CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA"

Transcrição

1 CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA Inrodução Ese arigo raa de um dos assunos mais recorrenes nas provas do IME e do ITA nos úlimos anos, que é a Cinéica Química. Aqui raamos principalmene dos aspecos quaniaivos, ais como lei de velocidade da reação e equação de Arrhenius mosrando exemplos resolvidos e sugerindo alguns exercícios no final. Convém ressalar que quesões relacionadas com os aspecos qualiaivos, ais como eoria das Colisões e faores que inerferem na velocidade das reações já foram raados em arigo anerior que pode ser enconrado em nosso sie. Aproveiem nosso maerial e não deixem de enviar suas dúvidas. A Lei de velocidade de uma reação química pode ser descria como a equação maemáica na qual esão expressas as influências de cada reagene na velocidade da reação além da consane de proporcionalidade que a represena. Uma forma genérica de represená-la pode ser visa para a reação abaixo: aa + bb + cc +... PRODUTOS; Lei de velocidade: v K. [ A].[ B].[ C]... concenração do reagene X. x z, onde K represena a consane de velocidade da reação e [X] a Os expoenes relaivos a cada uma das concenrações não são necessariamene iguais aos coeficienes da reação e sua deerminação deve ser feia experimenalmene ou a parir de informações precisas sobre o mecanismo no qual a reação de processa. Ordem de uma reação A ordem de uma reação com relação a um deerminado reagene (ordem parcial) é o expoene ao qual sua concenração fica elevada na lei de velocidade. Já a ordem global ou oal de uma reação é a soma dos expoenes de odos os composos que aparecem nessa lei de velocidade. Quando por exemplo sabemos que a ordem parcial relaiva a um deerminado reagene é igual a, isso significa que se a concenração dele for dobrada, sendo manidas as quanidades dos demais reagenes, eremos a velocidade ambém duplicada. Já para o caso de ordem parcial quando a concenração do reagene é dobrada, a velocidade acaba sendo quadruplicada. Por exemplo, se emos uma reação na qual a lei de velocidade é: [ A].[ ] v K. B Ordem parcial do reagene A Ordem parcial do reagene B Ordem global da reação + Uma das formas mais comuns para se calcular essas ordens é uilizando uma série de experimenos e associando os resulados obidos. Esse ipo de raameno em sido muio comum em quesões do IME e um exemplo resolvido se segue abaixo: Exemplo: (IME-- Modificada) A reação em fase gasosa aa + bb cc + dd foi esuda em diferenes condições endo sido obido os seguines resulados experimenais: A parir dos dados enconrados deermine as ordens relaivas a cada reagene, a ordem global e a consane de velocidade da reação.

2 Resolução Experimeno I: v [A] x.[b]. -5 [ - ] x.[ - ] Experimeno II: v [A] x.[b]. -5 [. - ] x.[ - ] Experimeno III: v [A] x.[b] [. - ] x.[. - ] Para calcular a ordem do reagene A, podemos relacionar o primeiro e o segundo experimeno, dividindo um pelo ouro: x. ( ). ( ) x (. ). ( ) x. k 5 x Ordem parcial do reagene A. k. 4 Analogamene, para calcular a ordem do reagene B, podemos relacionar o segundo e o erceiro experimeno:. 48. k k. x.(. ). ( ) x (. ).(. ) 4 Ordem global da reação: + 4 Lei de velocidade da reação: v [A].[B] Ordem parcial do reagene B Para calcular a consane de velocidade, podemos uilizar os resulados acima em qualquer experimeno. Por exemplo, se aplicamos no experimeno I, emos: v... k [ A].[ B]. [ ]. [ ] k. Por úlimo não podemos esquecer de calcular a unidade de k. Ela depende da ordem global da reação e no exemplo acima eríamos: mol L. h mol U ( k). L 4 L 7 U ( k) k. L Reação Elemenar Podemos definir uma reação elemenar como aquela que se processa em uma única eapa. Para reações desse ipo, podemos afirmar direamene que os coeficienes da reação são iguais aos expoenes de cada um dos reagenes na lei de velocidade. Quando pensamos em reações de múliplas eapas, podemos considerar que cada uma delas é elemenar, mas não podemos afirmar o mesmo da reação global. As eapas elemenares são classificadas em função do número de moléculas (ou íons, áomos ou radicais livres) que se junam. Esse número ineiro, posiivo, é chamado de molecularidade da eapa elemenar. Quando uma molécula é o único reagene da eapa elemenar a reação é um processo unimolecular. Um processo elemenar bimolecular é aquele que envolve duas moléculas e assim sucessivamene. Por exemplo, podemos observar a decomposição do ozônio como exemplo: Eapa : Unimolecular Eapa : Bimolecular Reação Global O (g) O (g) + O(g) O (g) + O(g) O (g) O (g) O (g) No geral, quano maior for o número de reagenes, mais difícil de ocorrer é a reação pois mais choques efeivos precisam aconecer para a reação efeivamene ser concluída.

3 Leis de velocidade inegradas Uilizando um pouco de cálculo, mais especificamene inegrais, conseguimos chegar a equações maemáicas que represenam funções da concenração dos reagenes com a velocidade das reações. Reações de ordem zero Reações de ordem zero são aquelas nas quais a concenração dos reagenes não influencia na velocidade. O único elemeno imporane passa a ser a consane de velocidade, o que orna a velocidade consane a uma dada emperaura. Ela pode ser represenada assim: [ ] R k Algebricamene podemos enão fazer os seguines passos: k d Reações de primeira ordem R d dr k. d k R Maemaicamene, podemos represenar uma reação de primeira ordem da seguine forma: Algebricamene podemos enão fazer os seguines passos: d d R R d k. d ln k Sendo assim, emos que a função que melhor represena a relação enre concenração do reagene e velocidade da reação é o logarimo neperiano. Reações de segunda ordem Maemaicamene, podemos represenar uma reação de primeira ordem da seguine forma: [ ] R k. Algebricamene podemos enão fazer os seguines passos: d d d k d. R R k Sendo assim, emos que a função que melhor represena a relação enre concenração do reagene e velocidade da reação é o inverso da concenração.

