Transmissão em Banda-Base (apresene um exemplo de especro de ransmissão). - Transmissão em Banda Passane

Leia mais

Capítulo 3 Derivada. 3.1 Reta Tangente e Taxa de Variação

Capítulo 3 Derivada. 3.1 Reta Tangente e Taxa de Variação Inrodução ao Cálculo Capíulo Derivada.1 Rea Tangene e Taxa de Variação Exemplo nr. 1 - Uma parícula caminha sobre uma rajeória qualquer obedecendo à função horária: s() 5 + (s em meros, em segundos) a)

Leia mais

CAPÍTULO III TORÇÃO SIMPLES

CAPÍTULO III TORÇÃO SIMPLES CAPÍTULO III TORÇÃO SIPLES I.INTRODUÇÂO Uma peça esará sujeia ao esforço de orção simples quando a mesma esiver submeida somene a um momeno de orção. Observe-se que raa-se de uma simplificação, pois no

Leia mais

11 Conversores. Capítulo. Meta deste capítulo Estudar o princípio de funcionamento dos conversores cc-cc.

11 Conversores. Capítulo. Meta deste capítulo Estudar o princípio de funcionamento dos conversores cc-cc. 11 Conversores Capíulo CCCC Mea dese capíulo Esudar o princípio de funcionameno dos conversores cccc objeivos Enender o funcionameno dos conversores cccc; Enender os conceios básicos envolvidos com conversores

Leia mais

Noções de Espectro de Freqüência

Noções de Espectro de Freqüência MINISTÉRIO DA EDUCAÇÃO - Campus São José Curso de Telecomunicações Noções de Especro de Freqüência Marcos Moecke São José - SC, 6 SUMÁRIO 3. ESPECTROS DE FREQÜÊNCIAS 3. ANÁLISE DE SINAIS NO DOMÍNIO DA

Leia mais

Exercícios sobre o Modelo Logístico Discreto

Exercícios sobre o Modelo Logístico Discreto Exercícios sobre o Modelo Logísico Discreo 1. Faça uma abela e o gráfico do modelo logísico discreo descrio pela equação abaixo para = 0, 1,..., 10, N N = 1,3 N 1, N 0 = 1. 10 Solução. Usando o Excel,

Leia mais

4 CER Compensador Estático de Potência Reativa

4 CER Compensador Estático de Potência Reativa 68 4 ompensador Esáico de Poência Reaiva 4.1 Inrodução ompensadores esáicos de poência reaiva (s ou Saic var ompensaors (Ss são equipamenos de conrole de ensão cuja freqüência de uso em aumenado no sisema

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar . (Pucrj 0) Os números a x, a x e a3 x 3 esão em PA. A soma dos 3 números é igual a: é igual a e o raio de cada semicírculo é igual à meade do semicírculo anerior, o comprimeno da espiral é igual a a)

Leia mais

AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM

AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM 163 22. PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM 22.1. Inrodução Na Seção 9.2 foi falado sobre os Parâmeros de Core e

Leia mais

Exercícios Sobre Oscilações, Bifurcações e Caos

Exercícios Sobre Oscilações, Bifurcações e Caos Exercícios Sobre Oscilações, Bifurcações e Caos Os ponos de equilíbrio de um modelo esão localizados onde o gráfico de + versus cora a rea definida pela equação +, cuja inclinação é (pois forma um ângulo

Leia mais

PROGRAMA DE PÓS- GRADUAÇÃO EM ENGENHARIA ELÉTRICA

PROGRAMA DE PÓS- GRADUAÇÃO EM ENGENHARIA ELÉTRICA ESTUDO E DESENVOLVIMENTO DE UM SISTEMA DIGITAL PARA O ACIONAMENTO DE MOTORES COM ALIMENTAÇÃO PWM Seerino José do Nascimeno Irmão Recife, de Noembro de 00 UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE TECNOLOGIA

Leia mais

4 Metodologia Proposta para o Cálculo do Valor de Opções Reais por Simulação Monte Carlo com Aproximação por Números Fuzzy e Algoritmos Genéticos.

