4. SINAL E CONDICIONAMENTO DE SINAL

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "4. SINAL E CONDICIONAMENTO DE SINAL"

Transcrição

1 4. SINAL E CONDICIONAMENO DE SINAL Sumário 4. SINAL E CONDICIONAMENO DE SINAL 4. CARACERÍSICAS DOS SINAIS 4.. Período e frequência 4..2 alor médio, valor eficaz e valor máximo 4.2 FILRAGEM 4.2. Circuio RC passa-alo Circuio RC passa-baixo 4.3 AENUAÇÃO 4.3. Aenuador RC e sua compensação Ponas de prova aenuadoras

2 4. Caracerísicas dos sinais 4.. Período e frequência O período de um sinal v() deve saisfazer a condição v() = v( ± k) com k =, 2, A frequência f (em Hz) e a frequência angular w (em rads - ) de um sinal periódico são f = e w = 2π 4..2 alor médio e valor eficaz O valor médio = <v()> =. v() d alor eficaz de v() ef 2 = <v 2 ()> =. v 2 () d Exemplos de valor médio e valor eficaz de alguns sinais periódicos (período ). ipo de sinal alor médio alor eficaz Sinusoidal v() = p sen w p 2 Sinusoidal com recificação de meia onda v() = para < < /2 = p sen w, para /2 < < Recangular v() = p < < p p π p 2 p d p d = p < < ; d (ciclo acivo) = p 2

3 Facor de crisa FC, que em a expressão FC = p ef O quociene, K, enre o valor eficaz e o valor médio é K = rms dam Relação enre alguns parâmeros de formas de onda ípicas. Forma de onda ( p =, vol) rms dam* K = rms dam Facor de crisa - FC Sinusoidal p 2 =,77 vol Onda quadrada p simérica =, vol riangular p 3 =,577 vol 2 p π =,637 vol p =, vol p 2 =,5 vol,77,637 =,,44,, =,,,58,5 =,55,73 * dam desvio absoluo médio (valor médio do sinal após recificação de onda complea) EXEMPLO Calcule o facor de crisa FC dos sinais recangulares v () e v 2 () esboçados na figura. O sinal v 2 () em valor médio nulo. Os dois sinais êm valor máximo p e período. Para os dois casos, esboce graficamene FC em função do ciclo acivo d, FC(d). Analise os resulados obidos. Resolução Sinal v (): O quadrado do valor eficaz de v () é ef 2 = <v 2 ()> =. v 2 () d = p 2 2 p p d = p = p 2 d com d = p ou ef = p d 3

4 Finalmene, resula FC = p ef = d v () v 2 () p p pp p p Sinais recangulares v () e v 2 (). Sinal v 2 (): Como v 2 () apresena valor médio nulo, observa-se a condição O quadrado do valor eficaz é p p = ( pp p ) ( p ) ( pp = alor de pico-a-pico) 2ef 2 = <v 2 2 ()> =. v 2 2 () d = p 2 p d + ( pp p ) 2 d = [ p 2 p + ( pp p ) 2 ( p ) ] como pp p = p p p resula 2ef 2 = [ p 2 p + ( p p ) 2 p ] p Finalmene, após simplificação 2ef = p p p ou FC = p p = d d 4

5 FC (a) (b),,2,3,4,5,6,7,8,9 d Facor de crisa de ondas recangulares em função de d: (a) FC = /d; (b) FC = ( d)/d. 4.2 Filragem Um sinal sinusoidal ao aravessar um sisema linear, não alera a sua forma. Com uma enrada v i () = A sen w (w=2πf ) A saída é do ipo = A 2 sen(w φ(w)) A função φ(w) caraceriza a variação da fase com a frequência; H(w) = A 2 /A é o módulo da função de ransferência H(w). A função de ransferência do sisema é uma grandeza complexa, que à frequência w, apresena o módulo H(w) e fase φ(w), iso é H(w) = H(w) e jφ(w) 5

6 4.2. Circuio RC passa-alo A função de ransferência H(s) do circuio RC passa-alo é H(s) = o(s) i (s) = sτ + sτ i (s) e o (s) são, respecivamene, as ransformadas de Laplace de v i () e. O parâmero τ é a consane de empo, sendo τ = R C Resposa em frequência O módulo e a fase da função de ransferência H(f) apresenam as expressões H(f) = C + (f /f) 2 e φ(f) = arcan (f /f) ( f = é a frequência inferior de core do filro) 2πτ 2log H(f) db 3 9º φ(f) v i () R + 2 db/década 45º 2 f f f f Diagrama assimpóico a) b) c) Filro passa-alo: a) circuio RC; b) curva de módulo e c) curva de fase. 6

7 Resposa emporal Sendo v i () um degrau de Heaviside h(), de ampliude, a ransformada inversa é do ipo = f + ( i f ) e -/τ f e i são, respecivamene, o valor final e o valor inicial. Com condições iniciais nulas, i =, e f =, resula = e /τ v i () Resposa a um degrau de um filro RC passa-alo. v i () v i () p a) p b) Resposa de um filro RC passa-alo a um impulso v i () com: a) τ >> p ; b) τ << p. 7

8 Genericamene, a resposa apresena a forma da b), onde = e 2RC e 2 = 2 e E 2 = e 2 = 2RC Como a onda quadrada de enrada é simérica, verificam-se as relações = 2 e = 2 Resulando 2 = + e /2RC e 2 = + e /2RC Com /2RC<< e aendendo ao desenvolvimeno em série de e x (e x +x, para x << ), as expressões aneriores são aproximadas por O grau de disorção dese ipo de filros é avaliado pela flecha P, definida por P = 2 ' ( + 4RC ) e 2 2 ( 4RC ) % 2RC % = π f f % 2 v i () b) 2 2 a) dc /2 /2 c) /2 Resposa de um filro RC passa-alo: a) sinal de enrada; b), c) sinais de saída para τ >> /2 e τ << /2, respecivamene. 8

