Introdução às Medidas em Física

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Introdução às Medidas em Física"

Transcrição

1 Inrodução às Medidas em Física Elisabeh Maeus Yoshimura Bloco F Conjuno Alessandro Vola sl 18 agradecimenos a Nemiala Added por vários slides

2 Conceios Básicos Lei Zero da Termodinâmica Dois corpos inicialmene a emperauras diferenes, quando colocados em conao por um empo suficiene chegam a um esado final em que a emperaura de ambos se iguala. Esse esado é chamado de equilíbrio érmico Se um dos corpos é um reservaório érmico, o corpo inicialmene mais quene que o reservaório perde calor para ele aé que sua emperaura iguale à do reservaório

3 Lei de Resfriameno Newon Hipóeses: A axa de roca de calor enre um corpo e o ambiene (reservaório a T R consane) é proporcional à diferença de emperaura enre o corpo e o ambiene. dq ce T d Como variações de calor são proporcionais à variação da emperaura (Q=C DT), ambém é esperado que a variação de emperaura seja proporcional à diferença de emperaura: d T T d R ddt d 1 a consane é posiiva e em unidade de empo, e depende de formao e maerial do corpo. T T R T R

4 Lei de Resfriameno Newon Consequências: Espera-se que a emperaura caia exponencialmene no empo. T T DT e DT R DT é a diferença inicial de emperaura enre o líquido e o ambiene. Propriedades de exponenciais decrescenes com empo: o empo necessário para diminuir de uma cera fração é fixo; o insane inicial não impora; derivada da exponencial é exponencial. Vamos enar ober essa lei de forma empírica Ajuse dos dados experimenais Variação da emperaura em função do empo

5 Análise de Dados Como analisar uma dependência que claramene não é linear? A curva raçada pelos ponos experimenais não é uma rea? Qual é essa função? Diferença de emperaura ( o C) Tempo (s)

6 Análise de Dados Modelo da Lei de Esfriameno: T T DT e DT R Como esar? Diferença de emperaura ( o C) Tempo (s)

7 Análise de Dados Se DT log DT e D enão D T log T e log T log D e log D T loge Temos enão uma função linear enre log(dt) e o empo (), com os seguines coeficienes: log D T log D T loge Y a b com : Y log DT, a logdt, b - log e

8 Análise de Dados E 2. log (DT) log D T log D T loge Y a b com : Y log DT, a logdt, b - log e Tempo (s)

9 Análise de Dados E log (DT) Papel monolog Diferença de emperaura ( o C) Tempo (s) Tempo (s)

10 Papel monolog

11 Década 1 ou 1 ou 1 1 ou 1 ou 1,2 ou 2 ou 2 ESCALA (sempre múlipla de 1),1 ou 1 ou a Aula 11

12 Análise de dados com papel monolog Diferença de emperaura ( o C) Diferença de emperaura ( o C) Tempo (s) Tempo (s)

13 Análise de dados com papel monolog log D T log D T loge Y a b com : Y log DT, a logdt Além disso: - diferenças de logarimos são obidas com régua! b log DT DT 2 log 2 1 1, b v 2 y u - log y 1 e Para log (DT) mede com régua (na verical): u y é a década (em mm) e v y é a disância (mm) P1 P2 DT ( o C) u y v y P Tempo (s) P Para 1 e 2 : ler as coordenadas

14 Análise de Dados Gráfico de emperaura empo uilizando o papel monolog Exrair os parâmeros DT e de um ajuse de rea Gráfico de emperaura empo uilizando o papel milimerado Apresenar valores esperados usando os parâmeros obidos acima

15 Exercício aula 12

16 Medida de emperaura A emperaura de um sisema é medida aravés do regisro de uma grandeza (fenômenos físico) cuja dependência com a emperaura é conhecida O ipo de ermômero mais comum é o de coluna de mercúrio (ou de álcool). O fenômeno físico usado nese caso é o da dilaação volumérica de líquidos quando eses são aquecidos A coluna do líquido é acoplada a uma escala graduada e calibrada

17 Medida de emperaura: Termopar Termopar é um ermômero cujo princípio é o fao de a eleronegaividade de meais depender da emperaura, de forma diferene para cada meal. Assim, se as ponas da junção de dois meais diferenes esiver em emperauras disinas há a produção de uma diferença de poencial, que é mensurável e se relaciona com a emperaura Um dos ipos de ermopar mais populares é do ipo K, composo pela junção das ligas de níquelcromo e níquel-alumínio Ni-Cr 3 o C 12,2 mv Ni-Al

18 Experimeno Vamos esudar o resfriameno da glicerina Maerial: Tubo de ensaio com glicerina + 2 ermopares acoplados a mulímero específico Procedimeno: Aquecer o ubo de ensaio com glicerina e ermopar cuidadosamene Colocá-lo para esfriar denro de um cilindro no qual há um fluxo de ar consane Medir direamene diferença de emperaura em função do empo

19 Experimeno (Medidas) Posicionar os dois ermopares: um ao lado do cilindro e ouro denro ubo (aproximadamene na meade da coluna de glicerina) Anes de iniciar o aquecimeno, medir a alura da glicerina no ubo de ensaio e coloca o ermopar na meade desse valor Aquecer o ubo de ensaio aé que (T glic T R )~95 C Inserir o ubo de ensaio no cilindro com fluxo de ar Evie encosar o ubo nas paredes e fundo do cilindro

20 Experimeno (Medidas) Medir a diferença de emperaura (DT=T glic T R ) para vários insanes de empo. Por exemplo: Dispare o cronômero quando DT chegar a 9 C Anoe o valor de empo: de 5 em 5 C aé 4 C de 2 em 2 C aé 2 C de 1 em 1 C aé 1 C Trabalho em equipe T( o C) (s)

