3 Retorno, Marcação a Mercado e Estimadores de Volatilidade

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "3 Retorno, Marcação a Mercado e Estimadores de Volatilidade"

Transcrição

1 eorno, Marcação a Mercado e Esimadores de Volailidade 3 3 eorno, Marcação a Mercado e Esimadores de Volailidade 3.. eorno de um Aivo Grande pare dos esudos envolve reorno ao invés de preços. Denre as principais razões, desaca-se o fao de séries de reornos serem mais fáceis de manipular que as séries de preços, porque sua forma possui propriedades esaísicas mais araivas. Exisem, enreano, algumas definições diferenes de reorno que serão abordadas a seguir eorno Ariméico É o mais simples de ser calculado e para um único período pode ser obido da seguine maneira: = = (7) onde: é o reorno no período ; é o preço no período. ara múliplos períodos, em-se:, k = k, k + = = K k ( k ) k

2 eorno, Marcação a Mercado e Esimadores de Volailidade 3 K ( + ) ( + ) ( + ), k + = = ( k ) k k, = k ( + i ) (8) i= eorno Logarímico Consise no logarimo naural do reorno ariméico. r ln( ) ln ln ln (9) = + = = = p p Uma das grandes vanagens dos reornos logarímicos é que, para múliplos períodos de empo, o reorno é composo pela simples soma dos reornos em cada período de empo, como pode ser viso a seguir. +, k ) = ln[ ( + ) ( + ) ( + ( ) )] ( + ) + ln( + ) + + ln( ) r K, k = ln( k r K, k = ln + ( k ) r K (0), k = r + r + + r ( k + ) Quando os reornos são pequenos, o valor do reorno logarímico se aproxima muio do reorno ariméico, ou seja, saisfeia esa condição, pode-se usar as séries dos reornos logarímicos dos aivos no lugar do reorno ariméico. Segundo a eq.(9), em-se: r = ln( + ) Aravés da expansão de Taylor: n ( ) r = ln( + ) = k k= k + k = K

3 eorno, Marcação a Mercado e Esimadores de Volailidade 33 Se for pequeno, as parcelas que enham valores e de ordem superiores enderão a zero, o que acarreará: r () Na ampla maioria dos casos, os reornos logarímicos podem e são empregados. Algumas incompaibilidades podem aparecer quando exisem mudanças de sinal no valor do objeo em análise, dado que o domínio da função logarímica é ] 0, [. ara eses casos, os reornos ariméicos são a melhor solução. 3.. Marcação a Mercado (Mark o Marke MM) O conceio de Mark o Marke ou Marcação a Mercado é fundamenal e basane uilizado. Ele consise em deerminar o valor presene de fluxos fuuros que compõem uma careira, iso é, o valor que se poderia realizar no mercado caso o possuidor do direio de receber essas receias resolvesse se desfazer desse direio. O Mark o Marke possui imporanes aplicações práicas: na gesão de invesimenos, onde implica numa maior ransparência no cálculo do valor das coas de um fundo de invesimeno e na gesão de risco, para o cálculo do Value a isk. O MM de um aivo de renda-fixa genérico com prazo de vencimeno finio e sem coação diária no mercado é enconrado razendo-se a valor presene o valor de vencimeno do aivo aravés de um faor de descono (correspondene à daa de vencimeno do aivo) obida da curva de juros em reais.

4 eorno, Marcação a Mercado e Esimadores de Volailidade Volailidade Volailidade do preço de um aivo corresponde à incereza em relação a movimenos fuuros nos preços dese aivo. A volailidade por si só já é considerada uma medida de risco. Em opções, parindo do princípio que o mercado uiliza um modelo para precificá-las, como por exemplo, o modelo de Black & Scholes; parindo do princípio que a opção esá correamene precificada, pode-se ober sua volailidade, chamada de volailidade implícia. Esudos empíricos mosram que a volailidade implícia ende a ser superior àquelas obidas pela maioria dos modelos esaísicos. A volailidade possui caracerísicas que são comumene enconradas nos aivos. rimeiramene, o valor da volailidade pode oscilar de período para período. Segundo, a volailidade parece reagir diferenemene para grandes aumenos de preços ou grandes quedas. Essas caracerísicas são fundamenais na modelagem da volailidade, com alguns modelos sendo criados apenas para incorporar ais propriedades Esimadores de volailidade Exisem vários modelos de esimadores de volailidade. orano, a esimaiva de volailidade depende da escolha de um deses modelos a ser aplicado aos dados hisóricos dos reornos do aivo, geralmene um modelo de série emporal. Aplicando o modelo escolhido aos dados hisóricos, em-se esimaivas esaísicas da volailidade passada. Simulaneamene, geram-se previsões da volailidade de agora aé algum pono fuuro no empo. Nas subseções a seguir, serão abordados vários modelos de previsão de volailidade, que vão desde os mais simples, como o de média móvel com janela fixa, aé modelos mais complexos, como os modelos GACH. Vale lembrar que

5 eorno, Marcação a Mercado e Esimadores de Volailidade 35 uma boa seleção dos dados levanados orna-se crucial para a eficiência do modelo Média Móvel Nesa meodologia, a volailidade corresponde ao desvio padrão dos reornos do aivo conidos denro de uma janela móvel de exensão fixa. É um esimador muio rudimenar, e pode ser calculado pela eq.(): ( r r ) N σ = () N = onde: σ é a volailidade do aivo; r é o reorno do dia ; r é o média dos reornos; N é a exensão da janela de empo. Uma grande dificuldade dese modelo esá em qual valor de N (janela de empo) escolher. Valores grandes de N sugerem maior precisão na esimação da volailidade, porém dados hisóricos muio anigos perdem relevância na previsão do fuuro. O méodo de média móvel para esimaiva de volailidade pode ser ido como ingênuo por encarar com mesmo grau de relevância odas observações presenes na janela de empo. Ese problema, conudo, será corrigido em modelos subseqüenes. Denre as vanagens do modelo, ese apresena uma menor sensibilidade a valores exremos e possui apenas um parâmero, referene ao período passado considerado.