9 EXEMPLO Uma onda quadrada simérica de frequência Hz e ensão pico-a-pico 2, é aplicada a um circuio RC passa-alo de frequência inferior de core 5 Hz. Caracerize a onda de saída, calculando os valores insanâneos da ensão em ponos caracerísicos. Deermine o valor da flecha P. Repia a quesão anerior admiindo que a frequência inferior de core do circuio RC é: a),3 Hz; b) 3, Hz; c) 3 Hz. Resolução Para a onda quadrada considerada no problema, a ensão pico-a-pico é = 2,. O seu período é = ms. Para f = 5 Hz, a consane de empo é τ = 2 = 2πf = 3,8 ms e + e -/2RC =,66 e 2 = + e /2RC =,34 ; = 2 =,66 e = 2 =,34 A flecha P é P = % = 32 % A resposa apresena assim um decaimeno apreciável, apresenando uma forma semelhane à esboçada na b). a) Recorrendo às mesmas expressões, para f =,3 Hz obemos sucessivamene: = 2 =,5 ; = 2 =,95 ; P = % A resposa apresena nese caso uma disorção menos significaiva do que na siuação anerior. b) Para f = 3, Hz obemos sucessivamene: = 2 =,44 ; = 2 =,56 ; P = 88 % c) Para f = 3 Hz obemos uma disorção muio apreciável da forma de onda, dando origem a uma resposa próxima da esboçada na c), com variações enre um valor máximo igual a +2 e um mínimo igual a 2. raando-se de um filro passa-alo, em qualquer um dos casos, a resposa apresena um valor médio nulo. 9

10 4.2.2 Circuio RC passa-baixo A função de ransferência H(s) do circuio RC passa-baixo é H(s) = o(s) i (s) = /τ' /τ'+ s (τ' = R'C') Resposa em frequência Em regime sinusoidal, iso é, para s = jw = j2πf, a função de ransferência é H(f) = o(f) i (f) = f 2 f 2 + jf (f 2 é a frequência superior de core, é f 2 = 2πτ' ) O módulo da função de ransferência H(f) e a fase φ(f), apresenam as expressões H(f) = + (f/f 2 ) 2 e φ(f) = arcan f f 2 2log H(f) db 3 2 db/década φ(f) f 2 f R -45 v i () C a) f 2 Diagrama assimpóico -9 f b) c) Filro passa-baixo: a) circuio RC; b) curva de módulo e c) curva de fase.

11 Resposa emporal A resposa a um degrau de Heaviside de ampliude dese circuio RC passa-baixo apresena a expressão = ( e /τ' ) O empo de subida é r = 2,2 τ' = 2,2 2πf 2 =,35 f 2,9 v i () ' v i () dc '', 2 r Resposa a um degrau de um filro RC passa-alo.a) τ'<< e τ'<< 2. v i () As duas equações da saída,, deduzem-se a parir da expressão genérica = f + ( i f ) e /τ' Idenificando os valores inicial i e final f, em cada uma das sub-funções, v o v o2 2 dc obemos as equações 2 v o () = ' + ( ' ) e /τ' b) τ'>> e τ'>> 2 v o2 () = '' + ( 2 '') e ( )/τ' Resposa emporal de um circuio RC passa-alo.

12 4.3 Aenuação Aenuador de ensão resisivo R. A aenuação a do aenuador resisivo da figura é v i () a = v o() v i () = R + A aenuação é independene da frequência. Na práica, a siuação é mais complexa devido ao efeio de carga, usualmene de naureza capaciiva, exercido pelos andares seguines ao aenuador. O circuio da figura vem alerado, para um circuio do ipo. R R v i () C av i () C a) b) Aenuador resisivo com carga capaciiva; b) circuio equivalene (com a= /(R + ) e R=R /(R + ) ). A frequência superior de core dese circuio é agora f 2 = 2πRC com R = R R + Iso é, o divisor resisivo que em uma resposa em frequência plana passa, por efeio de carga, a apresenar um comporameno de um filro passa-baixo. 2

13 4.3. Aenuador RC e sua compensação O efeio acima descrio é compensado, colocando em paralelo com R a capacidade C. A função de ransferência do circuio é C H(s) = +sr C R + +src onde R = R R + e C = C + C 2. Para uma enrada em degrau, é = v i () R C 2 R + + ( com τ = RC = R R + (C +C 2 ) C ) e C +C 2 R + R /τ 2 A resposa é represenada em duas siuações: a) valor inicial superior ao valor final e b) valor final superior ao valor inicial. Em qualquer uma desas duas siuações, não há manuenção da forma de onda, não esando porano o aenuador compensado. C C +C 2 R + C C +C 2 R + As rês siuações possíveis são: a) o aenuador esá sobre-compensado, o que se verifica se R C > C 2 ; b) aenuador esá sub-compensado, o que se verifica se R C < C 2 ; c) o aenuador esá compensado se R C = C 2. 3

14 A função de ransferência em w é H(jw) = + jwr C R + + jwrc A figura seguine represena o módulo da função de ransferência para as siuações de sobre-compensação e sub-compensação. H(f) H(f) C /(C +C 2 ) /(R + ) /(R + ) C /(C +C 2 ) f f (Sobre-compensado - R C > C 2 ) (Sub-compensado - R C < C 2 ) Resposa em frequência de aenuador RC não compensado. De noar que os valores limies de H(jw) são: lim H(jw) w = C e lim H(jw) R +R w = 2 C +C 2 Eses resulados limies confirmam os resulados obidos no domínio dos empos, onde o valor final da resposa a um degrau é aenuado por /(R + ). Iso é, a resposa à variação lena do degrau corresponde à resposa às baixas frequências. Inversamene, a resposa à ransição rápida depende da forma como o circuio responde às alas frequências, onde a aenuação é C /(C +C 2 ). Se eses dois valores limies forem iguais a resposa em frequência é consane, esando o aenuador compensado. 4

15 4.3.2 Ponas de prova aenuadoras Uma pona de prova aenuadora, usada na ligação do pono de ese de um circuio a um osciloscópio, consiui uma aplicação direca dos aenuadores compensados. São duas as configurações básicas: a pona de prova passiva e a aenuadora (que necessia de ser compensada). R s v s () R i C i Fone de sinal Cabo coaxial Aparelho de medição Pona de prova passiva na ligação de uma fone de sinal a um aparelho de medição. C R R i C i Pona de prova aenuadora Aparelho de medição Pona de prova aenuadora. 5

5.1 Objectivos. Caracterizar os métodos de detecção de valor eficaz.

5.1 Objectivos. Caracterizar os métodos de detecção de valor eficaz. 5. PRINCÍPIOS DE MEDIÇÃO DE CORRENE, ENSÃO, POÊNCIA E ENERGIA 5. Objecivos Caracerizar os méodos de deecção de valor eficaz. Caracerizar os méodos de medição de poência e energia em correne conínua, correne

Leia mais

Cap. 5 - Tiristores 1

Cap. 5 - Tiristores 1 Cap. 5 - Tirisores 1 Tirisor é a designação genérica para disposiivos que êm a caracerísica esacionária ensão- -correne com duas zonas no 1º quadrane. Numa primeira zona (zona 1) as correnes são baixas,

Leia mais

Circuitos Elétricos I EEL420

Circuitos Elétricos I EEL420 Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL420 Coneúdo 1 - Circuios de primeira ordem...1 1.1 - Equação diferencial ordinária de primeira ordem...1 1.1.1 - Caso linear, homogênea, com

Leia mais

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL42 Coneúdo 8 - Inrodução aos Circuios Lineares e Invarianes...1 8.1 - Algumas definições e propriedades gerais...1 8.2 - Relação enre exciação

Leia mais

Lista de Exercícios n o.1. 1) O diodo do circuito da Fig. 1(a) se comporta segundo a característica linearizada por partes da Fig 1(b). I D (ma) Fig.

