AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM"

Transcrição

1 AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM

2

3 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM Inrodução Na Seção 9.2 foi falado sobre os Parâmeros de Core e afirmou-se que quão pequena (operações de desbase) ou quão grande (em operações de acabameno) deve ser a velocidade de core, depois de escolhidos o avanço e a profundidade de core, depende das Considerações Econômicas do Processo de Usinagem. Se a velocidade de core uilizada for imediaamene superior à velocidade críica v cr (velocidade abaixo da qual se em a formação da aresa posiça de core), os desgases serão pequenos, com consequene longo empo de vida e pequenos cusos com ferramenas de core. Porém, o empo de core por peça será alo (devido à baixa velocidade), acarreando baixa produção horária e aumeno de cusos com uilização de máquina e operador. Há que se considerar aqui que, nese caso, a ferramena será subsiuída poucas vezes, o que diminui os empos passivos devido à roca da ferramena. Por ouro lado, se a velocidade de core uilizada for muio superior à v cr, os desgases serão grandes, com consequene curo empo de vida e alos cusos com ferramenas. Porém, o empo de core por peça vai ser baixo, acarreando menor uilização da máquina e do operador, com cusos menores. Nesse caso pode aconecer ambém de a vida ser ão baixa e o número de vezes que se em de parar a máquina para subsiuir a ferramena ser ão alo que ambém o empo oal de produção de uma peça (que soma, aos empos de core, odos os empos passivos) seja alo, apesar do pequeno empo de core. Exise enão um valor inermediário de velocidade enre a velocidade críica e uma velocidade muio superior a ela, onde se em os menores cusos de produção. Nesse pono, a velocidade de core é chamada de velocidade de mínimo cuso (v co ). Por ouro lado, exise ambém um valor inermediário de velocidade, onde se em o menor empo oal de fabricação de uma peça. Nesse pono, a velocidade de core é chamada de velocidade de máxima produção (v cmxp ). Toda essa análise não leva em consideração as condições de conorno do processo, como qualidade da peça, condições do sisema máquina/ferramena/peça ec Ciclos e Tempos de Usinagem O ciclo de usinagem de usinagem de uma peça, perencene a um loe de Z peças, é consiuído direamene pelas seguines fases: 1. Colocação e fixação da peça. 2. Aproximação e posicionameno da ferramena. 3. Core 4. Afasameno da ferramena. 5. Inspeção (se necessária) e reirada da peça. Além dessas fases, omam pare indireamene no ciclo de usinagem (para um loe de Z peças): a) Preparo da máquina. b) Remoção da ferramena para sua subsiuição. c) Recolocação e ajusagem da nova ferramena.

4 164 O empo oal de usinagem de uma peça ( ), denro de um loe de Z peças, será: c 1 2 (22.1) Considera-se o orneameno cilíndrico (longiudinal) exerno (Fig. 22.1). Figura 22.1 Esquema de uma operação de orneameno cilíndrico exerno. Para esse caso, em-se o seguine equacionameno: c empo de core (fase 3), que diminui com o aumeno da velocidade de core (v c ), Equação (5.4): Vide Aula 19: c Lf Lf d Lf v f n 1000 f v f c (19.4) 1 empo improduivo, referene à colocação, inspeção e reirada da peça, aproximação e afasameno da ferramena, subsiuição da ferramena e preparo da máquina para a usinagem de um loe, que é independene de v c, Equação (5.22): p f 1 s a (22.2) Z Em que: s empo secundário (fases 1 e 5) a empo de posicionameno (fases 2 e 4) p empo de preparação ou seup (fase a) f empo de ajuse da ferramena (fases b e c) 2 empo relacionado com a roca da ferramena, Equação (22.3). Quano maior v c, menor o empo de vida da ferramena (T) (vide Eq. 21.4) e maior o número de paradas da máquina para a subsiuição da mesma. d L d L v x1 f f f f c 2 c x T 1000 f vc vc 1000 f (22.3) Subsiuindo as Equações (19.4), (22.2) e (22.3) na Equação (22.1), em-se:

5 165 d L d L v v 1000 f 1000 f f 1 f f x1 c 1 c (22.4) A Figura 22.2 represena a variação das rês parcelas da Equação (22.1) em função da velocidade de core. Vê-se na figura que o empo de core ( c ) diminui com o crescimeno da velocidade de core, o empo 1 é independene da velocidade de core e o empo 2, relaivo à roca da ferramena, aumena com a velocidade de core. Figura 22.2 Tempo de produção por peça em função da velocidade de core. O valor da velocidade de máxima produção (mínimo empo de produção) é o pono de mínimo da função expressa na Equação (22.4). Admiindo-se o avanço (f) e a profundidade de core (a p ) consanes, a velocidade de core de máxima produção (v cmxp ) é dada por: x 1 f d d L d L dvc 1000 f 1000 f f 2 f f x 2 x 0 vc x 1 vc 0 1 vc v cmxp x x 1 f (22.5) Cusos de Produção Para a deerminação da velocidade econômica de core (velocidade de mínimo cuso de produção de uma peça), devem-se considerar apenas os cusos referenes ao processo propriamene dio (despesas com ferramenas e com a ocupação de máquinas e operadores). Assim, eses cusos são dados por: onde: p C1 p1 p2 (22.6) C 1 consane independene da velocidade de core [R$/peça], Equação (22.7):

6 166 1 C C 60 Z (22.7) em que: C 2 soma das despesas com mão-de-obra (S h ) e com máquina (S m ) [R$/peça]: C2 Sh Sm p1 cuso relaivo ao processo de usinagem, Equação (22.8): C d L C c f p f vc (22.8) p2 cuso relacionado com a roca da ferramena, Equação (22.9): d L v C C T 1000 f x1 c f c p2 3 3 (22.9) em que: C 3 consane de cuso relaivo à ferramena [R$/peça]: C f C 60 3 f 2 f cuso da ferramena (ou aresa de core de pasilha inercambiável) por vida. Subsiuindo as Equações (22.7), (22.8) e (22.9) na Equação (22.6), em-se: d L C d L C C v v f 1000 f f 2 1 f 3 x1 p 1 c c (22.10) O cuso de usinagem de uma peça ( p ) se compõe de 3 parcelas, mosradas na Figura A primeira C 1 independe da velocidade de core (v c ). A segunda ( p1 ) diminui à medida que v c cresce. A erceira ( p2 ) aumena com o crescimeno de v c, já que o expoene (x1) é sempre posiivo. Figura 22.3 Cuso de produção por peça em função da velocidade de core.