4 Equação de Arrhenius A observação de que as velocidades das reações dependem da energia e da freqüência das colisões enre as moléculas reagenes, da emperaura e da geomeria das colisões é resumida pela equação de Arrhenius: Ea k A. e, Ea onde A represena um faor de freqüência e e represena a fração de moléculas com a energia mínima para reagir. R é a conhecida consane geral dos gases com um valor de 8, J/K.mol, T é a emperaura medida em Kelvins e Ea é a energia de aivação da reação. A equação de Arrhenius é imporane porque pode ser usada para () calcular o valor da energia de aivação a parir da dependência da consane de velocidade em relação à emperaura e () calcular a consane de velocidade para deerminada emperaura se a energia de aivação e A forem conhecidos. Podemos ainda mexer algebricamene na função, aplicando logarimo neperiano eríamos: Ea ln k ln A Reações de Múliplas eapas A grande maioria das reações químicas se processa em mais de uma eapa. Sendo assim, para analisar a velocidade das reações precisamos compreender aquelas eapas que influenciam significaivamene na mesma. Um dos aspecos mais imporanes é que os produos de uma reação nunca podem ser produzidos com uma velocidade maior do que a velocidade da eapa mais lena. Se uma eapa em uma reação do mecanismo é mais lena do que as demais, podemos afirmar que a mesma é a eapa deerminane da velocidade, ou eapa limiane da mesma. Observe o seguine mecanismo: Eapa elemenar : Eapa elemenar : Reação Global: k lena A + B, X + M k rápida M + A, Y A + B X + Y No mecanismo acima emos que a eapa é a deerminane, pois é a mais lena do mecanismo. Logo, a lei de velocidade da reação é a definida pela eapa elemenar, ou seja: [ A][ B] v k.. Exercícios Proposos. (Unicamp 95) Soluções aquosas de água oxigenada, H O, decompõem-se dando água e gás oxigênio. A figura a seguir represena a decomposição de rês soluções de água oxigenada em função do empo, sendo que uma delas foi caalisada por óxido de ferro (III), Fe O. a) Qual das curvas represena a reação mais lena? Jusifique em função do gráfico. b) Qual das curvas represena a reação caalisada? Jusifique em função do gráfico.

5 . (ITA-8) A reação hipoéica A(s)+B(aq)C(g)+D(aq)+E(l) é auocaalisada por C(g).Considerando que essa reação ocorre em sisema fechado, volume consane e sob amosfera inere, assinale a opção que apresena a curva que melhor represena a variação da massa de A(s), m A,em função do empo, desde o início da reação aé imediaamene anes do equilíbrio químico ser esabelecido denro do sisema.. (IME-7) Para a reação hipoéica A + B Produos, em-se os seguines dados: A(MOLL ) B(MOLL ) v(moll H ),,, Considerando a mesma reação, verificou-se ambém a seguine correlação: A(MOLL ) B(MOLL ) v(moll H ) α β α e β onde são, respecivamene, as ordens da reação em relação a A e a B. Sabendo que α/ β,, deermine: a) a consane de velocidade k; b) os valores numéricos das ordens parciais e global da reação. β α α α 4. (Ia ) A equação: A+B PRODUTOS represena uma deerminada reação química que ocorre no esado gasoso. A lei de velocidade para esa reação depende da concenração de cada um dos reagenes, e a ordem parcial desa reação em relação a cada um dos reagenes é igual aos respecivos coeficienes esequioméricos. Seja v a velocidade da reação quando a pressão parcial de A e B é igual a p A e p B, respecivamene, e v a velocidade da reação quando essas pressões parciais são riplicadas. A opção que fornece o valor CORRETO da razão v /v é a). b). c) 9. d) 7. e) 8. Gabario E a) Curva b) Curva - a) k 9 L b) β ; α ; Ordem global 4 - D

P2 - PROVA DE QUÍMICA GERAL - 07/05/05

P2 - PROVA DE QUÍMICA GERAL - 07/05/05 P - PROVA DE QUÍMICA GERAL - 07/05/05 Nome: Nº de Marícula: Gabario Turma: Assinaura: Quesão Valor Grau Revisão a,0 a,0 3 a,0 4 a,0 5 a,0 Toal 0,0 Consanes: R 8,34 J mol - K - R 0,08 am L mol - K - am

Leia mais

P3 - PROVA DE QUÍMICA GERAL -25/11/06

P3 - PROVA DE QUÍMICA GERAL -25/11/06 P3 - PROVA DE QUÍMICA GERAL -5//06 Nome: Nº de Marícula: GABARIO urma: Assinaura: Grau Quesão Valor Revisão a,5 a,5 3 a,5 4 a,5 oal 0,0 Consanes F 96500 C mol - C x V J R 8,34 J mol - K - 0,08 am L K -

Leia mais

CINÉTICA RADIOATIVA. Introdução. Tempo de meia-vida (t 1/2 ou P) Atividade Radioativa

CINÉTICA RADIOATIVA. Introdução. Tempo de meia-vida (t 1/2 ou P) Atividade Radioativa CIÉTIC RDIOTIV Inrodução Ese arigo em como objeivo analisar a velocidade dos diferenes processos radioaivos, no que chamamos de cinéica radioaiva. ão deixe de anes esudar o arigo anerior sobre radioaividade

Leia mais

P4 - PROVA DE QUÍMICA GERAL - 02/07/05

P4 - PROVA DE QUÍMICA GERAL - 02/07/05 P4 - PROVA DE QUÍMICA GERAL - /7/5 Nome: Nº de Marícula: Turma: Assinaura: ESCOLHA E INDIQUE NOS CÍRCULOS ABAIXO, QUATRO QUESTÕES PARA SEREM CONSIDERADAS. Quesão Valor Grau Revisão a,5 a,5 a,5 4 a,5 5

Leia mais

Termodinâmica Espontânea = tem tendência a evoluir. Cinética Velocidade = probabilidade de dar produtos. Gº r = 2.84 kj/mol

Termodinâmica Espontânea = tem tendência a evoluir. Cinética Velocidade = probabilidade de dar produtos. Gº r = 2.84 kj/mol AULA CNÉTCA QUÍMCA 1- RELAÇÃO CNÉTCA/EQULÍBRO 2- VELOCDADE DE UMA REACÇÃO 3- REACÇÕES ELEMENTARES. MOLECULARDADE 4- TEORA COLSONAL. DEPENDÊNCA DA TEMPERATURA 5- APROXMAÇÃO EXPERMENTAL. ORDEM DE UMA REACÇÃO.

