Exercícios de torção livre em seção circular fechada - prof. Valério SA Universidade de São Paulo - USP

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Exercícios de torção livre em seção circular fechada - prof. Valério SA Universidade de São Paulo - USP"

Transcrição

1 São Paulo, dezembro de ) a. Deerminar a dimensão a de modo a se er a mesma ensão de cisalhameno máxima nos rechos B-C e C-D. b. Com al dimensão pede-se a máxima ensão de cisalhameno no recho A-B. = 1200 KN.cm = 1200 KN.cm 10,0 cm 11,5 cm A B 8,0 cm C D Resposas: 30 cm a 90 cm ,20.(11,5 8 ) a 110cm ,5.392,0 para a = 110 cm, o momeno orçor e a ensão no recho A-B é dada por: R 833, 7KNcm A-B = 7,1 KN/ cm 2 2) Deerminar diagramas de: a. Momeno orçor; b. ensões de cisalhameno máximas (módulos); c. Ângulos de roação. Também é conhecido G. Resposas: 1

2 .. Exercícios de orção livre em seção circular fechada - prof. Valério SA Universidade de São Paulo - USP 3) Pede-se deerminar o valor do parâmero " " nos seguines casos: a) para que o giro da seção B seja nulo ( B = 0); b) para que o giro da seção D venha a ser nulo ( D = 0). 7 cm 10 cm A B C D 100 cm 50 cm 50 cm 10 cm 50 cm Resposas: a) Para que o giro em B seja zero: B = (1 2. ) G. J 1 2 2

3 b) Para que o giro em D seja zero: 32. M (1 2. ) M (1 ) M M.100 D 0 G..10 G..10 G..10 G..(10 7 ) 6, ,33 ) Calcular qual deve ser a posição (a =?) da carga orçora (T) para que as ensões de cisalhameno máximas nos rechos AB e CD sejam iguais. a A = T C D cm 2 cm B 100 cm 0 cm Resposa: Por equilíbrio: 32.( R T). a 32.( R).(100 a) 32.( R).0. G.. G.. G.2 T R a 70 0 Para que as ensões de cisalhamneo sejam iguais nos rechos AB e Cd é necessário enão: AB = CD, assim 3

4 70 a T. a 16.( T) 16.( ) a ,2cm 5) Para o eixo indicado, pede-se o valor admissível do momeno (orque) sabendose que 10 KN/cm 2. Pede-se ainda, para esse valor de, o giro máximo, indicando a seção onde ocorre. Dado G = 8000 KN/cm cm cm 80 cm Resposa: O diagrama de corpo livre fica: R+ R- R Por equilíbrio: ( R M ).( 6 ).80 ( R M 6 ).20 ( R M ( R 0, 319 Assim, o diagrama do momeno orçor é dado por: ).50 ( R).50 ) 0 A 1,319. 0,319. 0,681. B

5 Verificar onde ocorre ensão máxima nos rechos A e B, pois em A é onde em-se o maior esforço e em B, onde em-se um diâmero menor que o de A. Em A: J = =. d 32 r 16. = 3 J. d 16.1,319. M = 1 M 50, KN.cm Em B: J = =. d 32 r 16. = 3 J. d 16.0,681. M = 1 M 258, KN.cm Porano: = 258,19 KN.cm O giro é dado por: M = ṭ L G J 32.1, , = 0, rd (6) 32.( 0, ,19).20 2 = 1 + 0,02330 rd (6) 32.( 0, ,19).50 3 = ,0202 rd () 1 = 0,02676 rd 2 = 0,02330 rd 3 = - 0,0202 rd 5

6 6) Para o eixo indicado pede-se o momeno orçor admissível, sabendo-se que: 10 KN/cm 2 = 3 cm = 2 cm = 1 cm 2 20 cm 20 cm 10 cm Resposa: = 17,20 KN.m 7) Um eixo de seção circular cheia, com diâmero de 8 cm, esá engasado em ambas as exremidades e submeido a um momeno de orção com posição e senido conforme figura abaixo. Pede-se deerminar o máximo valor de momeno orçor ( ), sabendo-se que a ensão angencial na seção ransversal não deve ulrapassar, em módulo, 10 kn/cm 2. Com o valor de obido, calcule o giro da seção B. Use G = 8000 kn/cm 2. Resposa: = 1508 kn cm. B 0, 0313 rad 8) Para o eixo a seguir submeido aos momenos de orção indicados, obenha: a) O maior valor admissível de P; b) Para o P obido no iem anerior, calcule a roação em D; Adoe: G = 800 kn/cm 2 ; ensão de cisalhameno admissível = 1 kn/cm 2 Diâmero do recho AC = 8 cm; Diâmero do recho CD = cm. 6

7 Resposa: P = 3,1 kn; b) Ro d = -0,289 rad. 9) As engrenagens acopladas ao eixo de aço com a exremidade E fixa esão sujeias aos orques mosrados na figura. Supondo que o módulo de elasicidade ransversal seja de 80 GPa e o eixo iver diâmero de 1mm, deerminar a máxima ensão cisalhane da esruura e a roação do eixo em A. O eixo gira livremene denro do mancal em B. Resposa: max = 315,6 MPa θ A = - 0,212 rad 10) Calcular o valor admissível do momeno orçor T considerando-se os senidos indicados na figura. Para ese valor, verificar se exise alguma seção, além do engase, com giro nulo. Caso exisa, deerminar sua posição. Dados: τ adm = 150 MPa, G = 8000 kn/cm 2. Diâmero do recho AC = 5cm; Trecho CD é de uma seção vazada de diâmero inerno de 3cm. 7

8 Resolução: T = 25, kn.cm. A posição a,7 m do engase possui giro nulo. 11) Achar os diâmeros d 1 e d 2. Resposas: 12) Calcular o valor máximo do momeno T aplicado sabendo-se que o maerial supora no máximo uma ensão de cisalhameno de τ máx de 10 kn/cm 2. 8