Lista de Exercícios n o.1. 1) O diodo do circuito da Fig. 1(a) se comporta segundo a característica linearizada por partes da Fig 1(b). I D (ma) Fig. Universidade Federal da Bahia EE isposiivos Semiconduores ENG C41 Lisa de Exercícios n o.1 1) O diodo do circuio da Fig. 1 se compora segundo a caracerísica linearizada por pares da Fig 1. R R (ma) 2R

Leia mais

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON)

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON) TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 8 LIVRO DO NILSON). CONSIDERAÇÕES INICIAIS SÉRIES DE FOURIER: descrevem funções periódicas no domínio da freqüência (ampliude e fase). TRANSFORMADA DE FOURIER:

Leia mais

INF Técnicas Digitais para Computação. Conceitos Básicos de Circuitos Elétricos. Aula 3

INF Técnicas Digitais para Computação. Conceitos Básicos de Circuitos Elétricos. Aula 3 INF01 118 Técnicas Digiais para Compuação Conceios Básicos de Circuios Eléricos Aula 3 1. Fones de Tensão e Correne Fones são elemenos aivos, capazes de fornecer energia ao circuio, na forma de ensão e

Leia mais

Noções de Espectro de Freqüência

Noções de Espectro de Freqüência MINISTÉRIO DA EDUCAÇÃO - Campus São José Curso de Telecomunicações Noções de Especro de Freqüência Marcos Moecke São José - SC, 6 SUMÁRIO 3. ESPECTROS DE FREQÜÊNCIAS 3. ANÁLISE DE SINAIS NO DOMÍNIO DA

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031 Universidade Federal do io Grande do Sul Escola de Engenharia de Poro Alegre Deparameno de Engenharia Elérica ANÁLISE DE CICUITOS II - ENG43 Aula 5 - Condições Iniciais e Finais de Carga e Descarga em

Leia mais

Problema Inversor CMOS

Problema Inversor CMOS Problema nersor CMS NMS: V = ol K = 30 μa/v PMS: V = ol K = 30 μa/v A figura represena um inersor CMS em que os dois ransísores apresenam caracerísicas siméricas A ensão de alimenação ale V =5 ol ) Sabendo

Leia mais

Exercícios sobre o Modelo Logístico Discreto

Exercícios sobre o Modelo Logístico Discreto Exercícios sobre o Modelo Logísico Discreo 1. Faça uma abela e o gráfico do modelo logísico discreo descrio pela equação abaixo para = 0, 1,..., 10, N N = 1,3 N 1, N 0 = 1. 10 Solução. Usando o Excel,

Leia mais

3. Representaç ão de Fourier dos Sinais

3. Representaç ão de Fourier dos Sinais Sinais e Sisemas - 3. Represenaç ão de Fourier dos Sinais Nese capíulo consideramos a represenação dos sinais como uma soma pesada de exponenciais complexas. Dese modo faz-se uma passagem do domínio do

Leia mais

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 1 3 quadrimestre 2012

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 1 3 quadrimestre 2012 EN67 Transformadas em Sinais e Sisemas Lineares Lisa de Exercícios Suplemenares janeiro EN67 Transformadas em Sinais e Sisemas Lineares Lisa de Exercícios Suplemenares quadrimesre Figura Convolução (LATHI,

Leia mais

AULA PRÁTICA-TEÓRICA 01 ANÁLISE DE CIRCUITOS COM DIODOS

AULA PRÁTICA-TEÓRICA 01 ANÁLISE DE CIRCUITOS COM DIODOS PráicaTeórica 01 Análise de circuios com diodos INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA DEPARTAMENTO ACADÊMICO DE ELETRÔNICA CURSO TÉCNICO DE ELETRÔNICA Elerônica I AULA PRÁTICATEÓRICA

Leia mais

EXAME DE ESTATÍSTICA AMBIENTAL 1ª Época (v1)

EXAME DE ESTATÍSTICA AMBIENTAL 1ª Época (v1) Nome: Aluno nº: Duração: horas LICENCIATURA EM CIÊNCIAS DE ENGENHARIA - ENGENHARIA DO AMBIENTE EXAME DE ESTATÍSTICA AMBIENTAL ª Época (v) I (7 valores) Na abela seguine apresena-se os valores das coordenadas

Leia mais

Introdução ao estudo de Circuitos Lineares, Invariantes, Dinâmicos e de Parâmetros Concentrados usando o. Modelo de Estado. Análise de Circuitos

Introdução ao estudo de Circuitos Lineares, Invariantes, Dinâmicos e de Parâmetros Concentrados usando o. Modelo de Estado. Análise de Circuitos Inrodução ao esudo de ircuios Lineares, Invarianes, Dinâmicos e de Parâmeros oncenrados usando o Modelo de Esado Análise de ircuios ircuios Elecrónicos das Telecomunicações ircuios Lineares e Não-Lineares

Leia mais

) quando vamos do ponto P até o ponto Q (sobre a reta) e represente-a no plano cartesiano descrito acima.

