UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 20. Palavras-chaves: derivada,derivada direcional, gradiente

Tamanho: px
Começar a partir da página:

Download "UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 20. Palavras-chaves: derivada,derivada direcional, gradiente"

Transcrição

1 Assuno: Derivada direcional UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 20 Palavras-chaves: derivada,derivada direcional, gradiene Derivada Direcional Sejam z = fx, y) uma função e x 0, y 0 ) um pono inerior de D f. A derivada parcial de f, em relação a x, no pono x 0, y 0 ) é denida por A diferença x x fx 0 +, y 0 ) fx 0, y 0 ) 0, y 0 ) 0 fx 0 +, y 0 ) fx 0, y 0 ) é a variação de f enre os ponos x 0, y 0 ) e x 0 +, y 0 ). Tais ponos esão sobre a rea horizonal que passa por x 0, y 0 ). A disância enre esses ponos é. Diremos enão que o quociene fx 0 +, y 0 ) fx 0, y 0 ) é a axa de variação de f enre os ponos x 0, y 0 ) e x 0 +, y 0 ) e que a derivada parcial x x 0, y 0 ) é a axa de variação de f no pono x 0, y 0 ). Observamos que a derivada parcial x x 0, y 0 ) leva em cona somene os valores de f ao londo da ciada rea horizonal e nas proximidades do pono x 0, y 0 ). De maneira análoga a derivada parcial de f, em relação a y, no pono x 0, y 0 ) é denida por y x fx 0, y 0 + ) fx 0, y 0 ) 0, y 0 ) 0

2 A diferença fx 0, y 0 + ) fx 0, y 0 ) é a variação da função f enre os ponos x 0, y 0 ) e x 0, y 0 + ). Esses ponos esão sobre a rea verical que passa por x 0, y 0 ) e a disância enre eles é. O quociene fx 0, y 0 + ) fx 0, y 0 ) é a axa de variação de f enre esses ponos. A derivada parcial y x 0, y 0 ) é a axa de variação de f no pono x 0, y 0 ). A derivada parcial de f, em relação a y, no pono x 0, y 0 ) leva em cona os valores de f somene ao londo da mecionada rea verical e no enorno do pono x 0, y 0 ). Queremos agora dar um conceio de derivada da função f no pono x 0, y 0 ), semelhane as da derivadas parciais, que leva em cona os valores de f sobre uma rea que passa por x 0, y 0 ), mas que al rea não seja necessariamene horizomnal ou verical. Esse conceio será o de derivada direcional, Seja u = a, b) um veor uniário, iso é, u = 1. direção do veor u são da forma. Os ponos da rea que passa por x 0, y 0 ) e em a x, y) = x 0, y 0 ) + a, b) = x 0 + a, y 0 + b), R Como u é un iário, a disância enre os ponos x 0, y 0 ) e x 0 + a, y 0 + b) é. Com efeio, x 0 + a, y 0 + b) x 0, y 0 ) = a, b) = a, b) = u = A diferença fx 0 + a, y 0 + b) fx 0, y 0 ) é a variação da função f enre os ponos x 0, y 0 ) e x 0 + a, y 0 + b). O quociene fx 0 + a, y 0 + b) fx 0, y 0 ) 2

3 é chamado de axa de variação de f enre esses ponos x 0, y 0 ) e x 0 + a, y 0 + b). O limie, quando exise, é a axa de variação de f em x 0, y 0 ). u x fx 0 + a, y 0 + b) fx 0, y 0 ) 0, y 0 ) 0 u. Esse limie é principalmene conhecido por derivada direcional de f no pono x 0, y 0 ) e na direção do veor É imporane ressalar que só calculamos derivadas direcionais na direção de veores uniários. Convencionamos que a derivada direcional de f em x 0, y 0 ) e na direção do veor v não necessariamene uniário é, na verdade, a derivada direcional de f em x 0, y 0 ) e na direção do versor do veor v. Lembramos queo versor de u de um dado veor v é o veor que em a mesma norma e o mesmo senindo de v, mas que é uniário, ou seja, u = v v Exemplo 1 Calcule a derivada direcional da função fx, y) = xy no pono 1, 2) e na direção do veor ) 1 u = 2,. 2 O veor u é uniário, pois u = ) 2 ) = = 1 Temos que

4 1, 2) u 0 f , ) f1, 2) ) = 2 ) ) ) 4 Adiane veremos oura maneira de calcularmos a derivada direcional de uma função diferenciável. Observemos agora que as derivadas parciais são os casos pariculares de derivada direcional. consideremos os veores i = 1, 0) e j = 0, 1). Temos De fao, i x fx 0 + 1, y 0 + 0) fx 0, y 0 ) 0, y 0 ) 0 fx 0 +, y 0 ) fx 0, y 0 ) 0 = x x 0, y 0 ) j x fx 0 + 0, y 0 + 1) fx 0, y 0 ) 0, y 0 ) 0 0 fx 0, y 0 + ) fx 0, y 0 ) = y x 0, y 0 ) Assim, a derivada parcial de f, em relação a x, pono x 0, y 0 ) é a derivada direcional de f em x 0, y 0 ) e na direção do veor i. A derivada parcial de f, em relação a y, pono x 0, y 0 ) é a derivada direcional de f em x 0, y 0 ) e na direção do veor j. Vamos agora dar uma inerpreação geomérica para a derivada direcional. Consideremos a função g) = fx 0 + a, y 0 + b) Temos que 4

5 g 0) 0 g) g0) 0 fx 0 + a, y 0 + b) fx 0, y 0 ) = u x 0, y 0 ) A derivada direcional pode enão ser visa como uma derivada ordinária. Consideremos agora a curva Temos γ) = x 0 + a, y 0 + b, g)) Logo, γ ) = a, b, g )) Os veores a, b, 0) e Porano γ 0) = a, b, g 0)) = a, b, ) u x 0, y 0 ) = a, b, 0) + 0, 0, ) u x 0, y 0 ) 0, 0, ) u x 0, y 0 ) são orogonais. Assim, eremos a gura an α = u x 0, y 0 ) = a, b, 0) u x 0, y 0 ) = 1 u x 0, y 0 ) Vimos que a derivada direcional de f em x 0, y 0 ) e na direção do veor uniário u = a, b) é igual a g 0), em que g) = x 0 + a, y 0 + b) Essa função g pode ser visa como a composa da função fx, y) com a curva diferenciável α) = x 0 + a, y 0 + b) g) = fα)) É claro enão que, dependendo da função f envolvida, a derivada g 0) = u x 0, y 0 ) pode não exisir. Mas, de acordo com a regra da cadeia, se f for diferenciável em x 0, y 0 ), enão g 0) exise e g 0) = fα0)).α 0) 5