9 Resposa: Tmáx = 89,0 kn.cm. 13) Deermine o diâmero d do eixo formado por dois maeriais Ma1 e Ma2, para que a roação na seção seja nula. O eixo esquemaizado na figura em carregamenos T 3 =250kN*m auando na seção 3 e T =100 kn*m auando na seção, engasado na exremidade 1. Considerar d 1 = 90mm, d 2 = 120mm, d 3 = 180mm; com G ma1 = 56 GPa e G ma2 = 70 GPa. Considerar ambém que o eixo no ramo 2-3 é maciço e os rechos 1-2 e 3- são vazados, com diâmero inerno de d 1 e d 2, respecivamene, e diâmero exerno de d 3. Deerminar ambém a ensão máxima de cisalhameno do eixo. 1) Considere-se um eixo biengasado, com momenos orçores aplicados nos ponos B e C, veja figura. Admiindo-se que o valor de G = kn/cm 2, deerminar a relação a/b para que a capacidade do eixo seja máxima. Para a relação a/b obida e sendo a ensão de cisalhameno admissível igual a 10 kn/cm 2, deerminar o valor de. 9

10 A a B b C a D d = 8 cm 15) O eixo de aço em diâmero de 0mm e suas esremidades A e B são fixas. Se ele for submeido ao conjugado de forças, conforme desenho, qual será a ensão máxima de cisalhameno para as regiões AC e CB. Com essas ensões e sabendo que 10 MPa, indique o coeficiene de segurança da esruura. Resposa: τ AC = 1,32 Mpa; τ CB = 9,55 Mpa; s = 0,7 16) A barra rea AC esá no plano xy com seção ransversal circular maciça de diâmeros d e 2d, respecivamene, nos rechos AB e BC. Nos ponos B e C esão ligadas perpendicularmene à barra AC as barras rígidas DD e EE de comprimeno, respecivamene, de 20 cm e 30 cm. Ou seja, as barras DD e EE esão conidas no plano yz. Deermine o máximo valor de d, sabendo que F = 10 kn e MPa. adm 1 Resposa: d = 17 cm. 17) Para o eixo ilusrado na fig. 9.7, considerando-se uma ensão cisalhane admissível de valor 10 kn/cm 2 e G = kn/cm 2, deerminar o maior valor de orção de referência que se pode aplicar e o diagrama de giro ao longo da mesma. 10

11 A 6 B C D 100 cm 100 cm 100 cm Trecho AB d = cm i d e= 8 cm Trecho BC d = cm Trecho CD 0,25 cm d = cm Resposa: = 1,89 kn cm. (1/300 rad, (1/ 300 rad, (/300 rad B ) C ) D ) 18) Para a esruura submeida ao momeno orçor T abaixo, pede-se: a) Diagrama de momeno orçor; b) Tensão de cisalhameno máxima no recho enre as seções S2 e S3. c) Roação da seção S3 em relação à seção S. Dados: T = 100 kn.m, D = 10 cm. G = 8000 kn/cm² Resposas: a) Ts1 = -21, kncm; Ts = 9758,6 kn.cm b) Tau = 9,7 kn/cm 2 c) Roc = 0,25 rad 11

12 19. (Alfredo Gay) A figura ilusra um sisema formado por um eixo composo por dois segmenos AB e BC de mesmo maerial. O comprimeno enre A e B vale L AB e enre B e C vale L BC. O pono A se enconra engasado. No pono C é aplicado um orque T com o senido indicado na figura. No pono B esão fixadas no eixo duas barras rígidas DB e BE, ambas com comprimeno b. Nas ponas dessas barras exisem dois fios com rigidez axial EA e comprimeno L, orogonais às barras. Os fios esão localizados enre os ponos D e F, e E e G. Os ponos F e G enconram-se fixos. O diâmero do eixo no recho AB é D AB. Pede-se: a).escrever a equação de equilíbrio para o eixo ABC, em função do orque reaivo no engase T A e do orque T B auane no pono B pelo sisema de barras rígidas e fios. Fazer o diagrama de momeno de orção no eixo em função de T A, T B e T. b) Calcular T A e T B, bem como a roação do pono B θ B com os valores numéricos fornecidos abaixo. c) Deerminar a medida do diâmero do eixo circular maciço no recho enre os ponos B e C para que a roação do pono C θ C seja menor do que 1,5. d) Se o maerial do eixo supora ensão de cisalhameno máxima de 50MPa, o diâmero deerminado no iem anerior pode ser uilizado? Jusifique odas as resposas com cálculos. 20. (Franzini) A suspensão de um veículo por barra de orção (barra AC) esá esquemaizada na Fig 1 abaixo. As rodas (não represenadas) são acopladas nos ponos D e E perencenes à barra rígida DE de comprimeno 2r, enquano que a exremidade A esá engasada. Ao passar por um obsáculo, o desnivelameno verical (na direção do eixo z) enre as rodas D e E é dado por 2d e solicia a barra AC em orção (ver Fig 2). A barra AC possui seção ransversal circular vazada de raio exerno consane e igual a R, comprimeno L e é escalonada em dois rechos, AB e BC (ver Fig 3). O recho AB possui momeno de inércia polar (momeno de inércia à orção) igual a J e comprimeno a, enquano que o recho BC possui 12

13 momeno de inércia polar 2J e comprimeno b. A barra AC é fabricada em um maerial de módulo de elasicidade ransversal G e possui ensão de cisalhameno admissível τ. Admiindo que a única soliciação à barra AC que compõe a suspensão seja devida ao momeno de orção causado pelo desnivelameno enre as rodas e assumindo válida a eoria de pequenas roações visa nas aulas, pedese: a) Deerminar a rigidez orcional da suspensão (k) em função dos parâmeros geoméricos e das propriedades do maerial. (Dica: a rigidez orcional pode ser enendida como o momeno orçor necessário para causar uma roação uniária enre as exremidades da barra AC. Noa: Calcule a roação uniária com base na eoria visa em sala de aula, iso é, assumindo pequenas roações.) Resposa: k = b) Calcule a roação relaiva enre as seções A e C, φ AC, para os valores numéricos dados abaixo. Para os mesmos valores numéricos e, igualando a máxima ensão de cisalhameno exisene na barra AC à ensão de cisalhameno admissível, deerminar a e b. Mosre que a e b independem do valor de J. Dados: d = 3cm, r = 1,2m, R = 6cm, L = 2m, τ = 100MPa, G = 81GPa Resposa: φ AC = rad a = m b = m 13

14 21. O eixo da figura a seguir é soliciado pelos momenos de orção M 1 e M 2. Deerminar os momenos reaivos M A e M D. Indique as resposas no espaço indicado. Resposas: M A = M D = 1