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar Progressão Ariméica e Progressão Geomérica. (Pucrj 0) Os números a x, a x e a x esão em PA. A soma dos números é igual a: a) 8 b) c) 7 d) e) 0. (Fuves 0) Dadas as sequências an n n, n n cn an an b, e b

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar . (Pucrj 0) Os números a x, a x e a3 x 3 esão em PA. A soma dos 3 números é igual a: é igual a e o raio de cada semicírculo é igual à meade do semicírculo anerior, o comprimeno da espiral é igual a a)

Leia mais

Aplicações à Teoria da Confiabilidade

Aplicações à Teoria da Confiabilidade Aplicações à Teoria da ESQUEMA DO CAPÍTULO 11.1 CONCEITOS FUNDAMENTAIS 11.2 A LEI DE FALHA NORMAL 11.3 A LEI DE FALHA EXPONENCIAL 11.4 A LEI DE FALHA EXPONENCIAL E A DISTRIBUIÇÃO DE POISSON 11.5 A LEI

Leia mais

Professor Claudio F Lima

Professor Claudio F Lima Professor Claudio F Lima Aponamenos de Aula Cinéica Química 3. Inrodução 3. O esudo das reações químicas 4.. Mecanismo de Reação 4.. Exensão de reação 5.3. Velocidade de Reação 8.3.. Velocidade média e

Leia mais

Função Exponencial 2013

Função Exponencial 2013 Função Exponencial 1 1. (Uerj 1) Um imóvel perde 6% do valor de venda a cada dois anos. O valor V() desse imóvel em anos pode ser obido por meio da fórmula a seguir, na qual V corresponde ao seu valor

Leia mais

Universidade Federal de Viçosa

Universidade Federal de Viçosa Universidade Federal de Viçosa Deparameno de Química Professor Claudio F Lima Aponamenos de Aula Cinéica Química 3. Inrodução 3. O esudo das reações químicas 4.. Mecanismo de Reação 4.. Exensão de reação

Leia mais

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara Insiuo de Física USP Física V - Aula 6 Professora: Mazé Bechara Aula 6 Bases da Mecânica quânica e equações de Schroedinger. Aplicação e inerpreações. 1. Ouros posulados da inerpreação de Max-Born para

Leia mais

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL42 Coneúdo 8 - Inrodução aos Circuios Lineares e Invarianes...1 8.1 - Algumas definições e propriedades gerais...1 8.2 - Relação enre exciação

Leia mais

Exercícios sobre o Modelo Logístico Discreto

Exercícios sobre o Modelo Logístico Discreto Exercícios sobre o Modelo Logísico Discreo 1. Faça uma abela e o gráfico do modelo logísico discreo descrio pela equação abaixo para = 0, 1,..., 10, N N = 1,3 N 1, N 0 = 1. 10 Solução. Usando o Excel,

Leia mais

Fenômenos de adsorção em interfaces sólido/solução. Modelagens matemáticas de processos cinéticos

Fenômenos de adsorção em interfaces sólido/solução. Modelagens matemáticas de processos cinéticos Modelagens maemáicas de processos cinéicos Em cinéica química, vários parâmeros definem a dinâmica dos processos químicos. Os principais são as consanes cinéicas de velocidade e a ordem da reação. Quando

Leia mais

AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM

AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM 163 22. PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM 22.1. Inrodução Na Seção 9.2 foi falado sobre os Parâmeros de Core e

Leia mais

Observação: No próximo documento veremos como escrever a solução de um sistema escalonado que possui mais incógnitas que equações.

Observação: No próximo documento veremos como escrever a solução de um sistema escalonado que possui mais incógnitas que equações. .. Sisemas Escalonados Os sisemas abaio são escalonados: 7 Veja as maries associadas a esses sisemas: 7 Podemos associar o nome "escalonado" com as maries ao "escalar" os eros ou energar a "escada" de

Leia mais

Introdução às Medidas em Física

Introdução às Medidas em Física Inrodução às Medidas em Física 43152 Elisabeh Maeus Yoshimura emaeus@if.usp.br Bloco F Conjuno Alessandro Vola sl 18 agradecimenos a Nemiala Added por vários slides Conceios Básicos Lei Zero da Termodinâmica

Leia mais

Calcule a área e o perímetro da superfície S. Calcule o volume do tronco de cone indicado na figura 1.

Calcule a área e o perímetro da superfície S. Calcule o volume do tronco de cone indicado na figura 1. 1. (Unesp 017) Um cone circular reo de gerariz medindo 1 cm e raio da base medindo 4 cm foi seccionado por um plano paralelo à sua base, gerando um ronco de cone, como mosra a figura 1. A figura mosra

Leia mais

Teoremas Básicos de Equações a Diferenças Lineares

Teoremas Básicos de Equações a Diferenças Lineares Teoremas Básicos de Equações a Diferenças Lineares (Chiang e Wainwrigh Capíulos 17 e 18) Caracerização Geral de Equações a diferenças Lineares: Seja a seguine especificação geral de uma equação a diferença

Leia mais

MATEMÁTICA E SUAS TECNOLOGIAS

MATEMÁTICA E SUAS TECNOLOGIAS 1º SIMULADO ENEM 017 Resposa da quesão 1: MATEMÁTICA E SUAS TECNOLOGIAS Basa aplicar a combinação de see espores agrupados dois a dois, logo: 7! C7,!(7 )! 7 6 5! C7,!5! 7 6 5! C7, 1!5! Resposa da quesão

Leia mais

Função Logarítmica - Questões Extras

Função Logarítmica - Questões Extras Função Logarímica - uesões Exras Exercícios 1. (Unifor 01) Após acionar um flash de uma câmera, a baeria imediaamene começa a recarregar o capacior do flash, o qual armazena uma carga elérica dada por

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web Inerbis SuperPro Web 1. O lucro de uma empresa é dado pela expressão maemáica L R C, onde L é o lucro, o cuso da produção e R a receia do produo. Uma fábrica de raores produziu n unidades e verificou que

Leia mais

RÁPIDA INTRODUÇÃO À FÍSICA DAS RADIAÇÕES Simone Coutinho Cardoso & Marta Feijó Barroso UNIDADE 3. Decaimento Radioativo