6 Porano, u x 0, y 0 ) = fx 0, y 0 ). u pois α 0) = a, b) = u. Vamos regisrar esse fao na forma de eorema. Teorema 1 Sejam fx, y) uma função denida em um conjuno abero A, x 0, y 0 ) A e u = a, b) um veor uniário. Se fx, y) é diferenciável em x 0, y 0 ), enão fx, y) em derivada direcional em x 0, y 0 ) e na direção do veor u e, além disso, u x 0, y 0 ) = fx 0, y 0 ). u Exemplo 2 Use a fórmula do eorema anerior para calcular a derivada direcional de fx, y) = xy no pono ) 1, 2) ena direção do veor 1 u = 2,. 2 Temos que: Logo fx, y) = ) x, y), x, y) = y, x) x y f1, 2) = 2, 1) Porano u 1, 2) = f1, 2). 1 u = 2, 1). 2, ) = Exemplo Calcule a derivada direcional da função fx, y) = xy 2 no pono, 2) ena direção do veor u = 4, ). Como v não é uniário, precisamos anes deerminar o seu versor. 6

7 v u = 4, ) 4, ) 4, ) 4, ) 4 = = = = = v , ) 5 Sabemos que fx, y) = y 2, 2xy) Logo f, 2) = 2) 2, 2.. 2)) = 4, 12) Porano 4 u, 2) = f, 2). u = 4, 12). 5, ) = = 20 5 = 4 Exemplo 4 Calcule a derivada direcional da função fx, y) = x 2 + y 2 no pono 1, 1) ena direção do veor u = 1, 1). Perceba que o veor v não é uniário, logo devemos calcular seu versor. Assim, eremos o veor uniário dado por Sabemos que u = v v = 1, 1) 1, 1) = = 1 ) 1, 1) fx, y) = 2x, 2y) Logo f1, 1) = 2, 2) Porano u 1, 1) = f1, 1). u = 2, 2). 1 ) 1, = = O fao da derivada direcional ser nula, no exemplo anerior, pode ser viso como consequência de um fao geral, a saber, se u em a direção da rea angene a curva de nível de f no pono x 0, y 0 ), enão u x 0, y 0 ) = 0, pois nese caso fx 0, y 0 ) u. 7

8 Esse resulado esá de acordo com o fao de que a função f é consane sobre uma curva de nível e a derivada direcional é a axa de variação da função em x 0, y 0 ) e na direção do veor u. Se u apona na direção em que f é consane, essa axa de variação deve ser nula. No exemplo anerior, o pono 1, 1) perence à curva x 2 + y 2 = 2, que é a curva de nível da função fx, y) = x 2 + y 2 referene ao nível 1, e o veor v = 1, 1) é angene a essa curva de nível. Assim, Consideremos agora a seguine quesão. 1, 1) = 0 u Seja fx, y) uma função denida em um conjuno abero A e diferenciável em x 0, y 0 ) A. Denre odos os veores uniários u. qual aquele que produzirá o maior valor para a derivada direcional u x 0, y 0 ) e qual é esse valor máximo? E ambém qual o veor uniário u que produzirá o menor valor para a derivada direcional u x 0, y 0 ) e qual é esse valor mínimo? Para responder a essas pergunas, consideremos o ângulo enre os veores fx 0, y 0 ) e u. Porano, 0 θ π. Temos que u x 0, y 0 ) = fx 0, y 0 ). u = fx 0, y 0 ). u cos θ = fx 0, y 0 ) cos θ Concluímos que u x 0, y 0 ) é máximo quando θ = 0, iso é, quando u em a direção e senido do veor gradiene fx 0, y 0 ) e esse valor máximo é fx 0, y 0 ). Já o valor mínimo da derivada direcional de f em x 0, y 0 ) se dá quando θ = π, iso é, quando u em a direção de fx 0, y 0 ), mas senido conrário a esse gradiene e al valor mínimo é igual a fx 0, y 0 ). Exemplo 5 A função T x, y) = x y 2 mede a emperaura no pono x, y). 1. Esando-se no pono 1, 2), qual a direção e senido de maior crescimeno da emperaura? Qual a axa de crescimeno da emperaura nessa direção? 2. Esando-se no pono 1, 2), qual a direção e senido de maior decrescimeno da emperaura? Qual a axa de decrescimeno da emperaura nessa direção?. Esando-se no pono 1, 2), qual a direção que deve ser seguida para que aaxa de variação da emperaura seja nula? 1) Temos que Enão T x, y) = x 2, 2y) 8

9 T 1, 2) =, 4) Assim, no pono 1, 2), o veor v =, 4) indica a direção e senido de maior crescimeno da emperaura. A axa de crescimeno da emperaura nesa direção e senido é 5, pois T 1, 2) = ) 2 + 4) 2 = = 25 = 5 2) A direção e senido de maior decrescimeno da emperaura é indicada pelo veor T 1, 2) =, 4), e axa de decrescimeno da emperaura nesa direção e senido é 5 ) A axa de variação da emperaura é nula na direção do veor w = 4, ) pois w T 1, 2) 9

CAPÍTULO 10 DERIVADAS DIRECIONAIS

CAPÍTULO 10 DERIVADAS DIRECIONAIS CAPÍTULO 0 DERIVADAS DIRECIONAIS 0. Inrodução Dada uma função f : Dom(f) R n R X = (x, x,..., x n ) f(x) = f(x, x,..., x n ), vimos que a derivada parcial de f com respeio à variável x i no pono X 0, (X

Leia mais

PARTE 12 DERIVADAS DIRECIONAIS

PARTE 12 DERIVADAS DIRECIONAIS PARTE DERIVADAS DIRECIONAIS. Inrodução Dada uma função f : Dom(f) R n R X = (x, x,..., x n ) f(x) = f(x, x,..., x n ), vimos que a derivada parcial de f com respeio à variável x i no pono X 0, (X 0 ),

Leia mais

Definição 0.1. Define se a derivada direcional de f : R n R em um ponto X 0 na direção do vetor unitário u como sendo: df 0) = lim t 0 t (1)

Definição 0.1. Define se a derivada direcional de f : R n R em um ponto X 0 na direção do vetor unitário u como sendo: df 0) = lim t 0 t (1) Cálculo II - B profs.: Heloisa Bauzer Medeiros e Denise de Oliveira Pino 1 2 o semesre de 2017 Aulas 11/12 derivadas de ordem superior/regra da cadeia gradiene e derivada direcional Derivadas direcionais

Leia mais

Capítulo Cálculo com funções vetoriais

Capítulo Cálculo com funções vetoriais Cálculo - Capíulo 6 - Cálculo com funções veoriais - versão 0/009 Capíulo 6 - Cálculo com funções veoriais 6 - Limies 63 - Significado geomérico da derivada 6 - Derivadas 64 - Regras de derivação Uiliaremos

Leia mais

) quando vamos do ponto P até o ponto Q (sobre a reta) e represente-a no plano cartesiano descrito acima.