6 eorno, Marcação a Mercado e Esimadores de Volailidade Alisameno Exponencial Os cálculos da média móvel com alisameno exponencial são semelhanes ao com janela móvel simples, porém há a preocupação de colocar pesos relaivos ao momeno em que os dados foram colhidos, como forma de minimizar o problema das diferenes daas de levanameno dos dados. Os dados mais recenes recebem maiores pesos, ou seja, em maior relevância no cálculo da volailidade. A referência iskmerics (996) faz uma abordagem ampla e complea dessa écnica. ara esimar a volailidade aravés desse méodo, aribui-se o peso λ (sempre enre 0 e ) para a previsão anerior, e incorpora-se o quadrado da observação mais recene com um peso ( - λ), conforme a eq.(3). Os valores de λ sugeridos na documenação iskmerics são de 0,94 para observações diárias e 0,97 para observações mensais. Quano maior o valor de λ, maior é o peso colocado nas observações passadas recenes e mais suave a série se orna. No Brasil, dada a dinâmica mais urbulena dos mercados, a oimização dos faores de decaimeno cosuma apresenar resulados menores, com λ variando de 0,85 a 0,94 6. [ σ λ + ( λ ], + = EWMA, ) σ EWMA r (3) Onde: λ é o faor de decaimeno; σ é a volailidade calculada segundo o alisameno exponencial EWMA, + para o dia +, com informações que incluem o dia. Uma simples manipulação da eq.(3) permie observar que o EWMA (Exponenially Weighed Moving Average) ermina por aribuir aos dados pesos que declinam com a sua aniguidade, como pode ser viso na eq.(4). σ [( λ) ( + r λ + r + )] EWMA, + = λ... r (4) 6 Eses valores são adoados pelo Banco Cenral do Brasil em seu modelo de Va.

7 eorno, Marcação a Mercado e Esimadores de Volailidade 37 or depender de um único parâmero, o faor de decaimeno λ, esse modelo é de fácil implemenação, além de possuir boa robusez quano a erros de especificação Os Modelos GACH O modelo GACH (Generalized Auorregressive Heeroskedasic) é uma generalização do modelo ACH, que em como grande pono a variância condicional. Esse modelo possui algumas caracerísicas que, eoricamene, o ornam um bom predior de volailidade em séries financeiras. Denre elas esão: variâncias que mudam a cada período de empo e para alguns ipos de reornos. A esimação da volailidade pelo modelo GACH(p,q) pressupõe um processo previsível para a variância dos reornos. Como a eq.(5) mosra, a variância condicional depende da variância condicional imediaamene anerior, bem como da observação mais recene. p j= q j + i= σ = α + β σ α r (5) 0 j i i onde p > 0; q > 0; α 0 > 0 ; α i 0 e β i 0. Freqüenemene observa-se que o modelo GACH(,) é suficiene para esimar a volailidade da maioria dos aivos financeiros, não havendo a necessidade de uilização de processos da família GACH mais complexos. orano, com um diminuo número de parâmeros (rês apenas), pode-se aplicar um modelo que aparenemene se adequa bem aos dados financeiros. Exisem ainda ouras vanagens no modelo quando comparado aos descrios aneriormene. Em primeiro lugar, os reornos de aivos financeiros não são apropriadamene modelados por um processo independene e idenicamene

8 eorno, Marcação a Mercado e Esimadores de Volailidade 38 disribuído. Ouros esimadores (derivados de médias móveis) baseiam-se em uma volailidade ida como consane, de forma que a esimaiva correne é omada como uma previsão. O modelo GACH descreve um processo de volailidade condicional, (ou seja, condicionada a um conjuno de informações). orano, modelos de variância condicional heerocedásica são considerados mais ineressanes para analisar o comporameno da volailidade nas séries financeiras. O modelo GACH possui diversas ouras variações, como os modelos EGACH, IGACH, FIGACH, que podem er desempenho superior dependendo do caso em que sejam aplicados.

*UiILFRGH&RQWUROH(:0$

*UiILFRGH&RQWUROH(:0$ *UiILFRGH&RQWUROH(:$ A EWMA (de ([SRQHQWLDOO\:HLJKWHGRYLQJ$YHUDJH) é uma esaísica usada para vários fins: é largamene usada em méodos de esimação e previsão de séries emporais, e é uilizada em gráficos

Leia mais

Cálculo do valor em risco dos ativos financeiros da Petrobrás e da Vale via modelos ARMA-GARCH

Cálculo do valor em risco dos ativos financeiros da Petrobrás e da Vale via modelos ARMA-GARCH Cálculo do valor em risco dos aivos financeiros da Perobrás e da Vale via modelos ARMA-GARCH Bruno Dias de Casro 1 Thiago R. dos Sanos 23 1 Inrodução Os aivos financeiros das companhias Perobrás e Vale

Leia mais

Séries temporais Modelos de suavização exponencial. Séries de temporais Modelos de suavização exponencial

Séries temporais Modelos de suavização exponencial. Séries de temporais Modelos de suavização exponencial Programa de Pós-graduação em Engenharia de Produção Análise de séries de empo: modelos de suavização exponencial Profa. Dra. Liane Werner Séries emporais A maioria dos méodos de previsão se baseiam na

Leia mais

Contabilometria. Séries Temporais

Contabilometria. Séries Temporais Conabilomeria Séries Temporais Fone: Corrar, L. J.; Theóphilo, C. R. Pesquisa Operacional para Decisão em Conabilidade e Adminisração, Ediora Alas, São Paulo, 2010 Cap. 4 Séries Temporais O que é? Um conjuno

Leia mais

4 O modelo econométrico

4 O modelo econométrico 4 O modelo economérico O objeivo desse capíulo é o de apresenar um modelo economérico para as variáveis financeiras que servem de enrada para o modelo esocásico de fluxo de caixa que será apresenado no

Leia mais

Conceito. Exemplos. Os exemplos de (a) a (d) mostram séries discretas, enquanto que os de (e) a (g) ilustram séries contínuas.

Conceito. Exemplos. Os exemplos de (a) a (d) mostram séries discretas, enquanto que os de (e) a (g) ilustram séries contínuas. Conceio Na Esaísica exisem siuações onde os dados de ineresse são obidos em insanes sucessivos de empo (minuo, hora, dia, mês ou ano), ou ainda num período conínuo de empo, como aconece num elerocardiograma

Leia mais

Análise de séries de tempo: modelos de decomposição

Análise de séries de tempo: modelos de decomposição Análise de séries de empo: modelos de decomposição Profa. Dra. Liane Werner Séries de emporais - Inrodução Uma série emporal é qualquer conjuno de observações ordenadas no empo. Dados adminisraivos, econômicos,

Leia mais

4 Metodologia Proposta para o Cálculo do Valor de Opções Reais por Simulação Monte Carlo com Aproximação por Números Fuzzy e Algoritmos Genéticos.