) quando vamos do ponto P até o ponto Q (sobre a reta) e represente-a no plano cartesiano descrito acima. ATIVIDADE 1 1. Represene, no plano caresiano xy descrio abaixo, os dois ponos (x 0,y 0 ) = (1,2) e Q(x 1,y 1 ) = Q(3,5). 2. Trace a rea r 1 que passa pelos ponos e Q, no plano caresiano acima. 3. Deermine

Leia mais

Primeira Lista de Exercícios

Primeira Lista de Exercícios TP30 Modulação Digial Prof.: MSc. Marcelo Carneiro de Paiva Primeira Lisa de Exercícios Caracerize: - Transmissão em Banda-Base (apresene um exemplo de especro de ransmissão). - Transmissão em Banda Passane

Leia mais

3 LTC Load Tap Change

3 LTC Load Tap Change 54 3 LTC Load Tap Change 3. Inrodução Taps ou apes (ermo em poruguês) de ransformadores são recursos largamene uilizados na operação do sisema elérico, sejam eles de ransmissão, subransmissão e disribuição.

Leia mais

ENGF93 Análise de Processos e Sistemas I

ENGF93 Análise de Processos e Sistemas I ENGF93 Análise de Processos e Sisemas I Prof a. Karen Pones Revisão: 3 de agoso 4 Sinais e Sisemas Tamanho do sinal Ampliude do sinal varia com o empo, logo a medida de seu amanho deve considerar ampliude

Leia mais

UNIDADE 2. t=0. Fig. 2.1-Circuito Com Indutor Pré-Carregado

UNIDADE 2. t=0. Fig. 2.1-Circuito Com Indutor Pré-Carregado UNIDAD 2 CIRCUITOS BÁSICOS COM INTRRUPTORS 2.1 CIRCUITOS D PRIMIRA ORDM 2.1.1 Circuio com Induor PréCarregado em Série com Diodo Seja o circuio represenado na Fig. 2.1. D i =0 Fig. 2.1Circuio Com Induor

Leia mais

ONDAS ELETROMAGNÉTICAS

ONDAS ELETROMAGNÉTICAS LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS A propagação de ondas eleromagnéicas ocorre quando um campo elérico variane no empo produ um campo magnéico ambém variane no empo, que por sua ve produ um campo

Leia mais

Exercícios de Comunicações Digitais

Exercícios de Comunicações Digitais Deparameno de Engenharia Elecroécnica e de Compuadores Exercícios de Comunicações Digiais Sílvio A. Abranes DEEC/FEUP Modulações digiais 3.. Considere as rês funções da figura seguine: S () S () S 3 ()

Leia mais

Frequência: [1MHz] Pot<50W η<95%

Frequência: [1MHz] Pot<50W η<95% EECRÓNCA DE PÊNCA CNERRE RENANE CNERRE RENANE + - + - n: i v D ideal C C i C R + - v () Fone Quase Ressonane Z Zero olage wiching Circuio de poência Circuio de poência Circuio de de conrolo CC-CA hf -CC

Leia mais

Modelos de Crescimento Endógeno de 1ªgeração

Modelos de Crescimento Endógeno de 1ªgeração Teorias do Crescimeno Económico Mesrado de Economia Modelos de Crescimeno Endógeno de 1ªgeração Inrodução A primeira geração de modelos de crescimeno endógeno ena endogeneiar a axa de crescimeno de SSG

Leia mais

Circuitos Elétricos- módulo F4

Circuitos Elétricos- módulo F4 Circuios léricos- módulo F4 M 014 Correne elécrica A correne elécrica consise num movimeno orienado de poradores de cara elécrica por acção de forças elécricas. Os poradores de cara podem ser elecrões

Leia mais

Voo Nivelado - Avião a Hélice

Voo Nivelado - Avião a Hélice - Avião a Hélice 763 º Ano da icenciaura em ngenharia Aeronáuica edro. Gamboa - 008. oo de ruzeiro De modo a prosseguir o esudo analíico do desempenho, é conveniene separar as aeronaves por ipo de moor

Leia mais

F B d E) F A. Considere:

F B d E) F A. Considere: 5. Dois corpos, e B, de massas m e m, respecivamene, enconram-se num deerminado insane separados por uma disância d em uma região do espaço em que a ineração ocorre apenas enre eles. onsidere F o módulo

Leia mais

Tópicos Avançados em Eletrônica II

Tópicos Avançados em Eletrônica II Deparameno de ngenharia lérica Aula 1.1 onversor - Prof. João Américo Vilela Bibliografia BARB, vo. & MARNS Denizar ruz. onversores - Básicos Não-solados. 1ª edição, UFS, 21. MOHAN Ned; UNDAND ore M.;

Leia mais

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL Movimeno unidimensional 5 MOVIMENTO UNIDIMENSIONAL. Inrodução Denre os vários movimenos que iremos esudar, o movimeno unidimensional é o mais simples, já que odas as grandezas veoriais que descrevem o

Leia mais

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara Insiuo de Física USP Física V - Aula 6 Professora: Mazé Bechara Aula 6 Bases da Mecânica quânica e equações de Schroedinger. Aplicação e inerpreações. 1. Ouros posulados da inerpreação de Max-Born para

Leia mais

UNIVERSIDADE DA BEIRA INTERIOR FACULDADE DE CIÊNCIAS SOCIAIS E HUMANAS DEPARTAMENTO DE GESTÃO E ECONOMIA MACROECONOMIA III

UNIVERSIDADE DA BEIRA INTERIOR FACULDADE DE CIÊNCIAS SOCIAIS E HUMANAS DEPARTAMENTO DE GESTÃO E ECONOMIA MACROECONOMIA III UNIVERSIDADE DA BEIRA INTERIOR FACUDADE DE CIÊNCIAS SOCIAIS E HUMANAS DEPARTAMENTO DE GESTÃO E ECONOMIA MACROECONOMIA III icenciaura de Economia (ºAno/1ºS) Ano ecivo 007/008 Caderno de Exercícios Nº 1

Leia mais

Características dos Processos ARMA

Características dos Processos ARMA Caracerísicas dos Processos ARMA Aula 0 Bueno, 0, Capíulos e 3 Enders, 009, Capíulo. a.6 Morein e Toloi, 006, Capíulo 5. Inrodução A expressão geral de uma série emporal, para o caso univariado, é dada

Leia mais

ELETRÔNICA DE POTÊNCIA I Aula 13 - Retificadores com regulador linear de tensão

ELETRÔNICA DE POTÊNCIA I Aula 13 - Retificadores com regulador linear de tensão UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA ELÉTRICA CURSO DE ENGENHARIA ELÉTRICA ELETRÔNICA DE POTÊNCIA I Aula 13 - Reificadores com regulador linear

Leia mais

Orlando Ferreira Soares

Orlando Ferreira Soares Orlando Ferreira Soares eoria do Sinal Índice Inrodução... Exemplo : Remoção de ruído de sinais audio... Exemplo : Previsão das coações da bolsa... Exemplo 3: Revisão do exemplo... 4 Exemplo 4: Processameno