CAPÍTULO III TORÇÃO SIMPLES

CAPÍTULO III TORÇÃO SIMPLES CAPÍTULO III TORÇÃO SIPLES I.INTRODUÇÂO Uma peça esará sujeia ao esforço de orção simples quando a mesma esiver submeida somene a um momeno de orção. Observe-se que raa-se de uma simplificação, pois no

Leia mais

CAPÍTULO III TORÇÃO PROBLEMAS ESTATICAMENTE INDETERMINADOS TORÇÃO - PEÇAS DE SEÇÃO VAZADA DE PAREDES FINAS

CAPÍTULO III TORÇÃO PROBLEMAS ESTATICAMENTE INDETERMINADOS TORÇÃO - PEÇAS DE SEÇÃO VAZADA DE PAREDES FINAS APÍTULO III TORÇÃO PROBLEMAS ESTATIAMENTE INDETERMINADOS TORÇÃO - PEÇAS DE SEÇÃO VAZADA DE PAREDES FINAS A- TORÇÃO PROBLEMAS ESTATIAMENTE INDETERMINADOS Vimos aé aqui que para calcularmos as ensões em

Leia mais

RESISTÊNCIA DOS MATERIAIS

RESISTÊNCIA DOS MATERIAIS RESISTÊNCIA DOS MATERIAIS LISTA DE EXERCÍCIOS Torção 1º SEM./2001 1) O eixo circular BC é vazado e tem diâmetros interno e externo de 90 mm e 120 mm, respectivamente. Os eixo AB e CD são maciços, com diâmetro

Leia mais

Resistência dos Materiais

Resistência dos Materiais Aula 7 Estudo de Torção, Ângulo de Torção Ângulo de Torção O projeto de um eixo depende de limitações na quantidade de rotação ou torção ocorrida quando o eixo é submetido ao torque, desse modo, o ângulo

Leia mais

Resistência dos Materiais. Aula 6 Estudo de Torção, Transmissão de Potência e Torque

Resistência dos Materiais. Aula 6 Estudo de Torção, Transmissão de Potência e Torque Aula 6 Estudo de Torção, Transmissão de Potência e Torque Definição de Torque Torque é o momento que tende a torcer a peça em torno de seu eixo longitudinal. Seu efeito é de interesse principal no projeto

Leia mais

F B d E) F A. Considere:

F B d E) F A. Considere: 5. Dois corpos, e B, de massas m e m, respecivamene, enconram-se num deerminado insane separados por uma disância d em uma região do espaço em que a ineração ocorre apenas enre eles. onsidere F o módulo

Leia mais

Torção em eixos de seção circular Análise de tensões e deformações na torção Exercícios. Momento torsor. 26 de setembro de 2016.

Torção em eixos de seção circular Análise de tensões e deformações na torção Exercícios. Momento torsor. 26 de setembro de 2016. 26 de setembro de 2016 00 11 0000 1111 000000 111111 0 1 0 1 000000 111111 0000 1111 00 11 0000 1111 000000 111111 0 1 0 1 000000 111111 0000 1111 Este capítulo é dividido em duas partes: 1 Torção em barras

Leia mais

) quando vamos do ponto P até o ponto Q (sobre a reta) e represente-a no plano cartesiano descrito acima.

) quando vamos do ponto P até o ponto Q (sobre a reta) e represente-a no plano cartesiano descrito acima. ATIVIDADE 1 1. Represene, no plano caresiano xy descrio abaixo, os dois ponos (x 0,y 0 ) = (1,2) e Q(x 1,y 1 ) = Q(3,5). 2. Trace a rea r 1 que passa pelos ponos e Q, no plano caresiano acima. 3. Deermine

Leia mais

Resistência dos materiais 1

Resistência dos materiais 1 Resistência dos materiais 1 Prof. Dr. Iêdo Alves de Souza Assunto: torção em barras de seção transversal circular DECE: UEMA & DCC: IFMA Plano de estudo Plano de estudo Introdução Plano de estudo Introdução

Leia mais

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL42 Coneúdo 8 - Inrodução aos Circuios Lineares e Invarianes...1 8.1 - Algumas definições e propriedades gerais...1 8.2 - Relação enre exciação

Leia mais

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara Insiuo de Física USP Física V - Aula 6 Professora: Mazé Bechara Aula 6 Bases da Mecânica quânica e equações de Schroedinger. Aplicação e inerpreações. 1. Ouros posulados da inerpreação de Max-Born para

Leia mais

Exercícios de cargas axiais em barras rígidas - prof. Valério SA Universidade de São Paulo - USP

Exercícios de cargas axiais em barras rígidas - prof. Valério SA Universidade de São Paulo - USP São Paulo, dezembro de 015. 1. A barra rígida AC representa um muro de contenção de terra. Ela está apoiada em A e conectada ao tirante flexível BD em D. Esse tirante possui comprimento de 4 metros e módulo

Leia mais

PROJETO DE ENGRENAGENS - CILÍNDRICAS DE DENTES RETOS E HELICOIDAIS. Prof. Alexandre Augusto Pescador Sardá

PROJETO DE ENGRENAGENS - CILÍNDRICAS DE DENTES RETOS E HELICOIDAIS. Prof. Alexandre Augusto Pescador Sardá PROJETO DE ENGRENAGENS - CILÍNDRICAS DE DENTES RETOS E HELICOIDAIS Prof. Alexandre Auguso Pescador Sardá INTRODUÇÃO Falha por flexão dos denes: ocorrerá quando quando a ensão significaiva nos denes igualar-se

Leia mais

Cálculo Vetorial - Lista de Exercícios

Cálculo Vetorial - Lista de Exercícios álculo Veorial - Lisa de Exercícios (Organizada pela Profa. Ilka Rebouças). Esboçar o gráfico das curvas represenadas pelas seguines funções veoriais: a) a 4 i j, 0,. d) d i 4 j k,. b) b sen i 4 j cos

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar Progressão Ariméica e Progressão Geomérica. (Pucrj 0) Os números a x, a x e a x esão em PA. A soma dos números é igual a: a) 8 b) c) 7 d) e) 0. (Fuves 0) Dadas as sequências an n n, n n cn an an b, e b

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar . (Pucrj 0) Os números a x, a x e a3 x 3 esão em PA. A soma dos 3 números é igual a: é igual a e o raio de cada semicírculo é igual à meade do semicírculo anerior, o comprimeno da espiral é igual a a)