4 Metodologia Proposta para o Cálculo do Valor de Opções Reais por Simulação Monte Carlo com Aproximação por Números Fuzzy e Algoritmos Genéticos. 4 Meodologia Proposa para o Cálculo do Valor de Opções Reais por Simulação Mone Carlo com Aproximação por Números Fuzzy e Algorimos Genéicos. 4.1. Inrodução Nese capíulo descreve-se em duas pares a meodologia

Leia mais

GERAÇÃO DE PREÇOS DE ATIVOS FINANCEIROS E SUA UTILIZAÇÃO PELO MODELO DE BLACK AND SCHOLES

GERAÇÃO DE PREÇOS DE ATIVOS FINANCEIROS E SUA UTILIZAÇÃO PELO MODELO DE BLACK AND SCHOLES XXX ENCONTRO NACIONAL DE ENGENHARIA DE PRODUÇÃO Mauridade e desafios da Engenharia de Produção: compeiividade das empresas, condições de rabalho, meio ambiene. São Carlos, SP, Brasil, 1 a15 de ouubro de

Leia mais

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL42 Coneúdo 8 - Inrodução aos Circuios Lineares e Invarianes...1 8.1 - Algumas definições e propriedades gerais...1 8.2 - Relação enre exciação

Leia mais

Aplicações à Teoria da Confiabilidade

Aplicações à Teoria da Confiabilidade Aplicações à Teoria da ESQUEMA DO CAPÍTULO 11.1 CONCEITOS FUNDAMENTAIS 11.2 A LEI DE FALHA NORMAL 11.3 A LEI DE FALHA EXPONENCIAL 11.4 A LEI DE FALHA EXPONENCIAL E A DISTRIBUIÇÃO DE POISSON 11.5 A LEI

Leia mais

AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM

AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM 163 22. PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM 22.1. Inrodução Na Seção 9.2 foi falado sobre os Parâmeros de Core e

Leia mais

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara Insiuo de Física USP Física V - Aula 6 Professora: Mazé Bechara Aula 6 Bases da Mecânica quânica e equações de Schroedinger. Aplicação e inerpreações. 1. Ouros posulados da inerpreação de Max-Born para

Leia mais

5.3 Escalonamento FCFS (First-Come, First Served)

5.3 Escalonamento FCFS (First-Come, First Served) c prof. Carlos Maziero Escalonameno FCFS (Firs-Come, Firs Served) 26 5.3 Escalonameno FCFS (Firs-Come, Firs Served) A forma de escalonameno mais elemenar consise em simplesmene aender as arefas em sequência,

Leia mais

Modelagem e Previsão do Índice de Saponificação do Óleo de Soja da Giovelli & Cia Indústria de Óleos Vegetais

Modelagem e Previsão do Índice de Saponificação do Óleo de Soja da Giovelli & Cia Indústria de Óleos Vegetais XI SIMPEP - Bauru, SP, Brasil, 8 a 1 de novembro de 24 Modelagem e Previsão do Índice de Saponificação do Óleo de Soja da Giovelli & Cia Indúsria de Óleos Vegeais Regiane Klidzio (URI) gep@urisan.che.br

Leia mais

6 Processos Estocásticos

6 Processos Estocásticos 6 Processos Esocásicos Um processo esocásico X { X ( ), T } é uma coleção de variáveis aleaórias. Ou seja, para cada no conjuno de índices T, X() é uma variável aleaória. Geralmene é inerpreado como empo

Leia mais

GRUPO XIII GRUPO DE ESTUDO DE INTERFERÊNCIAS, COMPATIBILIDADE ELETROMAGNÉTICA E QUALIDADE DE ENERGIA - GCQ

GRUPO XIII GRUPO DE ESTUDO DE INTERFERÊNCIAS, COMPATIBILIDADE ELETROMAGNÉTICA E QUALIDADE DE ENERGIA - GCQ SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA GCQ - 11 16 a 21 Ouubro de 2005 Curiiba - Paraná GRUPO XIII GRUPO DE ESTUDO DE INTERFERÊNCIAS, COMPATIBILIDADE ELETROMAGNÉTICA E

Leia mais

4 Modelo teórico Avaliação tradicional

4 Modelo teórico Avaliação tradicional 4 Modelo eórico 4.1. Avaliação radicional Em economia define-se invesimeno como sendo o ao de incorrer em um cuso imediao na expecaiva de fuuros reornos (DIXIT e PINDYCK, 1994). Nesse senido as empresas

Leia mais

Exercícios sobre o Modelo Logístico Discreto

Exercícios sobre o Modelo Logístico Discreto Exercícios sobre o Modelo Logísico Discreo 1. Faça uma abela e o gráfico do modelo logísico discreo descrio pela equação abaixo para = 0, 1,..., 10, N N = 1,3 N 1, N 0 = 1. 10 Solução. Usando o Excel,

Leia mais

Circuitos Elétricos I EEL420

Circuitos Elétricos I EEL420 Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL420 Coneúdo 1 - Circuios de primeira ordem...1 1.1 - Equação diferencial ordinária de primeira ordem...1 1.1.1 - Caso linear, homogênea, com

Leia mais

Função de risco, h(t) 3. Função de risco ou taxa de falha. Como obter a função de risco. Condições para uma função ser função de risco

Função de risco, h(t) 3. Função de risco ou taxa de falha. Como obter a função de risco. Condições para uma função ser função de risco Função de risco, h() 3. Função de risco ou axa de falha Manuenção e Confiabilidade Prof. Flavio Fogliao Mais imporane das medidas de confiabilidade Traa-se da quanidade de risco associada a uma unidade

Leia mais

4 O Papel das Reservas no Custo da Crise

4 O Papel das Reservas no Custo da Crise 4 O Papel das Reservas no Cuso da Crise Nese capíulo buscamos analisar empiricamene o papel das reservas em miigar o cuso da crise uma vez que esa ocorre. Acrediamos que o produo seja a variável ideal

Leia mais

EXAME DE ESTATÍSTICA AMBIENTAL 1ª Época (v1)

EXAME DE ESTATÍSTICA AMBIENTAL 1ª Época (v1) Nome: Aluno nº: Duração: horas LICENCIATURA EM CIÊNCIAS DE ENGENHARIA - ENGENHARIA DO AMBIENTE EXAME DE ESTATÍSTICA AMBIENTAL ª Época (v) I (7 valores) Na abela seguine apresena-se os valores das coordenadas