7 167 O valor mínimo de p (admiindo-se f e a p consanes) é obido quando a derivada da Equação (22.11) em função da velocidade de core for nula. Assim: d d L C d L C C x 1 C dv 1000 f f 60 p f 2 2 f 3 x x 0 vc x 1 vc 0 vc c v co x C2 60 x 1 C 3 (22.11) Inervalo de Máxima Eficiência A Figura 22.4 mosra o gráfico das curvas de cuso oal de usinagem por peça ( p ) e de empo oal de confecção ( ) de uma peça em função da velocidade de core (v c ). Define-se Inervalo de Máxima Eficiência (IME) o inervalo de valores de velocidade de core compreendido enre v co e v cmxp. Figura 22.4 Inervalo de máxima eficiência (IME) É muio imporane que os valores de v c a serem uilizados realmene esejam nese inervalo. Por exemplo, se a v c uilizada esiver logo abaixo de v co (porano, fora do IME), o cuso da peça usinada vai ser bem próximo do mínimo, mas o empo para fabricá-la vai ser bem alo. Como pode ser viso na Figura 22.4, exise ouro valor de v c, denro do IME, onde o cuso da peça é idênico, mas o seu empo de fabricação é bem menor. O mesmo se pode falar do ouro exremo do IME. Se o valor de v c for logo acima do valor de v cmxp (e assim, fora do IME), o empo de confecção de uma peça é bem próximo do mínimo, mas o seu cuso de fabricação é alo. Analogamene, pode-se ver que há ouro valor de v c denro do IME para o qual o empo de fabricação é idênico, mas o seu cuso é bem menor. Vale ressalar que oda a análise feia foi baseada na escolha prévia de f, de a p e da ferramena. Essas escolhas devem ser feias baseados nas condições de conorno do processo, ais como: ipo da operação (desbase ou acabameno), poência da máquina, rigidez do sisema máquina/ferramena/peça ec., conforme já foi discuido na Pare 1 da disciplina. Para concluir, deve-se afirmar um princípio que nem sempre é bem enendido no meio produivo, que resula da análise feia acima:

8 168 Nem sempre aumenar a velocidade de core significa aumenar a produção horária de peças, e nem sempre diminuir a velocidade de core significa diminuir os cusos de produção Considerações sobre a escolha da velocidade de core denro do IME Sabe-se que a velocidade de core a ser escolhida deve esar denro do IME. Porém, devem-se analisar quais são as circunsâncias em que a velocidade deve se aproximar da v cmxp ou da v co. Em um período de ala produção, em que o prazo de enrega do produo é críico, a velocidade deve se aproximar da v cmxp (nunca ser maior que ela), enquano que em um período de baixa produção, a velocidade deve ser aproximar da v co (nunca ser menor que ela). Enreano, essa mudança baseada na siuação produiva raramene aconece na práica. Em uma célula ou linha de produção, a máquina gargalo (aquela que em o maior empo padrão) deve rabalhar com velocidade próxima à v cmxp, enquano que as demais máquinas devem rabalhar com velocidade próxima à v co. O fao de usar a condição de máxima produção em uma máquina gargalo de uma célula aumena o consumo de ferramenas naquela máquina. Mas, ao propiciar a diminuição do empo de produção de uma peça nesa máquina, pode-se dispensar a necessidade de adquirir uma máquina idênica para se balancear a célula. Na maior pare dos sisemas produivos, é fácil se esimar o valor da v cmxp, já que esa só depende das consanes e x de Taylor e do empo de roca da ferramena ( f ); porém, não é ão fácil saber o valor de v co, pois esa depende de faores que esão coninuamene variando e, além disso, são de deerminação pouco precisa. Nesses sisemas, o que normalmene se faz é deerminar v cmxp e rabalhar sempre em velocidades de core um pouco abaixo dela. Assim, fica garanido que al velocidade perence ao IME, pois v cmxp é sempre maior que v co Uilização do IME denro dos modernos sisemas de fabricação O equacionameno apresenado na presene aula foi desenvolvido na época em que a produção de bens normalmene era realizada em loes basane grandes, com máquinas mecanicamene auomaizadas e com empos de preparação basane grandes. Hoje os paradigmas se aleram significaivamene. Duas condições servem de exemplo: as máquinas modernas possibiliam um empo de roca de ferramena ( f ) basane baixo ou mesmo zero (em cenros de usinagem, a subsiuição de uma ferramena é feia quando oura ferramena ainda esá usinando a peça) e os loes são cada vez menores (usina-se odo o loe sem que a ferramena seja rocada). Segue a análise de ambos. a) f 0. De acordo com a Equação (22.5), v cmxp. A condição real de máxima produção deverá enão levar em cona a poência e a roação do eixo-árvore da máquina-ferramena, a rigidez do sisema máquina/ferramena/peça e a qualidade exigida na peça. Pode ocorrer nesses casos de a v cmxp se disanciar basane da v co, ornando o cuso de se rabalhar no empo mínimo de produção muio alo. Isso aconece principalmene quando a ferramena em um cuso elevado. b) Z 0 e/ou T. Nese caso, a uilização da equação de Taylor (Eq. 21.4) fica prejudicada e oda a modelagem feia nesa aula carece de abordagem especial. Um recurso para siuações em que se em pequenos loes de peças é agrupar as peças que possuem o mesmo maerial, formas e dimensões basane semelhanes em famílias usando Tecnologia de Grupo (vide Seção 5.2.4), e considerar as famílias como se fossem um único loe, com um número de peças suficienemene grande para a aplicação do exposo na presene aula.

Exercícios sobre o Modelo Logístico Discreto

Exercícios sobre o Modelo Logístico Discreto Exercícios sobre o Modelo Logísico Discreo 1. Faça uma abela e o gráfico do modelo logísico discreo descrio pela equação abaixo para = 0, 1,..., 10, N N = 1,3 N 1, N 0 = 1. 10 Solução. Usando o Excel,

Leia mais

SEM 0534 Processos de Fabricação Mecânica. Professor: Renato Goulart Jasinevicius

SEM 0534 Processos de Fabricação Mecânica. Professor: Renato Goulart Jasinevicius SEM 0534 Proessos de Fabriação Meânia Professor: Renao Goular Jasineviius SEM 0534 Proessos de Fabriação Meânia Eonomia da Usinagem Condições eonômias de ore CÁLCULO DA VELOCIDADE DE MÁXIMA PRODUÇÃO (Vmxp)

Leia mais

Economia da Usinagem

Economia da Usinagem UDESC Universidade do Esado de Sana Caarina FEJ Faculdade de Engenharia de Joinville Economia da Usinagem Prof. Régis Scalice DEPS Deparameno de Engenharia de Produção e Sisemas Processo de definição econômica