RÁPIDA INTRODUÇÃO À FÍSICA DAS RADIAÇÕES Simone Coutinho Cardoso & Marta Feijó Barroso UNIDADE 3. Decaimento Radioativo Decaimeno Radioaivo RÁPIDA ITRODUÇÃO À FÍSICA DAS RADIAÇÕES Simone Couinho Cardoso & Mara Feijó Barroso Objeivos: discuir o que é decaimeno radioaivo e escrever uma equação que a descreva UIDADE 3 Sumário

Leia mais

3 Metodologia 3.1. O modelo

3 Metodologia 3.1. O modelo 3 Meodologia 3.1. O modelo Um esudo de eveno em como obeivo avaliar quais os impacos de deerminados aconecimenos sobre aivos ou iniciaivas. Para isso são analisadas as diversas variáveis impacadas pelo

Leia mais

Circuitos Elétricos I EEL420

Circuitos Elétricos I EEL420 Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL420 Coneúdo 1 - Circuios de primeira ordem...1 1.1 - Equação diferencial ordinária de primeira ordem...1 1.1.1 - Caso linear, homogênea, com

Leia mais

Ciências do Ambiente

Ciências do Ambiente Universidade Federal do Paraná Engenharia Civil Ciências do Ambiene Aula 24 O meio aquáico III: Auodepuração 2º Semesre/ 205 Auodepuração de rios Auodepuração de rios Cinéica da desoxigenação O conceio

Leia mais

4 O Papel das Reservas no Custo da Crise

4 O Papel das Reservas no Custo da Crise 4 O Papel das Reservas no Cuso da Crise Nese capíulo buscamos analisar empiricamene o papel das reservas em miigar o cuso da crise uma vez que esa ocorre. Acrediamos que o produo seja a variável ideal

Leia mais

Cinética Química. c) A opção (C) está correta. B 3+ e B 4+ não aparecem na reação global, portanto, são intermediários da reação.

Cinética Química. c) A opção (C) está correta. B 3+ e B 4+ não aparecem na reação global, portanto, são intermediários da reação. Capítulo 6 Cinética Química 1. (ITA) Considere o seguinte mecanismo de reação genérica: A 4+ + B 2+ A 3+ + B 3+ (etapa lenta) A 4+ + B 3+ A 3+ + B 4+ (etapa rápida) C + + B 4+ C 3+ + B 2+ (etapa rápida)

Leia mais

QUESTÃO 60 DA CODESP

QUESTÃO 60 DA CODESP UEÃO 60 D CODE - 0 êmpera é um ipo de raameno érmico uilizado para aumenar a dureza de peças de aço respeio da êmpera, é correo afirmar: ) a êmpera modifica de maneira uniforme a dureza da peça, independenemene

Leia mais

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa C. Os números inteiros x e y satisfazem a equação

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa C. Os números inteiros x e y satisfazem a equação Quesão Os números ineiros x e y saisfazem a equação x x y y 5 5.Enãox y é: a) 8 b) 5 c) 9 d) 6 e) 7 alernaiva B x x y y 5 5 x ( ) 5 y (5 ) x y 7 x 6 y 5 5 5 Como x e y são ineiros, pelo Teorema Fundamenal

Leia mais

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL Movimeno unidimensional 5 MOVIMENTO UNIDIMENSIONAL. Inrodução Denre os vários movimenos que iremos esudar, o movimeno unidimensional é o mais simples, já que odas as grandezas veoriais que descrevem o

Leia mais

F B d E) F A. Considere:

F B d E) F A. Considere: 5. Dois corpos, e B, de massas m e m, respecivamene, enconram-se num deerminado insane separados por uma disância d em uma região do espaço em que a ineração ocorre apenas enre eles. onsidere F o módulo

Leia mais

Voo Nivelado - Avião a Hélice

Voo Nivelado - Avião a Hélice - Avião a Hélice 763 º Ano da icenciaura em ngenharia Aeronáuica edro. Gamboa - 008. oo de ruzeiro De modo a prosseguir o esudo analíico do desempenho, é conveniene separar as aeronaves por ipo de moor

Leia mais

INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas.

INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas. SIMULADO DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - JULHO DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES de 0 a

Leia mais

Problema de controle ótimo com equações de estado P-fuzzy: Programação dinâmica

Problema de controle ótimo com equações de estado P-fuzzy: Programação dinâmica Problema de conrole óimo com equações de esado P-fuzzy: Programação dinâmica Michael Macedo Diniz, Rodney Carlos Bassanezi, Depo de Maemáica Aplicada, IMECC, UNICAMP, 1383-859, Campinas, SP diniz@ime.unicamp.br,

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tarefa de revisão nº 17 1. Uma empresa lançou um produo no mercado. Esudos efecuados permiiram concluir que a evolução do preço se aproxima do seguine modelo maemáico: 7 se 0 1 p() =, p em euros e em anos.

Leia mais

Q = , 03.( )

Q = , 03.( ) PROVA DE FÍSIA 2º ANO - 1ª MENSAL - 2º TRIMESTRE TIPO A 01) Um bloco de chumbo de massa 1,0 kg, inicialmene a 227, é colocado em conao com uma fone érmica de poência consane. Deermine a quanidade de calor

Leia mais

2. Aborda a rapidez com que os reagentes são consumidos e os produtos são formados;

2. Aborda a rapidez com que os reagentes são consumidos e os produtos são formados; CINÉTICA QUÍMICA 1. Trata das velocidades das reações; 2. Aborda a rapidez com que os reagentes são consumidos e os produtos são formados; 3. A dependência da velocidade; 4. Estudo do mecanismo de reação.