4 Metodologia Proposta para o Cálculo do Valor de Opções Reais por Simulação Monte Carlo com Aproximação por Números Fuzzy e Algoritmos Genéticos. 4 Meodologia Proposa para o Cálculo do Valor de Opções Reais por Simulação Mone Carlo com Aproximação por Números Fuzzy e Algorimos Genéicos. 4.1. Inrodução Nese capíulo descreve-se em duas pares a meodologia

Leia mais

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL Movimeno unidimensional 5 MOVIMENTO UNIDIMENSIONAL. Inrodução Denre os vários movimenos que iremos esudar, o movimeno unidimensional é o mais simples, já que odas as grandezas veoriais que descrevem o

Leia mais

QUESTÃO 60 DA CODESP

QUESTÃO 60 DA CODESP UEÃO 60 D CODE - 0 êmpera é um ipo de raameno érmico uilizado para aumenar a dureza de peças de aço respeio da êmpera, é correo afirmar: ) a êmpera modifica de maneira uniforme a dureza da peça, independenemene

Leia mais

Econometria Semestre

Econometria Semestre Economeria Semesre 00.0 6 6 CAPÍTULO ECONOMETRIA DE SÉRIES TEMPORAIS CONCEITOS BÁSICOS.. ALGUMAS SÉRIES TEMPORAIS BRASILEIRAS Nesa seção apresenamos algumas séries econômicas, semelhanes às exibidas por

Leia mais

Voo Nivelado - Avião a Hélice

Voo Nivelado - Avião a Hélice - Avião a Hélice 763 º Ano da icenciaura em ngenharia Aeronáuica edro. Gamboa - 008. oo de ruzeiro De modo a prosseguir o esudo analíico do desempenho, é conveniene separar as aeronaves por ipo de moor

Leia mais

RELATIVIDADE ESPECIAL

RELATIVIDADE ESPECIAL 1 RELATIVIDADE ESPECIAL AULA N O (paradoos - empo próprio - elocidade momeno) Vamos agora coninuar a er os efeios decorrenes da Transformação de Lorenz com relação às leis da Física, nos diersos sisemas

Leia mais

Transistor de Efeito de Campo de Porta Isolada MOSFET - Revisão

Transistor de Efeito de Campo de Porta Isolada MOSFET - Revisão Transisor de Efeio de Campo de Pora Isolada MOSFET - Revisão 1 NMOS: esruura física NMOS subsrao ipo P isposiivo simérico isposiivo de 4 erminais Pora, reno, Fone e Subsrao (gae, drain, source e Bulk)

Leia mais

Modelos de Crescimento Endógeno de 1ªgeração

Modelos de Crescimento Endógeno de 1ªgeração Teorias do Crescimeno Económico Mesrado de Economia Modelos de Crescimeno Endógeno de 1ªgeração Inrodução A primeira geração de modelos de crescimeno endógeno ena endogeneiar a axa de crescimeno de SSG

Leia mais

Apontamentos de Análise de Sinais

Apontamentos de Análise de Sinais LICENCIATURA EM ENGENHARIA DE SISTEMAS DE TELECOMUNICAÇÕES E ELECTRÓNICA Aponamenos de Análise de Sinais Módulo Prof. José Amaral Versão. -- Secção de Comunicações e Processameno de Sinal ISEL-CEDET, Gabinee

Leia mais

UNIDADE 2. t=0. Fig. 2.1-Circuito Com Indutor Pré-Carregado

UNIDADE 2. t=0. Fig. 2.1-Circuito Com Indutor Pré-Carregado UNIDAD 2 CIRCUITOS BÁSICOS COM INTRRUPTORS 2.1 CIRCUITOS D PRIMIRA ORDM 2.1.1 Circuio com Induor PréCarregado em Série com Diodo Seja o circuio represenado na Fig. 2.1. D i =0 Fig. 2.1Circuio Com Induor

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tarefa de revisão nº 17 1. Uma empresa lançou um produo no mercado. Esudos efecuados permiiram concluir que a evolução do preço se aproxima do seguine modelo maemáico: 7 se 0 1 p() =, p em euros e em anos.

