F B d E) F A. Considere:

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "F B d E) F A. Considere:"

Transcrição

1 5. Dois corpos, e B, de massas m e m, respecivamene, enconram-se num deerminado insane separados por uma disância d em uma região do espaço em que a ineração ocorre apenas enre eles. onsidere F o módulo da força que o corpo faz sobre o corpo B e F B o módulo da força que B exerce sobre. ssinale denre as alernaivas abaixo a correa. F = F d B B F = F B d F = FB D F = FB E F = F B Quesão 5 lernaiva D solução dessa quesão envolve simplesmene o conhecimeno da Terceira Lei de Newon, a qual esabelece que F = F para um sisema que não inerage com a vizinhança. B 54. Uma parícula P, de massa m, descreve um movimeno circular de raio, cenrado no pono O, sob a ação das forças e, conforme figura ao lado. Das equações de movimeno apresenadas nas alernaivas abaixo, assinale a correa para ese sisema. F cos α = ma B F1 + F = m ( vp F1 F cos α = m ( D F1 F = m ( E F1 = m ( onsidere: a a aceleração angencial da parícula P v a velocidade angencial da parícula P p Quesão 54 lernaiva quesão envolve decomposição de veores e a Lei de Newon num movimeno circular. om base nese conhecimeno conclui-se que a alernaiva correa é a alernaiva (. V/UF/Vesibular 005 Física Pág. 1 de 5

2 55. figura abaixo represena uma seqüência de rês choques fronais, insanes após cada colisão, enre quaro esferas de massas m, m, m e 4m, respecivamene. nalise a figura e assinale a alernaiva que classifica correamene os rês choques na ordem em que eles ocorrem nas posições x 1, x e x. Inelásico, inelásico e inelásico. B Elásico, elásico e inelásico Elásico, inelásico e elásico. D Inelásico, elásico e elásico. E Elásico, elásico e elásico. Quesão 55 lernaiva quesão envolve momeno linear e sua conservação. Os rês choques, da forma que são apresenados na figura, demonsram que o momeno linear em cada choque é conservado, viso que não exise força exerna auando na direção do movimeno. omo as massas das esferas são diferenes e as velocidades após cada choque ambém, orna-se fácil comprovar, aravés das equações de conservação do momeno linear e da energia, que essa não é conservada enquano que aquele o é. Porano, odos os choques são inelásicos, e a alernaiva correa é a (. 56. Um corpo de massa m execua o movimeno periódico mosrado na figura abaixo. força que aua no sisema é da forma F = kx. om base nos dados fornecidos e na figura, é possível calcular algumas grandezas inerenes a ese ipo de movimeno, ais como: δ, v,ω, k e a max. Dados: δ é a consane de fase. ω é a freqüência naural de oscilação. v é a velocidade do corpo. k é a consane elásica a max é a aceleração máxima. V/UF/Vesibular 005 Física Pág. de 5

3 Das grandezas calculadas e apresenadas abaixo, assinale a alernaiva correa. δ = 0 B v ( 5 = ( ω = ( D k = m ( E a max = Quesão 56 lernaiva E quesão aborda coneúdo de movimeno periódico ou oscilane endo como um dos principais represenanes o oscilador harmônico simples do ipo sisema massa-mola, submeido a uma força (F=-kx proporcional à deformação da mola, endo como solução da equação de movimeno ( ma = - kx, onde x(=cos(w + δ. figura apresenada na quesão fornece a posição x da parícula em vários insanes e possibilia o cálculo das grandezas envolvidas na equação de deslocameno ais como: (ampliude, ω(freqüência naural de oscilação, δ (consane de fase, v (velocidade, a (aceleração e as condições iniciais são: = 0, x = / e v 0 0. Da figura emos, T = T = ( e x ( = cos( w + δ w = =, T ( amax w ( = = que saisfaz é a (E. v( = 5 = w = (, k = mw = m. ssim, comparando os valores calculados vemos que a alernaiva 5. Um gás ideal sofre o processo cíclico mosrado no diagrama P x T, conforme figura abaixo. O ciclo é composo pelos processos ermodinâmicos a b, b c e c a. ssinale enre as alernaivas abaixo aquela que coném o diagrama P x V equivalene ao ciclo P x T. V/UF/Vesibular 005 Física Pág. de 5

4 Quesão 5 lernaiva B O diagrama P x T dado, mosra que o processo c a isoérmico (T=consane. O processo b α V = ce em concordância com o diagrama P x T, logo b c é isobárico (P=consane e o processo a é represenado pela equação P = α T onde V V = ce. O processo c a em como gráfico uma curva proporcional a V 1, logo o diagrama P x V equivalene que apresena esas caracerísicas é o da alernaiva (B. 58. onsidere as pergunas abaixo: I. Quais grandezas variam quando a luz passa do ar para o vidro? II. Qual a disância focal de um espelho plano? III. s ondas sonoras podem ser refleidas e refraadas? ssinale a alernaiva que coném apenas resposas correas ao conjuno de pergunas. I. freqüência e a ampliude. III. Podem ser só refraadas. B I. O comprimeno de onda e a ampliude. III. Podem ser só refleidas. I. velocidade e a ampliude. II. É infinia. III. Não apresenam eses fenômenos. D I. Velocidade e comprimeno de onda. II. É infinia. III. Podem ser refleidas e refraadas. E I. freqüência e a ampliude. III. Podem ser só refleidas. Quesão 58 lernaiva D Para solucionar essa quesão necessia-se do conhecimeno de óica geomérica e das propriedades das ondas sonoras e de luz, ais como fenômenos de reflexão e refração. s grandezas que variam quando a luz passa de um meio para ouro são: velocidade e comprimeno de onda. omo o raio de curvaura ende para infinio, a disância focal, ambém, viso que f=/. s ondas sonoras, assim como as ondas luminosas, podem sofrer reflexão e refração. Porano, a alernaiva que coném apenas resposas correas ao conjuno de pergunas é a alernaiva (D. 59. s figuras I, II, III e IV são pares de um circuio cuja correne i em o senido convencional. V/UF/Vesibular 005 Física Pág. 4 de 5