Leia mais

Versão preliminar serão feitas correções em sala de aula 1

Versão preliminar serão feitas correções em sala de aula 1 Versão preinar serão feias correções em sala de aula 7.. Inrodução Dependendo das condições de soliciação, o maerial pode se enconrar sob diferenes esados mecânicos. Quando as cargas (exernas) são pequenas

Leia mais

Circuitos Elétricos I EEL420

Circuitos Elétricos I EEL420 Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL420 Coneúdo 1 - Circuios de primeira ordem...1 1.1 - Equação diferencial ordinária de primeira ordem...1 1.1.1 - Caso linear, homogênea, com

Leia mais

Tópicos Especiais em Energia Elétrica (Projeto de Inversores e Conversores CC-CC)

Tópicos Especiais em Energia Elétrica (Projeto de Inversores e Conversores CC-CC) Deparameno de Engenharia Elérica Tópicos Especiais em Energia Elérica () ula 2.2 Projeo do Induor Prof. João mérico Vilela Projeo de Induores Definição do úcleo a Fig.1 pode ser observado o modelo de um

Leia mais

4ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO ANÁLISE DE TENSÕES

4ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO ANÁLISE DE TENSÕES Universidade Federal da Bahia Escola Politécnica Departamento de Construção e Estruturas Disciplina: ENG285 - Resistência dos Materiais I-A Professor: Armando Sá Ribeiro Jr. www.resmat.ufba.br 4ª LISTA

Leia mais

RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE IV

RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE IV RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE IV Prof. Dr. Daniel Caetano 2012-2 Objetivos Conceituar fluxo de cisalhamento Determinar distribuição de tensões de cisalhamento em tubos de paredes finas sob

Leia mais

Resistência dos Materiais

Resistência dos Materiais Resistência dos Materiais Eng. Mecânica, Produção UNIME 2016.1 Lauro de Freitas, Março, 2016. 3 Torção Conteúdo Introdução Cargas de Torção em Eixos Circulares Torque Puro Devido a Tensões Internas Componentes

Leia mais

Capítulo Cálculo com funções vetoriais

Capítulo Cálculo com funções vetoriais Cálculo - Capíulo 6 - Cálculo com funções veoriais - versão 0/009 Capíulo 6 - Cálculo com funções veoriais 6 - Limies 63 - Significado geomérico da derivada 6 - Derivadas 64 - Regras de derivação Uiliaremos

Leia mais

FÍSICA - 1 o ANO MÓDULO 15 GRÁFICOS DA CINEMÁTICA

FÍSICA - 1 o ANO MÓDULO 15 GRÁFICOS DA CINEMÁTICA FÍSICA - 1 o ANO MÓDULO 15 GRÁFICOS DA CINEMÁTICA S S S S S S v v S v v S Área S v v v v v v S(m) 2-1 (s) Se a < S Se a > S S S 1 2 3 a a a v v Área v v S S(m) 16 15 1 (s) Como pode cair no enem? (ENEM)

Leia mais

AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM

AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM 163 22. PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM 22.1. Inrodução Na Seção 9.2 foi falado sobre os Parâmeros de Core e

Leia mais

1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional = 4200 knm²

1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional = 4200 knm² CE2 ESTABILIDADE DAS CONSTRUÇÕES II LISTA DE EXERCÍCIOS PREPARATÓRIA PARA O ENADE 1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional 42 knm² Formulário: equação

Leia mais

INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas.

INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas. SIMULADO DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - JULHO DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES de 0 a

Leia mais

Professor: José Junio Lopes

Professor: José Junio Lopes Lista de Exercício Aula 3 TENSÃO E DEFORMAÇÃO A - DEFORMAÇÃO NORMAL 1 - Ex 2.3. - A barra rígida é sustentada por um pino em A e pelos cabos BD e CE. Se a carga P aplicada à viga provocar um deslocamento

Leia mais

Curso de Engenharia Civil. Universidade Estadual de Maringá Centro de Tecnologia Departamento de Engenharia Civil CAPÍTULO 6: TORÇÃO

Curso de Engenharia Civil. Universidade Estadual de Maringá Centro de Tecnologia Departamento de Engenharia Civil CAPÍTULO 6: TORÇÃO Curso de Engenharia Civil Universidade Estadual de Maringá Centro de ecnologia Departamento de Engenharia Civil CPÍULO 6: ORÇÃO Revisão de Momento orçor Convenção de Sinais: : Revisão de Momento orçor

Leia mais

1ª Lista de exercícios Resistência dos Materiais IV Prof. Luciano Lima (Retirada do livro Resistência dos materiais, Beer & Russel, 3ª edição)

1ª Lista de exercícios Resistência dos Materiais IV Prof. Luciano Lima (Retirada do livro Resistência dos materiais, Beer & Russel, 3ª edição) 11.3 Duas barras rígidas AC e BC são conectadas a uma mola de constante k, como mostrado. Sabendo-se que a mola pode atuar tanto à tração quanto à compressão, determinar a carga crítica P cr para o sistema.

Leia mais

Função Exponencial 2013

Função Exponencial 2013 Função Exponencial 1 1. (Uerj 1) Um imóvel perde 6% do valor de venda a cada dois anos. O valor V() desse imóvel em anos pode ser obido por meio da fórmula a seguir, na qual V corresponde ao seu valor

Leia mais

Exercícios de Resistência dos Materiais A - Área 3

Exercícios de Resistência dos Materiais A - Área 3 1) Os suportes apóiam a vigota uniformemente; supõe-se que os quatro pregos em cada suporte transmitem uma intensidade igual de carga. Determine o menor diâmetro dos pregos em A e B se a tensão de cisalhamento

Leia mais

Lista de Exercícios n o.1. 1) O diodo do circuito da Fig. 1(a) se comporta segundo a característica linearizada por partes da Fig 1(b). I D (ma) Fig.