Leia mais

Lista de Exercícios nº 3 - Parte IV

Lista de Exercícios nº 3 - Parte IV DISCIPLINA: SE503 TEORIA MACROECONOMIA 01/09/011 Prof. João Basilio Pereima Neo E-mail: joaobasilio@ufpr.com.br Lisa de Exercícios nº 3 - Pare IV 1ª Quesão (...) ª Quesão Considere um modelo algébrico

Leia mais

Duas opções de trajetos para André e Bianca. Percurso 1( Sangiovanni tendo sorteado cara e os dois se encontrando no ponto C): P(A) =

Duas opções de trajetos para André e Bianca. Percurso 1( Sangiovanni tendo sorteado cara e os dois se encontrando no ponto C): P(A) = RESOLUÇÃO 1 A AVALIAÇÃO UNIDADE II -016 COLÉGIO ANCHIETA-BA PROFA. MARIA ANTÔNIA C. GOUVEIA ELABORAÇÃO e PESQUISA: PROF. ADRIANO CARIBÉ e WALTER PORTO. QUESTÃO 01. Três saélies compleam suas respecivas

Leia mais

Séries temporais Modelos de suavização exponencial. Séries de temporais Modelos de suavização exponencial

Séries temporais Modelos de suavização exponencial. Séries de temporais Modelos de suavização exponencial Programa de Pós-graduação em Engenharia de Produção Análise de séries de empo: modelos de suavização exponencial Profa. Dra. Liane Werner Séries emporais A maioria dos méodos de previsão se baseiam na

Leia mais

Experiência IV (aulas 06 e 07) Queda livre

Experiência IV (aulas 06 e 07) Queda livre Experiência IV (aulas 06 e 07) Queda livre 1. Objeivos. Inrodução 3. Procedimeno experimenal 4. Análise de dados 5. Quesões 6. Referências 1. Objeivos Nesa experiência, esudaremos o movimeno da queda de

Leia mais

As cargas das partículas 1, 2 e 3, respectivamente, são:

As cargas das partículas 1, 2 e 3, respectivamente, são: 18 GAB. 1 2 O DIA PROCSSO SLTIVO/2006 FÍSICA QUSTÕS D 31 A 45 31. A figura abaixo ilusra as rajeórias de rês parículas movendo-se unicamene sob a ação de um campo magnéico consane e uniforme, perpendicular

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

A entropia de uma tabela de vida em previdência social *

A entropia de uma tabela de vida em previdência social * A enropia de uma abela de vida em previdência social Renao Marins Assunção Leícia Gonijo Diniz Vicorino Palavras-chave: Enropia; Curva de sobrevivência; Anuidades; Previdência Resumo A enropia de uma abela

Leia mais

GABARITO DE QUÍMICA INSTITUTO MILITAR DE ENGENHARIA

GABARITO DE QUÍMICA INSTITUTO MILITAR DE ENGENHARIA GABARITO DE QUÍMICA INSTITUTO MILITAR DE ENGENHARIA Realizada em 8 de ouubro de 010 GABARITO DISCURSIVA DADOS: Massas aômicas (u) O C H N Na S Cu Zn 16 1 1 14 3 3 63,5 65,4 Tempo de meia - vida do U 38

Leia mais

Tópicos Especiais em Energia Elétrica (Projeto de Inversores e Conversores CC-CC)

Tópicos Especiais em Energia Elétrica (Projeto de Inversores e Conversores CC-CC) Deparameno de Engenharia Elérica Tópicos Especiais em Energia Elérica () ula 2.2 Projeo do Induor Prof. João mérico Vilela Projeo de Induores Definição do úcleo a Fig.1 pode ser observado o modelo de um

Leia mais

Problemas de vestibular funções exponenciais e logaritmos

Problemas de vestibular funções exponenciais e logaritmos Problemas de vesibular funções exponenciais e logarimos Professor Fiore Segue lisa com problemas envolvendo funções exponenciais reirados de vesibulares e concursos. Para resolvê-los pode ser necessário

Leia mais

CINÉTICA QUÍMICA. Profa. Loraine Jacobs DAQBI.

CINÉTICA QUÍMICA. Profa. Loraine Jacobs DAQBI. CINÉTICA QUÍMICA Profa. Loraine Jacobs DAQBI lorainejacobs@utfpr.edu.br http://paginapessoal.utfpr.edu.br/lorainejacobs Cinética Química Lei de Velocidade Integrada Mostra a variação das concentrações

Leia mais

Modelos de Crescimento Endógeno de 1ªgeração

Modelos de Crescimento Endógeno de 1ªgeração Teorias do Crescimeno Económico Mesrado de Economia Modelos de Crescimeno Endógeno de 1ªgeração Inrodução A primeira geração de modelos de crescimeno endógeno ena endogeneiar a axa de crescimeno de SSG

Leia mais

Cinética Química. Prof. Alexandre D. Marquioreto

Cinética Química. Prof. Alexandre D. Marquioreto Prof. Alexandre D. Marquioreto Estuda as velocidades, mecanismos e os fatores que podem interferir nas reações químicas. Lentas Reações Químicas Rápidas Reação Rápida Cinética Química Faísca 2 H 2(g) +

Leia mais

Questão 30. Questão 32. Questão 31. alternativa E. alternativa D. alternativa A

Questão 30. Questão 32. Questão 31. alternativa E. alternativa D. alternativa A Quesão 30 Um sólido branco apresena as seguines propriedades: I. É solúvel em água. II. Sua solução aquosa é conduora de correne elérica. III. Quando puro, o sólido não conduz correne elérica. IV. Quando

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

Seção 5: Equações Lineares de 1 a Ordem

Seção 5: Equações Lineares de 1 a Ordem Seção 5: Equações Lineares de 1 a Ordem Definição. Uma EDO de 1 a ordem é dia linear se for da forma y + fx y = gx. 1 A EDO linear de 1 a ordem é uma equação do 1 o grau em y e em y. Qualquer dependência

Leia mais

Questão 1 Questão 2. Resposta. Resposta

Questão 1 Questão 2. Resposta. Resposta Quesão Quesão Dois amigos, Alfredo e Bruno, combinam dispuar a posse de um objeo num jogo de cara coroa. Alfredo lança moedas e Bruno moedas, simulaneamene. Vence o jogo e, conseqüenemene, fica com o objeo,

Leia mais

A aplicação de Programação por Metas para a geração de horários de exames para o Colégio de Aplicação da Universidade Federal de Viçosa - COLUNI

A aplicação de Programação por Metas para a geração de horários de exames para o Colégio de Aplicação da Universidade Federal de Viçosa - COLUNI A aplicação de Programação por Meas para a geração de horários de exames para o Colégio de Aplicação da Universidade Federal de Viçosa - COLUNI André Lobo Teixeira (UFV) andre.lobo@ufv.br Lana Mara Rodrigues

Leia mais

Exercícios de torção livre em seção circular fechada - prof. Valério SA Universidade de São Paulo - USP

Exercícios de torção livre em seção circular fechada - prof. Valério SA Universidade de São Paulo - USP São Paulo, dezembro de 2015. 1) a. Deerminar a dimensão a de modo a se er a mesma ensão de cisalhameno máxima nos rechos B-C e C-D. b. Com al dimensão pede-se a máxima ensão de cisalhameno no recho A-B.