Leia mais

CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA

CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA Inrodução Ese arigo raa de um dos assunos mais recorrenes nas provas do IME e do ITA nos úlimos anos, que é a Cinéica Química. Aqui raamos principalmene dos

Leia mais

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL42 Coneúdo 8 - Inrodução aos Circuios Lineares e Invarianes...1 8.1 - Algumas definições e propriedades gerais...1 8.2 - Relação enre exciação

Leia mais

Tópicos Especiais em Energia Elétrica (Projeto de Inversores e Conversores CC-CC)

Tópicos Especiais em Energia Elétrica (Projeto de Inversores e Conversores CC-CC) Deparameno de Engenharia Elérica Tópicos Especiais em Energia Elérica () ula 2.2 Projeo do Induor Prof. João mérico Vilela Projeo de Induores Definição do úcleo a Fig.1 pode ser observado o modelo de um

Leia mais

Modelos de Crescimento Endógeno de 1ªgeração

Modelos de Crescimento Endógeno de 1ªgeração Teorias do Crescimeno Económico Mesrado de Economia Modelos de Crescimeno Endógeno de 1ªgeração Inrodução A primeira geração de modelos de crescimeno endógeno ena endogeneiar a axa de crescimeno de SSG

Leia mais

3 LTC Load Tap Change

3 LTC Load Tap Change 54 3 LTC Load Tap Change 3. Inrodução Taps ou apes (ermo em poruguês) de ransformadores são recursos largamene uilizados na operação do sisema elérico, sejam eles de ransmissão, subransmissão e disribuição.

Leia mais

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara Insiuo de Física USP Física V - Aula 6 Professora: Mazé Bechara Aula 6 Bases da Mecânica quânica e equações de Schroedinger. Aplicação e inerpreações. 1. Ouros posulados da inerpreação de Max-Born para

Leia mais

Circuitos Elétricos I EEL420

Circuitos Elétricos I EEL420 Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL420 Coneúdo 1 - Circuios de primeira ordem...1 1.1 - Equação diferencial ordinária de primeira ordem...1 1.1.1 - Caso linear, homogênea, com

Leia mais

Aplicações à Teoria da Confiabilidade

Aplicações à Teoria da Confiabilidade Aplicações à Teoria da ESQUEMA DO CAPÍTULO 11.1 CONCEITOS FUNDAMENTAIS 11.2 A LEI DE FALHA NORMAL 11.3 A LEI DE FALHA EXPONENCIAL 11.4 A LEI DE FALHA EXPONENCIAL E A DISTRIBUIÇÃO DE POISSON 11.5 A LEI

Leia mais

Voo Nivelado - Avião a Hélice

Voo Nivelado - Avião a Hélice - Avião a Hélice 763 º Ano da icenciaura em ngenharia Aeronáuica edro. Gamboa - 008. oo de ruzeiro De modo a prosseguir o esudo analíico do desempenho, é conveniene separar as aeronaves por ipo de moor

Leia mais

Lista de Exercícios nº 3 - Parte IV

Lista de Exercícios nº 3 - Parte IV DISCIPLINA: SE503 TEORIA MACROECONOMIA 01/09/011 Prof. João Basilio Pereima Neo E-mail: joaobasilio@ufpr.com.br Lisa de Exercícios nº 3 - Pare IV 1ª Quesão (...) ª Quesão Considere um modelo algébrico

Leia mais

Calcule a área e o perímetro da superfície S. Calcule o volume do tronco de cone indicado na figura 1.

Calcule a área e o perímetro da superfície S. Calcule o volume do tronco de cone indicado na figura 1. 1. (Unesp 017) Um cone circular reo de gerariz medindo 1 cm e raio da base medindo 4 cm foi seccionado por um plano paralelo à sua base, gerando um ronco de cone, como mosra a figura 1. A figura mosra

Leia mais

Seção 5: Equações Lineares de 1 a Ordem

Seção 5: Equações Lineares de 1 a Ordem Seção 5: Equações Lineares de 1 a Ordem Definição. Uma EDO de 1 a ordem é dia linear se for da forma y + fx y = gx. 1 A EDO linear de 1 a ordem é uma equação do 1 o grau em y e em y. Qualquer dependência

Leia mais

REDES DE PETRI EXEMPLOS E METODOLOGIA DE UTILIZAÇÃO

REDES DE PETRI EXEMPLOS E METODOLOGIA DE UTILIZAÇÃO Modelização de Sisemas Indusriais 3 REDES DE ETRI EXEMLOS E METODOLOGIA DE UTILIZAÇÃO As Rd êm a grande vanagem de nos permiir visualizar graficamene ceras relações e noções. Eis algumas das figuras de

Leia mais

Contabilometria. Séries Temporais

Contabilometria. Séries Temporais Conabilomeria Séries Temporais Fone: Corrar, L. J.; Theóphilo, C. R. Pesquisa Operacional para Decisão em Conabilidade e Adminisração, Ediora Alas, São Paulo, 2010 Cap. 4 Séries Temporais O que é? Um conjuno

Leia mais

Exercícios Sobre Oscilações, Bifurcações e Caos

Exercícios Sobre Oscilações, Bifurcações e Caos Exercícios Sobre Oscilações, Bifurcações e Caos Os ponos de equilíbrio de um modelo esão localizados onde o gráfico de + versus cora a rea definida pela equação +, cuja inclinação é (pois forma um ângulo

Leia mais

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Dinâmicos

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Dinâmicos Análise de Projecos ESAPL / IPVC Criérios de Valorização e Selecção de Invesimenos. Méodos Dinâmicos Criério do Valor Líquido Acualizado (VLA) O VLA de um invesimeno é a diferença enre os valores dos benefícios

Leia mais

Séries temporais Modelos de suavização exponencial. Séries de temporais Modelos de suavização exponencial

Séries temporais Modelos de suavização exponencial. Séries de temporais Modelos de suavização exponencial Programa de Pós-graduação em Engenharia de Produção Análise de séries de empo: modelos de suavização exponencial Profa. Dra. Liane Werner Séries emporais A maioria dos méodos de previsão se baseiam na

Leia mais

3 Retorno, Marcação a Mercado e Estimadores de Volatilidade

3 Retorno, Marcação a Mercado e Estimadores de Volatilidade eorno, Marcação a Mercado e Esimadores de Volailidade 3 3 eorno, Marcação a Mercado e Esimadores de Volailidade 3.. eorno de um Aivo Grande pare dos esudos envolve reorno ao invés de preços. Denre as principais

Leia mais

MATEMÁTICA APLICADA AO PLANEJAMENTO DA PRODUÇÃO E LOGÍSTICA. Silvio A. de Araujo Socorro Rangel