Leia mais

4 Análise de Sensibilidade

4 Análise de Sensibilidade 4 Análise de Sensibilidade 4.1 Considerações Gerais Conforme viso no Capíulo 2, os algorimos uilizados nese rabalho necessiam das derivadas da função objeivo e das resrições em relação às variáveis de

Leia mais

5 Metodologia Probabilística de Estimativa de Reservas Considerando o Efeito-Preço

5 Metodologia Probabilística de Estimativa de Reservas Considerando o Efeito-Preço 5 Meodologia Probabilísica de Esimaiva de Reservas Considerando o Efeio-Preço O principal objeivo desa pesquisa é propor uma meodologia de esimaiva de reservas que siga uma abordagem probabilísica e que

Leia mais

Critérios e Metodologia de Apuração de Superfície de Volatilidade

Critérios e Metodologia de Apuração de Superfície de Volatilidade Criérios e Meodologia de Apuração de Superfície de Volailidade Diariamene são calculadas superfícies de volailidade implícia de odos os vencimenos de conraos de opções em que há posição em abero e/ou séries

Leia mais

4 Cenários de estresse

4 Cenários de estresse 4 Cenários de esresse Os cenários de esresse são simulações para avaliar a adequação de capial ao limie de Basiléia numa deerminada daa. Sua finalidade é medir a capacidade de o PR das insiuições bancárias

Leia mais

Tópicos Especiais em Energia Elétrica (Projeto de Inversores e Conversores CC-CC)

Tópicos Especiais em Energia Elétrica (Projeto de Inversores e Conversores CC-CC) Deparameno de Engenharia Elérica Tópicos Especiais em Energia Elérica () ula 2.2 Projeo do Induor Prof. João mérico Vilela Projeo de Induores Definição do úcleo a Fig.1 pode ser observado o modelo de um

Leia mais

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON)

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON) TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 8 LIVRO DO NILSON). CONSIDERAÇÕES INICIAIS SÉRIES DE FOURIER: descrevem funções periódicas no domínio da freqüência (ampliude e fase). TRANSFORMADA DE FOURIER:

Leia mais

Utilização de modelos de holt-winters para a previsão de séries temporais de consumo de refrigerantes no Brasil

Utilização de modelos de holt-winters para a previsão de séries temporais de consumo de refrigerantes no Brasil XXVI ENEGEP - Foraleza, CE, Brasil, 9 a 11 de Ouubro de 2006 Uilização de modelos de hol-winers para a previsão de séries emporais de consumo de refrigeranes no Brasil Jean Carlos da ilva Albuquerque (UEPA)

Leia mais

APLICAÇÃO DO MÉTODO DE HOLT NA PREVISÃO DE DADOS DE ÁGUA DA CIDADE DE RONDONÓPOLIS-MT

APLICAÇÃO DO MÉTODO DE HOLT NA PREVISÃO DE DADOS DE ÁGUA DA CIDADE DE RONDONÓPOLIS-MT APLICAÇÃO DO MÉTODO DE HOLT NA PREVISÃO DE DADOS DE ÁGUA DA CIDADE DE RONDONÓPOLIS-MT Alerêdo Oliveira Curim 1 & Aldo da Cunha Rebouças Resumo - O conhecimeno prévio dos volumes de água de qualquer sisema

Leia mais

3 Avaliação de Opções Americanas

3 Avaliação de Opções Americanas Avaliação de Opções Americanas 26 3 Avaliação de Opções Americanas Derivaivos com caracerísicas de exercício americano, em especial opções, são enconrados na maioria dos mercados financeiros. A avaliação

Leia mais

Estudo Comparativo de Modelos de Gerenciamento de Risco de Mercado com uma Carteira Composta por Ativos Típicos de um Fundo de Ações

Estudo Comparativo de Modelos de Gerenciamento de Risco de Mercado com uma Carteira Composta por Ativos Típicos de um Fundo de Ações Esudo Comparaivo de Modelos de Gerenciameno de Risco de Mercado com uma Careira Composa por Aivos Típicos de um Fundo de Ações Auores: Anonio Francisco de Almeida e André Ghirardi Resumo O cálculo do Value

Leia mais

3 Processos Estocásticos

3 Processos Estocásticos 3 Processos Esocásicos Um processo esocásico pode ser definido como uma seqüência de variáveis aleaórias indexadas ao empo e ambém a evenos. É uma variável que se desenvolve no empo de maneira parcialmene

Leia mais

2 Processos Estocásticos de Reversão à Média para Aplicação em Opções Reais

2 Processos Estocásticos de Reversão à Média para Aplicação em Opções Reais Processos Esocásicos de Reversão à Média para Aplicação em Opções Reais Resumo Ese capíulo analisa alguns méodos usados na deerminação da validade de diferenes processos esocásicos para modelar uma variável

Leia mais

Experiência IV (aulas 06 e 07) Queda livre

Experiência IV (aulas 06 e 07) Queda livre Experiência IV (aulas 06 e 07) Queda livre 1. Objeivos. Inrodução 3. Procedimeno experimenal 4. Análise de dados 5. Quesões 6. Referências 1. Objeivos Nesa experiência, esudaremos o movimeno da queda de

Leia mais

Capítulo Cálculo com funções vetoriais

Capítulo Cálculo com funções vetoriais Cálculo - Capíulo 6 - Cálculo com funções veoriais - versão 0/009 Capíulo 6 - Cálculo com funções veoriais 6 - Limies 63 - Significado geomérico da derivada 6 - Derivadas 64 - Regras de derivação Uiliaremos

Leia mais

NOTA TÉCNICA. Nota Sobre Evolução da Produtividade no Brasil. Fernando de Holanda Barbosa Filho

NOTA TÉCNICA. Nota Sobre Evolução da Produtividade no Brasil. Fernando de Holanda Barbosa Filho NOTA TÉCNICA Noa Sobre Evolução da Produividade no Brasil Fernando de Holanda Barbosa Filho Fevereiro de 2014 1 Essa noa calcula a evolução da produividade no Brasil enre 2002 e 2013. Para ano uiliza duas

Leia mais

Fábio Luiz de Oliveira Bezerra 1 Av. Prof. Moraes Rego, 1235 Cidade Universitária CEP: Recife/PE Brasil

Fábio Luiz de Oliveira Bezerra 1 Av. Prof. Moraes Rego, 1235 Cidade Universitária CEP: Recife/PE Brasil AVALIAÇÃO DA ESTIMATIVA DO RISCO DE MERCADO DE AÇÕES E OPÇÕES DE COMPRA DA PETROBRÁS UTILIZANDO A METODOLOGIA VALUE AT RISK (VaR) COM SIMULAÇÃO DE MONTE CARLO Fábio Luiz de Oliveira Bezerra Av. Prof. Moraes