) quando vamos do ponto P até o ponto Q (sobre a reta) e represente-a no plano cartesiano descrito acima. ATIVIDADE 1 1. Represene, no plano caresiano xy descrio abaixo, os dois ponos (x 0,y 0 ) = (1,2) e Q(x 1,y 1 ) = Q(3,5). 2. Trace a rea r 1 que passa pelos ponos e Q, no plano caresiano acima. 3. Deermine

Leia mais

5 de fevereiro de x 2 y

5 de fevereiro de x 2 y P 2 - Gabario 5 de fevereiro de 2018 Quesão 1 (1.5). Considere x 2 y g(x, y) = (x, y + x 2 ) e f (x, y) = x 4, se (x, y) = (0, 0) + y2. 0, se (x, y) = (0, 0) Mosre que: (a) f e g admiem odas as derivadas

Leia mais

Antes de mais nada, é importante notar que isso nem sempre faz sentido do ponto de vista biológico.

Antes de mais nada, é importante notar que isso nem sempre faz sentido do ponto de vista biológico. O modelo malusiano para empo conínuo: uma inrodução não rigorosa ao cálculo A dinâmica de populações ambém pode ser modelada usando-se empo conínuo, o que é mais realisa para populações que se reproduzem

Leia mais

Notas de aula - profa Marlene - função logarítmica 1

Notas de aula - profa Marlene - função logarítmica 1 Noas de aula - profa Marlene - função logarímica Inrodução U - eparameno de Maemáica Aplicada (GMA) NOTAS E AULA - CÁLCULO APLICAO I - PROESSORA MARLENE unção Logarímica e unção Eponencial No Ensino Médio

Leia mais

Funções de Várias Variáveis (FVV) UFABC, 2019-Q1

Funções de Várias Variáveis (FVV) UFABC, 2019-Q1 Funções de Várias Variáveis (FVV UFABC, 2019-Q1 Peer Hazard Prova 1 B 19:00hs, 25 de março, Sala A002, Bloco Bea, SBC Duração: 90 minuos Aviso: É erminanemene proibido consular qualquer maerial ou colega,

Leia mais

Cálculo Diferencial e Integral II - Tagus Park 1o. Semestre 2015/2016 1o. Teste 07/Novembro/2015 JUSTIFIQUE AS SUAS RESPOSTAS. x y 2 x 2 +y 2 (b) lim

Cálculo Diferencial e Integral II - Tagus Park 1o. Semestre 2015/2016 1o. Teste 07/Novembro/2015 JUSTIFIQUE AS SUAS RESPOSTAS. x y 2 x 2 +y 2 (b) lim Cálculo Diferencial e Inegral II - Tagus Park o. Semesre 5/6 o. Tese 7/Novembro/5 JUSTIFIQUE AS SUAS RESPOSTAS RESOLUÇÃO..5+.5 vals.) Calcule ou mosre que não eise: a) a) + b) + + 4 + + Como, não eise.

Leia mais

Para Newton, conforme o tempo passa, a velocidade da partícula aumenta indefinidamente. ( )

Para Newton, conforme o tempo passa, a velocidade da partícula aumenta indefinidamente. ( ) Avaliação 1 8/0/010 1) A Primeira Lei do Movimeno de Newon e a Teoria da elaividade esria de Einsein diferem quano ao comporameno de uma parícula quando sua velocidade se aproxima da velocidade da luz

Leia mais

Cálculo Vetorial - Lista de Exercícios

Cálculo Vetorial - Lista de Exercícios álculo Veorial - Lisa de Exercícios (Organizada pela Profa. Ilka Rebouças). Esboçar o gráfico das curvas represenadas pelas seguines funções veoriais: a) a 4 i j, 0,. d) d i 4 j k,. b) b sen i 4 j cos

Leia mais

Lista de Exercícios de Cálculo 3 Módulo 2 - Quarta Lista - 02/2016

Lista de Exercícios de Cálculo 3 Módulo 2 - Quarta Lista - 02/2016 Lisa de Exercícios de Cálculo 3 Módulo 2 - Quara Lisa - 02/2016 Pare A 1. Deermine as derivadas das funções abaixo com relação as suas respecivas variáveis. (a) f(x, y) = 3x 3 2x 2 y + xy (b) g(x, y) =

Leia mais

3 Estudo da Barra de Geração [1]

3 Estudo da Barra de Geração [1] 3 Esudo da Barra de eração [1] 31 Inrodução No apíulo 2, raou-se do máximo fluxo de poência aiva e reaiva que pode chear à barra de cara, limiando a máxima cara que pode ser alimenada, e do possível efeio

Leia mais

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL Movimeno unidimensional 5 MOVIMENTO UNIDIMENSIONAL. Inrodução Denre os vários movimenos que iremos esudar, o movimeno unidimensional é o mais simples, já que odas as grandezas veoriais que descrevem o

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar Progressão Ariméica e Progressão Geomérica. (Pucrj 0) Os números a x, a x e a x esão em PA. A soma dos números é igual a: a) 8 b) c) 7 d) e) 0. (Fuves 0) Dadas as sequências an n n, n n cn an an b, e b

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar . (Pucrj 0) Os números a x, a x e a3 x 3 esão em PA. A soma dos 3 números é igual a: é igual a e o raio de cada semicírculo é igual à meade do semicírculo anerior, o comprimeno da espiral é igual a a)

Leia mais

Cálculo I - Lista 3: Derivadas

Cálculo I - Lista 3: Derivadas Faculdade de Zooecnia e Engenharia de Alimenos Universidade de São Paulo - Lisa : Derivadas Prof. Responsável: Andrés Vercik. (i) U a definição para ober o coeficiene angular da angene ao gráfico de f