21 Relaórios Resumo Proposas + méodos + resulados Inrodução Jusificaiva e Objeivos (Proposa), Base eórica Procedimeno/Arranjo experimenal - descrição simplificada Resulados e análise de dados complea (direos/indireos) Tabelas, gráficos, incerezas com jusificaivas Discussão dos dados Comparações enre méodos ou valores eóricos, Críicas: méodo, resulados, incerezas Conclusão Resposa à proposa apresenada

LABORATÓRIO DE HIDRÁULICA

LABORATÓRIO DE HIDRÁULICA UNIVERSIDADE FEDERAL DE ALAGOAS ENTRO DE TENOLOGIA LABORATÓRIO DE HIDRÁULIA Vladimir aramori Josiane Holz Irene Maria haves Pimenel Marllus Gusavo Ferreira Passos das Neves Maceió - Alagoas Ouubro de 2012

Leia mais

Q = , 03.( )

Q = , 03.( ) PROVA DE FÍSIA 2º ANO - 1ª MENSAL - 2º TRIMESTRE TIPO A 01) Um bloco de chumbo de massa 1,0 kg, inicialmene a 227, é colocado em conao com uma fone érmica de poência consane. Deermine a quanidade de calor

Leia mais

As cargas das partículas 1, 2 e 3, respectivamente, são:

As cargas das partículas 1, 2 e 3, respectivamente, são: 18 GAB. 1 2 O DIA PROCSSO SLTIVO/2006 FÍSICA QUSTÕS D 31 A 45 31. A figura abaixo ilusra as rajeórias de rês parículas movendo-se unicamene sob a ação de um campo magnéico consane e uniforme, perpendicular

Leia mais

Equilíbrio térmico. diatérmica. adiabática. (A e B estão em contacto térmico)

Equilíbrio térmico. diatérmica. adiabática. (A e B estão em contacto térmico) Equilíbrio érmico Parede adiabáica exs: asbeso (amiano), felro, polisereno, paredes de uma garrafa ermo. Parede diaérmica ex: folha fina de meal. adiabáica A Todos os valores de, Y são possíveis B Todos

Leia mais

Aplicações à Teoria da Confiabilidade

Aplicações à Teoria da Confiabilidade Aplicações à Teoria da ESQUEMA DO CAPÍTULO 11.1 CONCEITOS FUNDAMENTAIS 11.2 A LEI DE FALHA NORMAL 11.3 A LEI DE FALHA EXPONENCIAL 11.4 A LEI DE FALHA EXPONENCIAL E A DISTRIBUIÇÃO DE POISSON 11.5 A LEI

Leia mais

CINÉTICA RADIOATIVA. Introdução. Tempo de meia-vida (t 1/2 ou P) Atividade Radioativa

CINÉTICA RADIOATIVA. Introdução. Tempo de meia-vida (t 1/2 ou P) Atividade Radioativa CIÉTIC RDIOTIV Inrodução Ese arigo em como objeivo analisar a velocidade dos diferenes processos radioaivos, no que chamamos de cinéica radioaiva. ão deixe de anes esudar o arigo anerior sobre radioaividade

Leia mais

ESTUDO DO MOVIMENTO UNIFORMEMENTE ACELERADO DETERMINAÇÃO DA ACELERAÇÃO DA GRAVIDADE

ESTUDO DO MOVIMENTO UNIFORMEMENTE ACELERADO DETERMINAÇÃO DA ACELERAÇÃO DA GRAVIDADE TRABALHO PRÁTICO ESTUDO DO MOVIMENTO UNIFORMEMENTE ACELERADO DETERMINAÇÃO DA ACELERAÇÃO DA GRAVIDADE Objecivo Preende-se esudar o movimeno recilíneo e uniformemene acelerado medindo o empo gaso por um

Leia mais

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL42 Coneúdo 8 - Inrodução aos Circuios Lineares e Invarianes...1 8.1 - Algumas definições e propriedades gerais...1 8.2 - Relação enre exciação

Leia mais

CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA

CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA Inrodução Ese arigo raa de um dos assunos mais recorrenes nas provas do IME e do ITA nos úlimos anos, que é a Cinéica Química. Aqui raamos principalmene dos

Leia mais

Seção 5: Equações Lineares de 1 a Ordem

Seção 5: Equações Lineares de 1 a Ordem Seção 5: Equações Lineares de 1 a Ordem Definição. Uma EDO de 1 a ordem é dia linear se for da forma y + fx y = gx. 1 A EDO linear de 1 a ordem é uma equação do 1 o grau em y e em y. Qualquer dependência

Leia mais

PEA LABORATÓRIO DE INSTALAÇÕES ELÉTRICAS I CONDUTORES E DISPOSITIVOS DE PROTEÇÃO (CDP_EA)

PEA LABORATÓRIO DE INSTALAÇÕES ELÉTRICAS I CONDUTORES E DISPOSITIVOS DE PROTEÇÃO (CDP_EA) PEA 40 - LAORAÓRO DE NSALAÇÕES ELÉRCAS CONDUORES E DSPOSVOS DE PROEÇÃO (CDP_EA) RELAÓRO - NOA... Grupo:...... Professor:...Daa:... Objeivo:..... MPORANE: Em odas as medições, o amperímero de alicae deverá

Leia mais

Experiência IV (aulas 06 e 07) Queda livre

Experiência IV (aulas 06 e 07) Queda livre Experiência IV (aulas 06 e 07) Queda livre 1. Objeivos. Inrodução 3. Procedimeno experimenal 4. Análise de dados 5. Quesões 6. Referências 1. Objeivos Nesa experiência, esudaremos o movimeno da queda de

Leia mais

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL Movimeno unidimensional 5 MOVIMENTO UNIDIMENSIONAL. Inrodução Denre os vários movimenos que iremos esudar, o movimeno unidimensional é o mais simples, já que odas as grandezas veoriais que descrevem o

Leia mais

Conceito. Exemplos. Os exemplos de (a) a (d) mostram séries discretas, enquanto que os de (e) a (g) ilustram séries contínuas.