5 nalise as figuras e assinale denre as alernaivas abaixo a que apresena correamene as diferenças de poenciais enre os diversos ponos do circuio. V b V a = ε + ir; V c V b = Q ; Vd V a = i; V d V c = 0 B V b V a = (ε ir; V c V b = Q ; Vd V a = i; V d V c = 0 V b V a = ε ir; V c V b = D V b V a = (ε + ir; V c V b = E V b V a = (ε ir; V c V b = ; V d V a = i; V d V c = 0 ; V d V a = i; V d V c = 0 ; V d V a = i; V d V c = 0 Quesão 59 lernaiva Esa quesão requer o conhecimeno de poencial, correne, força eleromoriz, resisência e Lei de Kirchoff num circuio. plicando-se eses conhecimenos, verifica-se que a alernaiva que apresena, correamene, as diferenças de poencial enre os diversos ponos do circuio é a (. 60. Quando um fóon ( incide sobre um áomo ou molécula no esado fundamenal ou em esados próximos ao esado fundamenal modesamene exciados, vários fenômenos físicos de emissão ocorrem. s alernaivas abaixo apresenam figuras de níveis quânicos de energia de alguns deses fenômenos. ssinale a alernaiva que represena, correamene, a emissão esimulada. Quesão 60 lernaiva E O processo de emissão esimulada ocorrerá se o áomo esiver inicialmene num esado exciado e se a energia do fóon incidene for exaamene igual à energia do esado exciado do áomo menos a energia do esado fundamenal. om base nese argumeno, verifica-se que a alernaiva que represena a emissão esimulada é a (E. V/UF/Vesibular 005 Física Pág. 5 de 5

Circuitos Elétricos I EEL420

Circuitos Elétricos I EEL420 Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL420 Coneúdo 1 - Circuios de primeira ordem...1 1.1 - Equação diferencial ordinária de primeira ordem...1 1.1.1 - Caso linear, homogênea, com

Leia mais

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL Movimeno unidimensional 5 MOVIMENTO UNIDIMENSIONAL. Inrodução Denre os vários movimenos que iremos esudar, o movimeno unidimensional é o mais simples, já que odas as grandezas veoriais que descrevem o

Leia mais

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara Insiuo de Física USP Física V - Aula 6 Professora: Mazé Bechara Aula 6 Bases da Mecânica quânica e equações de Schroedinger. Aplicação e inerpreações. 1. Ouros posulados da inerpreação de Max-Born para

Leia mais

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL42 Coneúdo 8 - Inrodução aos Circuios Lineares e Invarianes...1 8.1 - Algumas definições e propriedades gerais...1 8.2 - Relação enre exciação

Leia mais

18 GABARITO 1 2 O DIA PROCESSO SELETIVO/2005 FÍSICA QUESTÕES DE 31 A 45

18 GABARITO 1 2 O DIA PROCESSO SELETIVO/2005 FÍSICA QUESTÕES DE 31 A 45 18 GABARITO 1 2 O DIA PROCESSO SELETIO/2005 ÍSICA QUESTÕES DE 31 A 45 31. O gálio é um meal cuja emperaura de fusão é aproximadamene o C. Um pequeno pedaço desse meal, a 0 o C, é colocado em um recipiene

Leia mais

6ROXomR: A aceleração das esferas é a mesma, g (aceleração da gravidade), como demonstrou

6ROXomR: A aceleração das esferas é a mesma, g (aceleração da gravidade), como demonstrou 6ROXomR&RPHQWDGD3URYDGH)VLFD. O sisema inernacional de unidades e medidas uiliza vários prefixos associados à unidade-base. Esses prefixos indicam os múliplos decimais que são maiores ou menores do que

Leia mais

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON)

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON) TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 8 LIVRO DO NILSON). CONSIDERAÇÕES INICIAIS SÉRIES DE FOURIER: descrevem funções periódicas no domínio da freqüência (ampliude e fase). TRANSFORMADA DE FOURIER:

Leia mais

FÍSICA - 1 o ANO MÓDULO 15 GRÁFICOS DA CINEMÁTICA

FÍSICA - 1 o ANO MÓDULO 15 GRÁFICOS DA CINEMÁTICA FÍSICA - 1 o ANO MÓDULO 15 GRÁFICOS DA CINEMÁTICA S S S S S S v v S v v S Área S v v v v v v S(m) 2-1 (s) Se a < S Se a > S S S 1 2 3 a a a v v Área v v S S(m) 16 15 1 (s) Como pode cair no enem? (ENEM)

Leia mais

CAPÍTULO III TORÇÃO SIMPLES

CAPÍTULO III TORÇÃO SIMPLES CAPÍTULO III TORÇÃO SIPLES I.INTRODUÇÂO Uma peça esará sujeia ao esforço de orção simples quando a mesma esiver submeida somene a um momeno de orção. Observe-se que raa-se de uma simplificação, pois no

Leia mais

Função Exponencial 2013

Função Exponencial 2013 Função Exponencial 1 1. (Uerj 1) Um imóvel perde 6% do valor de venda a cada dois anos. O valor V() desse imóvel em anos pode ser obido por meio da fórmula a seguir, na qual V corresponde ao seu valor

Leia mais

INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS

INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS Gil da Cosa Marques Fundamenos de Maemáica I.1 Inrodução. Equações Diferenciais Lineares.3 Equações Lineares de Primeira ordem.3.1 Equações de Primeira ordem não homogêneas