Leia mais

UNIVERSIDADE DA BEIRA INTERIOR FACULDADE DE CIÊNCIAS SOCIAIS E HUMANAS DEPARTAMENTO DE GESTÃO E ECONOMIA MACROECONOMIA III

UNIVERSIDADE DA BEIRA INTERIOR FACULDADE DE CIÊNCIAS SOCIAIS E HUMANAS DEPARTAMENTO DE GESTÃO E ECONOMIA MACROECONOMIA III UNIVERSIDADE DA BEIRA INTERIOR FACUDADE DE CIÊNCIAS SOCIAIS E HUMANAS DEPARTAMENTO DE GESTÃO E ECONOMIA MACROECONOMIA III icenciaura de Economia (ºAno/1ºS) Ano ecivo 007/008 Caderno de Exercícios Nº 1

Leia mais

Exercícios Sobre Oscilações, Bifurcações e Caos

Exercícios Sobre Oscilações, Bifurcações e Caos Exercícios Sobre Oscilações, Bifurcações e Caos Os ponos de equilíbrio de um modelo esão localizados onde o gráfico de + versus cora a rea definida pela equação +, cuja inclinação é (pois forma um ângulo

Leia mais

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON)

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON) TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 8 LIVRO DO NILSON). CONSIDERAÇÕES INICIAIS SÉRIES DE FOURIER: descrevem funções periódicas no domínio da freqüência (ampliude e fase). TRANSFORMADA DE FOURIER:

Leia mais

Versão preliminar serão feitas correções em sala de aula 1

Versão preliminar serão feitas correções em sala de aula 1 Versão preinar serão feias correções em sala de aula 7.. Inrodução Dependendo das condições de soliciação, o maerial pode se enconrar sob diferenes esados mecânicos. Quando as cargas (exernas) são pequenas

Leia mais

Nome: N.º Turma: Suficiente (50% 69%) Bom (70% 89%)

Nome: N.º Turma: Suficiente (50% 69%) Bom (70% 89%) Escola E.B.,3 Eng. Nuno Mergulhão Porimão Ano Leivo 01/013 Tese de Avaliação Escria de Maemáica 9.º ano de escolaridade Duração do Tese: 90 minuos 16 de novembro de 01 Nome: N.º Turma: Classificação: Fraco

Leia mais

Função Exponencial Nível Básico

Função Exponencial Nível Básico Função Eponencial - 16 Nível Básico 1. (Imed 16) Em relação à função real definida por g(g()) corresponde a: a) 1. b). c) 3. d). e) 5. g() 1, é correo afirmar que. (Uel 15) A miose é uma divisão celular,

Leia mais

RASCUNHO. a) 120º10 b) 95º10 c) 120º d) 95º e) 110º50

RASCUNHO. a) 120º10 b) 95º10 c) 120º d) 95º e) 110º50 ª QUESTÃO Uma deerminada cidade organizou uma olimpíada de maemáica e física, para os alunos do º ano do ensino médio local. Inscreveramse 6 alunos. No dia da aplicação das provas, consaouse que alunos

Leia mais

Cálculo do valor em risco dos ativos financeiros da Petrobrás e da Vale via modelos ARMA-GARCH

Cálculo do valor em risco dos ativos financeiros da Petrobrás e da Vale via modelos ARMA-GARCH Cálculo do valor em risco dos aivos financeiros da Perobrás e da Vale via modelos ARMA-GARCH Bruno Dias de Casro 1 Thiago R. dos Sanos 23 1 Inrodução Os aivos financeiros das companhias Perobrás e Vale

Leia mais

) quando vamos do ponto P até o ponto Q (sobre a reta) e represente-a no plano cartesiano descrito acima.

) quando vamos do ponto P até o ponto Q (sobre a reta) e represente-a no plano cartesiano descrito acima. ATIVIDADE 1 1. Represene, no plano caresiano xy descrio abaixo, os dois ponos (x 0,y 0 ) = (1,2) e Q(x 1,y 1 ) = Q(3,5). 2. Trace a rea r 1 que passa pelos ponos e Q, no plano caresiano acima. 3. Deermine

Leia mais

Cinética Química 17/04/17. V m h. Prof. Xuxu. Velocidade das reações químicas. Velocidade das reações químicas. Velocidade Média. Hora da saída: 11:45

Cinética Química 17/04/17. V m h. Prof. Xuxu. Velocidade das reações químicas. Velocidade das reações químicas. Velocidade Média. Hora da saída: 11:45 Seja Bem-indo a Goiânia elocidade Média Cinética Química Hora da saída: 11:45 Δd 40km m 40 km Δt 1h h Distância Hidrolândia: 40 km Seja Bem-indo a Hidrolândia Prof. Xuxu Hora da chegada: 12:45 elocidade

Leia mais

Capítulo Cálculo com funções vetoriais

Capítulo Cálculo com funções vetoriais Cálculo - Capíulo 6 - Cálculo com funções veoriais - versão 0/009 Capíulo 6 - Cálculo com funções veoriais 6 - Limies 63 - Significado geomérico da derivada 6 - Derivadas 64 - Regras de derivação Uiliaremos

Leia mais

DEMOGRAFIA. Assim, no processo de planeamento é muito importante conhecer a POPULAÇÃO porque:

DEMOGRAFIA. Assim, no processo de planeamento é muito importante conhecer a POPULAÇÃO porque: DEMOGRAFIA Fone: Ferreira, J. Anunes Demografia, CESUR, Lisboa Inrodução A imporância da demografia no planeameno regional e urbano O processo de planeameno em como fim úlimo fomenar uma organização das

Leia mais

PROCESSO SELETIVO O DIA GABARITO 2 13 FÍSICA QUESTÕES DE 31 A 45

PROCESSO SELETIVO O DIA GABARITO 2 13 FÍSICA QUESTÕES DE 31 A 45 PROCESSO SELETIVO 27 2 O DIA GABARITO 2 13 FÍSICA QUESTÕES DE 31 A 45 31. No circuio abaixo, uma fone de resisência inerna desprezível é ligada a um resisor R, cuja resisência pode ser variada por um cursor.