MATEMÁTICA APLICADA AO PLANEJAMENTO DA PRODUÇÃO E LOGÍSTICA. Silvio A. de Araujo Socorro Rangel MAEMÁICA APLICADA AO PLANEJAMENO DA PRODUÇÃO E LOGÍSICA Silvio A. de Araujo Socorro Rangel saraujo@ibilce.unesp.br, socorro@ibilce.unesp.br Apoio Financeiro: PROGRAMA Inrodução 1. Modelagem maemáica: conceios

Leia mais

4 Análise de Sensibilidade

4 Análise de Sensibilidade 4 Análise de Sensibilidade 4.1 Considerações Gerais Conforme viso no Capíulo 2, os algorimos uilizados nese rabalho necessiam das derivadas da função objeivo e das resrições em relação às variáveis de

Leia mais

ONDAS ELETROMAGNÉTICAS

ONDAS ELETROMAGNÉTICAS LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS A propagação de ondas eleromagnéicas ocorre quando um campo elérico variane no empo produ um campo magnéico ambém variane no empo, que por sua ve produ um campo

Leia mais

Função Exponencial 2013

Função Exponencial 2013 Função Exponencial 1 1. (Uerj 1) Um imóvel perde 6% do valor de venda a cada dois anos. O valor V() desse imóvel em anos pode ser obido por meio da fórmula a seguir, na qual V corresponde ao seu valor

Leia mais

Introdução às Medidas em Física

Introdução às Medidas em Física Inrodução às Medidas em Física 43152 Elisabeh Maeus Yoshimura emaeus@if.usp.br Bloco F Conjuno Alessandro Vola sl 18 agradecimenos a Nemiala Added por vários slides Conceios Básicos Lei Zero da Termodinâmica

Leia mais

Conceito. Exemplos. Os exemplos de (a) a (d) mostram séries discretas, enquanto que os de (e) a (g) ilustram séries contínuas.

Conceito. Exemplos. Os exemplos de (a) a (d) mostram séries discretas, enquanto que os de (e) a (g) ilustram séries contínuas. Conceio Na Esaísica exisem siuações onde os dados de ineresse são obidos em insanes sucessivos de empo (minuo, hora, dia, mês ou ano), ou ainda num período conínuo de empo, como aconece num elerocardiograma

Leia mais

4 Modelagem e metodologia de pesquisa

4 Modelagem e metodologia de pesquisa 4 Modelagem e meodologia de pesquisa Nese capíulo será apresenada a meodologia adoada nese rabalho para a aplicação e desenvolvimeno de um modelo de programação maemáica linear misa, onde a função-objeivo,

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031 Universidade Federal do io Grande do Sul Escola de Engenharia de Poro Alegre Deparameno de Engenharia Elérica ANÁLISE DE CICUITOS II - ENG43 Aula 5 - Condições Iniciais e Finais de Carga e Descarga em

Leia mais

Cap. 5 - Tiristores 1

Cap. 5 - Tiristores 1 Cap. 5 - Tirisores 1 Tirisor é a designação genérica para disposiivos que êm a caracerísica esacionária ensão- -correne com duas zonas no 1º quadrane. Numa primeira zona (zona 1) as correnes são baixas,

Leia mais

= tem apenas uma solução.

= tem apenas uma solução. scola ásica de Ribeirão (Sede) 9.º no Ficha de Trabalho Preparação TI_5 (maio 0) Maio 0 Nome: N.º: Turma: 0/0 H. Na Figura, esá represenada uma planificação de um cubo... Sabendo que H = 0 deermina o volume

Leia mais

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON)

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON) TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 8 LIVRO DO NILSON). CONSIDERAÇÕES INICIAIS SÉRIES DE FOURIER: descrevem funções periódicas no domínio da freqüência (ampliude e fase). TRANSFORMADA DE FOURIER:

Leia mais

Confiabilidade e Taxa de Falhas

Confiabilidade e Taxa de Falhas Prof. Lorí Viali, Dr. hp://www.pucrs.br/fama/viali/ viali@pucrs.br Definição A confiabilidade é a probabilidade de que de um sisema, equipameno ou componene desempenhe a função para o qual foi projeado

Leia mais

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL Movimeno unidimensional 5 MOVIMENTO UNIDIMENSIONAL. Inrodução Denre os vários movimenos que iremos esudar, o movimeno unidimensional é o mais simples, já que odas as grandezas veoriais que descrevem o

Leia mais

Experiência IV (aulas 06 e 07) Queda livre

Experiência IV (aulas 06 e 07) Queda livre Experiência IV (aulas 06 e 07) Queda livre 1. Objeivos. Inrodução 3. Procedimeno experimenal 4. Análise de dados 5. Quesões 6. Referências 1. Objeivos Nesa experiência, esudaremos o movimeno da queda de

Leia mais

3 A Formação de Preços dos Futuros Agropecuários

3 A Formação de Preços dos Futuros Agropecuários 3 A ormação de Preços dos uuros Agropecuários Para avaliar a formação de preços nos mercados fuuros agropecuários é necessária uma base de comparação Para al base, esa disseração usa os preços que, em

Leia mais

LABORATÓRIO DE HIDRÁULICA

LABORATÓRIO DE HIDRÁULICA UNIVERSIDADE FEDERAL DE ALAGOAS ENTRO DE TENOLOGIA LABORATÓRIO DE HIDRÁULIA Vladimir aramori Josiane Holz Irene Maria haves Pimenel Marllus Gusavo Ferreira Passos das Neves Maceió - Alagoas Ouubro de 2012

Leia mais

2.5 Impulsos e Transformadas no Limite

2.5 Impulsos e Transformadas no Limite .5 Impulsos e Transformadas no Limie Propriedades do Impulso Uniário O impulso uniário ou função dela de Dirac δ não é uma função no senido maemáico esrio. Ela perence a uma classe especial conhecida como

Leia mais

4 O Papel das Reservas no Custo da Crise

4 O Papel das Reservas no Custo da Crise 4 O Papel das Reservas no Cuso da Crise Nese capíulo buscamos analisar empiricamene o papel das reservas em miigar o cuso da crise uma vez que esa ocorre. Acrediamos que o produo seja a variável ideal

Leia mais

4 Metodologia Proposta para o Cálculo do Valor de Opções Reais por Simulação Monte Carlo com Aproximação por Números Fuzzy e Algoritmos Genéticos.