Lista de Exercícios n o.1. 1) O diodo do circuito da Fig. 1(a) se comporta segundo a característica linearizada por partes da Fig 1(b). I D (ma) Fig. Universidade Federal da Bahia EE isposiivos Semiconduores ENG C41 Lisa de Exercícios n o.1 1) O diodo do circuio da Fig. 1 se compora segundo a caracerísica linearizada por pares da Fig 1. R R (ma) 2R

Leia mais

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL Movimeno unidimensional 5 MOVIMENTO UNIDIMENSIONAL. Inrodução Denre os vários movimenos que iremos esudar, o movimeno unidimensional é o mais simples, já que odas as grandezas veoriais que descrevem o

Leia mais

F-128 Física Geral I. Aula exploratória-07 UNICAMP IFGW F128 2o Semestre de 2012

F-128 Física Geral I. Aula exploratória-07 UNICAMP IFGW F128 2o Semestre de 2012 F-18 Física Geral I Aula eploraória-07 UNICAMP IFGW username@ii.unicamp.br F18 o Semesre de 01 1 Energia Energia é um conceio que ai além da mecânica de Newon e permanece úil ambém na mecânica quânica,

Leia mais

LISTA DE EXERCICIOS RM - TORÇÃO

LISTA DE EXERCICIOS RM - TORÇÃO PROBLEMAS DE TORÇÃO SIMPLES 1 1) Um eixo circular oco de aço com diâmetro externo de 4 cm e espessura de parede de 0,30 cm está sujeito ao torque puro de 190 N.m. O eixo tem 2,3 m de comprimento. G=83

Leia mais

LABORATÓRIO DE HIDRÁULICA

LABORATÓRIO DE HIDRÁULICA UNIVERSIDADE FEDERAL DE ALAGOAS ENTRO DE TENOLOGIA LABORATÓRIO DE HIDRÁULIA Vladimir aramori Josiane Holz Irene Maria haves Pimenel Marllus Gusavo Ferreira Passos das Neves Maceió - Alagoas Ouubro de 2012

Leia mais

ENG1200 Mecânica Geral Lista de Exercícios 1 Equilíbrio da Partícula

ENG1200 Mecânica Geral Lista de Exercícios 1 Equilíbrio da Partícula ENG1200 Mecânica Geral 2013.2 Lista de Exercícios 1 Equilíbrio da Partícula Questão 1 - Prova P1 2013.1 Determine o máximo valor da força P que pode ser aplicada na estrutura abaixo, sabendo que no tripé

Leia mais

TENSÃO NORMAL e TENSÃO DE CISALHAMENTO

TENSÃO NORMAL e TENSÃO DE CISALHAMENTO TENSÃO NORMAL e TENSÃO DE CISALHAMENTO 1) Determinar a tensão normal média de compressão da figura abaixo entre: a) o bloco de madeira de seção 100mm x 120mm e a base de concreto. b) a base de concreto

Leia mais

ENG285 TORÇÃO. =. á. = G. (material linear-elástico) Adriano Alberto

ENG285 TORÇÃO. =. á. = G. (material linear-elástico) Adriano Alberto ENG285 1 Adriano Alberto Fonte: Hibbeler, R.C., Resistência dos Materiais 5ª edição; Beer 5ª Ed; Barroso, L.C., Cálculo Numérico (com aplicações) 2ª edição; slides do Prof. Alberto B. Vieira Jr.; http://pessoal.sercomtel.com.br/matematica/geometria/geom-areas/geomareas-circ.htm

Leia mais

TENSÃO NORMAL e TENSÃO DE CISALHAMENTO

TENSÃO NORMAL e TENSÃO DE CISALHAMENTO TENSÃO NORMAL e TENSÃO DE CISALHAMENTO 1) Determinar a tensão normal média de compressão da figura abaixo entre: a) o bloco de madeira de seção 100mm x 120mm e a base de concreto. b) a base de concreto

Leia mais

PEA LABORATÓRIO DE INSTALAÇÕES ELÉTRICAS I CONDUTORES E DISPOSITIVOS DE PROTEÇÃO (CDP_EA)

PEA LABORATÓRIO DE INSTALAÇÕES ELÉTRICAS I CONDUTORES E DISPOSITIVOS DE PROTEÇÃO (CDP_EA) PEA 40 - LAORAÓRO DE NSALAÇÕES ELÉRCAS CONDUORES E DSPOSVOS DE PROEÇÃO (CDP_EA) RELAÓRO - NOA... Grupo:...... Professor:...Daa:... Objeivo:..... MPORANE: Em odas as medições, o amperímero de alicae deverá

Leia mais

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON)

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON) TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 8 LIVRO DO NILSON). CONSIDERAÇÕES INICIAIS SÉRIES DE FOURIER: descrevem funções periódicas no domínio da freqüência (ampliude e fase). TRANSFORMADA DE FOURIER:

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031 Universidade Federal do io Grande do Sul Escola de Engenharia de Poro Alegre Deparameno de Engenharia Elérica ANÁLISE DE CICUITOS II - ENG43 Aula 5 - Condições Iniciais e Finais de Carga e Descarga em

Leia mais

Escola Engenharia Universidade Presbiteriana Mackenzie Departamento de Engenharia Elétrica

Escola Engenharia Universidade Presbiteriana Mackenzie Departamento de Engenharia Elétrica Problemas resolvidos Tensões de Origem Térmica EXEMPLO 1 (Beer, p.108, ex. 2.6) A barra de aço é perfeitamente ajustada aos anteparos fixos quando a temperatura é de +25 ο C. Determinar as tensões atuantes

Leia mais

CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA

CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA Inrodução Ese arigo raa de um dos assunos mais recorrenes nas provas do IME e do ITA nos úlimos anos, que é a Cinéica Química. Aqui raamos principalmene dos

Leia mais

4. SINAL E CONDICIONAMENTO DE SINAL

4. SINAL E CONDICIONAMENTO DE SINAL 4. SINAL E CONDICIONAMENO DE SINAL Sumário 4. SINAL E CONDICIONAMENO DE SINAL 4. CARACERÍSICAS DOS SINAIS 4.. Período e frequência 4..2 alor médio, valor eficaz e valor máximo 4.2 FILRAGEM 4.2. Circuio

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Universidade Esadual do Sudoese da Bahia Dearameno de Ciências Exaas e Naurais.1- Roações, Cenro de Massa e Momeno Física I Prof. Robero Claudino Ferreira Índice 1. Movimeno Circular Uniformemene Variado;.