Leia mais

INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas.

INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas. SIMULADO DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - JULHO DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES de 0 a

Leia mais

Função Exponencial 2013

Função Exponencial 2013 Função Exponencial 1 1. (Uerj 1) Um imóvel perde 6% do valor de venda a cada dois anos. O valor V() desse imóvel em anos pode ser obido por meio da fórmula a seguir, na qual V corresponde ao seu valor

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática. Primeira Lista de Exercícios MAT 241 Cálculo III

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática. Primeira Lista de Exercícios MAT 241 Cálculo III Universidade Federal de Viçosa Cenro de Ciências Exaas e Tecnológicas Deparameno de Maemáica Primeira Lisa de Exercícios MAT 4 Cálculo III Julgue a veracidade das afirmações abaixo assinalando ( V para

Leia mais

Matemática. Funções polinomiais. Ensino Profissional. Caro estudante. Maria Augusta Neves Albino Pereira António Leite Luís Guerreiro M.

Matemática. Funções polinomiais. Ensino Profissional. Caro estudante. Maria Augusta Neves Albino Pereira António Leite Luís Guerreiro M. Ensino Profissional Maria Augusa Neves Albino Pereira Anónio Leie Luís Guerreiro M. Carlos Silva Maemáica Funções polinomiais Revisão cienífica Professor Douor Jorge Nuno Silva Faculdade de Ciências da

Leia mais

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON)

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON) TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 8 LIVRO DO NILSON). CONSIDERAÇÕES INICIAIS SÉRIES DE FOURIER: descrevem funções periódicas no domínio da freqüência (ampliude e fase). TRANSFORMADA DE FOURIER:

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

dipolar eléctrico de um cristal ferromagnético)

dipolar eléctrico de um cristal ferromagnético) Insrumenação Opoelecrónica 55 Tipos de foodeecores Deecores érmicos: Foodeecores Absorvem radiação luminosa e converem a energia elecromagnéica em energia érmica. O resulado desa conversão é um aumeno

Leia mais

FÍSICA II. Estudo de circuitos RC em corrente contínua

FÍSICA II. Estudo de circuitos RC em corrente contínua FÍSICA II GUIA DO 2º TRABALHO LABORATORIAL Esudo de circuios RC em correne conínua OBJECTIVOS Preende-se com ese rabalho que os alunos conacem com um circuio elécrico conendo resisências, condensadores

Leia mais

6ROXomR: A aceleração das esferas é a mesma, g (aceleração da gravidade), como demonstrou

6ROXomR: A aceleração das esferas é a mesma, g (aceleração da gravidade), como demonstrou 6ROXomR&RPHQWDGD3URYDGH)VLFD. O sisema inernacional de unidades e medidas uiliza vários prefixos associados à unidade-base. Esses prefixos indicam os múliplos decimais que são maiores ou menores do que

Leia mais

Introdução ao estudo de Circuitos Lineares, Invariantes, Dinâmicos e de Parâmetros Concentrados usando o. Modelo de Estado. Análise de Circuitos

Introdução ao estudo de Circuitos Lineares, Invariantes, Dinâmicos e de Parâmetros Concentrados usando o. Modelo de Estado. Análise de Circuitos Inrodução ao esudo de ircuios Lineares, Invarianes, Dinâmicos e de Parâmeros oncenrados usando o Modelo de Esado Análise de ircuios ircuios Elecrónicos das Telecomunicações ircuios Lineares e Não-Lineares

Leia mais

1 o Exame 10 de Janeiro de 2005 Nota: Resolva os problemas do exame em folhas separadas. Justifique todas as respostas e explique os seus