Leia mais

4 Modelagem e metodologia de pesquisa

4 Modelagem e metodologia de pesquisa 4 Modelagem e meodologia de pesquisa Nese capíulo será apresenada a meodologia adoada nese rabalho para a aplicação e desenvolvimeno de um modelo de programação maemáica linear misa, onde a função-objeivo,

Leia mais

Universidade do Estado do Rio de Janeiro Instituto de Matemática e Estatística Econometria

Universidade do Estado do Rio de Janeiro Instituto de Matemática e Estatística Econometria Universidade do Esado do Rio de Janeiro Insiuo de Maemáica e Esaísica Economeria Variável dummy Regressão linear por pares Tese de hipóeses simulâneas sobre coeficienes de regressão Tese de Chow professorjfmp@homail.com

Leia mais

Prof. Carlos H. C. Ribeiro ramal 5895 sala 106 IEC

Prof. Carlos H. C. Ribeiro  ramal 5895 sala 106 IEC MB770 Previsão usa ando modelos maemáicos Prof. Carlos H. C. Ribeiro carlos@comp.ia.br www.comp.ia.br/~carlos ramal 5895 sala 106 IEC Aula 14 Modelos de defasagem disribuída Modelos de auo-regressão Esacionariedade

Leia mais

2 Distribuições de Probabilidade

2 Distribuições de Probabilidade Disribuições de Probabilidade.1 Disribuição Gaussiana Para uma caracerização complea do processo esocásico seguido por uma variável aleaória é necessário deerminar algumas de suas propriedades, como sua

Leia mais

A entropia de uma tabela de vida em previdência social *

A entropia de uma tabela de vida em previdência social * A enropia de uma abela de vida em previdência social Renao Marins Assunção Leícia Gonijo Diniz Vicorino Palavras-chave: Enropia; Curva de sobrevivência; Anuidades; Previdência Resumo A enropia de uma abela

Leia mais

Exercícios Sobre Oscilações, Bifurcações e Caos

Exercícios Sobre Oscilações, Bifurcações e Caos Exercícios Sobre Oscilações, Bifurcações e Caos Os ponos de equilíbrio de um modelo esão localizados onde o gráfico de + versus cora a rea definida pela equação +, cuja inclinação é (pois forma um ângulo

Leia mais

exercício e o preço do ativo são iguais, é dito que a opção está no dinheiro (at-themoney).

exercício e o preço do ativo são iguais, é dito que a opção está no dinheiro (at-themoney). 4. Mercado de Opções O mercado de opções é um mercado no qual o iular (comprador) de uma opção em o direio de exercer a mesma, mas não a obrigação, mediane o pagameno de um prêmio ao lançador da opção

Leia mais

Introdução às Medidas em Física

Introdução às Medidas em Física Inrodução às Medidas em Física 43152 Elisabeh Maeus Yoshimura emaeus@if.usp.br Bloco F Conjuno Alessandro Vola sl 18 agradecimenos a Nemiala Added por vários slides Conceios Básicos Lei Zero da Termodinâmica

Leia mais

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL Movimeno unidimensional 5 MOVIMENTO UNIDIMENSIONAL. Inrodução Denre os vários movimenos que iremos esudar, o movimeno unidimensional é o mais simples, já que odas as grandezas veoriais que descrevem o

Leia mais

O EFEITO DIA DO VENCIMENTO DE OPÇÕES NA BOVESPA 1

O EFEITO DIA DO VENCIMENTO DE OPÇÕES NA BOVESPA 1 O EFEITO DIA DO VENCIMENTO DE OPÇÕES NA BOVESPA 1 Paulo J. Körbes 2 Marcelo Marins Paganoi 3 RESUMO O objeivo dese esudo foi verificar se exise influência de evenos de vencimeno de conraos de opções sobre

Leia mais

1 Pesquisador - Embrapa Semiárido. 2 Analista Embrapa Semiárido.

1 Pesquisador - Embrapa Semiárido.   2 Analista Embrapa Semiárido. XII Escola de Modelos de Regressão, Foraleza-CE, 13-16 Março 2011 Análise de modelos de previsão de preços de Uva Iália: uma aplicação do modelo SARIMA João Ricardo F. de Lima 1, Luciano Alves de Jesus

Leia mais

LABORATÓRIO DE HIDRÁULICA

LABORATÓRIO DE HIDRÁULICA UNIVERSIDADE FEDERAL DE ALAGOAS ENTRO DE TENOLOGIA LABORATÓRIO DE HIDRÁULIA Vladimir aramori Josiane Holz Irene Maria haves Pimenel Marllus Gusavo Ferreira Passos das Neves Maceió - Alagoas Ouubro de 2012

Leia mais

Cap. 5 - Tiristores 1

Cap. 5 - Tiristores 1 Cap. 5 - Tirisores 1 Tirisor é a designação genérica para disposiivos que êm a caracerísica esacionária ensão- -correne com duas zonas no 1º quadrane. Numa primeira zona (zona 1) as correnes são baixas,

Leia mais

MODELOS DE VOLATILIDADE: COMPARAÇÃO COM DADOS SIMULADOS

MODELOS DE VOLATILIDADE: COMPARAÇÃO COM DADOS SIMULADOS MODELOS DE VOLATILIDADE: COMPARAÇÃO COM DADOS SIMULADOS Paulo Henrique Soo Cosa PUC-Rio / Dep. Engenharia Indusrial Rua M. S. Vicene 5 sala 950L CEP:453-900 Rio de Janeiro RJ UERJ / Fac. Ciências Econômicas

Leia mais

UTILIZAÇÃO DO MÉTODO DE HOLT-WINTERS PARA PREVISÃO DO LEITE ENTREGUE ÀS INDÚSTRIAS CATARINENSES

UTILIZAÇÃO DO MÉTODO DE HOLT-WINTERS PARA PREVISÃO DO LEITE ENTREGUE ÀS INDÚSTRIAS CATARINENSES UTILIZAÇÃO DO MÉTODO DE HOLT-WINTERS PARA PREVISÃO DO LEITE ENTREGUE ÀS INDÚSTRIAS CATARINENSES Rober Wayne Samohyl Professor do Programa de Pós-Graduação em Engenharia de Produção e Sisemas UFSC. Florianópolis-SC.