Conceito. Exemplos. Os exemplos de (a) a (d) mostram séries discretas, enquanto que os de (e) a (g) ilustram séries contínuas. Conceio Na Esaísica exisem siuações onde os dados de ineresse são obidos em insanes sucessivos de empo (minuo, hora, dia, mês ou ano), ou ainda num período conínuo de empo, como aconece num elerocardiograma

Leia mais

Circuitos Elétricos I EEL420

Circuitos Elétricos I EEL420 Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL420 Coneúdo 1 - Circuios de primeira ordem...1 1.1 - Equação diferencial ordinária de primeira ordem...1 1.1.1 - Caso linear, homogênea, com

Leia mais

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara Insiuo de Física USP Física V - Aula 6 Professora: Mazé Bechara Aula 6 Bases da Mecânica quânica e equações de Schroedinger. Aplicação e inerpreações. 1. Ouros posulados da inerpreação de Max-Born para

Leia mais

MT DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM. Misturas betuminosas determinação do módulo de resiliência

MT DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM. Misturas betuminosas determinação do módulo de resiliência Méodo de Ensaio Página 1 de 5 RESUMO Ese documeno, que é uma norma écnica, esabelece o méodo para deerminar o módulo de resiliência de misuras beuminosas, de uilidade para projeo de pavimenos flexíveis.

Leia mais

UM MÉTODO RÁPIDO PARA ANÁLISE DO COMPORTAMENTO TÉRMICO DO ENROLAMENTO DO ESTATOR DE MOTORES DE INDUÇÃO TRIFÁSICOS DO TIPO GAIOLA

UM MÉTODO RÁPIDO PARA ANÁLISE DO COMPORTAMENTO TÉRMICO DO ENROLAMENTO DO ESTATOR DE MOTORES DE INDUÇÃO TRIFÁSICOS DO TIPO GAIOLA ART643-07 - CD 262-07 - PÁG.: 1 UM MÉTD RÁPID PARA ANÁLISE D CMPRTAMENT TÉRMIC D ENRLAMENT D ESTATR DE MTRES DE INDUÇÃ TRIFÁSICS D TIP GAILA 1 - RESUM Jocélio de Sá; João Robero Cogo; Hécor Arango. objeivo

Leia mais

PROCESSO SELETIVO O DIA GABARITO 2 13 FÍSICA QUESTÕES DE 31 A 45

PROCESSO SELETIVO O DIA GABARITO 2 13 FÍSICA QUESTÕES DE 31 A 45 PROCESSO SELETIVO 27 2 O DIA GABARITO 2 13 FÍSICA QUESTÕES DE 31 A 45 31. No circuio abaixo, uma fone de resisência inerna desprezível é ligada a um resisor R, cuja resisência pode ser variada por um cursor.

Leia mais

18 GABARITO 1 2 O DIA PROCESSO SELETIVO/2005 FÍSICA QUESTÕES DE 31 A 45

18 GABARITO 1 2 O DIA PROCESSO SELETIVO/2005 FÍSICA QUESTÕES DE 31 A 45 18 GABARITO 1 2 O DIA PROCESSO SELETIO/2005 ÍSICA QUESTÕES DE 31 A 45 31. O gálio é um meal cuja emperaura de fusão é aproximadamene o C. Um pequeno pedaço desse meal, a 0 o C, é colocado em um recipiene

Leia mais

Características dos Processos ARMA

Características dos Processos ARMA Caracerísicas dos Processos ARMA Aula 0 Bueno, 0, Capíulos e 3 Enders, 009, Capíulo. a.6 Morein e Toloi, 006, Capíulo 5. Inrodução A expressão geral de uma série emporal, para o caso univariado, é dada

Leia mais

2.6 - Conceitos de Correlação para Sinais Periódicos

2.6 - Conceitos de Correlação para Sinais Periódicos .6 - Conceios de Correlação para Sinais Periódicos O objeivo é o de comparar dois sinais x () e x () na variável empo! Exemplo : Considere os dados mosrados abaixo y 0 x Deseja-se ober a relação enre x

Leia mais

Experiência VI (aula 10) Resfriamento de um líquido

Experiência VI (aula 10) Resfriamento de um líquido Experiência VI (aula 10) Resfriamento de um líquido 1. Objetivos 2. Introdução 3. Arranjo e procedimento experimental 4. Análise de dados 5. Referências 1. Objetivos A partir de um arranjo experimental

Leia mais

MATEMÁTICA E SUAS TECNOLOGIAS

MATEMÁTICA E SUAS TECNOLOGIAS 1º SIMULADO ENEM 017 Resposa da quesão 1: MATEMÁTICA E SUAS TECNOLOGIAS Basa aplicar a combinação de see espores agrupados dois a dois, logo: 7! C7,!(7 )! 7 6 5! C7,!5! 7 6 5! C7, 1!5! Resposa da quesão

Leia mais

F B d E) F A. Considere:

F B d E) F A. Considere: 5. Dois corpos, e B, de massas m e m, respecivamene, enconram-se num deerminado insane separados por uma disância d em uma região do espaço em que a ineração ocorre apenas enre eles. onsidere F o módulo

Leia mais

Física. Física Módulo 1

Física. Física Módulo 1 Física Módulo 1 Nesa aula... Movimeno em uma dimensão Aceleração e ouras coisinhas O cálculo de x() a parir de v() v( ) = dx( ) d e x( ) x v( ) d = A velocidade é obida derivando-se a posição em relação

Leia mais

Teoremas Básicos de Equações a Diferenças Lineares

Teoremas Básicos de Equações a Diferenças Lineares Teoremas Básicos de Equações a Diferenças Lineares (Chiang e Wainwrigh Capíulos 17 e 18) Caracerização Geral de Equações a diferenças Lineares: Seja a seguine especificação geral de uma equação a diferença

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

Experiência VI (aula 10) Resfriamento de um líquido

Experiência VI (aula 10) Resfriamento de um líquido Experiência VI (aula 10) Resfriamento de um líquido 1. Objetivos 2. Introdução 3. Arranjo e procedimento experimental 4. Análise de dados 5. Referências 1. Objetivos A partir de um arranjo experimental