Leia mais

Análise de séries de tempo: modelos de decomposição

Análise de séries de tempo: modelos de decomposição Análise de séries de empo: modelos de decomposição Profa. Dra. Liane Werner Séries de emporais - Inrodução Uma série emporal é qualquer conjuno de observações ordenadas no empo. Dados adminisraivos, econômicos,

Leia mais

Fabio Rodrigo da Costa Dias. 2. Velocidade média e instantânea das Reações Químicas

Fabio Rodrigo da Costa Dias. 2. Velocidade média e instantânea das Reações Químicas Cinética Química Fabio Rodrigo da Costa Dias 1. Introdução Cinética química é a área da química responsável pelo estudo das velocidades das reações químicas, bem como dos fatores que influenciam nessas

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 2º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Inrodução ao Cálculo Diferencial II TPC nº 9 Enregar em 4 2 29. Num loe de bolbos de úlipas a probabilidade de que

Leia mais

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática A B C D E A B C D E. Avaliação da Aprendizagem em Processo Prova do Aluno 3 a série do Ensino Médio

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática A B C D E A B C D E. Avaliação da Aprendizagem em Processo Prova do Aluno 3 a série do Ensino Médio AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Maemáica a série do Ensino Médio Turma EM GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO o Bimesre de 6 Daa / / Escola Aluno A B C D E 6 7 9 A B C D E Avaliação

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031 Universidade Federal do io Grande do Sul Escola de Engenharia de Poro Alegre Deparameno de Engenharia Elérica ANÁLISE DE CICUITOS II - ENG43 Aula 5 - Condições Iniciais e Finais de Carga e Descarga em

Leia mais

XXXI OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXXI OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXXI OLIMPÍ RSILEIR E MTEMÁTI PRIMEIR FSE NÍVEL Ensino Médio RITO RITO NÍVEL 6 E 6 7 7 E 9 9 5 0 E 5 0 E 5 ada quesão da Primeira Fase vale pono. Toal de ponos no Nível 5 ponos. guarde a pulicação da Noa

Leia mais

Porto Alegre, 14 de novembro de 2002

Porto Alegre, 14 de novembro de 2002 Poro Alegre, 14 de novembro de 2002 Aula 6 de Relaividade e Cosmologia Horácio Doori 1.12- O paradoo dos gêmeos 1.12.1- Sisemas Inerciais (observadores) com velocidades diversas vêem a disância emporal

Leia mais

5 Metodologia Probabilística de Estimativa de Reservas Considerando o Efeito-Preço

5 Metodologia Probabilística de Estimativa de Reservas Considerando o Efeito-Preço 5 Meodologia Probabilísica de Esimaiva de Reservas Considerando o Efeio-Preço O principal objeivo desa pesquisa é propor uma meodologia de esimaiva de reservas que siga uma abordagem probabilísica e que

Leia mais

MATEMÁTICA APLICADA AO PLANEJAMENTO DA PRODUÇÃO E LOGÍSTICA. Silvio A. de Araujo Socorro Rangel

MATEMÁTICA APLICADA AO PLANEJAMENTO DA PRODUÇÃO E LOGÍSTICA. Silvio A. de Araujo Socorro Rangel MAEMÁICA APLICADA AO PLANEJAMENO DA PRODUÇÃO E LOGÍSICA Silvio A. de Araujo Socorro Rangel saraujo@ibilce.unesp.br, socorro@ibilce.unesp.br Apoio Financeiro: PROGRAMA Inrodução 1. Modelagem maemáica: conceios

Leia mais

Física e Química A Ficha de trabalho nº 2: Unidade 1 Física 11.º Ano Movimentos na Terra e no Espaço

Física e Química A Ficha de trabalho nº 2: Unidade 1 Física 11.º Ano Movimentos na Terra e no Espaço Física e Química A Ficha de rabalho nº 2: Unidade 1 Física 11.º Ano Moimenos na Terra e no Espaço 1. Um corpo descree uma rajecória recilínea, sendo regisada a sua posição em sucessios insanes. Na abela

Leia mais

ONDAS ELETROMAGNÉTICAS

ONDAS ELETROMAGNÉTICAS LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS A propagação de ondas eleromagnéicas ocorre quando um campo elérico variane no empo produ um campo magnéico ambém variane no empo, que por sua ve produ um campo

Leia mais

EXERCICIOS DE APROFUNDAMENTO MATEMÁTICA LOGARITMOS 2015

EXERCICIOS DE APROFUNDAMENTO MATEMÁTICA LOGARITMOS 2015 EXERCICIOS DE APROFUNDAMENTO MATEMÁTICA LOGARITMOS 05. (Ia 05) Considere as seguines afirmações sobre números reais: I. Se a expansão decimal de x é infinia e periódica, enão x é um número racional. II..

Leia mais

Confiabilidade e Taxa de Falhas

Confiabilidade e Taxa de Falhas Prof. Lorí Viali, Dr. hp://www.pucrs.br/fama/viali/ viali@pucrs.br Definição A confiabilidade é a probabilidade de que de um sisema, equipameno ou componene desempenhe a função para o qual foi projeado

Leia mais

4 Modelagem e metodologia de pesquisa

4 Modelagem e metodologia de pesquisa 4 Modelagem e meodologia de pesquisa Nese capíulo será apresenada a meodologia adoada nese rabalho para a aplicação e desenvolvimeno de um modelo de programação maemáica linear misa, onde a função-objeivo,

Leia mais

LABORATÓRIO DE HIDRÁULICA

LABORATÓRIO DE HIDRÁULICA UNIVERSIDADE FEDERAL DE ALAGOAS ENTRO DE TENOLOGIA LABORATÓRIO DE HIDRÁULIA Vladimir aramori Josiane Holz Irene Maria haves Pimenel Marllus Gusavo Ferreira Passos das Neves Maceió - Alagoas Ouubro de 2012

Leia mais

Escola Secundária da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo de 2003/04 Funções exponencial e logarítmica