Leia mais

Primeira Lista de Exercícios

Primeira Lista de Exercícios TP30 Modulação Digial Prof.: MSc. Marcelo Carneiro de Paiva Primeira Lisa de Exercícios Caracerize: - Transmissão em Banda-Base (apresene um exemplo de especro de ransmissão). - Transmissão em Banda Passane

Leia mais

2. DÍODOS DE JUNÇÃO. Dispositivo de dois terminais, passivo e não-linear

2. DÍODOS DE JUNÇÃO. Dispositivo de dois terminais, passivo e não-linear 2. ÍOOS E JUNÇÃO Fernando Gonçalves nsiuo Superior Técnico Teoria dos Circuios e Fundamenos de Elecrónica - 2004/2005 íodo de Junção isposiivo de dois erminais, passivo e não-linear Foografia ânodo Símbolo

Leia mais

1 o Exame 10 de Janeiro de 2005 Nota: Resolva os problemas do exame em folhas separadas. Justifique todas as respostas e explique os seus

1 o Exame 10 de Janeiro de 2005 Nota: Resolva os problemas do exame em folhas separadas. Justifique todas as respostas e explique os seus i Sinais e Sisemas (LERCI) o Exame 0 de Janeiro de 005 Noa: Resolva os problemas do exame em folhas separadas. Jusifique odas as resposas e explique os seus cálculos. Problema.. Represene graficamene o

Leia mais

CIRCUITO RC SÉRIE. max

CIRCUITO RC SÉRIE. max ELETRICIDADE 1 CAPÍTULO 8 CIRCUITO RC SÉRIE Ese capíulo em por finalidade inroduzir o esudo de circuios que apresenem correnes eléricas variáveis no empo. Para ano, esudaremos o caso de circuios os quais

Leia mais

dipolar eléctrico de um cristal ferromagnético)

dipolar eléctrico de um cristal ferromagnético) Insrumenação Opoelecrónica 55 Tipos de foodeecores Deecores érmicos: Foodeecores Absorvem radiação luminosa e converem a energia elecromagnéica em energia érmica. O resulado desa conversão é um aumeno

Leia mais

AULA PRÁTICA-TEÓRICA EXTRA SIMULAÇÃO DE CIRCUITOS COM MULTISIM

AULA PRÁTICA-TEÓRICA EXTRA SIMULAÇÃO DE CIRCUITOS COM MULTISIM INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA DEPARTAMENTO ACADÊMICO DE ELETRÔNICA CURSO TÉCNICO DE ELETRÔNICA Elerônica I AULA PRÁTICATEÓRICA EXTRA SIMULAÇÃO DE CIRCUITOS COM MULTISIM

Leia mais

Capacitores e Indutores

Capacitores e Indutores Capaciores e Induores Um capacior é um disposiivo que é capaz de armazenar e disribuir carga elérica em um circuio. A capaciância (C) é a grandeza física associada a esa capacidade de armazenameno da carga

Leia mais

2.6 - Conceitos de Correlação para Sinais Periódicos

2.6 - Conceitos de Correlação para Sinais Periódicos .6 - Conceios de Correlação para Sinais Periódicos O objeivo é o de comparar dois sinais x () e x () na variável empo! Exemplo : Considere os dados mosrados abaixo y 0 x Deseja-se ober a relação enre x

Leia mais

Lista de Exercícios nº 3 - Parte IV

Lista de Exercícios nº 3 - Parte IV DISCIPLINA: SE503 TEORIA MACROECONOMIA 01/09/011 Prof. João Basilio Pereima Neo E-mail: joaobasilio@ufpr.com.br Lisa de Exercícios nº 3 - Pare IV 1ª Quesão (...) ª Quesão Considere um modelo algébrico

Leia mais

Função Exponencial 2013

Função Exponencial 2013 Função Exponencial 1 1. (Uerj 1) Um imóvel perde 6% do valor de venda a cada dois anos. O valor V() desse imóvel em anos pode ser obido por meio da fórmula a seguir, na qual V corresponde ao seu valor

Leia mais

CAPÍTULO III TORÇÃO SIMPLES

CAPÍTULO III TORÇÃO SIMPLES CAPÍTULO III TORÇÃO SIPLES I.INTRODUÇÂO Uma peça esará sujeia ao esforço de orção simples quando a mesma esiver submeida somene a um momeno de orção. Observe-se que raa-se de uma simplificação, pois no

Leia mais

Resoluções de Exercícios de Telecomunicações I

Resoluções de Exercícios de Telecomunicações I Resoluções de Exercícios de elecomunicações I elecomunicações I Folha - SINAIS - Por definição V f v e j πf d Ae e jπf d A jπf + jπf + [ e ] A + jπf - A ransformada de Fourier do impulso v δ δ é V f Aδ

Leia mais

MODULAÇÃO. Modulação. AM Amplitude Modulation Modulação por amplitude 24/02/2015

MODULAÇÃO. Modulação. AM Amplitude Modulation Modulação por amplitude 24/02/2015 ODUAÇÃO... PW DIGITA odulação odulação éamodificaçãoinencional e conrolada de um sinal original oalmene conhecido por meio de um ouro sinal, que se deseja ransporar. Esa modificação permie o ranspore do

Leia mais

CAPÍTULO 9. y(t). y Medidor. Figura 9.1: Controlador Analógico

CAPÍTULO 9. y(t). y Medidor. Figura 9.1: Controlador Analógico 146 CAPÍULO 9 Inrodução ao Conrole Discreo 9.1 Inrodução Os sisemas de conrole esudados aé ese pono envolvem conroladores analógicos, que produzem sinais de conrole conínuos no empo a parir de sinais da

Leia mais

4 CER Compensador Estático de Potência Reativa

4 CER Compensador Estático de Potência Reativa 68 4 ompensador Esáico de Poência Reaiva 4.1 Inrodução ompensadores esáicos de poência reaiva (s ou Saic var ompensaors (Ss são equipamenos de conrole de ensão cuja freqüência de uso em aumenado no sisema

Leia mais

Calcule a área e o perímetro da superfície S. Calcule o volume do tronco de cone indicado na figura 1.