Leia mais

AULA PRÁTICA-TEÓRICA 01 ANÁLISE DE CIRCUITOS COM DIODOS

AULA PRÁTICA-TEÓRICA 01 ANÁLISE DE CIRCUITOS COM DIODOS PráicaTeórica 01 Análise de circuios com diodos INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA DEPARTAMENTO ACADÊMICO DE ELETRÔNICA CURSO TÉCNICO DE ELETRÔNICA Elerônica I AULA PRÁTICATEÓRICA

Leia mais

LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I

LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I A - Tensão Normal Média 1. Ex. 1.40. O bloco de concreto tem as dimensões mostradas na figura. Se o material falhar quando a tensão normal média atingir 0,840

Leia mais

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa C. Os números inteiros x e y satisfazem a equação

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa C. Os números inteiros x e y satisfazem a equação Quesão Os números ineiros x e y saisfazem a equação x x y y 5 5.Enãox y é: a) 8 b) 5 c) 9 d) 6 e) 7 alernaiva B x x y y 5 5 x ( ) 5 y (5 ) x y 7 x 6 y 5 5 5 Como x e y são ineiros, pelo Teorema Fundamenal

Leia mais

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 1 3 quadrimestre 2012

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 1 3 quadrimestre 2012 EN67 Transformadas em Sinais e Sisemas Lineares Lisa de Exercícios Suplemenares janeiro EN67 Transformadas em Sinais e Sisemas Lineares Lisa de Exercícios Suplemenares quadrimesre Figura Convolução (LATHI,

Leia mais

Resistência dos Materiais

Resistência dos Materiais Aula 2 Tensão Normal Média e Tensão de Cisalhamento Média Tópicos Abordados Nesta Aula Definição de Tensão. Tensão Normal Média. Tensão de Cisalhamento Média. Conceito de Tensão Representa a intensidade

Leia mais

Introdução cargas externas cargas internas deformações estabilidade

Introdução cargas externas cargas internas deformações estabilidade TENSÃO Introdução A mecânica dos sólidos estuda as relações entre as cargas externas aplicadas a um corpo deformável e a intensidade das cargas internas que agem no interior do corpo. Esse assunto também

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 2º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Inrodução ao Cálculo Diferencial II TPC nº 9 Enregar em 4 2 29. Num loe de bolbos de úlipas a probabilidade de que

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

18 GABARITO 1 2 O DIA PROCESSO SELETIVO/2005 FÍSICA QUESTÕES DE 31 A 45

18 GABARITO 1 2 O DIA PROCESSO SELETIVO/2005 FÍSICA QUESTÕES DE 31 A 45 18 GABARITO 1 2 O DIA PROCESSO SELETIO/2005 ÍSICA QUESTÕES DE 31 A 45 31. O gálio é um meal cuja emperaura de fusão é aproximadamene o C. Um pequeno pedaço desse meal, a 0 o C, é colocado em um recipiene

Leia mais

Aula 2 - Tensão Normal e de Cisalhamento.

Aula 2 - Tensão Normal e de Cisalhamento. Aula 2 - Tensão Normal e de Cisalhamento. A - TENSÃO NORMAL MÉDIA 1. Exemplo 1.17 - A luminária de 80 kg é sustentada por duas hastes, AB e BC, como mostra a figura 1.17a. Se AB tiver diâmetro de 10 mm

Leia mais

QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS

QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS QUESTÃO Assinale V (verdadeiro) ou F (falso): () A solução da equação diferencial y y y apresena equilíbrios esacionários quando, dependendo

Leia mais

Carga axial. Princípio de Saint-Venant

Carga axial. Princípio de Saint-Venant Carga axial Princípio de Saint-Venant O princípio Saint-Venant afirma que a tensão e deformação localizadas nas regiões de aplicação de carga ou nos apoios tendem a nivelar-se a uma distância suficientemente

Leia mais

ONDAS ELETROMAGNÉTICAS

ONDAS ELETROMAGNÉTICAS LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS A propagação de ondas eleromagnéicas ocorre quando um campo elérico variane no empo produ um campo magnéico ambém variane no empo, que por sua ve produ um campo

Leia mais

UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA

UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA UNVERSDDE DE SÃO PULO ESCOL POLTÉCNC Deparameno de Engenharia de Esruuras e Geoécnica CURSO BÁSCO DE RESSTÊNC DOS MTERS FSCÍCULO Nº Tração ou compressão puras. Cisalhameno simples H. Brio.00 RELÇÃO DOS

Leia mais

Exercícios Sobre Oscilações, Bifurcações e Caos

Exercícios Sobre Oscilações, Bifurcações e Caos Exercícios Sobre Oscilações, Bifurcações e Caos Os ponos de equilíbrio de um modelo esão localizados onde o gráfico de + versus cora a rea definida pela equação +, cuja inclinação é (pois forma um ângulo

Leia mais

Q = , 03.( )

Q = , 03.( ) PROVA DE FÍSIA 2º ANO - 1ª MENSAL - 2º TRIMESTRE TIPO A 01) Um bloco de chumbo de massa 1,0 kg, inicialmene a 227, é colocado em conao com uma fone érmica de poência consane. Deermine a quanidade de calor

Leia mais

AULA PRÁTICA-TEÓRICA EXTRA SIMULAÇÃO DE CIRCUITOS COM MULTISIM

AULA PRÁTICA-TEÓRICA EXTRA SIMULAÇÃO DE CIRCUITOS COM MULTISIM INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA DEPARTAMENTO ACADÊMICO DE ELETRÔNICA CURSO TÉCNICO DE ELETRÔNICA Elerônica I AULA PRÁTICATEÓRICA EXTRA SIMULAÇÃO DE CIRCUITOS COM MULTISIM

Leia mais

UFABC - Universidade Federal do ABC. ESTO Mecânica dos Sólidos I. as deformações principais e direções onde elas ocorrem.

UFABC - Universidade Federal do ABC. ESTO Mecânica dos Sólidos I. as deformações principais e direções onde elas ocorrem. UFABC - Universidade Federal do ABC ESTO008-13 Mecânica dos Sólidos I Sétima Lista de Exercícios Prof. Dr. Wesley Góis CECS Prof. Dr. Cesar Freire - CECS Estudo das Deformações 1. Segundo as direções a,b

Leia mais

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo PROBLEMAS RESOLVIDOS DE FÍSIA Prof. Anderson oser Gaudio Deparameno de Física enro de iências Eaas Universidade Federal do Espírio Sano hp://www.cce.ufes.br/anderson anderson@npd.ufes.br Úlima aualização:

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

CORREIOS. Prof. Sérgio Altenfelder

CORREIOS. Prof. Sérgio Altenfelder 15. Uma pessoa preende medir a alura de um edifício baseado no amanho de sua sombra projeada ao solo. Sabendo-se que a pessoa em 1,70m de alura e as sombras do edifício e da pessoa medem 20m e 20cm respecivamene,