Escola Secundária da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo de 2003/04 Funções exponencial e logarítmica Escola Secundária da Sé-Lamego Ficha de Trabalho de Maemáica Ano Lecivo de /4 Funções eponencial e logarímica - º Ano Nome: Nº: Turma: 4 A unção ( ),, é usada para deerminar o valor de um carro (em euros)

Leia mais

Cap. 5 - Tiristores 1

Cap. 5 - Tiristores 1 Cap. 5 - Tirisores 1 Tirisor é a designação genérica para disposiivos que êm a caracerísica esacionária ensão- -correne com duas zonas no 1º quadrane. Numa primeira zona (zona 1) as correnes são baixas,

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática. Primeira Lista de Exercícios MAT 241 Cálculo III

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática. Primeira Lista de Exercícios MAT 241 Cálculo III Universidade Federal de Viçosa Cenro de Ciências Exaas e Tecnológicas Deparameno de Maemáica Primeira Lisa de Exercícios MAT 4 Cálculo III Julgue a veracidade das afirmações abaixo assinalando ( V para

Leia mais

CADEIAS DE MARKOV: UM TEMA COM APLICAÇÕES INTERESSANTES E POSSIBILIDADES INTERDISCIPLINARES NA EDUCAÇÃO BÁSICA

CADEIAS DE MARKOV: UM TEMA COM APLICAÇÕES INTERESSANTES E POSSIBILIDADES INTERDISCIPLINARES NA EDUCAÇÃO BÁSICA CADEIAS DE MARKOV: UM TEMA COM APLICAÇÕES INTERESSANTES E POSSIBILIDADES INTERDISCIPLINARES NA EDUCAÇÃO BÁSICA Chrisine Serã Cosa Ricardo Moura dos Sanos Marques. INTRODUÇÃO A proposa principal do presene

Leia mais

EXERCÍCIOS. 1. Comentar a ordem e molecularidade das seguintes reações, bem como a possibilidade da reação ser elementar. + 3H 2

EXERCÍCIOS. 1. Comentar a ordem e molecularidade das seguintes reações, bem como a possibilidade da reação ser elementar. + 3H 2 EXERCÍCIOS. Cmenar a rdem e mleularidade das seguines reações, bem m a pssibilidade da reaçã ser elemenar. (a) N 2 + 3H 2 2NH 3 (b) 2NH 3 N 2 + 3H 2 (inversa da anerir) () H 2 H + H MT 236 - Físi-Químia

Leia mais

Cinética Química. Cinética Química...? É o estudo da velocidade das reações químicas e dos fatores que as influenciam.

Cinética Química. Cinética Química...? É o estudo da velocidade das reações químicas e dos fatores que as influenciam. Cinética Química...? Universidade Federal de Campina Grande Centro de Ciência e Tecnologia groalimentar Profª Roberlucia Candeia Disciplina: Química geral É o estudo da velocidade das reações químicas

Leia mais

dr = ( t ) k. Portanto,

dr = ( t ) k. Portanto, Aplicações das Equações Diferenciais de ordem (Evaporação de uma goa) Suponha que uma goa de chuva esférica evapore numa aa proporcional à sua área de superfície Se o raio original era de mm e depois de

Leia mais

2.6 - Conceitos de Correlação para Sinais Periódicos

2.6 - Conceitos de Correlação para Sinais Periódicos .6 - Conceios de Correlação para Sinais Periódicos O objeivo é o de comparar dois sinais x () e x () na variável empo! Exemplo : Considere os dados mosrados abaixo y 0 x Deseja-se ober a relação enre x

Leia mais

Lista de Exercícios 1

Lista de Exercícios 1 Universidade Federal de Ouro Preo Deparameno de Maemáica MTM14 - CÁLCULO DIFERENCIAL E INTEGRAL III Anônio Silva, Edney Oliveira, Marcos Marcial, Wenderson Ferreira Lisa de Exercícios 1 1 Para cada um

Leia mais

LIGAÇÕES QUÍMICAS NOS COMPOSTOS DE COORDENAÇÃO: TEORIA DO CAMPO CRISTALINO (TCC)

LIGAÇÕES QUÍMICAS NOS COMPOSTOS DE COORDENAÇÃO: TEORIA DO CAMPO CRISTALINO (TCC) LIGAÇÕES QUÍMICAS NS CMPSTS DE CRDENAÇÃ: TERIA D CAMP CRISTALIN (TCC) A Teoria do Campo Crisalino (TCC) posula que a única ineração exisene enre o íon cenral e os liganes é de naureza elerosáica, pois

Leia mais

EXAME DE ESTATÍSTICA AMBIENTAL 1ª Época (v1)

EXAME DE ESTATÍSTICA AMBIENTAL 1ª Época (v1) Nome: Aluno nº: Duração: horas LICENCIATURA EM CIÊNCIAS DE ENGENHARIA - ENGENHARIA DO AMBIENTE EXAME DE ESTATÍSTICA AMBIENTAL ª Época (v) I (7 valores) Na abela seguine apresena-se os valores das coordenadas

Leia mais

CIRCUITO RC SÉRIE. max

CIRCUITO RC SÉRIE. max ELETRICIDADE 1 CAPÍTULO 8 CIRCUITO RC SÉRIE Ese capíulo em por finalidade inroduzir o esudo de circuios que apresenem correnes eléricas variáveis no empo. Para ano, esudaremos o caso de circuios os quais

Leia mais

Física I -2009/2010. Utilize o modelo de uma partícula (ou seja, represente o corpo cujo movimento está a estudar por uma única partícula)

Física I -2009/2010. Utilize o modelo de uma partícula (ou seja, represente o corpo cujo movimento está a estudar por uma única partícula) Quesões: Física I -9/ 3 a Série - Movimeno unidimensional - Resolução Q -Esboce um diagrama de ponos para cada um dos movimenos unidimensionais abaixo indicados, de acordo com as seguines insruções: Uilize

Leia mais

Com base no enunciado e no gráfico, assinale V (verdadeira) ou F (falsa) nas afirmações a seguir.

Com base no enunciado e no gráfico, assinale V (verdadeira) ou F (falsa) nas afirmações a seguir. PROVA DE FÍSICA 2º ANO - 1ª MENSAL - 2º TRIMESTRE TIPO A 01) O gráico a seguir represena a curva de aquecimeno de 10 g de uma subsância à pressão de 1 am. Analise as seguines airmações. I. O pono de ebulição

Leia mais