Leia mais

DEMOGRAFIA. Assim, no processo de planeamento é muito importante conhecer a POPULAÇÃO porque:

DEMOGRAFIA. Assim, no processo de planeamento é muito importante conhecer a POPULAÇÃO porque: DEMOGRAFIA Fone: Ferreira, J. Anunes Demografia, CESUR, Lisboa Inrodução A imporância da demografia no planeameno regional e urbano O processo de planeameno em como fim úlimo fomenar uma organização das

Leia mais

Interpolação e Extrapolação das ETTJ no Brasil

Interpolação e Extrapolação das ETTJ no Brasil Inerpolação e Exrapolação das ETTJ no Brasil Coordenação Geral de Moniorameno de Solvência Coordenação de Moniorameno de Risco CORIS Sergio Luis Franklin Junior Thiago Baraa Duare César da Rocha Neves

Leia mais

APOSTILA DE MODELOS LINEARES EM SÉRIES TEMPORAIS

APOSTILA DE MODELOS LINEARES EM SÉRIES TEMPORAIS UNIVERSIDADE FEDERAL DE MINAS GERAIS - UFMG INSIUO DE CIÊNCIAS EXAAS ICEx DEPARAMENO DE ESAÍSICA ES APOSILA DE MODELOS LINEARES EM SÉRIES EMPORAIS Glaura da Conceição Franco (ES/UFMG) Belo Horizone, agoso

Leia mais

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Dinâmicos

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Dinâmicos Análise de Projecos ESAPL / IPVC Criérios de Valorização e Selecção de Invesimenos. Méodos Dinâmicos Criério do Valor Líquido Acualizado (VLA) O VLA de um invesimeno é a diferença enre os valores dos benefícios

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar Progressão Ariméica e Progressão Geomérica. (Pucrj 0) Os números a x, a x e a x esão em PA. A soma dos números é igual a: a) 8 b) c) 7 d) e) 0. (Fuves 0) Dadas as sequências an n n, n n cn an an b, e b

Leia mais

CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA

CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA Inrodução Ese arigo raa de um dos assunos mais recorrenes nas provas do IME e do ITA nos úlimos anos, que é a Cinéica Química. Aqui raamos principalmene dos

Leia mais

Noções de Espectro de Freqüência

Noções de Espectro de Freqüência MINISTÉRIO DA EDUCAÇÃO - Campus São José Curso de Telecomunicações Noções de Especro de Freqüência Marcos Moecke São José - SC, 6 SUMÁRIO 3. ESPECTROS DE FREQÜÊNCIAS 3. ANÁLISE DE SINAIS NO DOMÍNIO DA

Leia mais

Estimação em Processos ARMA com Adição de Termos de Perturbação

Estimação em Processos ARMA com Adição de Termos de Perturbação UNIVER ERSIDADE DE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEP EPARTAMENTO DE ESTATÍSTICA Esimação em Processos ARMA com Adição de Termos de Perurbação Auor: Paricia Vieira de Llano Orienador:

Leia mais

AÇÕES DO MERCADO FINACEIRO: UM ESTUDO VIA MODELOS DE SÉRIES TEMPORAIS

AÇÕES DO MERCADO FINACEIRO: UM ESTUDO VIA MODELOS DE SÉRIES TEMPORAIS AÇÕES DO MERCADO FINACEIRO: UM ESTUDO VIA MODELOS DE SÉRIES TEMPORAIS Caroline Poli Espanhol; Célia Mendes Carvalho Lopes Engenharia de Produção, Escola de Engenharia, Universidade Presbieriana Mackenzie

Leia mais

Econometria Semestre

Econometria Semestre Economeria Semesre 00.0 6 6 CAPÍTULO ECONOMETRIA DE SÉRIES TEMPORAIS CONCEITOS BÁSICOS.. ALGUMAS SÉRIES TEMPORAIS BRASILEIRAS Nesa seção apresenamos algumas séries econômicas, semelhanes às exibidas por

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar . (Pucrj 0) Os números a x, a x e a3 x 3 esão em PA. A soma dos 3 números é igual a: é igual a e o raio de cada semicírculo é igual à meade do semicírculo anerior, o comprimeno da espiral é igual a a)

Leia mais

EFICIÊNCIA NA FORMA SEMI-FORTE NO MERCADO PORTUGUÊS

EFICIÊNCIA NA FORMA SEMI-FORTE NO MERCADO PORTUGUÊS EFICIÊNCIA NA SEMI-FORTE NO MERCADO PORTUGUÊS Mercados e Invesimenos Financeiros Dezembro, 2007 Inês Maos Liliana Araújo Pedro M. Dias Ricardo Sanos Sara Ledo Ferreira ÍNDICE 1. CONTEXTUALIZAÇÃO TEÓRICA

Leia mais

4 Metodologia R P. = cotação da ação i no final da semana t. 1 Maiores detalhes no ANEXO - 1

4 Metodologia R P. = cotação da ação i no final da semana t. 1 Maiores detalhes no ANEXO - 1 4 Meodologia Com o objeivo de se esar reornos anormais de curíssimo prao para o mercado de ações brasileiro (BOVESPA), ese rabalho foi dividido em rês eapas: Na primeira, usou-se a meodologia de De Bond

Leia mais

Capítulo 2: Conceitos Fundamentais sobre Circuitos Elétricos

Capítulo 2: Conceitos Fundamentais sobre Circuitos Elétricos SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA TE041 Circuios Eléricos I Prof. Ewaldo L. M. Mehl Capíulo 2: Conceios Fundamenais sobre Circuios Eléricos 2.1. CARGA ELÉTRICA E CORRENTE ELÉTRICA

Leia mais

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc.