Leia mais

Confiabilidade e Taxa de Falhas

Confiabilidade e Taxa de Falhas Prof. Lorí Viali, Dr. hp://www.pucrs.br/fama/viali/ viali@pucrs.br Definição A confiabilidade é a probabilidade de que de um sisema, equipameno ou componene desempenhe a função para o qual foi projeado

Leia mais

dr = ( t ) k. Portanto,

dr = ( t ) k. Portanto, Aplicações das Equações Diferenciais de ordem (Evaporação de uma goa) Suponha que uma goa de chuva esférica evapore numa aa proporcional à sua área de superfície Se o raio original era de mm e depois de

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 2º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Inrodução ao Cálculo Diferencial II TPC nº 9 Enregar em 4 2 29. Num loe de bolbos de úlipas a probabilidade de que

Leia mais

AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM

AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM 163 22. PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM 22.1. Inrodução Na Seção 9.2 foi falado sobre os Parâmeros de Core e

Leia mais

Com base no enunciado e no gráfico, assinale V (verdadeira) ou F (falsa) nas afirmações a seguir.

Com base no enunciado e no gráfico, assinale V (verdadeira) ou F (falsa) nas afirmações a seguir. PROVA DE FÍSICA 2º ANO - 1ª MENSAL - 2º TRIMESTRE TIPO A 01) O gráico a seguir represena a curva de aquecimeno de 10 g de uma subsância à pressão de 1 am. Analise as seguines airmações. I. O pono de ebulição

Leia mais

Séries temporais Modelos de suavização exponencial. Séries de temporais Modelos de suavização exponencial

Séries temporais Modelos de suavização exponencial. Séries de temporais Modelos de suavização exponencial Programa de Pós-graduação em Engenharia de Produção Análise de séries de empo: modelos de suavização exponencial Profa. Dra. Liane Werner Séries emporais A maioria dos méodos de previsão se baseiam na

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

4 Metodologia Proposta para o Cálculo do Valor de Opções Reais por Simulação Monte Carlo com Aproximação por Números Fuzzy e Algoritmos Genéticos.

4 Metodologia Proposta para o Cálculo do Valor de Opções Reais por Simulação Monte Carlo com Aproximação por Números Fuzzy e Algoritmos Genéticos. 4 Meodologia Proposa para o Cálculo do Valor de Opções Reais por Simulação Mone Carlo com Aproximação por Números Fuzzy e Algorimos Genéicos. 4.1. Inrodução Nese capíulo descreve-se em duas pares a meodologia

Leia mais

Atividade experimental

Atividade experimental Nome: n o Série/Classe: Daa: / / Aividade experimenal ermomeria, calorimeria e ransferência de calor Componenes da equipe: Nome Nu m. Série/Cla sse Daa 1 Daa 2 Conrole dos equipamenos uilizados Equipamenos

Leia mais

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc.

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc. ECONOMETRIA Prof. Paricia Maria Borolon, D. Sc. Séries Temporais Fone: GUJARATI; D. N. Economeria Básica: 4ª Edição. Rio de Janeiro. Elsevier- Campus, 2006 Processos Esocásicos É um conjuno de variáveis

Leia mais

) quando vamos do ponto P até o ponto Q (sobre a reta) e represente-a no plano cartesiano descrito acima.

) quando vamos do ponto P até o ponto Q (sobre a reta) e represente-a no plano cartesiano descrito acima. ATIVIDADE 1 1. Represene, no plano caresiano xy descrio abaixo, os dois ponos (x 0,y 0 ) = (1,2) e Q(x 1,y 1 ) = Q(3,5). 2. Trace a rea r 1 que passa pelos ponos e Q, no plano caresiano acima. 3. Deermine

Leia mais

Exercícios sobre o Modelo Logístico Discreto

Exercícios sobre o Modelo Logístico Discreto Exercícios sobre o Modelo Logísico Discreo 1. Faça uma abela e o gráfico do modelo logísico discreo descrio pela equação abaixo para = 0, 1,..., 10, N N = 1,3 N 1, N 0 = 1. 10 Solução. Usando o Excel,

Leia mais

Problema de controle ótimo com equações de estado P-fuzzy: Programação dinâmica

Problema de controle ótimo com equações de estado P-fuzzy: Programação dinâmica Problema de conrole óimo com equações de esado P-fuzzy: Programação dinâmica Michael Macedo Diniz, Rodney Carlos Bassanezi, Depo de Maemáica Aplicada, IMECC, UNICAMP, 1383-859, Campinas, SP diniz@ime.unicamp.br,

Leia mais

MOTIVAÇÃO. CONTEÚDO Introdução MOTIVAÇÃO. CONTEÚDO Introdução Motivação, Objetivo, Definição, Características Básicas e Histórico.

MOTIVAÇÃO. CONTEÚDO Introdução MOTIVAÇÃO. CONTEÚDO Introdução Motivação, Objetivo, Definição, Características Básicas e Histórico. CONTEÚDO Inrodução Moivação, Objeivo, Definição, Caracerísicas Básicas e Hisórico Conceios Básicos Neurônio Arificial, Modos de Inerconexão Processameno Recall e Learning Regras de Aprendizado Regra de

Leia mais

Porto Alegre, 14 de novembro de 2002

Porto Alegre, 14 de novembro de 2002 Poro Alegre, 14 de novembro de 2002 Aula 6 de Relaividade e Cosmologia Horácio Doori 1.12- O paradoo dos gêmeos 1.12.1- Sisemas Inerciais (observadores) com velocidades diversas vêem a disância emporal