4 Metodologia Proposta para o Cálculo do Valor de Opções Reais por Simulação Monte Carlo com Aproximação por Números Fuzzy e Algoritmos Genéticos. 4 Meodologia Proposa para o Cálculo do Valor de Opções Reais por Simulação Mone Carlo com Aproximação por Números Fuzzy e Algorimos Genéicos. 4.1. Inrodução Nese capíulo descreve-se em duas pares a meodologia

Leia mais

MATEMÁTICA E SUAS TECNOLOGIAS

MATEMÁTICA E SUAS TECNOLOGIAS 1º SIMULADO ENEM 017 Resposa da quesão 1: MATEMÁTICA E SUAS TECNOLOGIAS Basa aplicar a combinação de see espores agrupados dois a dois, logo: 7! C7,!(7 )! 7 6 5! C7,!5! 7 6 5! C7, 1!5! Resposa da quesão

Leia mais

Circuitos Elétricos- módulo F4

Circuitos Elétricos- módulo F4 Circuios léricos- módulo F4 M 014 Correne elécrica A correne elécrica consise num movimeno orienado de poradores de cara elécrica por acção de forças elécricas. Os poradores de cara podem ser elecrões

Leia mais

CINÉTICA RADIOATIVA. Introdução. Tempo de meia-vida (t 1/2 ou P) Atividade Radioativa

CINÉTICA RADIOATIVA. Introdução. Tempo de meia-vida (t 1/2 ou P) Atividade Radioativa CIÉTIC RDIOTIV Inrodução Ese arigo em como objeivo analisar a velocidade dos diferenes processos radioaivos, no que chamamos de cinéica radioaiva. ão deixe de anes esudar o arigo anerior sobre radioaividade

Leia mais

Expectativas, consumo e investimento CAPÍTULO 16. Olivier Blanchard Pearson Education Pearson Education Macroeconomia, 4/e Olivier Blanchard

Expectativas, consumo e investimento CAPÍTULO 16. Olivier Blanchard Pearson Education Pearson Education Macroeconomia, 4/e Olivier Blanchard Expecaivas, consumo e Olivier Blanchard Pearson Educaion CAPÍTULO 16 16.1 Consumo A eoria do consumo foi desenvolvida na década de 1950 por Milon Friedman, que a chamou de eoria do consumo da renda permanene,

Leia mais

UNIDADE 2. t=0. Fig. 2.1-Circuito Com Indutor Pré-Carregado

UNIDADE 2. t=0. Fig. 2.1-Circuito Com Indutor Pré-Carregado UNIDAD 2 CIRCUITOS BÁSICOS COM INTRRUPTORS 2.1 CIRCUITOS D PRIMIRA ORDM 2.1.1 Circuio com Induor PréCarregado em Série com Diodo Seja o circuio represenado na Fig. 2.1. D i =0 Fig. 2.1Circuio Com Induor

Leia mais

Biofísica II Turma de Biologia FFCLRP USP Prof. Antônio Roque Biologia de Populações 2 Modelos não-lineares. Modelos Não-Lineares

Biofísica II Turma de Biologia FFCLRP USP Prof. Antônio Roque Biologia de Populações 2 Modelos não-lineares. Modelos Não-Lineares Modelos Não-Lineares O modelo malhusiano prevê que o crescimeno populacional é exponencial. Enreano, essa predição não pode ser válida por um empo muio longo. As funções exponenciais crescem muio rapidamene

Leia mais

5.1 Objectivos. Caracterizar os métodos de detecção de valor eficaz.

5.1 Objectivos. Caracterizar os métodos de detecção de valor eficaz. 5. PRINCÍPIOS DE MEDIÇÃO DE CORRENE, ENSÃO, POÊNCIA E ENERGIA 5. Objecivos Caracerizar os méodos de deecção de valor eficaz. Caracerizar os méodos de medição de poência e energia em correne conínua, correne

Leia mais

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc.

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc. ECONOMETRIA Prof. Paricia Maria Borolon, D. Sc. Séries Temporais Fone: GUJARATI; D. N. Economeria Básica: 4ª Edição. Rio de Janeiro. Elsevier- Campus, 2006 Processos Esocásicos É um conjuno de variáveis

Leia mais

5 Metodologia Probabilística de Estimativa de Reservas Considerando o Efeito-Preço

5 Metodologia Probabilística de Estimativa de Reservas Considerando o Efeito-Preço 5 Meodologia Probabilísica de Esimaiva de Reservas Considerando o Efeio-Preço O principal objeivo desa pesquisa é propor uma meodologia de esimaiva de reservas que siga uma abordagem probabilísica e que

Leia mais

Cálculo do valor em risco dos ativos financeiros da Petrobrás e da Vale via modelos ARMA-GARCH

Cálculo do valor em risco dos ativos financeiros da Petrobrás e da Vale via modelos ARMA-GARCH Cálculo do valor em risco dos aivos financeiros da Perobrás e da Vale via modelos ARMA-GARCH Bruno Dias de Casro 1 Thiago R. dos Sanos 23 1 Inrodução Os aivos financeiros das companhias Perobrás e Vale

Leia mais

Capítulo Cálculo com funções vetoriais

Capítulo Cálculo com funções vetoriais Cálculo - Capíulo 6 - Cálculo com funções veoriais - versão 0/009 Capíulo 6 - Cálculo com funções veoriais 6 - Limies 63 - Significado geomérico da derivada 6 - Derivadas 64 - Regras de derivação Uiliaremos

Leia mais

Equações Diferenciais Ordinárias Lineares

Equações Diferenciais Ordinárias Lineares Equações Diferenciais Ordinárias Lineares 67 Noções gerais Equações diferenciais são equações que envolvem uma função incógnia e suas derivadas, além de variáveis independenes Aravés de equações diferenciais

Leia mais

RÁPIDA INTRODUÇÃO À FÍSICA DAS RADIAÇÕES Simone Coutinho Cardoso & Marta Feijó Barroso UNIDADE 3. Decaimento Radioativo

RÁPIDA INTRODUÇÃO À FÍSICA DAS RADIAÇÕES Simone Coutinho Cardoso & Marta Feijó Barroso UNIDADE 3. Decaimento Radioativo Decaimeno Radioaivo RÁPIDA ITRODUÇÃO À FÍSICA DAS RADIAÇÕES Simone Couinho Cardoso & Mara Feijó Barroso Objeivos: discuir o que é decaimeno radioaivo e escrever uma equação que a descreva UIDADE 3 Sumário

Leia mais

*UiILFRGH&RQWUROH(:0$

*UiILFRGH&RQWUROH(:0$ *UiILFRGH&RQWUROH(:$ A EWMA (de ([SRQHQWLDOO\:HLJKWHGRYLQJ$YHUDJH) é uma esaísica usada para vários fins: é largamene usada em méodos de esimação e previsão de séries emporais, e é uilizada em gráficos