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc. ECONOMETRIA Prof. Paricia Maria Borolon, D. Sc. Séries Temporais Fone: GUJARATI; D. N. Economeria Básica: 4ª Edição. Rio de Janeiro. Elsevier- Campus, 2006 Processos Esocásicos É um conjuno de variáveis

Leia mais

4 Aplicação do Modelo

4 Aplicação do Modelo Aplicação do Modelo É possível enconrar na lieraura diversas aplicações que uilizam écnicas esaísicas e de compuação inensiva para realizar previsões de curo prazo na área de energia elérica. Enre elas

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031 Universidade Federal do io Grande do Sul Escola de Engenharia de Poro Alegre Deparameno de Engenharia Elérica ANÁLISE DE CICUITOS II - ENG43 Aula 5 - Condições Iniciais e Finais de Carga e Descarga em

Leia mais

Estudo comparativo do fluxo de caminhões nos portos de Uruguaiana e Foz do Iguaçu

Estudo comparativo do fluxo de caminhões nos portos de Uruguaiana e Foz do Iguaçu XIII SIMPEP - Bauru, SP, Brasil, 6 a 8 de novembro de 26. Esudo comparaivo do fluxo de caminhões nos poros de Uruguaiana e Foz do Iguaçu Suzana Leião Russo (URI) jss@urisan.che.br Ivan Gomes Jardim (URI)

Leia mais

[MANUAL DE MARCAÇÃO A MERCADO]

[MANUAL DE MARCAÇÃO A MERCADO] [MANUAL DE MARCAÇÃO A MERCADO] Ese documeno aborda o processo de marcação a mercado de renda fixa, renda variável e derivaivos da Inerinves Gesão Daa de Publicação: Março de 0 Inrodução Nese manual definimos

Leia mais

Otimização da Curva de Gatilho de uma Opção Americana de Compra através de Algoritmos Genéticos

Otimização da Curva de Gatilho de uma Opção Americana de Compra através de Algoritmos Genéticos > REVISTA DE INTELIGÊNCIA COMPUTACIONAL APLICADA (ISSN: XXXXXXX), Vol. X, No. Y, pp. 1-10 1 Oimização da Curva de Gailho de uma Opção Americana de Compra aravés de Algorimos Genéicos Rafael de Sequeira

Leia mais

3 A Função de Reação do Banco Central do Brasil

3 A Função de Reação do Banco Central do Brasil 3 A Função de Reação do Banco Cenral do Brasil Nese capíulo será apresenada a função de reação do Banco Cenral do Brasil uilizada nese rabalho. A função segue a especificação de uma Regra de Taylor modificada,

Leia mais

Dinâmica e previsão de preços de commodities agrícolas com o filtro de Kalman

Dinâmica e previsão de preços de commodities agrícolas com o filtro de Kalman Flávio Pinheiro Corsini Dinâmica e previsão de preços de commodiies agrícolas com o filro de Kalman Trabalho de Formaura apresenado à Escola Poliécnica da Universidade de São Paulo para a obenção do Diploma

Leia mais

Expectativas, consumo e investimento CAPÍTULO 16. Olivier Blanchard Pearson Education Pearson Education Macroeconomia, 4/e Olivier Blanchard

Expectativas, consumo e investimento CAPÍTULO 16. Olivier Blanchard Pearson Education Pearson Education Macroeconomia, 4/e Olivier Blanchard Expecaivas, consumo e Olivier Blanchard Pearson Educaion CAPÍTULO 16 16.1 Consumo A eoria do consumo foi desenvolvida na década de 1950 por Milon Friedman, que a chamou de eoria do consumo da renda permanene,

Leia mais

E&G - REVISTA ECONOMIA E GESTÃO ISSN

E&G - REVISTA ECONOMIA E GESTÃO ISSN Valor em risco de longo prazo: uma abordagem para modelos da Família Ach e redes neuronais Long erm value-a-risk: an Arch Models and neural neworks approach Leandro Sanos Maciel leandro_maciell@homail.com

Leia mais

Insper Instituto de Ensino e Pesquisa. Decio Albert da Silva Santos PREVISÃO DE VOLATILIDADE:

Insper Instituto de Ensino e Pesquisa. Decio Albert da Silva Santos PREVISÃO DE VOLATILIDADE: Insper Insiuo de Ensino e Pesquisa Programa de Mesrado Profissional em Economia Decio Alber da Silva Sanos PREVISÃO DE VOLATILIDADE: A VOLATILIDADE IMPLÍCITA COMO VARIÁVEL EXPLICATIVA DA VARIÂNCIA CONDICIONAL

Leia mais

Voo Nivelado - Avião a Hélice

Voo Nivelado - Avião a Hélice - Avião a Hélice 763 º Ano da icenciaura em ngenharia Aeronáuica edro. Gamboa - 008. oo de ruzeiro De modo a prosseguir o esudo analíico do desempenho, é conveniene separar as aeronaves por ipo de moor

Leia mais

3 LTC Load Tap Change

3 LTC Load Tap Change 54 3 LTC Load Tap Change 3. Inrodução Taps ou apes (ermo em poruguês) de ransformadores são recursos largamene uilizados na operação do sisema elérico, sejam eles de ransmissão, subransmissão e disribuição.

Leia mais

AJUSTE DO MODELO GAMA A TOTAIS DECENDIAIS DE CHUVA PARA JAGUARUANA-CE

AJUSTE DO MODELO GAMA A TOTAIS DECENDIAIS DE CHUVA PARA JAGUARUANA-CE AJUSTE DO MODELO GAMA A TOTAIS DECEDIAIS DE CHUVA PARA JAGUARUAA-CE Francisco Solon Danas eo (); Tarcísio da Silveira Barra () Engº Agrº, Pósgraduação em Agromeeorologia, DEA/UFV, CEP 3657-000, Viçosa-MG

Leia mais

Lista de Exercícios nº 3 - Parte IV

Lista de Exercícios nº 3 - Parte IV DISCIPLINA: SE503 TEORIA MACROECONOMIA 01/09/011 Prof. João Basilio Pereima Neo E-mail: joaobasilio@ufpr.com.br Lisa de Exercícios nº 3 - Pare IV 1ª Quesão (...) ª Quesão Considere um modelo algébrico

Leia mais

Calcule a área e o perímetro da superfície S. Calcule o volume do tronco de cone indicado na figura 1.

Calcule a área e o perímetro da superfície S. Calcule o volume do tronco de cone indicado na figura 1. 1. (Unesp 017) Um cone circular reo de gerariz medindo 1 cm e raio da base medindo 4 cm foi seccionado por um plano paralelo à sua base, gerando um ronco de cone, como mosra a figura 1. A figura mosra

Leia mais

TIR Taxa Interna de Retorno LCF Economia de Recursos Florestais 2009

TIR Taxa Interna de Retorno LCF Economia de Recursos Florestais 2009 TIR Taxa Inerna de Reorno LCF 685-Economia de Recursos Floresais 2009 TIR: Taxa Inerna de Reorno AT Taxa Inerna de Reorno (TIR)de um projeo é aquela que orna o valor presene das receias menos o valor presene

Leia mais

METODOLOGIAS ALTERNATIVAS DE GERAÇÃO DE CENÁRIOS NA APURAÇÃO DO V@R DE INSTRUMETOS NACIONAIS. Alexandre Jorge Chaia 1 Fábio da Paz Ferreira 2