Leia mais

CIRCUITO RC SÉRIE. max

CIRCUITO RC SÉRIE. max ELETRICIDADE 1 CAPÍTULO 8 CIRCUITO RC SÉRIE Ese capíulo em por finalidade inroduzir o esudo de circuios que apresenem correnes eléricas variáveis no empo. Para ano, esudaremos o caso de circuios os quais

Leia mais

QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS

QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS QUESTÃO Assinale V (verdadeiro) ou F (falso): () A solução da equação diferencial y y y apresena equilíbrios esacionários quando, dependendo

Leia mais

ONDAS ELETROMAGNÉTICAS

ONDAS ELETROMAGNÉTICAS LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS A propagação de ondas eleromagnéicas ocorre quando um campo elérico variane no empo produ um campo magnéico ambém variane no empo, que por sua ve produ um campo

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar Progressão Ariméica e Progressão Geomérica. (Pucrj 0) Os números a x, a x e a x esão em PA. A soma dos números é igual a: a) 8 b) c) 7 d) e) 0. (Fuves 0) Dadas as sequências an n n, n n cn an an b, e b

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar . (Pucrj 0) Os números a x, a x e a3 x 3 esão em PA. A soma dos 3 números é igual a: é igual a e o raio de cada semicírculo é igual à meade do semicírculo anerior, o comprimeno da espiral é igual a a)

Leia mais

Equilíbrio térmico. diatérmica. adiabática. (A e B estão em contacto térmico)

Equilíbrio térmico. diatérmica. adiabática. (A e B estão em contacto térmico) Equilíbrio érmico Parede adiabáica exs: asbeso (amiano), felro, polisereno, paredes de uma garrafa ermo. Parede diaérmica ex: folha fina de meal. adiabáica A Todos os valores de, Y são possíveis B Todos

Leia mais

Circuitos Elétricos- módulo F4

Circuitos Elétricos- módulo F4 Circuios léricos- módulo F4 M 014 Correne elécrica A correne elécrica consise num movimeno orienado de poradores de cara elécrica por acção de forças elécricas. Os poradores de cara podem ser elecrões

Leia mais

4. SINAL E CONDICIONAMENTO DE SINAL

4. SINAL E CONDICIONAMENTO DE SINAL 4. SINAL E CONDICIONAMENO DE SINAL Sumário 4. SINAL E CONDICIONAMENO DE SINAL 4. CARACERÍSICAS DOS SINAIS 4.. Período e frequência 4..2 alor médio, valor eficaz e valor máximo 4.2 FILRAGEM 4.2. Circuio

Leia mais

Lista de Exercícios n o.1. 1) O diodo do circuito da Fig. 1(a) se comporta segundo a característica linearizada por partes da Fig 1(b). I D (ma) Fig.

Lista de Exercícios n o.1. 1) O diodo do circuito da Fig. 1(a) se comporta segundo a característica linearizada por partes da Fig 1(b). I D (ma) Fig. Universidade Federal da Bahia EE isposiivos Semiconduores ENG C41 Lisa de Exercícios n o.1 1) O diodo do circuio da Fig. 1 se compora segundo a caracerísica linearizada por pares da Fig 1. R R (ma) 2R

Leia mais

Cálculo Vetorial - Lista de Exercícios

Cálculo Vetorial - Lista de Exercícios álculo Veorial - Lisa de Exercícios (Organizada pela Profa. Ilka Rebouças). Esboçar o gráfico das curvas represenadas pelas seguines funções veoriais: a) a 4 i j, 0,. d) d i 4 j k,. b) b sen i 4 j cos

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031 Universidade Federal do io Grande do Sul Escola de Engenharia de Poro Alegre Deparameno de Engenharia Elérica ANÁLISE DE CICUITOS II - ENG43 Aula 5 - Condições Iniciais e Finais de Carga e Descarga em

Leia mais

Capítulo Cálculo com funções vetoriais

Capítulo Cálculo com funções vetoriais Cálculo - Capíulo 6 - Cálculo com funções veoriais - versão 0/009 Capíulo 6 - Cálculo com funções veoriais 6 - Limies 63 - Significado geomérico da derivada 6 - Derivadas 64 - Regras de derivação Uiliaremos

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Universidade Esadual do Sudoese da Bahia Dearameno de Ciências Exaas e Naurais.1- Roações, Cenro de Massa e Momeno Física I Prof. Robero Claudino Ferreira Índice 1. Movimeno Circular Uniformemene Variado;.

Leia mais

RELATIVIDADE ESPECIAL

RELATIVIDADE ESPECIAL RELATIVIDADE ESPECIAL AULA N O ( Quadriveores - Velocidade relaivísica - Tensores ) Vamos ver um eemplo de uma lei que é possível na naureza, mas que não é uma lei da naureza. Duas parículas colidem no

Leia mais

Exemplos de fontes emissoras de ondas eletromagnéticas

Exemplos de fontes emissoras de ondas eletromagnéticas emplos de fones emissoras de ondas eleromagnéicas Luz visível emiida por um filameno de lâmpada incandescene missoras de rádio e TV Osciladores de micro-ondas Aparelhos de raios X Diferem enre si, apenas

Leia mais

F-128 Física Geral I. Aula exploratória-07 UNICAMP IFGW F128 2o Semestre de 2012

F-128 Física Geral I. Aula exploratória-07 UNICAMP IFGW F128 2o Semestre de 2012 F-18 Física Geral I Aula eploraória-07 UNICAMP IFGW username@ii.unicamp.br F18 o Semesre de 01 1 Energia Energia é um conceio que ai além da mecânica de Newon e permanece úil ambém na mecânica quânica,

Leia mais

Introdução às Medidas em Física

Introdução às Medidas em Física Inrodução às Medidas em Física 43152 Elisabeh Maeus Yoshimura emaeus@if.usp.br Bloco F Conjuno Alessandro Vola sl 18 agradecimenos a Nemiala Added por vários slides Conceios Básicos Lei Zero da Termodinâmica