Leia mais

Física. Física Módulo 1

Física. Física Módulo 1 Física Módulo 1 Nesa aula... Movimeno em uma dimensão Aceleração e ouras coisinhas O cálculo de x() a parir de v() v( ) = dx( ) d e x( ) x v( ) d = A velocidade é obida derivando-se a posição em relação

Leia mais

2.7 Derivadas e Taxas de Variação

2.7 Derivadas e Taxas de Variação LIMITES E DERIVADAS 131 2.7 Derivadas e Taas de Variação O problema de enconrar a rea angene a uma curva e o problema de enconrar a velocidade de um objeo envolvem deerminar o mesmo ipo de limie, como

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 2º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Inrodução ao Cálculo Diferencial II TPC nº 9 Enregar em 4 2 29. Num loe de bolbos de úlipas a probabilidade de que

Leia mais

4 CER Compensador Estático de Potência Reativa

4 CER Compensador Estático de Potência Reativa 68 4 ompensador Esáico de Poência Reaiva 4.1 Inrodução ompensadores esáicos de poência reaiva (s ou Saic var ompensaors (Ss são equipamenos de conrole de ensão cuja freqüência de uso em aumenado no sisema

Leia mais

UM MÉTODO RÁPIDO PARA ANÁLISE DO COMPORTAMENTO TÉRMICO DO ENROLAMENTO DO ESTATOR DE MOTORES DE INDUÇÃO TRIFÁSICOS DO TIPO GAIOLA

UM MÉTODO RÁPIDO PARA ANÁLISE DO COMPORTAMENTO TÉRMICO DO ENROLAMENTO DO ESTATOR DE MOTORES DE INDUÇÃO TRIFÁSICOS DO TIPO GAIOLA ART643-07 - CD 262-07 - PÁG.: 1 UM MÉTD RÁPID PARA ANÁLISE D CMPRTAMENT TÉRMIC D ENRLAMENT D ESTATR DE MTRES DE INDUÇÃ TRIFÁSICS D TIP GAILA 1 - RESUM Jocélio de Sá; João Robero Cogo; Hécor Arango. objeivo

Leia mais

NOTA TÉCNICA. Nota Sobre Evolução da Produtividade no Brasil. Fernando de Holanda Barbosa Filho

NOTA TÉCNICA. Nota Sobre Evolução da Produtividade no Brasil. Fernando de Holanda Barbosa Filho NOTA TÉCNICA Noa Sobre Evolução da Produividade no Brasil Fernando de Holanda Barbosa Filho Fevereiro de 2014 1 Essa noa calcula a evolução da produividade no Brasil enre 2002 e 2013. Para ano uiliza duas

Leia mais

QUESTÃO 60 DA CODESP

QUESTÃO 60 DA CODESP UEÃO 60 D CODE - 0 êmpera é um ipo de raameno érmico uilizado para aumenar a dureza de peças de aço respeio da êmpera, é correo afirmar: ) a êmpera modifica de maneira uniforme a dureza da peça, independenemene

Leia mais

Função de risco, h(t) 3. Função de risco ou taxa de falha. Como obter a função de risco. Condições para uma função ser função de risco

Função de risco, h(t) 3. Função de risco ou taxa de falha. Como obter a função de risco. Condições para uma função ser função de risco Função de risco, h() 3. Função de risco ou axa de falha Manuenção e Confiabilidade Prof. Flavio Fogliao Mais imporane das medidas de confiabilidade Traa-se da quanidade de risco associada a uma unidade

Leia mais

MACROECONOMIA DO DESENVOLVIMENTO PROFESSOR JOSÉ LUIS OREIRO PRIMEIRA LISTA DE QUESTÕES PARA DISCUSSÃO

MACROECONOMIA DO DESENVOLVIMENTO PROFESSOR JOSÉ LUIS OREIRO PRIMEIRA LISTA DE QUESTÕES PARA DISCUSSÃO MACROECONOMIA DO DESENVOLVIMENTO PROFESSOR JOSÉ LUIS OREIRO PRIMEIRA LISTA DE QUESTÕES PARA DISCUSSÃO 1 Quesão: Um fao esilizado sobre a dinâmica do crescimeno econômico mundial é a ocorrência de divergências

Leia mais

10 CONDIÇÕES ECONÔMICAS DE CORTE

10 CONDIÇÕES ECONÔMICAS DE CORTE 10 ONDIÇÕES EONÔMIAS DE ORTE A elocidade de core em uma grande inluência sobre a ida da erramena de usinagem comarando-se com o aanço e roundidade de usinagem, de orma que ela inluencia signiicaiamene

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar Progressão Ariméica e Progressão Geomérica. (Pucrj 0) Os números a x, a x e a x esão em PA. A soma dos números é igual a: a) 8 b) c) 7 d) e) 0. (Fuves 0) Dadas as sequências an n n, n n cn an an b, e b

Leia mais

CAPÍTULO 8. v G G. r G C. Figura Corpo rígido C com centro de massa G.

CAPÍTULO 8. v G G. r G C. Figura Corpo rígido C com centro de massa G. 7 CÍTULO 8 DINÂMIC DO MOVIMENTO LNO DE COROS RÍIDOS IMULSO E QUNTIDDE DE MOVIMENTO Nese capíulo será analisada a lei de Newon apresenada nua ra fora inegral. Nesa fora inegra-se a lei de Newon dada por

Leia mais

CAPÍTULO III TORÇÃO SIMPLES

CAPÍTULO III TORÇÃO SIMPLES CAPÍTULO III TORÇÃO SIPLES I.INTRODUÇÂO Uma peça esará sujeia ao esforço de orção simples quando a mesma esiver submeida somene a um momeno de orção. Observe-se que raa-se de uma simplificação, pois no

Leia mais

Comunicação. Tipos de Sinal. Redes. Tempo de Transmissão x Tempo de Propagação. d = v. Sinal Analógico. Sinal Digital.

Comunicação. Tipos de Sinal. Redes. Tempo de Transmissão x Tempo de Propagação. d = v. Sinal Analógico. Sinal Digital. Comunicação Redes Análise Básica de Sinais Informação Mensagem Sinal Sinal Mensagem Informação Idéia Idéia Sinal de Voz rof. Sérgio Colcher colcher@inf.puc-rio.br 2 Tipos de Sinal Tempo de Transmissão

Leia mais

DEMOGRAFIA. Assim, no processo de planeamento é muito importante conhecer a POPULAÇÃO porque:

DEMOGRAFIA. Assim, no processo de planeamento é muito importante conhecer a POPULAÇÃO porque: DEMOGRAFIA Fone: Ferreira, J. Anunes Demografia, CESUR, Lisboa Inrodução A imporância da demografia no planeameno regional e urbano O processo de planeameno em como fim úlimo fomenar uma organização das

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tarefa de revisão nº 17 1. Uma empresa lançou um produo no mercado. Esudos efecuados permiiram concluir que a evolução do preço se aproxima do seguine modelo maemáico: 7 se 0 1 p() =, p em euros e em anos.