1 o Exame 10 de Janeiro de 2005 Nota: Resolva os problemas do exame em folhas separadas. Justifique todas as respostas e explique os seus i Sinais e Sisemas (LERCI) o Exame 0 de Janeiro de 005 Noa: Resolva os problemas do exame em folhas separadas. Jusifique odas as resposas e explique os seus cálculos. Problema.. Represene graficamene o

Leia mais

Fundamentos de Electrónica. Teoria Cap.5 - Tiristores

Fundamentos de Electrónica. Teoria Cap.5 - Tiristores Fundamenos de Elecrónica Teoria Cap.5 - Tirisores Jorge Manuel Torres Pereira ST-2010 ÍNDCE CP. 5 TRSTORES Pág. 5.1 nrodução... 5.1 5.2 O díodo de quaro camadas... 5.2 5.3 O recificador conrolado de silício

Leia mais

Capítulo Cálculo com funções vetoriais

Capítulo Cálculo com funções vetoriais Cálculo - Capíulo 6 - Cálculo com funções veoriais - versão 0/009 Capíulo 6 - Cálculo com funções veoriais 6 - Limies 63 - Significado geomérico da derivada 6 - Derivadas 64 - Regras de derivação Uiliaremos

Leia mais

Capítulo 1 Definição de Sinais e Sistemas

Capítulo 1 Definição de Sinais e Sistemas Capíulo 1 Definição de Sinais e Sisemas 1.1 Inrodução 1.2 Represenação dos sinais como funções 1.3 Represenação dos sisemas como funções 1.4 Definições básicas de funções 1.5 Definição de sinal 1.6 Definição

Leia mais

4.5 Amplificador Diferencial

4.5 Amplificador Diferencial 4.5 mplificador Diferencial mplificadores diferenciais são sensieis a diferença enre duas ensões de enrada; i1 i2 mp. Dif. i o1 i o2 o1 o2 /2 /2 mp. Dif. i o1 i o2 o1 o2 Sinal diferencial i ( o) d i (

Leia mais

ANÁLISE DE ESTABILIDADE ESTÁTICA

ANÁLISE DE ESTABILIDADE ESTÁTICA 31 APÍTULO 5 ANÁLISE DE ESTABILIDADE ESTÁTIA 5.1 - Inrodução A análise de esabilidade represena um dos ponos mais complexos do projeo de uma aeronave, pois geralmene envolve uma série de equações algébricas

Leia mais

As cargas das partículas 1, 2 e 3, respectivamente, são:

As cargas das partículas 1, 2 e 3, respectivamente, são: 18 GAB. 1 2 O DIA PROCSSO SLTIVO/2006 FÍSICA QUSTÕS D 31 A 45 31. A figura abaixo ilusra as rajeórias de rês parículas movendo-se unicamene sob a ação de um campo magnéico consane e uniforme, perpendicular

Leia mais

Aula - 2 Movimento em uma dimensão

Aula - 2 Movimento em uma dimensão Aula - Moimeno em uma dimensão Física Geral I - F- 18 o semesre, 1 Ilusração dos Principia de Newon mosrando a ideia de inegral Moimeno 1-D Conceios: posição, moimeno, rajeória Velocidade média Velocidade

Leia mais

Calcule a área e o perímetro da superfície S. Calcule o volume do tronco de cone indicado na figura 1.

Calcule a área e o perímetro da superfície S. Calcule o volume do tronco de cone indicado na figura 1. 1. (Unesp 017) Um cone circular reo de gerariz medindo 1 cm e raio da base medindo 4 cm foi seccionado por um plano paralelo à sua base, gerando um ronco de cone, como mosra a figura 1. A figura mosra

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

Dimensões Físicas e Padrões; Gráficos.