Leia mais

Conteúdo. Resistência dos Materiais. Prof. Peterson Jaeger. 3. Concentração de tensões de tração. APOSTILA Versão 2013

Conteúdo. Resistência dos Materiais. Prof. Peterson Jaeger. 3. Concentração de tensões de tração. APOSTILA Versão 2013 Resistência dos Materiais APOSTILA Versão 2013 Prof. Peterson Jaeger Conteúdo 1. Propriedades mecânicas dos materiais 2. Deformação 3. Concentração de tensões de tração 4. Torção 1 A resistência de um

Leia mais

Quarta Lista de Exercícios

Quarta Lista de Exercícios Universidade Católica de Petrópolis Disciplina: Resitência dos Materiais I Prof.: Paulo César Ferreira Quarta Lista de Exercícios 1. O tubo de aço (E s = 210 GPa) tem núcleo de alumínio (E a = 69 GPa)

Leia mais

1 o Exame 10 de Janeiro de 2005 Nota: Resolva os problemas do exame em folhas separadas. Justifique todas as respostas e explique os seus

1 o Exame 10 de Janeiro de 2005 Nota: Resolva os problemas do exame em folhas separadas. Justifique todas as respostas e explique os seus i Sinais e Sisemas (LERCI) o Exame 0 de Janeiro de 005 Noa: Resolva os problemas do exame em folhas separadas. Jusifique odas as resposas e explique os seus cálculos. Problema.. Represene graficamene o

Leia mais

QUESTÃO 60 DA CODESP

QUESTÃO 60 DA CODESP UEÃO 60 D CODE - 0 êmpera é um ipo de raameno érmico uilizado para aumenar a dureza de peças de aço respeio da êmpera, é correo afirmar: ) a êmpera modifica de maneira uniforme a dureza da peça, independenemene

Leia mais

RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I

RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I Prof. Dr. Daniel Caetano 2012-2 Objetivos Compreender o que é a deformação por torção Compreender os esforços que surgem devido à torção Determinar distribuição

Leia mais

RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica

RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica Centro Federal de Educação Tecnológica de Santa Catarina CEFET/SC Unidade Araranguá RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica Prof. Fernando H. Milanese, Dr. Eng. milanese@cefetsc.edu.br Conteúdo

Leia mais

3 Análise Não-Linear Geométrica

3 Análise Não-Linear Geométrica 3 Análise Não-inear Geomérica 3.1 Comenários Iniciais Ese capíulo começa com uma breve discussão sobre o comporameno não linear, o objeivo da análise não linear, e o seu lugar na engenharia esruural. As

Leia mais

FORMULAÇÃO TRELIÇA PLANA

FORMULAÇÃO TRELIÇA PLANA CE ESTABILIDADE DAS CONSTRUÇÕES II FORMULAÇÃO TRELIÇA PLANA MODELO 1 Para a treliça hiperestática, indicada na Figura 1a, determinar por Análise Matricial de Estruturas: a) o deslocamento vertical do ponto

Leia mais

ANÁLISE DE ESTRUTURAS VIA ANSYS

ANÁLISE DE ESTRUTURAS VIA ANSYS 2 ANÁLISE DE ESTRUTURAS VIA ANSYS A Análise de esruuras provavelmene é a aplicação mais comum do méodo dos elemenos finios. O ermo esruura não só diz respeio as esruuras de engenharia civil como pones

Leia mais

Mecânica de Sistemas de Partículas Prof. Lúcio Fassarella * 2013 *

Mecânica de Sistemas de Partículas Prof. Lúcio Fassarella * 2013 * Mecânica e Sisemas e Parículas Prof. Lúcio Fassarella * 2013 * 1. A velociae e escape e um planea ou esrela é e nia como seno a menor velociae requeria na superfície o objeo para que uma parícula escape

Leia mais

LISTA DE EXERCÍCIOS ÁREA 1. Disciplina: Mecânica dos Sólidos MECSOL34 Semestre: 2016/02

LISTA DE EXERCÍCIOS ÁREA 1. Disciplina: Mecânica dos Sólidos MECSOL34 Semestre: 2016/02 LISTA DE EXERCÍCIOS ÁREA 1 Disciplina: Mecânica dos Sólidos MECSOL34 Semestre: 2016/02 Prof: Diego R. Alba 1. O macaco AB é usado para corrigir a viga defletida DE conforme a figura. Se a força compressiva

Leia mais

Mecânica dos Fluidos. Aula 8 Introdução a Cinemática dos Fluidos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos. Aula 8 Introdução a Cinemática dos Fluidos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Aula 8 Inrodução a Cinemáica dos Fluidos Tópicos Abordados Nesa Aula Cinemáica dos Fluidos. Definição de Vazão Volumérica. Vazão em Massa e Vazão em Peso. Definição A cinemáica dos fluidos é a ramificação

Leia mais

Capítulo 2 Tração, compressão e cisalhamento

Capítulo 2 Tração, compressão e cisalhamento Capítulo 2 Tração, compressão e cisalhamento Resistência dos materiais I SLIDES 02 Prof. MSc. Douglas M. A. Bittencourt prof.douglas.pucgo@gmail.com 2.1 Cargas resultantes internas A distribuição de forças

Leia mais

2.6 - Conceitos de Correlação para Sinais Periódicos

2.6 - Conceitos de Correlação para Sinais Periódicos .6 - Conceios de Correlação para Sinais Periódicos O objeivo é o de comparar dois sinais x () e x () na variável empo! Exemplo : Considere os dados mosrados abaixo y 0 x Deseja-se ober a relação enre x

Leia mais

velocidade inicial: v 0 ; ângulo de tiro com a horizontal: 0.

velocidade inicial: v 0 ; ângulo de tiro com a horizontal: 0. www.fisicaee.com.br Um projéil é disparado com elocidade inicial iual a e formando um ânulo com a horizonal, sabendo-se que os ponos de disparo e o alo esão sobre o mesmo plano horizonal e desprezando-se

Leia mais

Primeira Lista de Exercícios

Primeira Lista de Exercícios TP30 Modulação Digial Prof.: MSc. Marcelo Carneiro de Paiva Primeira Lisa de Exercícios Caracerize: - Transmissão em Banda-Base (apresene um exemplo de especro de ransmissão). - Transmissão em Banda Passane