Leia mais

Capítulo 2: Conceitos Fundamentais sobre Circuitos Elétricos

Capítulo 2: Conceitos Fundamentais sobre Circuitos Elétricos SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA TE041 Circuios Eléricos I Prof. Ewaldo L. M. Mehl Capíulo 2: Conceios Fundamenais sobre Circuios Eléricos 2.1. CARGA ELÉTRICA E CORRENTE ELÉTRICA

Leia mais

LIGAÇÕES QUÍMICAS NOS COMPOSTOS DE COORDENAÇÃO: TEORIA DO CAMPO CRISTALINO (TCC)

LIGAÇÕES QUÍMICAS NOS COMPOSTOS DE COORDENAÇÃO: TEORIA DO CAMPO CRISTALINO (TCC) LIGAÇÕES QUÍMICAS NS CMPSTS DE CRDENAÇÃ: TERIA D CAMP CRISTALIN (TCC) A Teoria do Campo Crisalino (TCC) posula que a única ineração exisene enre o íon cenral e os liganes é de naureza elerosáica, pois

Leia mais

RÁPIDA INTRODUÇÃO À FÍSICA DAS RADIAÇÕES Simone Coutinho Cardoso & Marta Feijó Barroso UNIDADE 3. Decaimento Radioativo

RÁPIDA INTRODUÇÃO À FÍSICA DAS RADIAÇÕES Simone Coutinho Cardoso & Marta Feijó Barroso UNIDADE 3. Decaimento Radioativo Decaimeno Radioaivo RÁPIDA ITRODUÇÃO À FÍSICA DAS RADIAÇÕES Simone Couinho Cardoso & Mara Feijó Barroso Objeivos: discuir o que é decaimeno radioaivo e escrever uma equação que a descreva UIDADE 3 Sumário

Leia mais

Noções de Espectro de Freqüência

Noções de Espectro de Freqüência MINISTÉRIO DA EDUCAÇÃO - Campus São José Curso de Telecomunicações Noções de Especro de Freqüência Marcos Moecke São José - SC, 6 SUMÁRIO 3. ESPECTROS DE FREQÜÊNCIAS 3. ANÁLISE DE SINAIS NO DOMÍNIO DA

Leia mais

Tópicos Especiais em Energia Elétrica (Projeto de Inversores e Conversores CC-CC)

Tópicos Especiais em Energia Elétrica (Projeto de Inversores e Conversores CC-CC) Deparameno de Engenharia Elérica Tópicos Especiais em Energia Elérica () ula 2.2 Projeo do Induor Prof. João mérico Vilela Projeo de Induores Definição do úcleo a Fig.1 pode ser observado o modelo de um

Leia mais

CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA

CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA Inrodução Ese arigo raa de um dos assunos mais recorrenes nas provas do IME e do ITA nos úlimos anos, que é a Cinéica Química. Aqui raamos principalmene dos

Leia mais

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 1 3 quadrimestre 2012

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 1 3 quadrimestre 2012 EN67 Transformadas em Sinais e Sisemas Lineares Lisa de Exercícios Suplemenares janeiro EN67 Transformadas em Sinais e Sisemas Lineares Lisa de Exercícios Suplemenares quadrimesre Figura Convolução (LATHI,

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

Seção 5: Equações Lineares de 1 a Ordem

Seção 5: Equações Lineares de 1 a Ordem Seção 5: Equações Lineares de 1 a Ordem Definição. Uma EDO de 1 a ordem é dia linear se for da forma y + fx y = gx. 1 A EDO linear de 1 a ordem é uma equação do 1 o grau em y e em y. Qualquer dependência

Leia mais

S = S S 0 S>0 S<0 S 13 S 23. Mecânica é o ramo da Física que estuda os movimentos. Pode ser dividida em: S(m) 1. CINEMÁTICA ESCALAR.

S = S S 0 S>0 S<0 S 13 S 23. Mecânica é o ramo da Física que estuda os movimentos. Pode ser dividida em: S(m) 1. CINEMÁTICA ESCALAR. Mecânica é o ramo da Física que esuda os movimenos. Pode ser dividida em: Início Final (m) a) Cinemáica: Esuda os movimenos sem se preocupar com as suas causas. b) Dinâmica: Esuda as causas dos movimenos.

Leia mais

Mecânica da partícula

Mecânica da partícula -- Mecânica da parícula Moimenos sob a acção de uma força resulane consane Prof. Luís C. Perna LEI DA INÉRCIA OU ª LEI DE NEWTON LEI DA INÉRCIA Para que um corpo alere o seu esado de moimeno é necessário

Leia mais

CINÉTICA RADIOATIVA. Introdução. Tempo de meia-vida (t 1/2 ou P) Atividade Radioativa

CINÉTICA RADIOATIVA. Introdução. Tempo de meia-vida (t 1/2 ou P) Atividade Radioativa CIÉTIC RDIOTIV Inrodução Ese arigo em como objeivo analisar a velocidade dos diferenes processos radioaivos, no que chamamos de cinéica radioaiva. ão deixe de anes esudar o arigo anerior sobre radioaividade

Leia mais

INF Técnicas Digitais para Computação. Conceitos Básicos de Circuitos Elétricos. Aula 3

INF Técnicas Digitais para Computação. Conceitos Básicos de Circuitos Elétricos. Aula 3 INF01 118 Técnicas Digiais para Compuação Conceios Básicos de Circuios Eléricos Aula 3 1. Fones de Tensão e Correne Fones são elemenos aivos, capazes de fornecer energia ao circuio, na forma de ensão e

Leia mais

RELATIVIDADE ESPECIAL

RELATIVIDADE ESPECIAL 1 RELATIIDADE ESPECIAL AULA N O 5 ( Equações de Mawell em forma ensorial Equação da Coninuidade 4-veor densidade de correne) Anes de prosseguirmos com a Teoria da Relaividade, observando as consequências

Leia mais

INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas.

INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas. SIMULADO DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - JULHO DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES de 0 a

Leia mais

O potencial eléctrico de um condutor aumenta à medida que lhe fornecemos carga eléctrica. Estas duas grandezas são

O potencial eléctrico de um condutor aumenta à medida que lhe fornecemos carga eléctrica. Estas duas grandezas são O ondensador O poencial elécrico de um conduor aumena à medida que lhe fornecemos carga elécrica. Esas duas grandezas são direcamene proporcionais. No enano, para a mesma quanidade de carga, dois conduores

Leia mais

Amplificadores de potência de RF

Amplificadores de potência de RF Amplificadores de poência de RF Objeivo: Amplificar sinais de RF em níveis suficienes para a sua ransmissão (geralmene aravés de uma anena) com bom rendimeno energéico. R g P e RF P CC Amplificador de

Leia mais

Função Exponencial Nível Básico

Função Exponencial Nível Básico Função Eponencial - 16 Nível Básico 1. (Imed 16) Em relação à função real definida por g(g()) corresponde a: a) 1. b). c) 3. d). e) 5. g() 1, é correo afirmar que. (Uel 15) A miose é uma divisão celular,

Leia mais

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo PROBLEMAS RESOLVIDOS DE FÍSIA Prof. Anderson oser Gaudio Deparameno de Física enro de iências Eaas Universidade Federal do Espírio Sano hp://www.cce.ufes.br/anderson anderson@npd.ufes.br Úlima aualização:

Leia mais

UNIDADE 2. t=0. Fig. 2.1-Circuito Com Indutor Pré-Carregado

UNIDADE 2. t=0. Fig. 2.1-Circuito Com Indutor Pré-Carregado UNIDAD 2 CIRCUITOS BÁSICOS COM INTRRUPTORS 2.1 CIRCUITOS D PRIMIRA ORDM 2.1.1 Circuio com Induor PréCarregado em Série com Diodo Seja o circuio represenado na Fig. 2.1. D i =0 Fig. 2.1Circuio Com Induor

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

GFI Física por Atividades. Caderno de Trabalhos de Casa

GFI Física por Atividades. Caderno de Trabalhos de Casa GFI00157 - Física por Aividades Caderno de Trabalhos de Casa Coneúdo 1 Cinemáica 4 1.1 Velocidade.............................. 4 1.2 Represenações do movimeno................... 8 1.3 Aceleração em uma

Leia mais

1 Movimento de uma Carga Pontual dentro de um Campo Elétrico

1 Movimento de uma Carga Pontual dentro de um Campo Elétrico Correne Elérica Movimeno de uma Carga Ponual denro de um Campo Elérico Uma carga elérica denro de um campo elérico esá sujeia a uma força igual a qe. Se nenhuma oura força aua sobre essa carga (considerar

Leia mais

Capítulo 3 Derivada. 3.1 Reta Tangente e Taxa de Variação

Capítulo 3 Derivada. 3.1 Reta Tangente e Taxa de Variação Inrodução ao Cálculo Capíulo Derivada.1 Rea Tangene e Taxa de Variação Exemplo nr. 1 - Uma parícula caminha sobre uma rajeória qualquer obedecendo à função horária: s() 5 + (s em meros, em segundos) a)

Leia mais

PROJETO DE ENGRENAGENS - CILÍNDRICAS DE DENTES RETOS E HELICOIDAIS. Prof. Alexandre Augusto Pescador Sardá

PROJETO DE ENGRENAGENS - CILÍNDRICAS DE DENTES RETOS E HELICOIDAIS. Prof. Alexandre Augusto Pescador Sardá PROJETO DE ENGRENAGENS - CILÍNDRICAS DE DENTES RETOS E HELICOIDAIS Prof. Alexandre Auguso Pescador Sardá INTRODUÇÃO Falha por flexão dos denes: ocorrerá quando quando a ensão significaiva nos denes igualar-se

Leia mais

Questão 30. Questão 32. Questão 31. alternativa E. alternativa D. alternativa A

Questão 30. Questão 32. Questão 31. alternativa E. alternativa D. alternativa A Quesão 30 Um sólido branco apresena as seguines propriedades: I. É solúvel em água. II. Sua solução aquosa é conduora de correne elérica. III. Quando puro, o sólido não conduz correne elérica. IV. Quando

Leia mais

5.1 Objectivos. Caracterizar os métodos de detecção de valor eficaz.

5.1 Objectivos. Caracterizar os métodos de detecção de valor eficaz. 5. PRINCÍPIOS DE MEDIÇÃO DE CORRENE, ENSÃO, POÊNCIA E ENERGIA 5. Objecivos Caracerizar os méodos de deecção de valor eficaz. Caracerizar os méodos de medição de poência e energia em correne conínua, correne

Leia mais

Estando o capacitor inicialmente descarregado, o gráfico que representa a corrente i no circuito após o fechamento da chave S é:

Estando o capacitor inicialmente descarregado, o gráfico que representa a corrente i no circuito após o fechamento da chave S é: PROCESSO SELETIVO 27 2 O DIA GABARITO 1 13 FÍSICA QUESTÕES DE 31 A 45 31. Considere o circuio mosrado na figura abaixo: S V R C Esando o capacior inicialmene descarregado, o gráfico que represena a correne

Leia mais

Primeira Lista de Exercícios

Primeira Lista de Exercícios TP30 Modulação Digial Prof.: MSc. Marcelo Carneiro de Paiva Primeira Lisa de Exercícios Caracerize: - Transmissão em Banda-Base (apresene um exemplo de especro de ransmissão). - Transmissão em Banda Passane