Dimensões Físicas e Padrões; Gráficos. FAP151 - Fundamenos de Mecânica. 1ª Lisa de Eercícios. Feereiro de 9. Dimensões Físicas e Padrões; Gráficos. Enregar as soluções dos eercícios 4 e 31 APENAS; regisre odas as eapas necessárias para conseguir

Leia mais

PROCESSO SELETIVO O DIA GABARITO 2 13 FÍSICA QUESTÕES DE 31 A 45

PROCESSO SELETIVO O DIA GABARITO 2 13 FÍSICA QUESTÕES DE 31 A 45 PROCESSO SELETIVO 27 2 O DIA GABARITO 2 13 FÍSICA QUESTÕES DE 31 A 45 31. No circuio abaixo, uma fone de resisência inerna desprezível é ligada a um resisor R, cuja resisência pode ser variada por um cursor.

Leia mais

MATEMÁTICA E SUAS TECNOLOGIAS

MATEMÁTICA E SUAS TECNOLOGIAS 1º SIMULADO ENEM 017 Resposa da quesão 1: MATEMÁTICA E SUAS TECNOLOGIAS Basa aplicar a combinação de see espores agrupados dois a dois, logo: 7! C7,!(7 )! 7 6 5! C7,!5! 7 6 5! C7, 1!5! Resposa da quesão

Leia mais

Introdução às Medidas em Física

Introdução às Medidas em Física Inrodução às Medidas em Física 43152 Elisabeh Maeus Yoshimura emaeus@if.usp.br Bloco F Conjuno Alessandro Vola sl 18 agradecimenos a Nemiala Added por vários slides Conceios Básicos Lei Zero da Termodinâmica

Leia mais

Cinemática Vetorial Movimento Retilíneo. Movimento. Mecânica : relaciona força, matéria e movimento

Cinemática Vetorial Movimento Retilíneo. Movimento. Mecânica : relaciona força, matéria e movimento Fisica I - IO Cinemáica Veorial Moimeno Reilíneo Prof. Crisiano Olieira Ed. Basilio Jafe sala crislpo@if.usp.br Moimeno Mecânica : relaciona força, maéria e moimeno Cinemáica : Pare da mecânica que descree

Leia mais

3. Representaç ão de Fourier dos Sinais

3. Representaç ão de Fourier dos Sinais Sinais e Sisemas - 3. Represenaç ão de Fourier dos Sinais Nese capíulo consideramos a represenação dos sinais como uma soma pesada de exponenciais complexas. Dese modo faz-se uma passagem do domínio do

Leia mais

Comunicação. Tipos de Sinal. Redes. Tempo de Transmissão x Tempo de Propagação. d = v. Sinal Analógico. Sinal Digital.

Comunicação. Tipos de Sinal. Redes. Tempo de Transmissão x Tempo de Propagação. d = v. Sinal Analógico. Sinal Digital. Comunicação Redes Análise Básica de Sinais Informação Mensagem Sinal Sinal Mensagem Informação Idéia Idéia Sinal de Voz rof. Sérgio Colcher colcher@inf.puc-rio.br 2 Tipos de Sinal Tempo de Transmissão

Leia mais

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc.

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc. ECONOMETRIA Prof. Paricia Maria Borolon, D. Sc. Séries Temporais Fone: GUJARATI; D. N. Economeria Básica: 4ª Edição. Rio de Janeiro. Elsevier- Campus, 2006 Processos Esocásicos É um conjuno de variáveis

Leia mais

Transformada dos Z e Sistemas de Tempo Discreto

Transformada dos Z e Sistemas de Tempo Discreto MEEC Mesrado em Engenharia Elecroécnica e de Compuadores MCSDI Guião do rabalho laboraorial nº 4 Transformada dos Z e Sisemas de Tempo Discreo Transformada dos Z e Sisemas de Tempo Discreo Sumário: Preende-se

Leia mais

Ampliador com estágio de saída classe AB

Ampliador com estágio de saída classe AB Ampliador com eságio de saída classe AB - Inrodução Nese laboraório será esudado um ampliador com rês eságios empregando ransisores bipolares, com aplicação na faixa de áudio freqüência. O eságio de enrada

Leia mais