Leia mais

DETERMINAÇÃO DA ACELERAÇÃO DA GRAVIDADE

DETERMINAÇÃO DA ACELERAÇÃO DA GRAVIDADE Física Laboraorial I Ano Lecivo 007/009 TRABALHO PRÁTICO Nº 1 - QUÍMICA E QUÍMICA INDUSTRIAL DETERMINAÇÃO DA ACELERAÇÃO DA GRAVIDADE Objecivo - Nese rabalho preende-se deerminar o valor local da aceleração

Leia mais

Modelos de Crescimento Endógeno de 1ªgeração

Modelos de Crescimento Endógeno de 1ªgeração Teorias do Crescimeno Económico Mesrado de Economia Modelos de Crescimeno Endógeno de 1ªgeração Inrodução A primeira geração de modelos de crescimeno endógeno ena endogeneiar a axa de crescimeno de SSG

Leia mais

1 2 hours ago and started questioning his colleagues. (Van Heuven et al., 1999, p. 150)

1 2 hours ago and started questioning his colleagues. (Van Heuven et al., 1999, p. 150) Porfolio de: Transferência de calor em regime ransiene abordagem macroscópica - méodo da capaciância global (iens 5.1 a 5.3 de Incropera & De Wi, iem 2.6.1 de Kreih) Problema moivador: John foi um exímio

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tarefa de revisão nº 17 1. Uma empresa lançou um produo no mercado. Esudos efecuados permiiram concluir que a evolução do preço se aproxima do seguine modelo maemáico: 7 se 0 1 p() =, p em euros e em anos.

Leia mais

Calcule a área e o perímetro da superfície S. Calcule o volume do tronco de cone indicado na figura 1.

Calcule a área e o perímetro da superfície S. Calcule o volume do tronco de cone indicado na figura 1. 1. (Unesp 017) Um cone circular reo de gerariz medindo 1 cm e raio da base medindo 4 cm foi seccionado por um plano paralelo à sua base, gerando um ronco de cone, como mosra a figura 1. A figura mosra

Leia mais

Exercícios Sobre Oscilações, Bifurcações e Caos

Exercícios Sobre Oscilações, Bifurcações e Caos Exercícios Sobre Oscilações, Bifurcações e Caos Os ponos de equilíbrio de um modelo esão localizados onde o gráfico de + versus cora a rea definida pela equação +, cuja inclinação é (pois forma um ângulo

Leia mais

COMO CONHECER A DISTRIBUIÇÃO DE TEMPERATURA

COMO CONHECER A DISTRIBUIÇÃO DE TEMPERATURA ESUDO DA CONDUÇÃO DE CALOR OBJEIVOS - Deerminar a disribuição de emperaura em um meio - Calcular o fluo de calor usando a Lei de Fourier Aplicações: - Conhecer a ineridade esruural de um meio em aluns

Leia mais

QUESTÃO 60 DA CODESP

QUESTÃO 60 DA CODESP UEÃO 60 D CODE - 0 êmpera é um ipo de raameno érmico uilizado para aumenar a dureza de peças de aço respeio da êmpera, é correo afirmar: ) a êmpera modifica de maneira uniforme a dureza da peça, independenemene

Leia mais

Instalações Térmicas. 3º ano 6º semestre Aula 4

Instalações Térmicas. 3º ano 6º semestre Aula 4 Insalações Térmicas 3º ano 6º semesre Aula 4 2 Aula 4: Poder calorífico, Enalpia da combusão e Temperaura Teórica de combusão Prof. Douor Engº Jorge Nhambiu Insalações Térmicas Prof. Douor Engº Jorge Nhambiu

Leia mais

Processos de Markov. Processos de Markov com tempo discreto Processos de Markov com tempo contínuo. com tempo discreto. com tempo contínuo

Processos de Markov. Processos de Markov com tempo discreto Processos de Markov com tempo contínuo. com tempo discreto. com tempo contínuo Processos de Markov Processos sem memória : probabilidade de X assumir um valor fuuro depende apenas do esado aual (desconsidera esados passados). P(X n =x n X =x,x 2 =x 2,...,X n- =x n- ) = P(X n =x n

Leia mais

EXERCICIOS DE APROFUNDAMENTO MATEMÁTICA LOGARITMOS 2015

EXERCICIOS DE APROFUNDAMENTO MATEMÁTICA LOGARITMOS 2015 EXERCICIOS DE APROFUNDAMENTO MATEMÁTICA LOGARITMOS 05. (Ia 05) Considere as seguines afirmações sobre números reais: I. Se a expansão decimal de x é infinia e periódica, enão x é um número racional. II..

Leia mais

MODELOS USADOS EM QUÍMICA: CINÉTICA NO NÍVEL SUPERIOR. Palavras-chave: Modelos; Cinética Química; Compostos de Coordenação.

MODELOS USADOS EM QUÍMICA: CINÉTICA NO NÍVEL SUPERIOR. Palavras-chave: Modelos; Cinética Química; Compostos de Coordenação. MDELS USADS EM QUÍMICA: CINÉTICA N NÍVEL SUPERIR André Luiz Barboza Formiga Deparameno de Química Fundamenal, Insiuo de Química, Universidade de São Paulo. C.P. 6077, CEP 05513-970, São Paulo, SP, Brasil.

Leia mais

Cálculo do valor em risco dos ativos financeiros da Petrobrás e da Vale via modelos ARMA-GARCH

Cálculo do valor em risco dos ativos financeiros da Petrobrás e da Vale via modelos ARMA-GARCH Cálculo do valor em risco dos aivos financeiros da Perobrás e da Vale via modelos ARMA-GARCH Bruno Dias de Casro 1 Thiago R. dos Sanos 23 1 Inrodução Os aivos financeiros das companhias Perobrás e Vale

Leia mais

Estando o capacitor inicialmente descarregado, o gráfico que representa a corrente i no circuito após o fechamento da chave S é:

Estando o capacitor inicialmente descarregado, o gráfico que representa a corrente i no circuito após o fechamento da chave S é: PROCESSO SELETIVO 27 2 O DIA GABARITO 1 13 FÍSICA QUESTÕES DE 31 A 45 31. Considere o circuio mosrado na figura abaixo: S V R C Esando o capacior inicialmene descarregado, o gráfico que represena a correne