Calcule a área e o perímetro da superfície S. Calcule o volume do tronco de cone indicado na figura 1. 1. (Unesp 017) Um cone circular reo de gerariz medindo 1 cm e raio da base medindo 4 cm foi seccionado por um plano paralelo à sua base, gerando um ronco de cone, como mosra a figura 1. A figura mosra

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática. Primeira Lista de Exercícios MAT 241 Cálculo III

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática. Primeira Lista de Exercícios MAT 241 Cálculo III Universidade Federal de Viçosa Cenro de Ciências Exaas e Tecnológicas Deparameno de Maemáica Primeira Lisa de Exercícios MAT 4 Cálculo III Julgue a veracidade das afirmações abaixo assinalando ( V para

Leia mais

MICROELETRÔNICA LISTA DE EXERCÍCIOS UNIDADE 2

MICROELETRÔNICA LISTA DE EXERCÍCIOS UNIDADE 2 MICROELETRÔNIC LIT E EXERCÍCIO UNIE 2 Fernando Moraes 18/JNEIRO/2016 LÓGIC INÂMIC 1) Explique a operação de poras com lógica dinâmica uilizando o exemplo ao lado. esenhe ambém um diagrama de empos mosrando

Leia mais

Amplificadores de potência de RF

Amplificadores de potência de RF Amplificadores de poência de RF Objeivo: Amplificar sinais de RF em níveis suficienes para a sua ransmissão (geralmene aravés de uma anena) com bom rendimeno energéico. R g P e RF P CC Amplificador de

Leia mais

Conceitos Básicos Circuitos Resistivos

Conceitos Básicos Circuitos Resistivos Conceios Básicos Circuios esisivos Elecrónica 005006 Arnaldo Baisa Elecrónica_biomed_ef Circuio Elécrico com uma Baeria e uma esisência I V V V I Lei de Ohm I0 V 0 i0 Movimeno Das Pás P >P P >P Líquido

Leia mais

ELECTRÓNICA DE POTÊNCIA CONVERSORES CC-CC COM ISOLAMENTO GALVÂNICO

ELECTRÓNICA DE POTÊNCIA CONVERSORES CC-CC COM ISOLAMENTO GALVÂNICO ONERSORES ONERSORES OM ISOLAMENTO GALÂNIO FONTES DE DE ALIMENTAÇÃO OMUTADAS caracerísicas:.. saída saída regulada (regulação de de linha linha e regulação de de carga) carga).. isolameno galvânico 3. 3.

Leia mais

CONVERSORES CC-CC COM ISOLAMENTO GALVÂNICO

CONVERSORES CC-CC COM ISOLAMENTO GALVÂNICO ONERSORES ELETRÓNIOS DE POTÊNIA A ALTA FREQUÊNIA ONERSORES com isolameno galvânico ONERSORES OM ISOLAMENTO GALÂNIO FONTES DE DE ALIMENTAÇÃO OMUTADAS caracerísicas:.. saída saída regulada (regulação de

Leia mais

Capítulo Cálculo com funções vetoriais

Capítulo Cálculo com funções vetoriais Cálculo - Capíulo 6 - Cálculo com funções veoriais - versão 0/009 Capíulo 6 - Cálculo com funções veoriais 6 - Limies 63 - Significado geomérico da derivada 6 - Derivadas 64 - Regras de derivação Uiliaremos

Leia mais

Capítulo 3 Derivada. 3.1 Reta Tangente e Taxa de Variação

Capítulo 3 Derivada. 3.1 Reta Tangente e Taxa de Variação Inrodução ao Cálculo Capíulo Derivada.1 Rea Tangene e Taxa de Variação Exemplo nr. 1 - Uma parícula caminha sobre uma rajeória qualquer obedecendo à função horária: s() 5 + (s em meros, em segundos) a)

Leia mais

Análise de Pós-optimização e de Sensibilidade

Análise de Pós-optimização e de Sensibilidade CPÍULO nálise de Pós-opimização e de Sensibilidade. Inrodução Uma das arefas mais delicadas no desenvolvimeno práico dos modelos de PL, relaciona-se com a obenção de esimaivas credíveis para os parâmeros

Leia mais

4 Análise de Sensibilidade

4 Análise de Sensibilidade 4 Análise de Sensibilidade 4.1 Considerações Gerais Conforme viso no Capíulo 2, os algorimos uilizados nese rabalho necessiam das derivadas da função objeivo e das resrições em relação às variáveis de

Leia mais

4 O modelo econométrico

4 O modelo econométrico 4 O modelo economérico O objeivo desse capíulo é o de apresenar um modelo economérico para as variáveis financeiras que servem de enrada para o modelo esocásico de fluxo de caixa que será apresenado no

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 2º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Inrodução ao Cálculo Diferencial II TPC nº 9 Enregar em 4 2 29. Num loe de bolbos de úlipas a probabilidade de que

Leia mais

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc.

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc. ECONOMETRIA Prof. Paricia Maria Borolon, D. Sc. Séries Temporais Fone: GUJARATI; D. N. Economeria Básica: 4ª Edição. Rio de Janeiro. Elsevier- Campus, 2006 Processos Esocásicos É um conjuno de variáveis

Leia mais

Resumo. Sinais e Sistemas Sinais e Sistemas. Sinal em Tempo Contínuo. Sinal Acústico

Resumo. Sinais e Sistemas Sinais e Sistemas. Sinal em Tempo Contínuo. Sinal Acústico Resumo Sinais e Sisemas Sinais e Sisemas lco@is.ul.p Sinais de empo conínuo e discreo Transformações da variável independene Sinais básicos: impulso, escalão e exponencial. Sisemas conínuos e discreos

Leia mais

Experiência IV (aulas 06 e 07) Queda livre

Experiência IV (aulas 06 e 07) Queda livre Experiência IV (aulas 06 e 07) Queda livre 1. Objeivos. Inrodução 3. Procedimeno experimenal 4. Análise de dados 5. Quesões 6. Referências 1. Objeivos Nesa experiência, esudaremos o movimeno da queda de

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar Progressão Ariméica e Progressão Geomérica. (Pucrj 0) Os números a x, a x e a x esão em PA. A soma dos números é igual a: a) 8 b) c) 7 d) e) 0. (Fuves 0) Dadas as sequências an n n, n n cn an an b, e b

Leia mais

18 GABARITO 1 2 O DIA PROCESSO SELETIVO/2005 FÍSICA QUESTÕES DE 31 A 45

18 GABARITO 1 2 O DIA PROCESSO SELETIVO/2005 FÍSICA QUESTÕES DE 31 A 45 18 GABARITO 1 2 O DIA PROCESSO SELETIO/2005 ÍSICA QUESTÕES DE 31 A 45 31. O gálio é um meal cuja emperaura de fusão é aproximadamene o C. Um pequeno pedaço desse meal, a 0 o C, é colocado em um recipiene

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar . (Pucrj 0) Os números a x, a x e a3 x 3 esão em PA. A soma dos 3 números é igual a: é igual a e o raio de cada semicírculo é igual à meade do semicírculo anerior, o comprimeno da espiral é igual a a)

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tarefa de revisão nº 17 1. Uma empresa lançou um produo no mercado. Esudos efecuados permiiram concluir que a evolução do preço se aproxima do seguine modelo maemáico: 7 se 0 1 p() =, p em euros e em anos.