Leia mais

Capítulo 11 Rotações e Momento Angular

Capítulo 11 Rotações e Momento Angular Capítulo 11 Rotações e Momento Angular Corpo Rígido Um corpo rígido é um corpo ideal indeformável de tal forma que a distância entre 2 pontos quaisquer do corpo não muda nunca. Um corpo rígido pode realizar

Leia mais

Circuitos Elétricos- módulo F4

Circuitos Elétricos- módulo F4 Circuios léricos- módulo F4 M 014 Correne elécrica A correne elécrica consise num movimeno orienado de poradores de cara elécrica por acção de forças elécricas. Os poradores de cara podem ser elecrões

Leia mais

RASCUNHO. a) 120º10 b) 95º10 c) 120º d) 95º e) 110º50

RASCUNHO. a) 120º10 b) 95º10 c) 120º d) 95º e) 110º50 ª QUESTÃO Uma deerminada cidade organizou uma olimpíada de maemáica e física, para os alunos do º ano do ensino médio local. Inscreveramse 6 alunos. No dia da aplicação das provas, consaouse que alunos

Leia mais

5.1 Objectivos. Caracterizar os métodos de detecção de valor eficaz.

5.1 Objectivos. Caracterizar os métodos de detecção de valor eficaz. 5. PRINCÍPIOS DE MEDIÇÃO DE CORRENE, ENSÃO, POÊNCIA E ENERGIA 5. Objecivos Caracerizar os méodos de deecção de valor eficaz. Caracerizar os méodos de medição de poência e energia em correne conínua, correne

Leia mais

Características dos Processos ARMA

Características dos Processos ARMA Caracerísicas dos Processos ARMA Aula 0 Bueno, 0, Capíulos e 3 Enders, 009, Capíulo. a.6 Morein e Toloi, 006, Capíulo 5. Inrodução A expressão geral de uma série emporal, para o caso univariado, é dada

Leia mais

Duas opções de trajetos para André e Bianca. Percurso 1( Sangiovanni tendo sorteado cara e os dois se encontrando no ponto C): P(A) =

Duas opções de trajetos para André e Bianca. Percurso 1( Sangiovanni tendo sorteado cara e os dois se encontrando no ponto C): P(A) = RESOLUÇÃO 1 A AVALIAÇÃO UNIDADE II -016 COLÉGIO ANCHIETA-BA PROFA. MARIA ANTÔNIA C. GOUVEIA ELABORAÇÃO e PESQUISA: PROF. ADRIANO CARIBÉ e WALTER PORTO. QUESTÃO 01. Três saélies compleam suas respecivas

Leia mais

Estando o capacitor inicialmente descarregado, o gráfico que representa a corrente i no circuito após o fechamento da chave S é:

Estando o capacitor inicialmente descarregado, o gráfico que representa a corrente i no circuito após o fechamento da chave S é: PROCESSO SELETIVO 27 2 O DIA GABARITO 1 13 FÍSICA QUESTÕES DE 31 A 45 31. Considere o circuio mosrado na figura abaixo: S V R C Esando o capacior inicialmene descarregado, o gráfico que represena a correne

Leia mais

Professor: José Junio Lopes. Lista de Exercícios - Aula 1a Revisão Equilíbrio de um Corpo Rígido Reação de Apoio

Professor: José Junio Lopes. Lista de Exercícios - Aula 1a Revisão Equilíbrio de um Corpo Rígido Reação de Apoio Lista de Exercícios - Aula 1a Revisão Equilíbrio de um Corpo Rígido Reação de Apoio A primeira condição para que um corpo rígido esteja em equilíbrio é que a somatória das forças que agem sobre o corpo

Leia mais

a-) o lado a da secção b-) a deformação (alongamento) total da barra c-) a deformação unitária axial

a-) o lado a da secção b-) a deformação (alongamento) total da barra c-) a deformação unitária axial TRAÇÃO / COMPRESSÃO 1-) A barra de aço SAE-1020 representada na figura abaixo, deverá der submetida a uma força de tração de 20000 N. Sabe-se que a tensão admissível do aço em questão é de 100 MPa. Calcular

Leia mais

Série IV - Momento Angular (Resoluções Sucintas)

Série IV - Momento Angular (Resoluções Sucintas) Mecânica e Ondas, 0 Semestre 006-007, LEIC Série IV - Momento Angular (Resoluções Sucintas) 1. O momento angular duma partícula em relação à origem é dado por: L = r p a) Uma vez que no movimento uniforme

Leia mais

E = 70GPA σ e = 215MPa. A = 7500mm 2 I x = 61,3x10 6 mm 4 I y = 23,2x10 6 mm 4

E = 70GPA σ e = 215MPa. A = 7500mm 2 I x = 61,3x10 6 mm 4 I y = 23,2x10 6 mm 4 Lista 1 1. A coluna de alumínio mostrada na figura é engastada em sua base e fixada em seu topo por meios de cabos de forma a impedir seu movimento ao longo do eixo x. Determinar a maior carga de compressão

Leia mais

Exercícios Aulas Práticas 2004/2005

Exercícios Aulas Práticas 2004/2005 Exercícios Aulas Práticas 2004/2005 Manuel Teixeira Brás César Mário Nuno Moreira Matos Valente 1/17 2/17 Tema: Corpos Rígidos: Sistemas Equivalentes de Forças 7 - Uma força de 150 N é aplicada à alavanca

Leia mais

Professor: José Junio Lopes

Professor: José Junio Lopes Aula 2 - Tensão/Tensão Normal e de Cisalhamento Média; Tensões Admissíveis. A - TENSÃO NORMAL MÉDIA 1. Exemplo 1.17 - A luminária de 80 kg é sustentada por duas hastes, AB e BC, como mostra a Figura 1.17a.

Leia mais

ENGF93 Análise de Processos e Sistemas I

ENGF93 Análise de Processos e Sistemas I ENGF93 Análise de Processos e Sisemas I Prof a. Karen Pones Revisão: 3 de agoso 4 Sinais e Sisemas Tamanho do sinal Ampliude do sinal varia com o empo, logo a medida de seu amanho deve considerar ampliude

Leia mais

está localizado no cruzamento da i-ésima linha com a j-ésima coluna.

está localizado no cruzamento da i-ésima linha com a j-ésima coluna. MATRIZES 1. DEFINIÇÕES As marizes são frequenemene usadas para organizar dados, como uma abela indexada. Por exemplo, as noas dos alunos de uma escola podem ser disposas numa mariz cujas colunas correspondem

Leia mais