Leia mais

30/08/15' Incerteza- Padrão. Repetitividade. Estimativa da Repetitividade (para 95,45% de probabilidade) Estimativa da Repetitividade

30/08/15' Incerteza- Padrão. Repetitividade. Estimativa da Repetitividade (para 95,45% de probabilidade) Estimativa da Repetitividade Incereza- Padrão Repeiividade! A incereza padrão corresponde ao desvio-padrão (esimaiva do desvio-padrão da população) e deve ser associado a ela o número de graus de liberdade (reflee o grau de segurança

Leia mais

4 Análise de Sensibilidade

4 Análise de Sensibilidade 4 Análise de Sensibilidade 4.1 Considerações Gerais Conforme viso no Capíulo 2, os algorimos uilizados nese rabalho necessiam das derivadas da função objeivo e das resrições em relação às variáveis de

Leia mais

Função de risco, h(t) 3. Função de risco ou taxa de falha. Como obter a função de risco. Condições para uma função ser função de risco

Função de risco, h(t) 3. Função de risco ou taxa de falha. Como obter a função de risco. Condições para uma função ser função de risco Função de risco, h() 3. Função de risco ou axa de falha Manuenção e Confiabilidade Prof. Flavio Fogliao Mais imporane das medidas de confiabilidade Traa-se da quanidade de risco associada a uma unidade

Leia mais

4 O modelo econométrico

4 O modelo econométrico 4 O modelo economérico O objeivo desse capíulo é o de apresenar um modelo economérico para as variáveis financeiras que servem de enrada para o modelo esocásico de fluxo de caixa que será apresenado no

Leia mais

3 LTC Load Tap Change

3 LTC Load Tap Change 54 3 LTC Load Tap Change 3. Inrodução Taps ou apes (ermo em poruguês) de ransformadores são recursos largamene uilizados na operação do sisema elérico, sejam eles de ransmissão, subransmissão e disribuição.

Leia mais

INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas.

INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas. SIMULADO DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - JULHO DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES de 0 a

Leia mais

REMOÇÃO DE RESÍDUOS DE EFLUENTES TEXTEIS UTILIZANDO PROCESSO DE ADSORÇÃO CONTÍNUA COM BAGAÇO DE LARANJA COMO ADSORVENTE

REMOÇÃO DE RESÍDUOS DE EFLUENTES TEXTEIS UTILIZANDO PROCESSO DE ADSORÇÃO CONTÍNUA COM BAGAÇO DE LARANJA COMO ADSORVENTE REMOÇÃO DE RESÍDUOS DE EFLUENTES TEXTEIS UTILIZANDO PROCESSO DE ADSORÇÃO CONTÍNUA COM BAGAÇO DE LARANJA COMO ADSORVENTE Ivo Junior Trevisan, 2 Leila Denise Fiorenin Ferrari, 3 Luis Eduardo Rosin, 4 Nehemias

Leia mais

*UiILFRGH&RQWUROH(:0$

*UiILFRGH&RQWUROH(:0$ *UiILFRGH&RQWUROH(:$ A EWMA (de ([SRQHQWLDOO\:HLJKWHGRYLQJ$YHUDJH) é uma esaísica usada para vários fins: é largamene usada em méodos de esimação e previsão de séries emporais, e é uilizada em gráficos

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar Progressão Ariméica e Progressão Geomérica. (Pucrj 0) Os números a x, a x e a x esão em PA. A soma dos números é igual a: a) 8 b) c) 7 d) e) 0. (Fuves 0) Dadas as sequências an n n, n n cn an an b, e b

Leia mais

4 CER Compensador Estático de Potência Reativa

4 CER Compensador Estático de Potência Reativa 68 4 ompensador Esáico de Poência Reaiva 4.1 Inrodução ompensadores esáicos de poência reaiva (s ou Saic var ompensaors (Ss são equipamenos de conrole de ensão cuja freqüência de uso em aumenado no sisema

Leia mais

Termodinâmica Espontânea = tem tendência a evoluir. Cinética Velocidade = probabilidade de dar produtos. Gº r = 2.84 kj/mol

Termodinâmica Espontânea = tem tendência a evoluir. Cinética Velocidade = probabilidade de dar produtos. Gº r = 2.84 kj/mol AULA CNÉTCA QUÍMCA 1- RELAÇÃO CNÉTCA/EQULÍBRO 2- VELOCDADE DE UMA REACÇÃO 3- REACÇÕES ELEMENTARES. MOLECULARDADE 4- TEORA COLSONAL. DEPENDÊNCA DA TEMPERATURA 5- APROXMAÇÃO EXPERMENTAL. ORDEM DE UMA REACÇÃO.

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar . (Pucrj 0) Os números a x, a x e a3 x 3 esão em PA. A soma dos 3 números é igual a: é igual a e o raio de cada semicírculo é igual à meade do semicírculo anerior, o comprimeno da espiral é igual a a)

Leia mais

Função Logarítmica - Questões Extras

Função Logarítmica - Questões Extras Função Logarímica - uesões Exras Exercícios 1. (Unifor 01) Após acionar um flash de uma câmera, a baeria imediaamene começa a recarregar o capacior do flash, o qual armazena uma carga elérica dada por

Leia mais

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON)

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON) TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 8 LIVRO DO NILSON). CONSIDERAÇÕES INICIAIS SÉRIES DE FOURIER: descrevem funções periódicas no domínio da freqüência (ampliude e fase). TRANSFORMADA DE FOURIER:

Leia mais

Universidade de São Paulo

Universidade de São Paulo Universidade de São Paulo 0 1 2 Instituto de Física 4323201 Física Experimental A Equipe 1)... função...turma:... 2)... função...data:... 3)... função...mesa n o :... EXP6- Lei de Resfriamento de Newton