Leia mais

Sistemas Lineares e Invariantes

Sistemas Lineares e Invariantes -14-16 -18-2 -22-24 -26-28 -3-32 Frequency (Hz Hamming aiser Chebyshev isemas Lineares e Invarianes Power pecral Densiy Env B F C1 C2 B F C1 Ground Revolue Body Revolue1 Body1 Power/frequency (db/hz ine

Leia mais

Exercícios Sobre Oscilações, Bifurcações e Caos

Exercícios Sobre Oscilações, Bifurcações e Caos Exercícios Sobre Oscilações, Bifurcações e Caos Os ponos de equilíbrio de um modelo esão localizados onde o gráfico de + versus cora a rea definida pela equação +, cuja inclinação é (pois forma um ângulo

Leia mais

Modelagem e Previsão do Índice de Saponificação do Óleo de Soja da Giovelli & Cia Indústria de Óleos Vegetais

Modelagem e Previsão do Índice de Saponificação do Óleo de Soja da Giovelli & Cia Indústria de Óleos Vegetais XI SIMPEP - Bauru, SP, Brasil, 8 a 1 de novembro de 24 Modelagem e Previsão do Índice de Saponificação do Óleo de Soja da Giovelli & Cia Indúsria de Óleos Vegeais Regiane Klidzio (URI) gep@urisan.che.br

Leia mais

Aplicações à Teoria da Confiabilidade

Aplicações à Teoria da Confiabilidade Aplicações à Teoria da ESQUEMA DO CAPÍTULO 11.1 CONCEITOS FUNDAMENTAIS 11.2 A LEI DE FALHA NORMAL 11.3 A LEI DE FALHA EXPONENCIAL 11.4 A LEI DE FALHA EXPONENCIAL E A DISTRIBUIÇÃO DE POISSON 11.5 A LEI

Leia mais

Fundamentos de Computação Gráfica Prova Aluna: Patrícia Cordeiro Pereira Pampanelli

Fundamentos de Computação Gráfica Prova Aluna: Patrícia Cordeiro Pereira Pampanelli Fundamenos de Compuação Gráfica Prova -6- Aluna: Parícia Cordeiro Pereira Pampanelli Observação: Os códigos uilizados para o desenvolvimeno da prova enconram-se em anexo. Quesão : A Transformada Discrea

Leia mais

Apontamentos de Análise de Sinais

Apontamentos de Análise de Sinais LICENCIATURA EM ENGENHARIA DE SISTEMAS DE TELECOMUNICAÇÕES E ELECTRÓNICA Aponamenos de Análise de Sinais Módulo Prof. José Amaral Versão. -- Secção de Comunicações e Processameno de Sinal ISEL-CEDET, Gabinee

Leia mais

QUESTÃO 60 DA CODESP

QUESTÃO 60 DA CODESP UEÃO 60 D CODE - 0 êmpera é um ipo de raameno érmico uilizado para aumenar a dureza de peças de aço respeio da êmpera, é correo afirmar: ) a êmpera modifica de maneira uniforme a dureza da peça, independenemene

Leia mais

QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS

QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS QUESTÃO Assinale V (verdadeiro) ou F (falso): () A solução da equação diferencial y y y apresena equilíbrios esacionários quando, dependendo

Leia mais

A CONTABILIZAÇÃO DOS LUCROS DO MANIPULADOR 1

A CONTABILIZAÇÃO DOS LUCROS DO MANIPULADOR 1 16 : CADERNOS DO MERCADO DE VALORES MOBILIÁRIOS A CONTABILIZAÇÃO DOS LUCROS DO MANIPULADOR 1 PAULO HORTA* A esimaiva dos lucros obidos pelo preenso manipulador apresena-se como uma arefa imporane na análise

Leia mais

CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA

CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA Inrodução Ese arigo raa de um dos assunos mais recorrenes nas provas do IME e do ITA nos úlimos anos, que é a Cinéica Química. Aqui raamos principalmene dos

Leia mais

Diodos. Símbolo. Função (ideal) Conduzir corrente elétrica somente em um sentido. Tópico : Revisão dos modelos Diodos e Transistores

Diodos. Símbolo. Função (ideal) Conduzir corrente elétrica somente em um sentido. Tópico : Revisão dos modelos Diodos e Transistores 1 Tópico : evisão dos modelos Diodos e Transisores Diodos Símbolo O mais simples dos disposiivos semiconduores. Função (ideal) Conduzir correne elérica somene em um senido. Circuio abero Polarização 2

Leia mais

Transformada dos Z e Sistemas de Tempo Discreto

Transformada dos Z e Sistemas de Tempo Discreto MEEC Mesrado em Engenharia Elecroécnica e de Compuadores MCSDI Guião do rabalho laboraorial nº 4 Transformada dos Z e Sisemas de Tempo Discreo Transformada dos Z e Sisemas de Tempo Discreo Sumário: Preende-se

Leia mais

DFB 2006 Economia para Advogados: Microeconomia. Lista de exercícios sobre peso morto do imposto e de barreiras comerciais.