Leia mais

figura 1 Vamos encontrar, em primeiro lugar, a velocidade do som da explosão (v E) no ar que será dada pela fórmula = v

figura 1 Vamos encontrar, em primeiro lugar, a velocidade do som da explosão (v E) no ar que será dada pela fórmula = v Dispara-se, segundo um ângulo de 6 com o horizone, um projéil que explode ao aingir o solo e oue-se o ruído da explosão, no pono de parida do projéil, 8 segundos após o disparo. Deerminar a elocidade inicial

Leia mais

UNIVERSIDADE DA BEIRA INTERIOR FACULDADE DE CIÊNCIAS SOCIAIS E HUMANAS DEPARTAMENTO DE GESTÃO E ECONOMIA MACROECONOMIA III

UNIVERSIDADE DA BEIRA INTERIOR FACULDADE DE CIÊNCIAS SOCIAIS E HUMANAS DEPARTAMENTO DE GESTÃO E ECONOMIA MACROECONOMIA III UNIVERSIDADE DA BEIRA INTERIOR FACUDADE DE CIÊNCIAS SOCIAIS E HUMANAS DEPARTAMENTO DE GESTÃO E ECONOMIA MACROECONOMIA III icenciaura de Economia (ºAno/1ºS) Ano ecivo 007/008 Caderno de Exercícios Nº 1

Leia mais

XXXI OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXXI OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXXI OLIMPÍ RSILEIR E MTEMÁTI PRIMEIR FSE NÍVEL Ensino Médio RITO RITO NÍVEL 6 E 6 7 7 E 9 9 5 0 E 5 0 E 5 ada quesão da Primeira Fase vale pono. Toal de ponos no Nível 5 ponos. guarde a pulicação da Noa

Leia mais

MACROECONOMIA II PROFESSOR JOSE LUIS OREIRO SEGUNDA LISTA DE EXERCÍCIOS

MACROECONOMIA II PROFESSOR JOSE LUIS OREIRO SEGUNDA LISTA DE EXERCÍCIOS MACROECONOMIA II PROFESSOR JOSE LUIS OREIRO SEGUNDA LISTA DE EXERCÍCIOS 1 Quesão: Suponha que um governo de direia decida reduzir de forma permanene o nível do seguro desemprego. Pede-se: a) Quais seriam

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar . (Pucrj 0) Os números a x, a x e a3 x 3 esão em PA. A soma dos 3 números é igual a: é igual a e o raio de cada semicírculo é igual à meade do semicírculo anerior, o comprimeno da espiral é igual a a)

Leia mais

O potencial eléctrico de um condutor aumenta à medida que lhe fornecemos carga eléctrica. Estas duas grandezas são

O potencial eléctrico de um condutor aumenta à medida que lhe fornecemos carga eléctrica. Estas duas grandezas são O ondensador O poencial elécrico de um conduor aumena à medida que lhe fornecemos carga elécrica. Esas duas grandezas são direcamene proporcionais. No enano, para a mesma quanidade de carga, dois conduores

Leia mais

Q = , 03.( )

Q = , 03.( ) PROVA DE FÍSIA 2º ANO - 1ª MENSAL - 2º TRIMESTRE TIPO A 01) Um bloco de chumbo de massa 1,0 kg, inicialmene a 227, é colocado em conao com uma fone érmica de poência consane. Deermine a quanidade de calor

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

Utilização de modelos de holt-winters para a previsão de séries temporais de consumo de refrigerantes no Brasil

Utilização de modelos de holt-winters para a previsão de séries temporais de consumo de refrigerantes no Brasil XXVI ENEGEP - Foraleza, CE, Brasil, 9 a 11 de Ouubro de 2006 Uilização de modelos de hol-winers para a previsão de séries emporais de consumo de refrigeranes no Brasil Jean Carlos da ilva Albuquerque (UEPA)

Leia mais

2.6 - Conceitos de Correlação para Sinais Periódicos

2.6 - Conceitos de Correlação para Sinais Periódicos .6 - Conceios de Correlação para Sinais Periódicos O objeivo é o de comparar dois sinais x () e x () na variável empo! Exemplo : Considere os dados mosrados abaixo y 0 x Deseja-se ober a relação enre x

Leia mais

P2 - PROVA DE QUÍMICA GERAL - 07/05/05

P2 - PROVA DE QUÍMICA GERAL - 07/05/05 P - PROVA DE QUÍMICA GERAL - 07/05/05 Nome: Nº de Marícula: Gabario Turma: Assinaura: Quesão Valor Grau Revisão a,0 a,0 3 a,0 4 a,0 5 a,0 Toal 0,0 Consanes: R 8,34 J mol - K - R 0,08 am L mol - K - am

Leia mais

A entropia de uma tabela de vida em previdência social *

A entropia de uma tabela de vida em previdência social * A enropia de uma abela de vida em previdência social Renao Marins Assunção Leícia Gonijo Diniz Vicorino Palavras-chave: Enropia; Curva de sobrevivência; Anuidades; Previdência Resumo A enropia de uma abela

Leia mais

Duas opções de trajetos para André e Bianca. Percurso 1( Sangiovanni tendo sorteado cara e os dois se encontrando no ponto C): P(A) =

Duas opções de trajetos para André e Bianca. Percurso 1( Sangiovanni tendo sorteado cara e os dois se encontrando no ponto C): P(A) = RESOLUÇÃO 1 A AVALIAÇÃO UNIDADE II -016 COLÉGIO ANCHIETA-BA PROFA. MARIA ANTÔNIA C. GOUVEIA ELABORAÇÃO e PESQUISA: PROF. ADRIANO CARIBÉ e WALTER PORTO. QUESTÃO 01. Três saélies compleam suas respecivas

Leia mais

Lista de Exercícios 1

Lista de Exercícios 1 Universidade Federal de Ouro Preo Deparameno de Maemáica MTM14 - CÁLCULO DIFERENCIAL E INTEGRAL III Anônio Silva, Edney Oliveira, Marcos Marcial, Wenderson Ferreira Lisa de Exercícios 1 1 Para cada um

Leia mais

Porto Alegre, 14 de novembro de 2002

Porto Alegre, 14 de novembro de 2002 Poro Alegre, 14 de novembro de 2002 Aula 6 de Relaividade e Cosmologia Horácio Doori 1.12- O paradoo dos gêmeos 1.12.1- Sisemas Inerciais (observadores) com velocidades diversas vêem a disância emporal