Leia mais

Modelos Não-Lineares

Modelos Não-Lineares Modelos ão-lineares O modelo malhusiano prevê que o crescimeno populacional é exponencial. Enreano, essa predição não pode ser válida por um empo muio longo. As funções exponenciais crescem muio rapidamene

Leia mais

Movimento unidimensional. Prof. DSc. Anderson Cortines IFF campus Cabo Frio MECÂNICA GERAL

Movimento unidimensional. Prof. DSc. Anderson Cortines IFF campus Cabo Frio MECÂNICA GERAL Movimeno unidimensional Prof. DSc. Anderson Corines IFF campus Cabo Frio MECÂNICA GERAL 218.1 Objeivos Ter uma noção inicial sobre: Referencial Movimeno e repouso Pono maerial e corpo exenso Posição Diferença

Leia mais

Aplicações à Teoria da Confiabilidade

Aplicações à Teoria da Confiabilidade Aplicações à Teoria da ESQUEMA DO CAPÍTULO 11.1 CONCEITOS FUNDAMENTAIS 11.2 A LEI DE FALHA NORMAL 11.3 A LEI DE FALHA EXPONENCIAL 11.4 A LEI DE FALHA EXPONENCIAL E A DISTRIBUIÇÃO DE POISSON 11.5 A LEI

Leia mais

Funções vetoriais. I) Funções vetoriais a valores reais:

Funções vetoriais. I) Funções vetoriais a valores reais: Funções veoriais I) Funções veoriais a valores reais: f: I R f() R (f 1 n (), f (),..., f n ()) I = inervalo da rea real denominada domínio da função veorial f = {conjuno de odos os valores possíveis de,

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática. Primeira Lista de Exercícios MAT 241 Cálculo III

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática. Primeira Lista de Exercícios MAT 241 Cálculo III Universidade Federal de Viçosa Cenro de Ciências Exaas e Tecnológicas Deparameno de Maemáica Primeira Lisa de Exercícios MAT 4 Cálculo III Julgue a veracidade das afirmações abaixo assinalando ( V para

Leia mais

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL42 Coneúdo 8 - Inrodução aos Circuios Lineares e Invarianes...1 8.1 - Algumas definições e propriedades gerais...1 8.2 - Relação enre exciação

Leia mais

4a. Lista de Exercícios

4a. Lista de Exercícios UFPR - Universidade Federal do Paraná Deparameno de Maemáica Prof. José Carlos Eidam CM4 - Cálculo I - Turma C - / 4a. Lisa de Eercícios Inegrais impróprias. Decida quais inegrais impróprias abaio são

Leia mais

Exercícios de torção livre em seção circular fechada - prof. Valério SA Universidade de São Paulo - USP

Exercícios de torção livre em seção circular fechada - prof. Valério SA Universidade de São Paulo - USP São Paulo, dezembro de 2015. 1) a. Deerminar a dimensão a de modo a se er a mesma ensão de cisalhameno máxima nos rechos B-C e C-D. b. Com al dimensão pede-se a máxima ensão de cisalhameno no recho A-B.

Leia mais

3 - Diferencial. 3.1 Plano tangente. O plano tangente a uma superfície z = f(x,y) no ponto (x 0, y 0,f(x 0,y 0 )) é dado por: f x

3 - Diferencial. 3.1 Plano tangente. O plano tangente a uma superfície z = f(x,y) no ponto (x 0, y 0,f(x 0,y 0 )) é dado por: f x 18 - Diferencial.1 Plano angene O plano angene a uma superfície z f(x, no pono (x 0, y 0,f(x 0,y 0 )) é dado por: z f ( x0,.(.( y Exemplo 1: Deerminar o plano angene a superfície z x +y nos ponos P(0,0,0)

Leia mais

4 O Fenômeno da Estabilidade de Tensão [6]

4 O Fenômeno da Estabilidade de Tensão [6] 4 O Fenômeno da Esabilidade de Tensão [6] 4.1. Inrodução Esabilidade de ensão é a capacidade de um sisema elérico em maner ensões aceiáveis em odas as barras da rede sob condições normais e após ser submeido

Leia mais

Exercícios Sobre Oscilações, Bifurcações e Caos

Exercícios Sobre Oscilações, Bifurcações e Caos Exercícios Sobre Oscilações, Bifurcações e Caos Os ponos de equilíbrio de um modelo esão localizados onde o gráfico de + versus cora a rea definida pela equação +, cuja inclinação é (pois forma um ângulo

Leia mais

NOTAÇÕES. x 2y < 0. A ( ) apenas I. B ( ) apenas I e II. C ( ) apenas II e III. D ( ) apenas I e III. E ( ) todas. . C ( ) [ ] 5, 0 U [1, )

NOTAÇÕES. x 2y < 0. A ( ) apenas I. B ( ) apenas I e II. C ( ) apenas II e III. D ( ) apenas I e III. E ( ) todas. . C ( ) [ ] 5, 0 U [1, ) NOTAÇÕES C é o conjuno dos números complexos R é o conjuno dos números reais N = {,,,} i denoa a unidade imaginária, ou seja, i = - z é o conjugado do número complexo z Se X é um conjuno, P(X) denoa o

Leia mais

figura 1 Vamos encontrar, em primeiro lugar, a velocidade do som da explosão (v E) no ar que será dada pela fórmula = v

figura 1 Vamos encontrar, em primeiro lugar, a velocidade do som da explosão (v E) no ar que será dada pela fórmula = v Dispara-se, segundo um ângulo de 6 com o horizone, um projéil que explode ao aingir o solo e oue-se o ruído da explosão, no pono de parida do projéil, 8 segundos após o disparo. Deerminar a elocidade inicial

Leia mais

QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS

QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS QUESTÃO Assinale V (verdadeiro) ou F (falso): () A solução da equação diferencial y y y apresena equilíbrios esacionários quando, dependendo

Leia mais

Circuitos Elétricos I EEL420

Circuitos Elétricos I EEL420 Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL420 Coneúdo 1 - Circuios de primeira ordem...1 1.1 - Equação diferencial ordinária de primeira ordem...1 1.1.1 - Caso linear, homogênea, com

Leia mais

SOLUÇÃO PRATIQUE EM CASA

SOLUÇÃO PRATIQUE EM CASA SOLUÇÃO PRATIQUE EM CASA SOLUÇÃO PC1. [C] No eixo horizonal, o movimeno é uniforme com velocidade consane o empo, podemos calculá-la. Δs 60 m vh vh vh 15 m s Δ 4 s Com o auxílio da rionomeria e com a velocidade