DFB 2006 Economia para Advogados: Microeconomia. Lista de exercícios sobre peso morto do imposto e de barreiras comerciais. FB 2006 Economia para Advogas: Microeconomia. Lisa de exercícios sobre peso moro imposo e de barreiras comerciais. Robero Guena de Oliveira 12 de junho de 2011 1. O merca de pizza se caraceriza por uma

Leia mais

5 Metodologia Probabilística de Estimativa de Reservas Considerando o Efeito-Preço

5 Metodologia Probabilística de Estimativa de Reservas Considerando o Efeito-Preço 5 Meodologia Probabilísica de Esimaiva de Reservas Considerando o Efeio-Preço O principal objeivo desa pesquisa é propor uma meodologia de esimaiva de reservas que siga uma abordagem probabilísica e que

Leia mais

Função definida por várias sentenças

Função definida por várias sentenças Ese caderno didáico em por objeivo o esudo de função definida por várias senenças. Nese maerial você erá disponível: Uma siuação que descreve várias senenças maemáicas que compõem a função. Diversas aividades

Leia mais

Biofísica II Turma de Biologia FFCLRP USP Prof. Antônio Roque Biologia de Populações 2 Modelos não-lineares. Modelos Não-Lineares

Biofísica II Turma de Biologia FFCLRP USP Prof. Antônio Roque Biologia de Populações 2 Modelos não-lineares. Modelos Não-Lineares Modelos Não-Lineares O modelo malhusiano prevê que o crescimeno populacional é exponencial. Enreano, essa predição não pode ser válida por um empo muio longo. As funções exponenciais crescem muio rapidamene

Leia mais

! " # $ % & ' # % ( # " # ) * # +

!  # $ % & ' # % ( #  # ) * # + / G 6 a Aula 2006.09.25 AMIV! # & ' # # # * # + 6. Equações de Cauchy Riemann em coordenadas polares. Analiicidade e derivada do logarimo Com objecivo de deduzir a analiicidade do logarimo complexo, vamos

Leia mais

Capítulo. Meta deste capítulo Estudar o princípio de funcionamento do conversor Buck.

Capítulo. Meta deste capítulo Estudar o princípio de funcionamento do conversor Buck. 12 Conversores Capíulo CCCC: Conversor Buck Mea dese capíulo Esudar o princípio de funcionameno do conversor Buck objeivos Enender o funcionameno dos conversores cccc do ipo Buck; Analisar conversores

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

Econometria Semestre

Econometria Semestre Economeria Semesre 00.0 6 6 CAPÍTULO ECONOMETRIA DE SÉRIES TEMPORAIS CONCEITOS BÁSICOS.. ALGUMAS SÉRIES TEMPORAIS BRASILEIRAS Nesa seção apresenamos algumas séries econômicas, semelhanes às exibidas por

Leia mais

Tópicos Especiais em Energia Elétrica (Projeto de Inversores e Conversores CC-CC)

Tópicos Especiais em Energia Elétrica (Projeto de Inversores e Conversores CC-CC) Deparameno de Engenharia Elérica Tópicos Especiais em Energia Elérica () ula 2.2 Projeo do Induor Prof. João mérico Vilela Projeo de Induores Definição do úcleo a Fig.1 pode ser observado o modelo de um

Leia mais

Q = , 03.( )

Q = , 03.( ) PROVA DE FÍSIA 2º ANO - 1ª MENSAL - 2º TRIMESTRE TIPO A 01) Um bloco de chumbo de massa 1,0 kg, inicialmene a 227, é colocado em conao com uma fone érmica de poência consane. Deermine a quanidade de calor

Leia mais

Lista de Exercícios 1

Lista de Exercícios 1 Universidade Federal de Ouro Preo Deparameno de Maemáica MTM14 - CÁLCULO DIFERENCIAL E INTEGRAL III Anônio Silva, Edney Oliveira, Marcos Marcial, Wenderson Ferreira Lisa de Exercícios 1 1 Para cada um

Leia mais

PROCESSO SELETIVO O DIA GABARITO 2 13 FÍSICA QUESTÕES DE 31 A 45

PROCESSO SELETIVO O DIA GABARITO 2 13 FÍSICA QUESTÕES DE 31 A 45 PROCESSO SELETIVO 27 2 O DIA GABARITO 2 13 FÍSICA QUESTÕES DE 31 A 45 31. No circuio abaixo, uma fone de resisência inerna desprezível é ligada a um resisor R, cuja resisência pode ser variada por um cursor.

Leia mais

Função de risco, h(t) 3. Função de risco ou taxa de falha. Como obter a função de risco. Condições para uma função ser função de risco

Função de risco, h(t) 3. Função de risco ou taxa de falha. Como obter a função de risco. Condições para uma função ser função de risco Função de risco, h() 3. Função de risco ou axa de falha Manuenção e Confiabilidade Prof. Flavio Fogliao Mais imporane das medidas de confiabilidade Traa-se da quanidade de risco associada a uma unidade

Leia mais

Física I -2009/2010. Utilize o modelo de uma partícula (ou seja, represente o corpo cujo movimento está a estudar por uma única partícula)

Física I -2009/2010. Utilize o modelo de uma partícula (ou seja, represente o corpo cujo movimento está a estudar por uma única partícula) Quesões: Física I -9/ 3 a Série - Movimeno unidimensional - Resolução Q -Esboce um diagrama de ponos para cada um dos movimenos unidimensionais abaixo indicados, de acordo com as seguines insruções: Uilize

Leia mais

velocidade inicial: v 0 ; ângulo de tiro com a horizontal: 0.

velocidade inicial: v 0 ; ângulo de tiro com a horizontal: 0. www.fisicaee.com.br Um projéil é disparado com elocidade inicial iual a e formando um ânulo com a horizonal, sabendo-se que os ponos de disparo e o alo esão sobre o mesmo plano horizonal e desprezando-se

Leia mais

AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM

AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM 163 22. PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM 22.1. Inrodução Na Seção 9.2 foi falado sobre os Parâmeros de Core e

Leia mais

O potencial eléctrico de um condutor aumenta à medida que lhe fornecemos carga eléctrica. Estas duas grandezas são

O potencial eléctrico de um condutor aumenta à medida que lhe fornecemos carga eléctrica. Estas duas grandezas são O ondensador O poencial elécrico de um conduor aumena à medida que lhe fornecemos carga elécrica. Esas duas grandezas são direcamene proporcionais. No enano, para a mesma quanidade de carga, dois conduores

Leia mais

Comunicação. Tipos de Sinal. Redes. Tempo de Transmissão x Tempo de Propagação. d = v. Sinal Analógico. Sinal Digital.

Comunicação. Tipos de Sinal. Redes. Tempo de Transmissão x Tempo de Propagação. d = v. Sinal Analógico. Sinal Digital. Comunicação Redes Análise Básica de Sinais Informação Mensagem Sinal Sinal Mensagem Informação Idéia Idéia Sinal de Voz rof. Sérgio Colcher colcher@inf.puc-rio.br 2 Tipos de Sinal Tempo de Transmissão

Leia mais