Leia mais

Espectro da radiação electromagnética

Espectro da radiação electromagnética specro da radiação elecromagnéica specro da radiação elecromagnéica A Naureza da Luz Carácer corpuscular Isaac Newon (643-77) Carácer ondulaório Chrisiaan Huygens(69-695) Carácer corpuscular não eplica

Leia mais

Física I -2009/2010. Utilize o modelo de uma partícula (ou seja, represente o corpo cujo movimento está a estudar por uma única partícula)

Física I -2009/2010. Utilize o modelo de uma partícula (ou seja, represente o corpo cujo movimento está a estudar por uma única partícula) Quesões: Física I -9/ 3 a Série - Movimeno unidimensional - Resolução Q -Esboce um diagrama de ponos para cada um dos movimenos unidimensionais abaixo indicados, de acordo com as seguines insruções: Uilize

Leia mais

4 O Papel das Reservas no Custo da Crise

4 O Papel das Reservas no Custo da Crise 4 O Papel das Reservas no Cuso da Crise Nese capíulo buscamos analisar empiricamene o papel das reservas em miigar o cuso da crise uma vez que esa ocorre. Acrediamos que o produo seja a variável ideal

Leia mais

GABARITO COMENTADO 9 VESTIBULAR FEPECS 2009 PROVA 2 2 DIA (11/01/2009 DOMINGO)

GABARITO COMENTADO 9 VESTIBULAR FEPECS 2009 PROVA 2 2 DIA (11/01/2009 DOMINGO) GABARITO COMENTADO 9 VESTIBULAR FEPECS 9 PROVA DIA (//9 DOMINGO) Equipe de elaboradores: Eduardo Ulisses, George Menezes, Márcia Verburg, Édio Gleiser, Daniel Barros, Domigos Dias, Thiago Rezende, Hara

Leia mais

Curso de Dinâmica das Estruturas 1

Curso de Dinâmica das Estruturas 1 Curso de Dinâica das Esruuras 1 I INTRODUÇÃO 1 O principal objeivo dese curso é apresenar eodologias para analisar ensões e deslocaenos desenvolvidos por u dado sisea esruural quando o eso esá sujeio à

Leia mais

Lista de Exercícios nº 3 - Parte IV

Lista de Exercícios nº 3 - Parte IV DISCIPLINA: SE503 TEORIA MACROECONOMIA 01/09/011 Prof. João Basilio Pereima Neo E-mail: joaobasilio@ufpr.com.br Lisa de Exercícios nº 3 - Pare IV 1ª Quesão (...) ª Quesão Considere um modelo algébrico

Leia mais

UNIVERSIDADE DA BEIRA INTERIOR FACULDADE DE CIÊNCIAS SOCIAIS E HUMANAS DEPARTAMENTO DE GESTÃO E ECONOMIA MACROECONOMIA III

UNIVERSIDADE DA BEIRA INTERIOR FACULDADE DE CIÊNCIAS SOCIAIS E HUMANAS DEPARTAMENTO DE GESTÃO E ECONOMIA MACROECONOMIA III UNIVERSIDADE DA BEIRA INTERIOR FACUDADE DE CIÊNCIAS SOCIAIS E HUMANAS DEPARTAMENTO DE GESTÃO E ECONOMIA MACROECONOMIA III icenciaura de Economia (ºAno/1ºS) Ano ecivo 007/008 Caderno de Exercícios Nº 1

Leia mais

Diodos. Símbolo. Função (ideal) Conduzir corrente elétrica somente em um sentido. Tópico : Revisão dos modelos Diodos e Transistores

Diodos. Símbolo. Função (ideal) Conduzir corrente elétrica somente em um sentido. Tópico : Revisão dos modelos Diodos e Transistores 1 Tópico : evisão dos modelos Diodos e Transisores Diodos Símbolo O mais simples dos disposiivos semiconduores. Função (ideal) Conduzir correne elérica somene em um senido. Circuio abero Polarização 2

Leia mais

Análise de séries de tempo: modelos de decomposição

Análise de séries de tempo: modelos de decomposição Análise de séries de empo: modelos de decomposição Profa. Dra. Liane Werner Séries de emporais - Inrodução Uma série emporal é qualquer conjuno de observações ordenadas no empo. Dados adminisraivos, econômicos,

Leia mais

Econometria Semestre

Econometria Semestre Economeria Semesre 00.0 6 6 CAPÍTULO ECONOMETRIA DE SÉRIES TEMPORAIS CONCEITOS BÁSICOS.. ALGUMAS SÉRIES TEMPORAIS BRASILEIRAS Nesa seção apresenamos algumas séries econômicas, semelhanes às exibidas por

Leia mais

Equações Diferenciais Ordinárias Lineares

Equações Diferenciais Ordinárias Lineares Equações Diferenciais Ordinárias Lineares 67 Noções gerais Equações diferenciais são equações que envolvem uma função incógnia e suas derivadas, além de variáveis independenes Aravés de equações diferenciais

Leia mais

Espaço SENAI. Missão do Sistema SENAI

Espaço SENAI. Missão do Sistema SENAI Sumário Inrodução 5 Gerador de funções 6 Caracerísicas de geradores de funções 6 Tipos de sinal fornecidos 6 Faixa de freqüência 7 Tensão máxima de pico a pico na saída 7 Impedância de saída 7 Disposiivos

Leia mais

4 Metodologia Proposta para o Cálculo do Valor de Opções Reais por Simulação Monte Carlo com Aproximação por Números Fuzzy e Algoritmos Genéticos.