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

Análise Matemática II

Análise Matemática II Análise Maemáica II Exame/Tese 3 - de Junho de 5 Licenciaura em Eng. Informáica e de Compuadores Nome: Número: Exame: Todas as pergunas Tese: Pergunas 5, 6, 7, 8 e 9 Indique na erceira coluna da abela

Leia mais

Resolução. Caderno SFB Enem

Resolução. Caderno SFB Enem Caderno SFB Enem COMENTÁRIOS EXERCÍCIOS PROPOSTOS 0. Do enunciado, emos: y x k, onde k é a consane de proporcionalidade. Assim: 6 5 k k 50 Logo: y x 50 y 5 50 y 0. Seja L a quanidade de laranjas ransporadas:

Leia mais

! " # $ % & ' # % ( # " # ) * # +

!  # $ % & ' # % ( #  # ) * # + / G 6 a Aula 2006.09.25 AMIV! # & ' # # # * # + 6. Equações de Cauchy Riemann em coordenadas polares. Analiicidade e derivada do logarimo Com objecivo de deduzir a analiicidade do logarimo complexo, vamos

Leia mais

AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM

AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM 163 22. PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM 22.1. Inrodução Na Seção 9.2 foi falado sobre os Parâmeros de Core e

Leia mais

APÊNDICE A. Rotação de um MDT

APÊNDICE A. Rotação de um MDT APÊNDICES 7 APÊNDICE A Roação de um MDT 8 Os passos seguidos para a realização da roação do MDT foram os seguines: - Deerminar as coordenadas do cenro geomérico da região, ou pono em orno do qual a roação

Leia mais

2.7 Derivadas e Taxas de Variação

2.7 Derivadas e Taxas de Variação LIMITES E DERIVADAS 131 2.7 Derivadas e Taas de Variação O problema de enconrar a rea angene a uma curva e o problema de enconrar a velocidade de um objeo envolvem deerminar o mesmo ipo de limie, como

Leia mais

Séries de Fourier de Senos e de Cossenos de Índices Ímpares

Séries de Fourier de Senos e de Cossenos de Índices Ímpares Séries de Fourier de Senos e de Cossenos de Índices Ímpares Reginaldo J. Sanos Deparameno de Maemáica-ICEx Universidade Federal de Minas Gerais hp://www.ma.ufmg.br/~regi 26 de seembro de 21 2 Análogo ao

Leia mais

Aula - 2 Movimento em uma dimensão

Aula - 2 Movimento em uma dimensão Aula - Moimeno em uma dimensão Física Geral I - F-18 semesre, 1 Ilusração dos Principia de Newon mosrando a ideia de inegral Moimeno em 1-D Enender o moimeno é uma das meas das leis da Física. A Mecânica

Leia mais

11.5 Derivada Direcional, Vetor Gradiente e Planos Tangentes

11.5 Derivada Direcional, Vetor Gradiente e Planos Tangentes 11.5 Derivada Direcional, Vetor Gradiente e Planos Tangentes Luiza Amalia Pinto Cantão Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.br Estudos Anteriores Derivadas

Leia mais

Modelos de Crescimento Endógeno de 1ªgeração

Modelos de Crescimento Endógeno de 1ªgeração Teorias do Crescimeno Económico Mesrado de Economia Modelos de Crescimeno Endógeno de 1ªgeração Inrodução A primeira geração de modelos de crescimeno endógeno ena endogeneiar a axa de crescimeno de SSG

Leia mais

Exercícios sobre o Modelo Logístico Discreto

Exercícios sobre o Modelo Logístico Discreto Exercícios sobre o Modelo Logísico Discreo 1. Faça uma abela e o gráfico do modelo logísico discreo descrio pela equação abaixo para = 0, 1,..., 10, N N = 1,3 N 1, N 0 = 1. 10 Solução. Usando o Excel,

Leia mais

Seção 5: Equações Lineares de 1 a Ordem

Seção 5: Equações Lineares de 1 a Ordem Seção 5: Equações Lineares de 1 a Ordem Definição. Uma EDO de 1 a ordem é dia linear se for da forma y + fx y = gx. 1 A EDO linear de 1 a ordem é uma equação do 1 o grau em y e em y. Qualquer dependência

Leia mais

Introdução às Medidas em Física

Introdução às Medidas em Física Inrodução às Medidas em Física 43152 Elisabeh Maeus Yoshimura emaeus@if.usp.br Bloco F Conjuno Alessandro Vola sl 18 agradecimenos a Nemiala Added por vários slides Conceios Básicos Lei Zero da Termodinâmica

Leia mais

Calcule a área e o perímetro da superfície S. Calcule o volume do tronco de cone indicado na figura 1.

Calcule a área e o perímetro da superfície S. Calcule o volume do tronco de cone indicado na figura 1. 1. (Unesp 017) Um cone circular reo de gerariz medindo 1 cm e raio da base medindo 4 cm foi seccionado por um plano paralelo à sua base, gerando um ronco de cone, como mosra a figura 1. A figura mosra

Leia mais

02 A prova pode ser feita a lápis. 03 Proibido o uso de calculadoras e similares. 04 Duração: 2 HORAS. SOLUÇÃO:

02 A prova pode ser feita a lápis. 03 Proibido o uso de calculadoras e similares. 04 Duração: 2 HORAS. SOLUÇÃO: UNIVERSIDADE FEDERAL DE ITAJUBÁ FUNDAMENTOS DE MATEMÁTICA PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR 9/6/ CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES: Prova sem consula

Leia mais

CONCURSO PÚBLICO EDITAL Nº 06/2010. Professor do Magistério do Ensino Básico, Técnico e Tecnológico DISCIPLINA / ÁREA. Matemática.

CONCURSO PÚBLICO EDITAL Nº 06/2010. Professor do Magistério do Ensino Básico, Técnico e Tecnológico DISCIPLINA / ÁREA. Matemática. CONCURSO PÚBLICO EDITAL Nº 6/ Professor do Magisério do Ensino Básico, Técnico e Tecnológico DISCIPLINA / ÁREA Maemáica Caderno de Provas Quesões Objeivas INSTRUÇÕES: - Aguarde auorização para abrir o

Leia mais

1. Calcule os seguintes limites: lim. lim t t. lim. lim. lim. lim. x + lim. lim. lim. 2. Encontre a derivada das funções dadas.