Leia mais

GERAÇÃO DE PREÇOS DE ATIVOS FINANCEIROS E SUA UTILIZAÇÃO PELO MODELO DE BLACK AND SCHOLES

GERAÇÃO DE PREÇOS DE ATIVOS FINANCEIROS E SUA UTILIZAÇÃO PELO MODELO DE BLACK AND SCHOLES XXX ENCONTRO NACIONAL DE ENGENHARIA DE PRODUÇÃO Mauridade e desafios da Engenharia de Produção: compeiividade das empresas, condições de rabalho, meio ambiene. São Carlos, SP, Brasil, 1 a15 de ouubro de

Leia mais

1. KALECKI: DEMANDA EFETIVA, CICLO E TENDÊNCIA

1. KALECKI: DEMANDA EFETIVA, CICLO E TENDÊNCIA PDE: lucro, consumo e invesimeno 1. KLECK: DEMND EFETV, CCLO E TENDÊNC 1.1. Disribuição, Lucro e Renda PDE: lucro, consumo e invesimeno Kalecki, TDE, cap. 3 eoria dos lucros em um modelo simplificado Poupança

Leia mais

UNIVERSIDADE DE SÃO PAULO ENGENHARIA QUÍMICA LOQ4085 OPERAÇÕES UNITÁRIAS I

UNIVERSIDADE DE SÃO PAULO ENGENHARIA QUÍMICA LOQ4085 OPERAÇÕES UNITÁRIAS I UNIVERSIDADE DE SÃO PAULO ENGENHARIA QUÍMICA LOQ4085 OPERAÇÕES UNITÁRIAS I Profa. Lívia Chaguri E-mail: lchaguri@usp.br Coneúdo Filração Pare 1 - Mecanismos de filração - Perda de carga relaiva à ora formada

Leia mais

As cargas das partículas 1, 2 e 3, respectivamente, são:

As cargas das partículas 1, 2 e 3, respectivamente, são: 18 GAB. 1 2 O DIA PROCSSO SLTIVO/2006 FÍSICA QUSTÕS D 31 A 45 31. A figura abaixo ilusra as rajeórias de rês parículas movendo-se unicamene sob a ação de um campo magnéico consane e uniforme, perpendicular

Leia mais

Mecânica da partícula

Mecânica da partícula -- Mecânica da parícula Moimenos sob a acção de uma força resulane consane Prof. Luís C. Perna LEI DA INÉRCIA OU ª LEI DE NEWTON LEI DA INÉRCIA Para que um corpo alere o seu esado de moimeno é necessário

Leia mais

Um modelo matemático para o ciclo de vida do mosquito Aedes aegypti e controle de epidemias

Um modelo matemático para o ciclo de vida do mosquito Aedes aegypti e controle de epidemias Universidade Federal de Ouro Preo Modelagem e Simulação de Sisemas Terresres DECOM- prof. Tiago Garcia de Senna Carneiro Um modelo maemáico para o ciclo de vida do mosquio Aedes aegypi e conrole de epidemias

Leia mais

Política fiscal: Um resumo CAPÍTULO 26. Olivier Blanchard Pearson Education Pearson Education Macroeconomia, 4/e Olivier Blanchard

Política fiscal: Um resumo CAPÍTULO 26. Olivier Blanchard Pearson Education Pearson Education Macroeconomia, 4/e Olivier Blanchard Políica fiscal: Um resumo Olivier Blanchard Pearson Educaion CAPÍTULO 26 2006 Pearson Educaion Macroeconomia, 4/e Olivier Blanchard 26.1 Capíulo 26: Políica fiscal um resumo Resrição orçamenária do governo

Leia mais

Capítulo 2: Conceitos Fundamentais sobre Circuitos Elétricos

Capítulo 2: Conceitos Fundamentais sobre Circuitos Elétricos SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA TE041 Circuios Eléricos I Prof. Ewaldo L. M. Mehl Capíulo 2: Conceios Fundamenais sobre Circuios Eléricos 2.1. CARGA ELÉTRICA E CORRENTE ELÉTRICA

Leia mais

Análise de Pós-optimização e de Sensibilidade

Análise de Pós-optimização e de Sensibilidade CPÍULO nálise de Pós-opimização e de Sensibilidade. Inrodução Uma das arefas mais delicadas no desenvolvimeno práico dos modelos de PL, relaciona-se com a obenção de esimaivas credíveis para os parâmeros

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

Fenômenos de adsorção em interfaces sólido/solução. Modelagens matemáticas de processos cinéticos

Fenômenos de adsorção em interfaces sólido/solução. Modelagens matemáticas de processos cinéticos Modelagens maemáicas de processos cinéicos Em cinéica química, vários parâmeros definem a dinâmica dos processos químicos. Os principais são as consanes cinéicas de velocidade e a ordem da reação. Quando

Leia mais

Conceitos Básicos Circuitos Resistivos

Conceitos Básicos Circuitos Resistivos Conceios Básicos Circuios esisivos Elecrónica 005006 Arnaldo Baisa Elecrónica_biomed_ef Circuio Elécrico com uma Baeria e uma esisência I V V V I Lei de Ohm I0 V 0 i0 Movimeno Das Pás P >P P >P Líquido

Leia mais

4. SINAL E CONDICIONAMENTO DE SINAL

4. SINAL E CONDICIONAMENTO DE SINAL 4. SINAL E CONDICIONAMENO DE SINAL Sumário 4. SINAL E CONDICIONAMENO DE SINAL 4. CARACERÍSICAS DOS SINAIS 4.. Período e frequência 4..2 alor médio, valor eficaz e valor máximo 4.2 FILRAGEM 4.2. Circuio

Leia mais

5.3 Escalonamento FCFS (First-Come, First Served)

5.3 Escalonamento FCFS (First-Come, First Served) c prof. Carlos Maziero Escalonameno FCFS (Firs-Come, Firs Served) 26 5.3 Escalonameno FCFS (Firs-Come, Firs Served) A forma de escalonameno mais elemenar consise em simplesmene aender as arefas em sequência,

Leia mais

Capítulo 4. Propriedades dos Estimadores de Mínimos Quadrados

Capítulo 4. Propriedades dos Estimadores de Mínimos Quadrados Capíulo 4 Propriedades dos Esimadores de Mínimos Quadrados Hipóeses do Modelo de Regressão Linear Simples RS1. y x e 1 RS. Ee ( ) 0 E( y ) 1 x RS3. RS4. var( e) var( y) cov( e, e ) cov( y, y ) 0 i j i

Leia mais