4 Metodologia Proposta para o Cálculo do Valor de Opções Reais por Simulação Monte Carlo com Aproximação por Números Fuzzy e Algoritmos Genéticos. 4 Meodologia Proposa para o Cálculo do Valor de Opções Reais por Simulação Mone Carlo com Aproximação por Números Fuzzy e Algorimos Genéicos. 4.1. Inrodução Nese capíulo descreve-se em duas pares a meodologia

Leia mais

2.6 - Conceitos de Correlação para Sinais Periódicos

2.6 - Conceitos de Correlação para Sinais Periódicos .6 - Conceios de Correlação para Sinais Periódicos O objeivo é o de comparar dois sinais x () e x () na variável empo! Exemplo : Considere os dados mosrados abaixo y 0 x Deseja-se ober a relação enre x

Leia mais

Versão preliminar serão feitas correções em sala de aula 1

Versão preliminar serão feitas correções em sala de aula 1 Versão preinar serão feias correções em sala de aula 7.. Inrodução Dependendo das condições de soliciação, o maerial pode se enconrar sob diferenes esados mecânicos. Quando as cargas (exernas) são pequenas

Leia mais

4 O modelo econométrico

4 O modelo econométrico 4 O modelo economérico O objeivo desse capíulo é o de apresenar um modelo economérico para as variáveis financeiras que servem de enrada para o modelo esocásico de fluxo de caixa que será apresenado no

Leia mais

Características dos Processos ARMA

Características dos Processos ARMA Caracerísicas dos Processos ARMA Aula 0 Bueno, 0, Capíulos e 3 Enders, 009, Capíulo. a.6 Morein e Toloi, 006, Capíulo 5. Inrodução A expressão geral de uma série emporal, para o caso univariado, é dada

Leia mais

Aula 1. Atividades. Para as questões dessa aula, podem ser úteis as seguintes relações:

Aula 1. Atividades. Para as questões dessa aula, podem ser úteis as seguintes relações: Aula 1 Para as quesões dessa aula, podem ser úeis as seguines relações: 1. E c = P = d = m. v E m V E P = m. g. h cos = sen = g = Aividades Z = V caeo adjacene hipoenusa caeo oposo hipoenusa caeo oposo

Leia mais

Exercícios 5 Leis de Newton

Exercícios 5 Leis de Newton Exercícios 5 Leis de Newon 1) (UES) Um carro freia bruscamene e o passageiro bae com a cabeça no idro para-brisa. Três pessoas dão a seguine explicação sobre o fao: 1- O carro foi freado, mas o passageiro

Leia mais

Mecânica de Sistemas de Partículas Prof. Lúcio Fassarella * 2013 *

Mecânica de Sistemas de Partículas Prof. Lúcio Fassarella * 2013 * Mecânica e Sisemas e Parículas Prof. Lúcio Fassarella * 2013 * 1. A velociae e escape e um planea ou esrela é e nia como seno a menor velociae requeria na superfície o objeo para que uma parícula escape

Leia mais

uma função qualquer com uma variável independente. A derivada de uma função é

uma função qualquer com uma variável independente. A derivada de uma função é Ondas (EE) Análise vecorial. Derivadas parciais.. Derivada de uma função Seja a função f () uma função qualquer com uma variável independene. A derivada de uma função é d d lim 0 Geomericamene, a derivada

Leia mais

Conceitos Básicos Circuitos Resistivos

Conceitos Básicos Circuitos Resistivos Conceios Básicos Circuios esisivos Elecrónica 005006 Arnaldo Baisa Elecrónica_biomed_ef Circuio Elécrico com uma Baeria e uma esisência I V V V I Lei de Ohm I0 V 0 i0 Movimeno Das Pás P >P P >P Líquido

Leia mais

Física e Química A Ficha de trabalho nº 2: Unidade 1 Física 11.º Ano Movimentos na Terra e no Espaço

Física e Química A Ficha de trabalho nº 2: Unidade 1 Física 11.º Ano Movimentos na Terra e no Espaço Física e Química A Ficha de rabalho nº 2: Unidade 1 Física 11.º Ano Moimenos na Terra e no Espaço 1. Um corpo descree uma rajecória recilínea, sendo regisada a sua posição em sucessios insanes. Na abela

Leia mais

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Oscilações Movimento Oscilatório Cinemática do Movimento Harmônico Simples (MHS) MHS e Movimento

Leia mais

Circuitos simples em corrente alternada Resistor, Capacitor e Indutor

Circuitos simples em corrente alternada Resistor, Capacitor e Indutor 1 - Conceios relacionados Resisência, correne, ensão, reaância, fase, ferença de fase 2 Objeivos Avaliar a dependência da reaância de sposiivos simples como resisor, capacior e induor em regime esacionário

Leia mais

Contabilometria. Séries Temporais

Contabilometria. Séries Temporais Conabilomeria Séries Temporais Fone: Corrar, L. J.; Theóphilo, C. R. Pesquisa Operacional para Decisão em Conabilidade e Adminisração, Ediora Alas, São Paulo, 2010 Cap. 4 Séries Temporais O que é? Um conjuno

Leia mais

Instituto de Tecnologia de Massachusetts Departamento de Engenharia Elétrica e Ciência da Computação. Tarefa 5 Introdução aos Modelos Ocultos Markov

Instituto de Tecnologia de Massachusetts Departamento de Engenharia Elétrica e Ciência da Computação. Tarefa 5 Introdução aos Modelos Ocultos Markov Insiuo de Tecnologia de Massachuses Deparameno de Engenharia Elérica e Ciência da Compuação 6.345 Reconhecimeno Auomáico da Voz Primavera, 23 Publicado: 7/3/3 Devolução: 9/3/3 Tarefa 5 Inrodução aos Modelos

Leia mais

Escola Secundária Dom Manuel Martins

Escola Secundária Dom Manuel Martins Escola Secundária Dom Manuel Marins Seúbal Prof. Carlos Cunha 1ª Ficha de Avaliação FÍSICO QUÍMICA A ANO LECTIVO 2006 / 2007 ANO II N. º NOME: TURMA: C CLASSIFICAÇÃO Grisson e a sua equipa são chamados