1. Calcule os seguintes limites: lim. lim t t. lim. lim. lim. lim. x + lim. lim. lim. 2. Encontre a derivada das funções dadas. DEPARTAMENTO DE MATEMÁTICA APLICADA ICTE/UFTM Lisa 0 Cálculo Diferencial e Inegral II Profa.: LIDIANE SARTINI. Calcule os seguines ies: ( 7 5 ) 0 ( 5 + + ) + 5+ + + 0 5 5 5 5 7+ 0 5 + + + l) + + 5 + 5

Leia mais

Características dos Processos ARMA

Características dos Processos ARMA Caracerísicas dos Processos ARMA Aula 0 Bueno, 0, Capíulos e 3 Enders, 009, Capíulo. a.6 Morein e Toloi, 006, Capíulo 5. Inrodução A expressão geral de uma série emporal, para o caso univariado, é dada

Leia mais

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente.

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente. Aula 15 Derivadas Direcionais e Vetor Gradiente Seja f(x, y) uma função de variáveis. Iremos usar a notação D u f(x 0, y 0 ) para: Derivada direcional de f no ponto (x 0, y 0 ), na direção do vetor unitário

Leia mais

FATO Medicina. Lista Complementar Física - MRU / MRUV( Prof.º Elizeu) 5,0 m s, e a maior. 5 km e 10 km, sua velocidade foi 30 km h. 10 km totais.

FATO Medicina. Lista Complementar Física - MRU / MRUV( Prof.º Elizeu) 5,0 m s, e a maior. 5 km e 10 km, sua velocidade foi 30 km h. 10 km totais. FATO Medicina Lisa Complemenar Física - MRU / MRUV( Prof.º Elizeu) 0. (Efomm 07) Um rem deve parir de uma esação A e parar na esação B, disane 4 km de A. A aceleração e a desaceleração podem ser, no máximo,

Leia mais

DICAS E RESPOSTAS DA LISTA DE EXERCÍCIOS 1 EDO II - MAP 0316

DICAS E RESPOSTAS DA LISTA DE EXERCÍCIOS 1 EDO II - MAP 0316 DICAS E RESPOSTAS DA LISTA DE EXERCÍCIOS EDO II - MAP 036 PROF: PEDRO T P LOPES WWWIMEUSPBR/ PPLOPES/EDO2 Os exercícios a seguir foram selecionaos os livros os auores Claus Doering-Arur Lopes e Jorge Soomayor

Leia mais

Lista de Exercícios nº 3 - Parte IV

Lista de Exercícios nº 3 - Parte IV DISCIPLINA: SE503 TEORIA MACROECONOMIA 01/09/011 Prof. João Basilio Pereima Neo E-mail: joaobasilio@ufpr.com.br Lisa de Exercícios nº 3 - Pare IV 1ª Quesão (...) ª Quesão Considere um modelo algébrico

Leia mais

Curso Gabarito Macroeconomia Desinflação e Curva de Phillips. Prof.: Antonio Carlos Assumpção

Curso Gabarito Macroeconomia Desinflação e Curva de Phillips. Prof.: Antonio Carlos Assumpção Curso Gabario Macroeconomia Desinflação e Curva de Phillips Prof.: Anonio Carlos Assumpção Produo, Desempreo e Inflação Ese exemplo (capíulo 7 Blanchard) baseia-se em rês relações: A lei de Okun, que relaciona

Leia mais

XXXI OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXXI OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXXI OLIMPÍ RSILEIR E MTEMÁTI PRIMEIR FSE NÍVEL Ensino Médio RITO RITO NÍVEL 6 E 6 7 7 E 9 9 5 0 E 5 0 E 5 ada quesão da Primeira Fase vale pono. Toal de ponos no Nível 5 ponos. guarde a pulicação da Noa

Leia mais

2.5 Impulsos e Transformadas no Limite

2.5 Impulsos e Transformadas no Limite .5 Impulsos e Transformadas no Limie Propriedades do Impulso Uniário O impulso uniário ou função dela de Dirac δ não é uma função no senido maemáico esrio. Ela perence a uma classe especial conhecida como

Leia mais

Física C Extensivo V. 7

Física C Extensivo V. 7 Física C Exensivo V. 7 Resolva Aula 6 Aula 8 6.01) C 6.0) E 8.01) D 8.0) 60º 7.01) B 7.0) E F m = µ 0 π F m = µ 0 π F m = µ 0 π. i i 1.. l d. I. I. l d. I. l d Aula 7 l = 50 cm l,5 m a) φ 1 = B 1. A. cos

Leia mais

2.6 - Conceitos de Correlação para Sinais Periódicos

2.6 - Conceitos de Correlação para Sinais Periódicos .6 - Conceios de Correlação para Sinais Periódicos O objeivo é o de comparar dois sinais x () e x () na variável empo! Exemplo : Considere os dados mosrados abaixo y 0 x Deseja-se ober a relação enre x

Leia mais

Séries de Tempo. José Fajardo. Agosto EBAPE- Fundação Getulio Vargas

Séries de Tempo. José Fajardo. Agosto EBAPE- Fundação Getulio Vargas Séries de Tempo Inrodução José Faardo EBAPE- Fundação Geulio Vargas Agoso 0 José Faardo Séries de Tempo . Por quê o esudo de séries de empo é imporane? Primeiro, porque muios dados econômicos e financeiros

Leia mais

R A B VETORES. Módulo. Valor numérico + unidade de medida. Intensidade

R A B VETORES. Módulo. Valor numérico + unidade de medida. Intensidade ETORES 1- DEFINIÇÃO: Ene maemáico usado para caracerizar uma grandeza eorial. paralelogramo. O eor resulane é raçado a parir das origens aé a inersecção das linhas auxiliares. - TIPOS DE GRANDEZAS.1- GRANDEZA

Leia mais

Lista de Exercícios 1

Lista de Exercícios 1 Universidade Federal de Ouro Preo Deparameno de Maemáica MTM14 - CÁLCULO DIFERENCIAL E INTEGRAL III Anônio Silva, Edney Oliveira, Marcos Marcial, Wenderson Ferreira Lisa de Exercícios 1 1 Para cada um