METODOLOGIAS ALTERNATIVAS DE GERAÇÃO DE CENÁRIOS NA APURAÇÃO DO V@R DE INSTRUMETOS NACIONAIS. Alexandre Jorge Chaia 1 Fábio da Paz Ferreira 2 IV SEMEAD METODOLOGIAS ALTERNATIVAS DE GERAÇÃO DE CENÁRIOS NA APURAÇÃO DO V@R DE INSTRUMETOS NACIONAIS Alexandre Jorge Chaia 1 Fábio da Paz Ferreira 2 RESUMO Uma das ferramenas de gesão do risco de mercado

Leia mais

2 PREVISÃO DA DEMANDA

2 PREVISÃO DA DEMANDA PREVISÃO DA DEMANDA Abandonando um pouco a visão românica do ermo previsão, milhares de anos após as grandes civilizações da nossa hisória, a previsão do fuuro vola a omar a sua posição de imporância no

Leia mais

2.6 - Conceitos de Correlação para Sinais Periódicos

2.6 - Conceitos de Correlação para Sinais Periódicos .6 - Conceios de Correlação para Sinais Periódicos O objeivo é o de comparar dois sinais x () e x () na variável empo! Exemplo : Considere os dados mosrados abaixo y 0 x Deseja-se ober a relação enre x

Leia mais

SISTEMA DE RISCO BM&F (SRB)

SISTEMA DE RISCO BM&F (SRB) SISTEMA DE RISCO BM&F (SRB) Subsisema de Margem para Aivos Líquidos I Aspecos Conceiuais Abril de 2001 .2. 1. Inrodução Nese documeno, apresenam-se os aspecos conceiuais do Subsisema de Margem para Aivos

Leia mais

Previsão de Demanda. Logística. Prof. Dr. Claudio Barbieri da Cunha

Previsão de Demanda. Logística. Prof. Dr. Claudio Barbieri da Cunha Previsão de Demanda Logísica Prof. Dr. Claudio Barbieri da Cunha Escola Poliécnica da Universidade de São Paulo Deparameno de Engenharia de Transpores março de 206 Previsão de Demanda Conhecer a demanda

Leia mais

REGRA DE TAYLOR NO BRASIL:

REGRA DE TAYLOR NO BRASIL: REGRA DE TAYLOR NO BRASIL: 999 2005 João José Silveira Soares Fernando de Holanda Barbosa Sumário- Ese rabalho esima a regra de Taylor para o Brasil a parir da implemenação do sisema de meas de inflação

Leia mais

A volatilidade de projetos industriais para uso em análise de risco de investimentos

A volatilidade de projetos industriais para uso em análise de risco de investimentos Ges. Prod., São Carlos, v. 9, n. 2, p. 337-345, 22 A volailidade de projeos indusriais para uso em análise de risco de invesimenos he volailiy of indusrial projecs for use in analysis of risk in invesmens

Leia mais

Contrato Futuro de Taxa Média das Operações Compromissadas de Um Dia (OC1) com Lastro em Títulos Públicos Federais

Contrato Futuro de Taxa Média das Operações Compromissadas de Um Dia (OC1) com Lastro em Títulos Públicos Federais Conrao Fuuro de Taxa Média das Operações Compromissadas de Um Dia (OC1) com Lasro em Tíulos Públicos Federais Especificações 1. Definições Conrao Fuuro de OC1: Taxa Média das Operações Compromissadas de

Leia mais

Seção 5: Equações Lineares de 1 a Ordem

Seção 5: Equações Lineares de 1 a Ordem Seção 5: Equações Lineares de 1 a Ordem Definição. Uma EDO de 1 a ordem é dia linear se for da forma y + fx y = gx. 1 A EDO linear de 1 a ordem é uma equação do 1 o grau em y e em y. Qualquer dependência

Leia mais

UNIVERSIDADE DA BEIRA INTERIOR FACULDADE DE CIÊNCIAS SOCIAIS E HUMANAS DEPARTAMENTO DE GESTÃO E ECONOMIA MACROECONOMIA III

UNIVERSIDADE DA BEIRA INTERIOR FACULDADE DE CIÊNCIAS SOCIAIS E HUMANAS DEPARTAMENTO DE GESTÃO E ECONOMIA MACROECONOMIA III UNIVERSIDADE DA BEIRA INTERIOR FACUDADE DE CIÊNCIAS SOCIAIS E HUMANAS DEPARTAMENTO DE GESTÃO E ECONOMIA MACROECONOMIA III icenciaura de Economia (ºAno/1ºS) Ano ecivo 007/008 Caderno de Exercícios Nº 1

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 2º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Inrodução ao Cálculo Diferencial II TPC nº 9 Enregar em 4 2 29. Num loe de bolbos de úlipas a probabilidade de que

Leia mais

N(0) número de núcleos da espécie inicial no instante t=0. N(t) número de núcleos da espécie inicial no instante t. λ constante de decaimento

N(0) número de núcleos da espécie inicial no instante t=0. N(t) número de núcleos da espécie inicial no instante t. λ constante de decaimento 07-0-00 Lei do Decaimeno Radioacivo probabilidade de ransformação elemenar durane d d número médio de ransformações (dum elemeno) ocorridas em d N = Nd número médio de ocorrências na amosra com N elemenos

Leia mais

Porto Alegre, 14 de novembro de 2002

Porto Alegre, 14 de novembro de 2002 Poro Alegre, 14 de novembro de 2002 Aula 6 de Relaividade e Cosmologia Horácio Doori 1.12- O paradoo dos gêmeos 1.12.1- Sisemas Inerciais (observadores) com velocidades diversas vêem a disância emporal

Leia mais

Tipos de Processos Estocásticos

Tipos de Processos Estocásticos Mesrado em Finanças e Economia Empresarial EPGE - FGV Derivaivos Pare 7: Inrodução ao álculo Diferencial Esocásico Derivaivos - Alexandre Lowenkron Pág. 1 Tipos de Processos Esocásicos Qualquer variável

Leia mais

Negociação Orientada à Volatilidade de Opções Sobre Taxa de Câmbio de Reais por Dólar Comercial

Negociação Orientada à Volatilidade de Opções Sobre Taxa de Câmbio de Reais por Dólar Comercial Negociação Orienada à Volailidade de Opções Sobre Taxa de Câmbio de Reais por Dólar Comercial Auoria: Sandro Hüner Chimisso, Gilbero de Oliveira Klöeckner Resumo: Uma das verenes de negociação de opções

Leia mais