Leia mais

Capítulo 3 Derivada. 3.1 Reta Tangente e Taxa de Variação

Capítulo 3 Derivada. 3.1 Reta Tangente e Taxa de Variação Inrodução ao Cálculo Capíulo Derivada.1 Rea Tangene e Taxa de Variação Exemplo nr. 1 - Uma parícula caminha sobre uma rajeória qualquer obedecendo à função horária: s() 5 + (s em meros, em segundos) a)

Leia mais

QUESTÕES DISCURSIVAS. Questão 1. Questão 2. Questão 3. Resposta. Resposta

QUESTÕES DISCURSIVAS. Questão 1. Questão 2. Questão 3. Resposta. Resposta QUESTÕES DISCURSIVAS Quesão a) O piso de uma sala reangular de 00 dm de comprimeno por 0 dm de largura vai ser revesido com placas quadradas, as maiores possíveis. Qual é a área de cada uma? b) Sobre uma

Leia mais

3 Retorno, Marcação a Mercado e Estimadores de Volatilidade

3 Retorno, Marcação a Mercado e Estimadores de Volatilidade eorno, Marcação a Mercado e Esimadores de Volailidade 3 3 eorno, Marcação a Mercado e Esimadores de Volailidade 3.. eorno de um Aivo Grande pare dos esudos envolve reorno ao invés de preços. Denre as principais

Leia mais

Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas

Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas Sinais e Sisemas Série de Fourier Renao Dourado Maia Universidade Esadual de Mones Claros Engenharia de Sisemas Inrodução A Série e a Inegral de Fourier englobam um dos desenvolvimenos maemáicos mais produivos

Leia mais

UNIVERSIDADE DE SÃO PAULO ENGENHARIA QUÍMICA LOQ4085 OPERAÇÕES UNITÁRIAS I

UNIVERSIDADE DE SÃO PAULO ENGENHARIA QUÍMICA LOQ4085 OPERAÇÕES UNITÁRIAS I UNIVERSIDADE DE SÃO PAULO ENGENHARIA QUÍMICA LOQ4085 OPERAÇÕES UNITÁRIAS I Profa. Lívia Chaguri E-mail: lchaguri@usp.br Coneúdo Filração Pare 1 - Mecanismos de filração - Perda de carga relaiva à ora formada

Leia mais

4 O Papel das Reservas no Custo da Crise

4 O Papel das Reservas no Custo da Crise 4 O Papel das Reservas no Cuso da Crise Nese capíulo buscamos analisar empiricamene o papel das reservas em miigar o cuso da crise uma vez que esa ocorre. Acrediamos que o produo seja a variável ideal

Leia mais

P3 - PROVA DE QUÍMICA GERAL -25/11/06

P3 - PROVA DE QUÍMICA GERAL -25/11/06 P3 - PROVA DE QUÍMICA GERAL -5//06 Nome: Nº de Marícula: GABARIO urma: Assinaura: Grau Quesão Valor Revisão a,5 a,5 3 a,5 4 a,5 oal 0,0 Consanes F 96500 C mol - C x V J R 8,34 J mol - K - 0,08 am L K -

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031 Universidade Federal do io Grande do Sul Escola de Engenharia de Poro Alegre Deparameno de Engenharia Elérica ANÁLISE DE CICUITOS II - ENG43 Aula 5 - Condições Iniciais e Finais de Carga e Descarga em

Leia mais

CAPÍTULO 8. v G G. r G C. Figura Corpo rígido C com centro de massa G.

CAPÍTULO 8. v G G. r G C. Figura Corpo rígido C com centro de massa G. 7 CÍTULO 8 DINÂMIC DO MOVIMENTO LNO DE COROS RÍIDOS IMULSO E QUNTIDDE DE MOVIMENTO Nese capíulo será analisada a lei de Newon apresenada nua ra fora inegral. Nesa fora inegra-se a lei de Newon dada por

Leia mais

3 Metodologia 3.1. O modelo

3 Metodologia 3.1. O modelo 3 Meodologia 3.1. O modelo Um esudo de eveno em como obeivo avaliar quais os impacos de deerminados aconecimenos sobre aivos ou iniciaivas. Para isso são analisadas as diversas variáveis impacadas pelo

Leia mais

Capítulo 2: Conceitos Fundamentais sobre Circuitos Elétricos

Capítulo 2: Conceitos Fundamentais sobre Circuitos Elétricos SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA TE041 Circuios Eléricos I Prof. Ewaldo L. M. Mehl Capíulo 2: Conceios Fundamenais sobre Circuios Eléricos 2.1. CARGA ELÉTRICA E CORRENTE ELÉTRICA

Leia mais

Equações Simultâneas. Aula 16. Gujarati, 2011 Capítulos 18 a 20 Wooldridge, 2011 Capítulo 16

Equações Simultâneas. Aula 16. Gujarati, 2011 Capítulos 18 a 20 Wooldridge, 2011 Capítulo 16 Equações Simulâneas Aula 16 Gujarai, 011 Capíulos 18 a 0 Wooldridge, 011 Capíulo 16 Inrodução Durane boa pare do desenvolvimeno dos coneúdos desa disciplina, nós nos preocupamos apenas com modelos de regressão

Leia mais

Prof. Josemar dos Santos

Prof. Josemar dos Santos Engenharia Mecânica - FAENG Sumário SISTEMAS DE CONTROLE Definições Básicas; Exemplos. Definição; ; Exemplo. Prof. Josemar dos Sanos Sisemas de Conrole Sisemas de Conrole Objeivo: Inroduzir ferramenal

Leia mais

Primeira Lista de Exercícios

Primeira Lista de Exercícios TP30 Modulação Digial Prof.: MSc. Marcelo Carneiro de Paiva Primeira Lisa de Exercícios Caracerize: - Transmissão em Banda-Base (apresene um exemplo de especro de ransmissão). - Transmissão em Banda Passane