Leia mais

UNIVERSIDADE FEDERAL DE MINAS GERAIS ÍNDICE DE ROTAÇÃO E TEOREMA DOS QUATRO VÉRTICES

UNIVERSIDADE FEDERAL DE MINAS GERAIS ÍNDICE DE ROTAÇÃO E TEOREMA DOS QUATRO VÉRTICES i UNIVERSIDADE FEDERAL DE MINAS GERAIS Insiuo de Ciências Exaas Deparameno de Maemáica Micele Rodrigues de Andrade ÍNDICE DE ROTAÇÃO E TEOREMA DOS QUATRO VÉRTICES Belo Horizone - MG ii Micele Rodrigues

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

Capítulo 3 Derivada. 3.1 Reta Tangente e Taxa de Variação

Capítulo 3 Derivada. 3.1 Reta Tangente e Taxa de Variação Inrodução ao Cálculo Capíulo Derivada.1 Rea Tangene e Taxa de Variação Exemplo nr. 1 - Uma parícula caminha sobre uma rajeória qualquer obedecendo à função horária: s() 5 + (s em meros, em segundos) a)

Leia mais

Plano tangente e reta normal

Plano tangente e reta normal UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 15 Assunto: Plano tangente, reta normal, vetor gradiente e regra da cadeia Palavras-chaves: plano tangente, reta normal, gradiente, função

Leia mais

Experiência IV (aulas 06 e 07) Queda livre

Experiência IV (aulas 06 e 07) Queda livre Experiência IV (aulas 06 e 07) Queda livre 1. Objeivos. Inrodução 3. Procedimeno experimenal 4. Análise de dados 5. Quesões 6. Referências 1. Objeivos Nesa experiência, esudaremos o movimeno da queda de

Leia mais

Derivadas parciais de ordem superior

Derivadas parciais de ordem superior UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 21 Assunto: Derivadas parciais de ordem superior e máximos e mínimos Palavras-chaves: derivadaderivada parcial ordem de derivação ordem superior

Leia mais

CAPÍTULO III TORÇÃO SIMPLES

CAPÍTULO III TORÇÃO SIMPLES CAPÍTULO III TORÇÃO SIPLES I.INTRODUÇÂO Uma peça esará sujeia ao esforço de orção simples quando a mesma esiver submeida somene a um momeno de orção. Observe-se que raa-se de uma simplificação, pois no

Leia mais

Máximos e mínimos UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 22. Assunto: Máximos e mínimos

Máximos e mínimos UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 22. Assunto: Máximos e mínimos Assunto: Máximos e mínimos UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA Palavras-chaves: máximos e mínimos, valores máximos e valores mínimos Máximos e mínimos Sejam f uma função a valores

Leia mais

Voo Nivelado - Avião a Hélice

Voo Nivelado - Avião a Hélice - Avião a Hélice 763 º Ano da icenciaura em ngenharia Aeronáuica edro. Gamboa - 008. oo de ruzeiro De modo a prosseguir o esudo analíico do desempenho, é conveniene separar as aeronaves por ipo de moor

Leia mais

Formas Quadráticas e Cônicas

Formas Quadráticas e Cônicas Formas Quadráicas e Cônicas Sela Zumerle Soares Anônio Carlos Nogueira (selazs@gmail.com) (anogueira@uu.br). Resumo Faculdade de Maemáica, UFU, MG Nesse rabalho preendemos apresenar alguns resulados da

Leia mais

14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO

14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO 1 LIVRO Vetor Gradiente e as Derivadas Direcionais 14 AULA META Definir o vetor gradiente de uma função de duas variáveis reais e interpretá-lo geometricamente. Além disso, estudaremos a derivada direcional

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 16. F (t 0 ) = f (g(t 0 )).g (t 0 ) F (t) = f (g(t)).g (t)

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 16. F (t 0 ) = f (g(t 0 )).g (t 0 ) F (t) = f (g(t)).g (t) Assunto: Regra da cadeia UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 16 Palavras-chaves: derivada,derivadas parciais, função composta, regra da cadeia Regra da Cadeia Os teoremas que

Leia mais

P R O V A D E F Í S I C A I

P R O V A D E F Í S I C A I 1 R O V A D E F Í S I C A I QUESTÃO 16 Duas cargas punuais (q 1 e q 2 ) esão separadas enre si pela disância r. O campo elérico é zero em um pono enre as cargas no segmeno da linha rea que as une. É CORRETO

Leia mais

F B d E) F A. Considere:

F B d E) F A. Considere: 5. Dois corpos, e B, de massas m e m, respecivamene, enconram-se num deerminado insane separados por uma disância d em uma região do espaço em que a ineração ocorre apenas enre eles. onsidere F o módulo

Leia mais

Exemplo 1: Determine se os sistemas abaixo possuem o seu inverso. Em caso afirmativo, determine o sistema inverso. = dt

Exemplo 1: Determine se os sistemas abaixo possuem o seu inverso. Em caso afirmativo, determine o sistema inverso. = dt FACULDADE DE CIÊNCIA E TECNOLOGIA DE MONTES CLAROS FACIT QUARTO PERÍODO DE ENGENHARIA DE CONTROLE E AUTOMAÇÃO DISCIPLINA: SINAIS E SISTEMAS PROFESSOR: RENATO DOURADO MAIA EXEMPLOS RESOLVIDOS AULA : SINAIS

Leia mais

3 LTC Load Tap Change

3 LTC Load Tap Change 54 3 LTC Load Tap Change 3. Inrodução Taps ou apes (ermo em poruguês) de ransformadores são recursos largamene uilizados na operação do sisema elérico, sejam eles de ransmissão, subransmissão e disribuição.

Leia mais

Máximos e mínimos (continuação)

Máximos e mínimos (continuação) UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 3 Assunto: Máximos e mínimos Palavras-chaves: máximos e mínimos, valores máximos e valores mínimos Máximos e mínimos (continuação) Sejam f

Leia mais

Grupo I (Cotação: 0 a 3.6 valores: uma resposta certa vale 1.2 valores e uma errada valores)

Grupo I (Cotação: 0 a 3.6 valores: uma resposta certa vale 1.2 valores e uma errada valores) INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO Esaísica II - Licenciaura em Gesão Época de Recurso 6//9 Pare práica (quesões resposa múlipla) (7.6 valores) Nome: Nº Espaço reservado para a classificação (não

Leia mais

x x9 8 + x13 1 cos (t) t f(x) = (a) Manipulando algebricamente a expressão da soma: 8 + x12 (t) dt = 1 t 4 dt 4 ln 1

x x9 8 + x13 1 cos (t) t f(x) = (a) Manipulando algebricamente a expressão da soma: 8 + x12 (t) dt = 1 t 4 dt 4 ln 1 Turma A Quesão : (3,5 ponos Insiuo de Maemáica e Esaísica da USP MAT455 - Cálculo Diferencial e Inegral IV para Engenharia a. Prova - o. Semesre 3-4//3 (a Obenha uma expressão da série abaixo e o respecivo

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tarefa de revisão nº 17 1. Uma empresa lançou um produo no mercado. Esudos efecuados permiiram concluir que a evolução do preço se aproxima do seguine modelo maemáico: 7 se 0 1 p() =, p em euros e em anos.