Leia mais

LABORATÓRIO DE HIDRÁULICA

LABORATÓRIO DE HIDRÁULICA UNIVERSIDADE FEDERAL DE ALAGOAS ENTRO DE TENOLOGIA LABORATÓRIO DE HIDRÁULIA Vladimir aramori Josiane Holz Irene Maria haves Pimenel Marllus Gusavo Ferreira Passos das Neves Maceió - Alagoas Ouubro de 2012

Leia mais

Função definida por várias sentenças

Função definida por várias sentenças Ese caderno didáico em por objeivo o esudo de função definida por várias senenças. Nese maerial você erá disponível: Uma siuação que descreve várias senenças maemáicas que compõem a função. Diversas aividades

Leia mais

QUESTÃO 60 DA CODESP

QUESTÃO 60 DA CODESP UEÃO 60 D CODE - 0 êmpera é um ipo de raameno érmico uilizado para aumenar a dureza de peças de aço respeio da êmpera, é correo afirmar: ) a êmpera modifica de maneira uniforme a dureza da peça, independenemene

Leia mais

Experiências para o Ensino de Queda Livre

Experiências para o Ensino de Queda Livre Universidade Esadual de Campinas Insiuo de Física Gleb Waagin Relaório Final da disciplina F 69A - Tópicos de Ensino de Física I Campinas, de juno de 7. Experiências para o Ensino de Queda Livre Aluno:

Leia mais

velocidade inicial: v 0 ; ângulo de tiro com a horizontal: 0.

velocidade inicial: v 0 ; ângulo de tiro com a horizontal: 0. www.fisicaee.com.br Um projéil é disparado com elocidade inicial iual a e formando um ânulo com a horizonal, sabendo-se que os ponos de disparo e o alo esão sobre o mesmo plano horizonal e desprezando-se

Leia mais

ENGF93 Análise de Processos e Sistemas I

ENGF93 Análise de Processos e Sistemas I ENGF93 Análise de Processos e Sisemas I Prof a. Karen Pones Revisão: 3 de agoso 4 Sinais e Sisemas Tamanho do sinal Ampliude do sinal varia com o empo, logo a medida de seu amanho deve considerar ampliude

Leia mais

2. MODELOS MATEMÁTICOS DE SISTEMAS

2. MODELOS MATEMÁTICOS DE SISTEMAS . MODELOS MATEMÁTICOS DE SISTEMAS Os Sisemas de Conrolo Auomáico são enidades fundamenais numa sociedade indusrializada. Para se inroduzir os primeiros conceios considere-se o Exemplo.. Exemplo.: A regulação

Leia mais

EXPERIÊNCIA 7 CONSTANTE DE TEMPO EM CIRCUITOS RC

EXPERIÊNCIA 7 CONSTANTE DE TEMPO EM CIRCUITOS RC EXPERIÊNIA 7 ONSTANTE DE TEMPO EM IRUITOS R I - OBJETIVO: Medida da consane de empo em um circuio capaciivo. Medida da resisência inerna de um volímero e da capaciância de um circuio aravés da consane

Leia mais

Física B Extensivo V. 5

Física B Extensivo V. 5 Gabario Eensivo V 5 Resolva Aula 8 Aula 9 80) E 80) A 90) f = 50 MHz = 50 0 6 Hz v = 3 0 8 m/s v = f = v f = 3 0 8 50 0 = 6 m 90) B y = 0,5 cos [ (4 0)] y = 0,5 cos y = A cos A = 0,5 m 6 = 4 s = 0,5 s

Leia mais

AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM

AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM 163 22. PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM 22.1. Inrodução Na Seção 9.2 foi falado sobre os Parâmeros de Core e

Leia mais

RASCUNHO. a) 120º10 b) 95º10 c) 120º d) 95º e) 110º50

RASCUNHO. a) 120º10 b) 95º10 c) 120º d) 95º e) 110º50 ª QUESTÃO Uma deerminada cidade organizou uma olimpíada de maemáica e física, para os alunos do º ano do ensino médio local. Inscreveramse 6 alunos. No dia da aplicação das provas, consaouse que alunos

Leia mais

Dimensões Físicas e Padrões; Gráficos.

Dimensões Físicas e Padrões; Gráficos. FAP151 - Fundamenos de Mecânica. 1ª Lisa de Eercícios. Feereiro de 9. Dimensões Físicas e Padrões; Gráficos. Enregar as soluções dos eercícios 4 e 31 APENAS; regisre odas as eapas necessárias para conseguir

Leia mais

12 Integral Indefinida

12 Integral Indefinida Inegral Indefinida Em muios problemas, a derivada de uma função é conhecida e o objeivo é enconrar a própria função. Por eemplo, se a aa de crescimeno de uma deerminada população é conhecida, pode-se desejar

Leia mais

3 Análise Não-Linear Geométrica

3 Análise Não-Linear Geométrica 3 Análise Não-inear Geomérica 3.1 Comenários Iniciais Ese capíulo começa com uma breve discussão sobre o comporameno não linear, o objeivo da análise não linear, e o seu lugar na engenharia esruural. As

Leia mais

PROCESSO SELETIVO 2006/2 UNIFAL 2 O DIA GABARITO 1 13 FÍSICA QUESTÕES DE 31 A 45

PROCESSO SELETIVO 2006/2 UNIFAL 2 O DIA GABARITO 1 13 FÍSICA QUESTÕES DE 31 A 45 OCEO EEIVO 006/ UNIF O DI GIO 1 13 FÍIC QUEÕE DE 31 45 31. Uma parícula é sola com elocidade inicial nula a uma alura de 500 cm em relação ao solo. No mesmo insane de empo uma oura parícula é lançada do

Leia mais