Leia mais

MACROECONOMIA DO DESENVOLVIMENTO PROFESSOR JOSÉ LUIS OREIRO PRIMEIRA LISTA DE QUESTÕES PARA DISCUSSÃO

MACROECONOMIA DO DESENVOLVIMENTO PROFESSOR JOSÉ LUIS OREIRO PRIMEIRA LISTA DE QUESTÕES PARA DISCUSSÃO MACROECONOMIA DO DESENVOLVIMENTO PROFESSOR JOSÉ LUIS OREIRO PRIMEIRA LISTA DE QUESTÕES PARA DISCUSSÃO 1 Quesão: Um fao esilizado sobre a dinâmica do crescimeno econômico mundial é a ocorrência de divergências

Leia mais

Profa. Livia Jatobá. Introdução à CFD usando o OpenFOAM

Profa. Livia Jatobá. Introdução à CFD usando o OpenFOAM Profa. Livia Jaobá Inrodução à CFD usando o OpenFOAM O que é CFD? Compuaional Fluid Dynamics ou Dinâmica dos Fluidos Compuacional É a solução numérica das equações que governam o escoameno de fluidos.

Leia mais

RASCUNHO. a) 120º10 b) 95º10 c) 120º d) 95º e) 110º50

RASCUNHO. a) 120º10 b) 95º10 c) 120º d) 95º e) 110º50 ª QUESTÃO Uma deerminada cidade organizou uma olimpíada de maemáica e física, para os alunos do º ano do ensino médio local. Inscreveramse 6 alunos. No dia da aplicação das provas, consaouse que alunos

Leia mais

Exercícios de torção livre em seção circular fechada - prof. Valério SA Universidade de São Paulo - USP

Exercícios de torção livre em seção circular fechada - prof. Valério SA Universidade de São Paulo - USP São Paulo, dezembro de 2015. 1) a. Deerminar a dimensão a de modo a se er a mesma ensão de cisalhameno máxima nos rechos B-C e C-D. b. Com al dimensão pede-se a máxima ensão de cisalhameno no recho A-B.

Leia mais

Cinemática Vetorial Movimento Retilíneo. Movimento. Mecânica : relaciona força, matéria e movimento

Cinemática Vetorial Movimento Retilíneo. Movimento. Mecânica : relaciona força, matéria e movimento Fisica I - IO Cinemáica Veorial Moimeno Reilíneo Prof. Crisiano Olieira Ed. Basilio Jafe sala crislpo@if.usp.br Moimeno Mecânica : relaciona força, maéria e moimeno Cinemáica : Pare da mecânica que descree

Leia mais

ROTEIRO DE CÁLCULO. Este roteiro de cálculo se aplica ao projeto de trocadores de calor casco e tubos, sem mudança de fase

ROTEIRO DE CÁLCULO. Este roteiro de cálculo se aplica ao projeto de trocadores de calor casco e tubos, sem mudança de fase ROEIRO DE CÁLCULO Ese roeiro de cálculo se aplica ao projeo de rocadores de calor casco e ubos, sem mudança de fase . Deerminar qual fluido passa pelo ubo e qual passa pelo casco. Diferença de emperauras

Leia mais

Versão preliminar serão feitas correções em sala de aula 1

Versão preliminar serão feitas correções em sala de aula 1 Versão preinar serão feias correções em sala de aula 7.. Inrodução Dependendo das condições de soliciação, o maerial pode se enconrar sob diferenes esados mecânicos. Quando as cargas (exernas) são pequenas

Leia mais

Biofísica II Turma de Biologia FFCLRP USP Prof. Antônio Roque Biologia de Populações 2 Modelos não-lineares. Modelos Não-Lineares

Biofísica II Turma de Biologia FFCLRP USP Prof. Antônio Roque Biologia de Populações 2 Modelos não-lineares. Modelos Não-Lineares Modelos Não-Lineares O modelo malhusiano prevê que o crescimeno populacional é exponencial. Enreano, essa predição não pode ser válida por um empo muio longo. As funções exponenciais crescem muio rapidamene

Leia mais

2.ª AULA Representação gráfica de sinais Rampa unitária, Impulso unitário e Escalão unitário

2.ª AULA Representação gráfica de sinais Rampa unitária, Impulso unitário e Escalão unitário Insiuo Poliécnico de Seúbal Engenharia Elecroécnica Conrolo.ª AULA Represenação gráfica de sinais Rampa uniária, Impulso uniário e Escalão uniário Docene Prof.ª Sónia Marques Insiuo Poliécnico de Seúbal

Leia mais

ONDAS ELETROMAGNÉTICAS

ONDAS ELETROMAGNÉTICAS LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS A propagação de ondas eleromagnéicas ocorre quando um campo elérico variane no empo produ um campo magnéico ambém variane no empo, que por sua ve produ um campo

Leia mais

= + 3. h t t. h t t. h t t. h t t MATEMÁTICA

= + 3. h t t. h t t. h t t. h t t MATEMÁTICA MAEMÁICA 01 Um ourives possui uma esfera de ouro maciça que vai ser fundida para ser dividida em 8 (oio) esferas menores e de igual amanho. Seu objeivo é acondicionar cada esfera obida em uma caixa cúbica.

Leia mais

FÍSICA II. Estudo de circuitos RC em corrente contínua

FÍSICA II. Estudo de circuitos RC em corrente contínua FÍSICA II GUIA DO 2º TRABALHO LABORATORIAL Esudo de circuios RC em correne conínua OBJECTIVOS Preende-se com ese rabalho que os alunos conacem com um circuio elécrico conendo resisências, condensadores

Leia mais

Tecnologia alternativa para construção de habitação de interesse social com painéis pré-fabricados de concreto armado

Tecnologia alternativa para construção de habitação de interesse social com painéis pré-fabricados de concreto armado Tecnologia alernaiva para consrução de habiação de ineresse social com painéis pré-fabricados de concreo armado Eleandro Cao Thaís L. Provenzano Fernando Barh 3 Programa de Pós-graduação em Arquieura e

Leia mais