Leia mais

35ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase

35ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase ª Olimpíada rasileira de Maemáica GRITO Segunda Fase Soluções Nível Segunda Fase Pare PRTE Na pare serão aribuídos ponos para cada resposa correa e a ponuação máxima para essa pare será. NENHUM PONTO deverá

Leia mais

F-128 Física Geral I. Aula exploratória-07 UNICAMP IFGW F128 2o Semestre de 2012

F-128 Física Geral I. Aula exploratória-07 UNICAMP IFGW F128 2o Semestre de 2012 F-18 Física Geral I Aula eploraória-07 UNICAMP IFGW username@ii.unicamp.br F18 o Semesre de 01 1 Energia Energia é um conceio que ai além da mecânica de Newon e permanece úil ambém na mecânica quânica,

Leia mais

CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA

CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA Inrodução Ese arigo raa de um dos assunos mais recorrenes nas provas do IME e do ITA nos úlimos anos, que é a Cinéica Química. Aqui raamos principalmene dos

Leia mais

Motivação. Prof. Lorí Viali, Dr.

Motivação. Prof. Lorí Viali, Dr. Moivação rof. Lorí Viali, Dr. vialli@ma.ufrgs.br hp://www.ma.ufrgs.br/~vialli/ Na práica, não exise muio ineresse na comparação de preços e quanidades de um único arigo, como é o caso dos relaivos, mas

Leia mais

CDI II - TP Esboço de Resolução 1o. Semestre 17/18 1o. Teste 11/Novembro/2017 JUSTIFIQUE AS SUAS RESPOSTAS. = lim. s t2

CDI II - TP Esboço de Resolução 1o. Semestre 17/18 1o. Teste 11/Novembro/2017 JUSTIFIQUE AS SUAS RESPOSTAS. = lim. s t2 CDI II - TP Esboço de Resolução o Semesre 7/8 o Tese /Novembro/7 JUSTIFIQUE AS SUAS RESPOSTAS + 5 vals) Calcule ou mosre que não eise: i) a) b) sin) sin sin ) sin ) ii),,) +,,) + sin) sin,,) + sin) sin,,)

Leia mais

RÁPIDA INTRODUÇÃO À FÍSICA DAS RADIAÇÕES Simone Coutinho Cardoso & Marta Feijó Barroso UNIDADE 3. Decaimento Radioativo

RÁPIDA INTRODUÇÃO À FÍSICA DAS RADIAÇÕES Simone Coutinho Cardoso & Marta Feijó Barroso UNIDADE 3. Decaimento Radioativo Decaimeno Radioaivo RÁPIDA ITRODUÇÃO À FÍSICA DAS RADIAÇÕES Simone Couinho Cardoso & Mara Feijó Barroso Objeivos: discuir o que é decaimeno radioaivo e escrever uma equação que a descreva UIDADE 3 Sumário

Leia mais

Objetivos. Exemplo 18.1 Para integrar. u = 1 + x 2 du = 2x dx. Esta substituição nos leva à integral simples. 2x dx fazemos

Objetivos. Exemplo 18.1 Para integrar. u = 1 + x 2 du = 2x dx. Esta substituição nos leva à integral simples. 2x dx fazemos MÓDULO - AULA 8 Aula 8 Técnicas de Integração Substituição Simples - Continuação Objetivos Nesta aula você aprenderá a usar a substituição simples em alguns casos especiais; Aprenderá a fazer mudança de

Leia mais

UNIVERSIDADE ESTADUAL DE MONTES CLAROS CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE CIÊNCIAS DA COMPUTAÇÃO

UNIVERSIDADE ESTADUAL DE MONTES CLAROS CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE CIÊNCIAS DA COMPUTAÇÃO UNIVERSIDADE ESTADUAL DE MONTES CLAROS CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE CIÊNCIAS DA COMPUTAÇÃO DISCIPLINA: SINAIS E SISTEMAS PROFESSOR: RENATO DOURADO MAIA EXEMPLOS RESOLVIDOS AULA

Leia mais

3 Estudo da Barra de Geração

3 Estudo da Barra de Geração 3 Esudo da Barra de eração 3.1 Inrodução No apíulo 2 raou-se do máximo fluxo de poência aiva e reaiva que pode chear à barra de cara, limiando enão a máxima cara que pode ser alimenada, e do possível efeio

Leia mais

Curvas e Superfícies Paramétricas

Curvas e Superfícies Paramétricas Curvas e Superfícies araméricas Eemplo de superfícies NURBS Curvas e Superfícies ara aplicações de CG normalmene é mais conveniene adoar a forma paramérica Independene do sisema de coordenadas Represenação

Leia mais

Porto Alegre, 14 de novembro de 2002

Porto Alegre, 14 de novembro de 2002 Poro Alegre, 14 de novembro de 2002 Aula 6 de Relaividade e Cosmologia Horácio Doori 1.12- O paradoo dos gêmeos 1.12.1- Sisemas Inerciais (observadores) com velocidades diversas vêem a disância emporal

Leia mais

P IBpm = C+ I+ G+X F = = b) Despesa Nacional. PNBpm = P IBpm+ RF X = ( ) = 59549

P IBpm = C+ I+ G+X F = = b) Despesa Nacional. PNBpm = P IBpm+ RF X = ( ) = 59549 Capíulo 2 Soluções: Medição da Acividade Económica Exercício 24 (PIB pelaópica da despesa) i. Usando os valores da abela que consa do enunciado, a solução das várias alíneas é imediaa, basando para al

Leia mais

Prof. Lorí Viali, Dr. UFRGS Instituto de Matemática - Departamento de Estatística

Prof. Lorí Viali, Dr. UFRGS Instituto de Matemática - Departamento de Estatística Conceio Na Esaísica exisem siuações onde os dados de ineresse são obidos em insanes sucessivos de empo (minuo, hora, dia, mês ou ano), ou ainda num período conínuo de empo, como aconece num elerocardiograma

Leia mais